Draft on the Fly: Adaptive Self-Speculative Decoding using Cosine Similarity
Michael R. Metel, Peng Lu, Boxing Chen, Mehdi Rezagholizadeh, Ivan Kobyzev
Abstract
We present a simple on the fly method for faster inference of large language models. Unlike other (self-)speculative decoding techniques, our method does not require fine-tuning or black-box optimization to generate a fixed draft model, relying instead on simple rules to generate varying draft models adapted to the input context. We show empirically that our light-weight algorithm is competitive with the current SOTA for self-speculative decoding, while being a truly plug-and-play method.- Anthology ID:
- 2024.findings-emnlp.124
- Volume:
- Findings of the Association for Computational Linguistics: EMNLP 2024
- Month:
- November
- Year:
- 2024
- Address:
- Miami, Florida, USA
- Editors:
- Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 2267–2272
- Language:
- URL:
- https://preview.aclanthology.org/jlcl-multiple-ingestion/2024.findings-emnlp.124/
- DOI:
- 10.18653/v1/2024.findings-emnlp.124
- Cite (ACL):
- Michael R. Metel, Peng Lu, Boxing Chen, Mehdi Rezagholizadeh, and Ivan Kobyzev. 2024. Draft on the Fly: Adaptive Self-Speculative Decoding using Cosine Similarity. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 2267–2272, Miami, Florida, USA. Association for Computational Linguistics.
- Cite (Informal):
- Draft on the Fly: Adaptive Self-Speculative Decoding using Cosine Similarity (Metel et al., Findings 2024)
- PDF:
- https://preview.aclanthology.org/jlcl-multiple-ingestion/2024.findings-emnlp.124.pdf