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Abstract

This paper investigates unsupervised multi-
modal domain adaptation for multimodal emo-
tion recognition, which is a solution for data
scarcity yet remains under studied. Due to the
varying distribution discrepancies of different
modalities between source and target domains,
the primary challenge lies in how to balance the
domain alignment across modalities to guaran-
tee they are all well aligned. To achieve this,
we first develop our model based on the in-
formation bottleneck theory to learn optimal
representation for each modality independently.
Then, we align the domains via matching the
label distributions and the representations. In
order to balance the representation alignment,
we propose to minimize a surrogate of the
alignment losses, which is equivalent to adap-
tively adjusting the weights of the modalities
throughout training, thus achieving balanced
domain alignment across modalities. Over-
all, the proposed approach features Adaptively
modality-balanced domain adaptation, dubbed
Amanda, for multimodal emotion recogni-
tion. Extensive empirical results on com-
monly used benchmark datasets demonstrate
that Amanda significantly outperforms com-
peting approaches. The code is available at
https://github.com/1emonx/Amanda.

1 Introduction

Emotion recognition has gained increasing atten-
tion in recent years in a wide spectrum of applica-
tions, including emotional support (Tu et al., 2022),
conversation system (Shi and Huang, 2023) and
healthcare (Zanwar et al., 2023). Multimodal emo-
tion recognition which takes advantage of heteroge-
neous and complementary signals, such as acous-
tic, visual, lexical information, has demonstrated
superior performance to its unimodal counterpart
(Zhu et al., 2022; Zhang and Li, 2023). Neverthe-
less, one of the notable drawbacks of multimodal
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learning is that collecting and annotating data of
multiple modalities is much more expensive than
one single modality (Lian et al., 2023). Thus, the
importance of the ability of a model to transfer
knowledge from annotated datasets to unannotated
but related ones is manifested in the context of
multimodal emotion recognition.

In this regard, unsupervised domain adaptation
techniques are popular for promoting the general-
ization capability of a model from a labeled source
domain to an unlabeled target domain. Domain
adaptation typically fills the model’s performance
gap between the target and source domains via
matching the data distributions of the two domains
with sample-based, feature-based and inference-
based approaches (Kouw and Loog, 2021). Ac-
cordingly, numerous schemes have been developed
for various tasks in the fields of computer vision (Li
et al., 2021; Liu et al., 2023) and natural language
processing (Calderon et al., 2022; Dua et al., 2023).
In contrast, domain adaptation in multmodal learn-
ing settings remains relatively less researched, not
to mention in multimodal emotion recognition.

The previous literature on multimodal domain
adaptation broadly falls into two categories, multi-
ple visual modalities and general multiple modali-
ties. The former tackles multimodal computer vi-
sion tasks, where different modalities correspond to
RGB and optical flows (Munro and Damen, 2020),
CT and MRI images (Kruse et al., 2021), or 2D im-
age and 3D point cloud (Xing et al., 2023). In these
scenarios, the modalities are similar and share the
same environment, suggesting a close distribution
gap between source and target domains of different
modalities. Therefore, no specific effort is required
to address modality differences when aligning the
domains. The latter category focuses on more gen-
eral multimodal domain adaptation approaches, ap-
plicable to text/image and video/audio applications.
However, in these studies, the source and target do-
mains of different modalities are aligned uniformly
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without recognizing modality disparity (Qi et al.,
2018), or they are not considered jointly, leading
to the situation where some modalities are well
aligned while others not (Yuan et al., 2022).

In multimodal emotion recognition tasks, the
commonly utilized modalities—linguistic, visual
and acoustic, exhibit high heterogeneity. Moreover,
these modalities live in decoupled spaces, as op-
posed to the visual modalities mentioned above.
Consequently, from the source to target domains,
different modalities experience varying degree of
distribution shift. For example, consider a shift in
the working scene of a multimodal emotion recog-
nition system from the day (source domain) to the
night (target domain). In this scenario, the distribu-
tion of visual features noticeably shifts due to the
variation of illumination conditions, while that of
acoustic features remains relatively unchanged.

Henceforth, directly applying existing domain
adaptation approaches to multimodal emotion
recognition might result in an imbalanced align-
ment of different modalities. The model may then
rely heavily on the well aligned modalities in the
target domain and under-utilize others; in other
words, well aligned modalities dominate others,
causing the latter to be under-trained.

With the above analysis, in this paper, we ad-
vocate modality independence (Sun et al., 2023;
Qu et al., 2021) and align the source and target do-
mains of different modalities, taking their varying
distribution gaps into consideration. To be specific,
we design our model based on the information bot-
tleneck (IB) theory (Saxe et al., 2019; Kawaguchi
et al., 2023), which enforces each modality to per-
form label prediction, thereby encouraging each to
obtain its optimal representation independently. As
for the domain alignment, we first introduce label
distribution alignment under the practical assump-
tion that the label distributions remain consistent
across the source and target domains. We then em-
ploy correlation alignment (Sun et al., 2016; Sun
and Saenko, 2016) to match the optimal represen-
tations in the two domains for each modality.

To balance the representation alignment, we min-
imize a surrogate of the alignment losses rather
than minimizing a weighted sum of the losses with
fixed weights. Via judiciously devising the surro-
gate function, minimizing it is tantamount to min-
imizing the weighted sum of the losses with the
weights being adaptively tuned throughout the train-
ing progress. Concretely, the modalities with larger
(resp. smaller) losses receive proportionally larger

(resp. smaller) weights, which achieves dynami-
cally balanced domain alignment across modalities.

In summary, our work features Adaptively
modality-balanced domain adaptation (abbrevi-
ated as Amanda) for multimodal emotion recogni-
tion. The contributions are primarily threefold.

• We develop a mulitmodal emotion recogni-
tion model which learns the representations
of modalities independently and aligns the
source and target domain via matching the
representations and the labels.

• We propose a paradigm for alignment loss
surrogate function design, which adaptively
balances all modalities during training.

• Empirical results verify the effectiveness of
the proposed method, and demonstrate that
Amanda outperforms the compared schemes.

2 Related Works

2.1 Domain adaptation

There are an enormous number of prior works on
domain adaptation, for which interested readers
can refer to survey papers (Wang and Deng, 2018;
Kouw and Loog, 2021; Yu et al., 2023) and ref-
erences therein. We only cover the most relevant
works, which can be classified into two branches,
i.e., the adversarial learning methods and moment
matching methods. Starting from the pioneering
work DANN (Ganin et al., 2016), a vast amount
of adversarial learning methods emerge. MDAN
(Zhao et al., 2018) investigates domain adapta-
tion with multiple source domains and devises
two versions of optimization strategies. CDAN
(Long et al., 2018), MADA (Pei et al., 2018)
and CAN (Wu et al., 2021) introduce label pre-
diction information as conditioning for domain
alignment. DALN (Chen et al., 2022) proposes
a novel Nuclear-norm 1-Wasserstein discrepancy
(NWD) and constructs a discriminator-free adver-
sarial model via reusing the task-specific classifier
as a discriminator. CDA (Yadav et al., 2023) incor-
porates contrastive learning into domain adaptation
to achieve class-level alignment.

As for the moment matching branch, maximum
mean discrepancies (MMD) (Tzeng et al., 2014)
and its variants, such as MK-MMD (Long et al.,
2015), RTN (Long et al., 2016) are typical first
order moment approaches which match the mean
of the representations. Coral (Sun et al., 2016; Sun
and Saenko, 2016) and JDDA (Chen et al., 2019)
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represent second moment approaches, matching
the covariance of the representations.

2.2 Balanced multimodal learning

Another line of relevant studies that inspire this
work are devoted to balancing the convergence of
different modalities to prevent some modalities be-
ing overfitting while others being underfitting. The
learning rates of different modalities are dynam-
ically regulated via tracking the label prediction
losses of all modalities in studies (Sun et al., 2021;
Peng et al., 2022). Work (Wu et al., 2022) proposes
a scheme to estimate the model’s dependence on
each modality, based on which an algorithm to
balance the learning speeds of all modalities is
introduced. In study (Wang et al., 2020), the over-
fitting behaviors of the modalities are evaluated,
and accordingly, an optimal blending of gradients
is computed for model updates. The relative advan-
tage of each modality is defined during model train-
ing, with which a bi-level optimization problem is
formulated to re-weight the loss terms of all modal-
ities in work (Sun et al., 2024). These approaches
are effective yet involve a delicate heuristic design
in the light of some observations during training.

In our work, we adopt the second moment match-
ing method for representation alignment, thus fo-
cusing on balancing modalities and circumventing
the difficulty in balancing the competing genera-
tive and discriminative components in adversarial-
based methods. We propose a paradigm for align-
ment loss surrogate function design, enabling adap-
tive balancing of alignment losses across modalities
without extra effort to tune the learning rates.

3 Method: Amanda

Prior to delving into our method, Amanda, we in-
troduce the notations and assumptions below.
Notations: Suppose the multimodal training
dataset contains N samples, each with M modal-
ities. For ease of expression, let us define an aux-
iliary modality as a union of all modalities, and
thus the total number of modalities is M + 1.
Let [P ] for any positive integer P denote the
set {1, 2, · · · , P}. The training samples are de-
noted by ({xn,m}m∈[M ], {yn,m}m∈[M+1]), where
n ∈ [N ] indexes the samples, xn,m ∈ Rdm rep-
resents the dm-dimensional feature vector (the
feature can also be vector sequence) of modality
m,∀m ∈ [M ], and yn,m represents the label cor-
responding to modality m,∀m ∈ [M + 1] (for

datasets where all modalities share a common la-
bel, yn,1 = yn,2 = · · · = yn,M+1 holds). Sup-
pose the number of emotion categories is C; then
the label yn,m can be a one-hot vector or a scalar
in [C], and we adopt either of these two forms
when necessary in the rest of the paper. For the
consistency of expression, we use xn,M+1 :=
[xn,1;xn,2; · · · ;xn,M ] to collect all features of
sample n.

Let Xm and Ym represent general feature and
label random variables for all m ∈ [M + 1], with
xn,m and yn,m as their realizations. Let vector
Zm ∈ Rd, a map of Xm , denote the representa-
tion of modalitym, and zn,m is a realization ofZm

(for brevity, we assume the representations of all
modalities are d-dimensional vectors). We use su-
perscript s and t to distinguish variables of source
and target domains. For instance, Xs

m and Xt
m

denote the features of modality m from source and
target domains, respectively.
Assumptions: In this paper we consider unsuper-
vised domain adaptation problem for multimodal
learning, for which the following assumptions are
satisfied: 1) the label target domain data is in-
accessible; 2) the feature distributions shift with
the domains, yet the label distributions remain
unchanged, meaning that p(Xt

m) ̸= p(Xs
m) and

p(Y t
m) = p(Y s

m) hold for anym ∈ [M+1], where
p(·) represents the distribution of a random variable.
The second assumption holds true when the domain
changes the feature but is not a causal factor of the
considered event. For example, although the illu-
mination (the feature) of the vision system varies
between the day and the night (different domains),
one’s emotion (the label) distribution remains rela-
tively stable with the day and the night.

3.1 Model design
A. Overview of model framework
In the considered multimodal emotion recognition
task, three modalities are utilized, and thus we have
M = 3. The model takes as input the features
Xm,m ∈ [M ], which are extracted from the raw
data of the three modalities with corresponding
pretrained models. Specifically, the widely used
language and audio models, BERT-base (Devlin
et al., 2018) and wav2vec2 (Baevski et al., 2020),
are employed to obtain lexical and acoustic fea-
tures, respectively. For the visual feature extraction,
we utilize a variant of Vision Transformer (ViT)
(Dosovitskiy et al., 2020), named APViT (Xue
et al., 2022), which emphasizes the most discrim-
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Figure 1: (a) Model architecture with 2 modalities as an example (multimodal representation Z3 is a concatenation
of Z1 and Z2; solid and dashed regular arrows represent the flows of source and target domains, respectively;
double-headed arrows represent alignment or supervision signals, corresponding to the information bottleneck loss
LIB(θ), label alignment loss LLA(θ) and correlation alignment loss LCA(θ)). (b) Information flow of modality m.

inative features and discards noisy backgrounds.
The adopted APViT is pretrained on the RAF-DB
(Li et al., 2017) database, a specialized dataset for
facial emotion recognition, aligning with the task
considered in this paper. More details about the
feature extraction are presented in Section 4.

Figure 1(a) visualizes the architecture of our
model, Amanda, in an example with two modal-
ities (M = 2) for simplicity. To map the fea-
ture Xm to the representation Zm, we employ
a deterministic encoder fm(·;θfm) : Rdm → Rd

with model parameter θfm, which means Zm =
fm(Xm;θfm), ∀m ∈ [M ]. For different modali-
ties, fm(·) can take different forms; for instance, in
our model framework, we utilize TextCNN for the
acoustic and lexical modalities, and LSTM for the
visual modality. Let ZM+1 := [Z1;Z2; · · · ;ZM ]
concatenate the representation of all modalities.
For each modalitym ∈ [M+1], an MLP gm(·;θgm)
is adopted to predict the label using the correspond-
ing representation, that is, Ŷm = gm(Zm;θgm).
The multimodal prediction ŶM+1 is admitted as the
final predicted label. For ease of expression, we
use θ = {θgM+1} ∪ {θfm,θgm}m∈[M ] to collect all
model parameters.

B. IB based representation learning
With the above model framework, the information
chain followsXm → Zm → Ym,∀m ∈ [M + 1],
as is shown in Figure 1(b). A model with good
generalization performance should be able to gen-
erate representation Zm which maintains task rele-
vant information and discards the rest in Xm. To
achieve this, the labeled source domain data is uti-

lized to minimize the following information bottle-
neck (IB) loss:

LIB(θ) :=
∑

m∈[M+1]

γI(Xs
m,Z

s
m)−I(Zs

m,Y
s
m), (1)

where I(·, ·) represents the mutual information of
two random variables, and γ is a coefficient balanc-
ing the two terms.

From the perspective of information theory, it
is evident that minimizing LIB(θ) leads to a rep-
resentation Zs

m that retains minimal information
from the original featureXs

m while capturing the
maximal information of the label Y s

m. Henceforth,
Zs

m is an optimal representation in the sense of
information bottleneck theory (Saxe et al., 2019;
Kawaguchi et al., 2023). Moreover, not only is
the joint modality M + 1 enforced to learn the
task relevant information I(Zs

M+1,Y
s
M+1), but

each individual modality m, for all m ∈ [M ],
is also required to maximize their corresponding
I(Zs

m,Y
s
m) even if all modalities share a common

label. This promotes modality independence and
prevents some weak modalities from being ’lazy’
and being dominated by strong modalities.

Next, we elaborate on how the two information
terms in Eq. (1) are calculated.

I(Xs
m,Z

s
m)= H(Zs

m)−H(Zs
m|Xs

m)

=H(Zs
m)=EZs

m
[− log p(Zs

m)],
(2)

where H(·) denotes entropy, and H(Zs
m|Xs

m) = 0

since Zm = fm(Xm;θfm) is a deterministic func-
tion. Upon assuming that p(Zs

m) follows Gaussian
distribution N (µs

m,Σ
s
m) (µs

m ∈ Rd, and Σs
m ∈

Rd×d is a diagonal matrix), we can estimate µs
m
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and Σs
m with the representations zsn,m, n ∈ [N s].

The the entropy of H(Zs
m) is

H(Zs
m) =

1

2
log |Σs

m|+ d

2
(1 + log(2π)), (3)

where |Σs
m| represents the determinant of Σs

m.
Similarly, I(Zs

m,Y
s
m) can written as:

I(Zs
m,Y

s
m) = H(Y s

m)−H(Y s
m|Zs

m)

= Hs
Y,m −H(Y s

m|Zs
m)

= Hs
Y,m+

1

N s

Ns∑

n=1

log p(ysn,m|zsn,m), (4)

where we use the fact that H(Y s
m) = Hs

Y,m is a
constant independent from parameter θ.

Combining Eqs. (1), (2), (3) and (4), we obtain
the information bottleneck loss as follows (with
constant terms omitted).

LIB(θ)=

M+1∑

m=1

[γ
2
log |Σs

m|

− 1

N s

∑

n∈[Ns]

log p(ysn,m|zsn,m)
]
.

(5)

C. Label alignment
As assumption 2) states, the label distributions of
the target and source domains remain the same.
We capitalize on this assumption to exploit the
unlabeled target data. For the target domain
sample Xt

m, we can obtain its label Ŷ t
M+1 =

p(Y t
M+1|Xt

M+1;θ). Although no label can be
used as supervision signal for each individual target
domain sample, the label distributions of the tar-
get and source domains can be aligned. The label
distribution of source domain can be immediately
computed from the labels as following:

p(Y s
M+1) = ȳ

s
M+1 =

1

N s

∑

n∈[Ns]

ysn,M+1. (6)

The predicted label distribution of target domain is

ˆ̄ytM+1 =
1

N t

∑

n∈[Nt]

ŷtn,M+1. (7)

Label alignment (LA) is achieved by minimizing
the following cross entropy loss between the target
and source label distributions:

LLA(θ) = −Eȳs
M+1∼p(Y s

M+1)
[logˆ̄ytM+1]

=
∑

c∈[C]

−(ȳsM+1)clog(ˆ̄ytM+1)c,
(8)

where (·)c is the c-th element of the vector.
D. Modality-wise representation alignment
We align the optimal representations of different

modalities across the target and source domains,
following the idea of matching the distributions
by aligning the second order statistics. In specific,
we first calculate the variance of Zs

m and Zt
m, and

denote them asCs
m andCt

m,∀m ∈ [M+1], respec-
tively. Then, the representation is aligned by min-
imizing the following correlation alignment (CA)
loss (Sun et al., 2016):

LCA
m (θ) = ||Ct

m −Cs
m||2F , (9)

where || · ||F represents the Frobenius norm.
However, as mentioned above, directly applying

correlation alignment to multimodal domain adap-
tation faces the difficulty in balancing the modal-
ities, since the gaps between target and source
distributions of different modalities vary. To this
end, we propose to minimize a surrogate function
of LCA(θ) := [LCA

1 (θ),LCA
2 (θ), · · · ,LCA

M+1(θ)],
h(·) : RM+1 → R. The goal of minimizing
h(LCA(θ)) is to dynamically balance different
modalities during the optimization procedure. The
details of how to determine h(·) are postponed to
the next subsection.

With the above model and loss functions, the
overall model training loss follows:

L(θ)=LIB(θ)+α1LLA(θ)+α2h(LCA(θ)), (10)

where α1 and α2 are the constant coefficients
weighting the three loss terms which are also shown
in Figure 1. In the sequel, we present our approach
for the design of the surrogate function h(·).

3.2 Adaptive modality balancing
In this subsection, we develop a surrogate
function — modality balanced alignment
loss (MBAL) function h(a(θ)),∀a(θ) =
[a1(θ), a2(θ), · · · , aM+1(θ)], am(θ) ≥ 0, ∀m ∈
[M+1], such that minimizing h(a(θ)) can adap-
tively balance the minimization of all elements of
a(θ). Note that here we use a(θ) for brevity and
generality, and substituting a(θ) with LCA(θ) in
h(a(θ)) directly gives the alignment loss term in
Eq. (10).
A. A general design of the MBAL function
We first propose that h(a(θ)) in general takes the
following form:

h(a(θ)) = ϕ−1
( ∑

m∈[M+1]

ϕ(am(θ))
)
, (11)

where ϕ(·) is a convex and monotonically increas-
ing function, and ϕ−1(·) denotes the inverse func-
tion of ϕ(·).

Applying the chain rule of derivative, the gradi-
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ent of h(a(θ)) is derived:

∇θh(a(θ))=

∑M+1
m=1 ϕ

′(am(θ)) · ∇θam(θ)

ϕ′
(
ϕ−1(

∑M+1
m=1 ϕ(am(θ)))

)

=
M+1∑

m=1

ψm(θ) · ∇θam(θ), (12)

where ϕ′(·) is the derivative of function ϕ(·), and
ψm(θ) is defined as:

ψm(θ) =
ϕ′(am(θ))

ϕ′
(
ϕ−1(

∑M+1
m=1 ϕ(am(θ)))

) . (13)

From Eq. (12), it is obvious that the gradient
∇θh(a(θ)) corresponds to the weighted sum of
∇θam(θ),m ∈ [M +1] with weight coefficient
ψm(θ). For the brevity of expression, we drop the
variable θ when no ambiguity occurs.

Next, we analyze the properties of ψm with ϕ(·)
elaborated as broadly used convex functions.
B. Two families of MBAL functions
We will show that when ϕ(·) takes the form of
power and exponential functions, the correspond-
ing surrogate function h(a) is consolidated as norm
and log-exp functions, respectively. The weights
ψm,m ∈ [M+1] are then properly bounded and
positively correlated to am, ∀am ≥ 0. This implies
that with properly chosen learning rate, the con-
vergence of the learning can be guaranteed, and
meanwhile larger losses enjoy larger weights.
Norm functions For any p ≥ 1, choosing ϕ(a) =
ap immediately gives that h(a) = ||a||p :=

(
∑M+1

m=1 a
p
m)1/p, which means h(a) is the p-norm

of a. Then, ψm can be attained as:

ψm =
ap−1
m

(∑M+1
m=1 a

p
m

) p−1
p

, ∀m ∈ [M+1]. (14)

Three cases come in order based on the value of p.
1) p = 1: h(a) is a direct summation of am, and
ψm = 1,m ∈ [M+1] hold. This case corresponds
to the imbalanced version of Amanda.
2) 1 < p < +∞: Eqs. (14) and (12) indicate that
the gradient ∇θam(θ) associated with larger am is
highlighted with larger weight ψm. This implies
that during training, the equivalent alignment loss
weights of different modalities are adaptively regu-
lated according to the corresponding losses, which
pays more attention to larger losses.
3) p = +∞: Eq. (14) reduces to ψm = 1, if m =
argmaxm∈[M+1]am; otherwise, ψm = 0. Conse-
quently, only the largest alignment loss among all
modalities counts during training in terms of the
gradient in Eq. (12).
Log-exp functions For any t > 0, choosing

ϕ(a) = exp(ta) leads to log-exp function: h(a) =
1
t ln(

∑M+1
m=1 exp(tam)). The weight ψm writes as:

ψm =
exp(tam)

∑M
m=1 exp(tam)

, ∀m ∈ [M+1]. (15)

Similarly, two cases follow:
1) 0 < t < +∞: Similar to the analysis of case
2) in the above norm function part, conclusion can
be drawn by combining Eq. (12) and Eq. (14) that
gradient-based training algorithms will "take more
care of" the larger alignment losses.
2) t = +∞: This case is exactly the same as case
3 in the above norm function part.
C. Theoretical properties and insights
Now we present theoretical properties of the weight
ψ:= [ψ1,ψ2, · · · ,ψM+1] and MBAL function h(a).

Lemma 1. The norm of the weightψ satisfies (p ≥
1, and 1/p+ 1/q = 1):

||ψ||q = 1, if h(a) = ||a||p; (16a)

||ψ||1 = 1, if h(a)=
1

t
ln(

M+1∑

m=1

exp(tam). (16b)

Eqs. (16a) and (16b) can be verified via calcu-
lating the q-norm and 1-norm of ψ using ψm in
Eqs. (14) and (15), respectively.

Theorem 1. The MBAL function h(a) is an upper
bound of the weighted sum of am with weights
ψm,m ∈ [M+1], which translates to the following
inequalities:
M+1∑

m=1

ψmam≤ ||a||p = h(a); (17a)

M+1∑

m=1

ψmam≤ 1

t
ln(

M+1∑

m=1

exp(tam))=h(a). (17b)

Proof. For any p ≥ 1, and 1/p + 1/q = 1, the
inequality (i.e., Eq. (17a)) below follows from
Hölder’s inequality and Eq. (16a).

M+1∑

m=1

ψmam=ψTa≤||ψ||q · ||a||p = ||a||p.

Since ln(·) is a concave function, the following
inequality (i.e., Eq. (17b)) is a result of Jensen’s
inequality and Eq. (16b).

1

t
ln(

M+1∑

m=1

ψmexp(tam)) ≥ 1

t

M+1∑

m=1

ψmln(exp(tam))

=

M+1∑

m=1

ψmam,

which finishes the proof.
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To sum up, we propose a paradigm for the align-
ment loss surrogate function design, under which
two families of surrogate functions, norm functions
and log-exp functions are analyzed. Theoretical
results show that with the developed approach, the
representation alignment losses of different modal-
ities are adaptively balanced during training using
gradient-based algorithms. Furthermore, minimiz-
ing the surrogate function boils down to minimiz-
ing the upper bound of the weighted sum of the
alignment losses, where the bounded weights al-
ways correlate positively to the losses in the train-
ing progress.

4 Numerical Results

Benchmark datasets: We assess our method on
four widely used benchmark multimodal emo-
tion recognition datasets, IEMOCAP (Busso et al.,
2008), MELD (Poria et al., 2019), CMU-MOSEI
(Zadeh et al., 2018), and MSP-IMPROV (Busso
et al., 2016), which all contain acoustic, visual and
lexical modalities. IEMOCAP and MSP-IMPROV
are composed of dyadic conversations collected in
the laboratory setting, and the latter is of higher
recording quality. CMU-MOSEI gathers mono-
logue videos from more than 1000 speakers on
YouTube over various topics. MELD consists of
fragments from the TV series "Friends", which con-
tains multi-party conversations with over two par-
ticipants. These datasets are collected from differ-
ent scenarios and exhibit different characteristics,
and hence represent different domains. Following
work (Zhao et al., 2021), we select samples in the
four classes— neutral, happy, sad and angry, to
construct datasets for our experiments.
Feature extraction: For the visual modality, we
first sample each video uniformly to obtain 64
frames. Then, the frames are processed with
S3FD (Zhang et al., 2017) to attain the speaker’s
faces which are then fed into vision model APViT
(Xue et al., 2022), resulting in 64 × 768 sequen-
tial feature. BERT-base (Devlin et al., 2018) and
Wav2Vec2 (Baevski et al., 2020) are employed to
extract lexical and acoustic features, respectively.
To retain the feature of different levels, the outputs
from the 1st, 7th, and 12th transformer blocks are
concatenated as the final feature. The generated
feature sequences are of dimension 2304, and their
lengths are determined by the lengths of the text
and audio, respectively.
Baseline models: We compare our model,

Amanda, with DANN (Ganin et al., 2016), CDAN
(Long et al., 2018), MADA (Pei et al., 2018),
DALN (Chen et al., 2022), and CDAN-E, of which
the first four are introduced in the Related Works
sections, and CDAN+E is an extension of CDAN
with the incorporation of entropy-aware reweight-
ing for the domain discrimination loss.
Implementation details: The multimodal emo-
tion recognition model involves three modalities,
in which we employ one-layer LSTM for visual
modality, and TextCNN for acoustic and lexical
modalities as study (Zhao et al., 2021). The dimen-
sion of the representations is chosen as 128. We
adopt optimizer Adam with learning rate 5× 10−4,
momentum coefficient (0.9, 0.999) and batch size
128 for model training. The parameter settings
are γ = 5 × 10−4, α1 = 0.08; and α2 = 0.1 is
selected for the comparison studies, and we will
investigate how α2 impacts the model performance
in the ablation studies. More details of the imple-
mentation can be found from the code in the supple-
mentary material. Throughout this section, we use
weighted F1 score as model performance metric.
The reported F1 scores are obtained by averaging
results from 3 repeated experiments, conducted on
2 Nvidia A100 GPUs with 40GB memory.

4.1 Comparison studies

We denote Amanda with 1-norm, 2-norm and ∞-
norm, log-exp(t = 1) surrogate functions by A-
N(p = 1), A-N(p = 2), A-N(p = ∞) and A-
L(t = 1), respectively. Table 1 reports the F1
scores of the baseline models and different versions
of Amanda. In this table, direct transfer means the
target domain data is not used for training, and
directly be tested with the model trained on source
domain. The results indicate that Amanda with p-
norm (p > 1) log-exp (t > 0) surrogate functions
performs on par with the baseline models on dataset
MSP → IEMOCAP; and for all other datasets, it
achieves substantial improvement.

Note that some baseline models (Ganin et al.,
2016; Long et al., 2018; Pei et al., 2018) are orig-
inally devised for unimodal settings, we directly
conduct domain adaptation for each modality. And
the multimodal feature classifier is reused as a do-
main discriminator in DALN (Chen et al., 2022).
Therefore, the comparison results underscore that
multimodal domain adaptation requires dedicated
design rather than simply employing techniques
from the unimodal context.
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Method IE.→MS. IE.→MO. ME.→IE. ME.→MS. MO.→IE. MO.→MS. MS.→IE.
D.T. 57.62 33.39 51.28 47.23 46.29 48.64 59.95

DANN 58.83 36.70 52.43 49.36 50.62 45.73 61.46
CDAN 60.57 37.50 55.84 49.28 51.01 46.86 63.56

CDAN+E 61.26 37.31 55.04 49.94 51.01 49.33 63.56
MADA 62.83 36.76 54.62 49.91 50.98 46.88 63.73
DALN 64.26 36.03 58.04 53.97 53.74 52.16 61.46

A-N(p = 1) 64.35 38.31 58.09 53.44 57.75 52.31 62.67
A-N(p = 2) 64.43 39.10 58.27 57.46 60.25 53.99 63.61

A-N(p = ∞) 64.82 38.38 58.77 54.46 58.98 54.39 64.30
A-L(t = 1) 64.33 38.68 57.52 54.44 60.00 55.24 64.05

Table 1: F1 scores of the compared approaches. Abbreviations: D.T.: Direct transfer, A-N: Amanda with norm
surrogate function, A-L: Amanda with log-exp surrogate function, IE.: IEMOCAP, MS.: MSP-IMPROV, ME.:
MELD, MO.: CMU-MOSEI; the arrow "→" means from source to target domains.
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Figure 2: F1 scores v.s. varying weight (α2) of the surrogate functions. Weights {0.0005, 0.001, 0.002, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1, 2} are tested, and the x-axis is with log scale.

4.2 Ablation studies

In this part, we conduct ablative studies on the
two critical designs in Amanda, the label align-
ment and balanced representation alignment. Fig-
ure 2 illustrates the model performance with vary-
ing weight (α2) of the surrogate functions. Com-
paring Amanda without correlation alignment (A.
w/o CA) to direct transfer (D.T.), it is clear that la-
bel alignment enhances the knowledge transferring
capability of the model significantly. For weight
α2 ≤ 0.2, Amanda with p-norm (p > 1) and
log-exp surrogate functions can further improve
the model performance over Amanda without CA
(A. w/o CA). Particularly, when weight α2 grows
larger than 0.2, the balanced versions of Amanda,
A-N(p = 2), A-N(p = ∞) and A-L(t = 1), ex-
perience less performance drop compared to its
imbalanced counterpart, A-N(p = 1). The above
results corroborate that both the label alignment
and the adaptive domain alignment contribute to
the success of Amanda.

In order to demonstrate that the proposed p-norm
surrogate functions (p > 1) are able to balance

the domain alignment of different modalities, we
show the normalized alignment losses (L̃CA

m (θ) :=
LCA
m (θ)/

∑M
m=1 LCA

m (θ)) in Figure 3, where the
target and source datasets are IEMOCAP and MSP,
respectively. Consistent with our analysis in section
3.2, the losses are not balanced with p = 1, and
hence the losses exhibit large discrepancy among
modalities throughout the training, as illustrated
in Figure 3(a). In contrast, with p = 2 as shown
in Figure 3(b), the losses are adaptively balanced,
leading to closer gaps among modalities (when the
three normalized losses are all 1/3, perfect balance
is achieved). Figure 3(c) displays the case of p =
+∞, where the losses are also more balanced than
that of the case p = 1. These results verify that the
proposed surrogate functions succeed in balancing
the domain alignment of different modalities.

5 Conclusions

In this work, we devise a multimodal domain adap-
tation approach for multimodal emotion recogni-
tion. In order to close the gap between the target
and source domains, we propose to match the label
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Figure 3: Normalized alignment losses of different modalities during training with A-N (IEMOCAP → MSP).

distributions of the two domains and to align the
optimal representations for different modalities. To-
wards the objective of balancing the representation
alignment, a general alignment loss surrogate func-
tion design paradigm is developed. Furthermore,
we present the theoretical analysis of two families
of surrogate functions which achieve adaptively
modality-balanced domain adaptation. The effec-
tiveness of the proposed approach is corroborated
by extensive comparison and ablation studies.

6 Limitations

In light of the future work, the limitations of the
present work are mainly twofold. 1) Although our
method is applicable to more general multimodal
supervised learning problems, we only validate it
on emotion recognition tasks. 2) We have not es-
tablished the theoretical upper bound of the target
domain risk for the proposed approach.
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