
Findings of the Association for Computational Linguistics: ACL 2024, pages 13894–13908
August 11-16, 2024 ©2024 Association for Computational Linguistics

LLMs cannot find reasoning errors, but can correct them given the error
location

Gladys Tyen*1, Hassan Mansoor2, Victor Cărbune2, Peter Chen†2, Tony Mak†2
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Abstract

While self-correction has shown promise in
improving LLM outputs in terms of style and
quality (e.g. Chen et al., 2023b; Madaan et al.,
2023), recent attempts to self-correct logical or
reasoning errors often cause correct answers
to become incorrect, resulting in worse per-
formances overall (Huang et al., 2023). In
this paper, we show that poor self-correction
performance stems from LLMs’ inability to
find logical mistakes, rather than their abil-
ity to correct a known mistake. Firstly, we
benchmark several state-of-the-art LLMs on
their mistake-finding ability and demonstrate
that they generally struggle with the task, even
in highly objective, unambiguous cases. Sec-
ondly, we test the correction abilities of LLMs
– separately from mistake finding – using a
backtracking setup that feeds ground truth mis-
take location information to the model. We
show that this boosts downstream task perfor-
mance across our 5 reasoning tasks, indicat-
ing that LLMs’ correction abilities are robust.
Finally, we show that it is possible to obtain
mistake location information without ground
truth labels or in-domain training data. We
train a small classifier with out-of-domain data,
which exhibits stronger mistake-finding per-
formance than prompting a large model. We
release our dataset of LLM-generated logical
mistakes, BIG-Bench Mistake, to enable fur-
ther research into locating LLM reasoning mis-
takes.

1 Introduction

Large Language Models (LLMs) have dominated
the field of NLP in recent years, achieving state-
of-the-art performance in a large variety of appli-
cations. In particular, LLMs have demonstrated
the ability to solve tasks with zero- or few-shot
prompting, giving rise to prompting methods such

*Work done during an internship at Google Research.
†Equal leadership contribution.

as Chain-of-Thought (CoT) (Wei et al., 2022), Self-
Consistency (SC) (Wang et al., 2023), ReAct (Yao
et al., 2022), etc.

Recent literature on few- or zero-shot prompting
has focused on the concept of self-correction, i.e.
having an LLM correct its own outputs (Shinn et al.,
2023; Miao et al., 2024; Madaan et al., 2023; Chen
et al., 2023b; Saunders et al., 2022). (See Pan et al.
(2023) for a review of the literature.)

However, Huang et al. (2023) note that while
self-correction may prove effective for improving
model outputs in terms of style and quality, when
it comes to reasoning tasks, LLMs struggle to iden-
tify and fix errors without external feedback: for
example, Reflexion (Shinn et al., 2023) and RCI
(Kim et al., 2023) both use ground truth correctness
as a signal to halt the self-correction loop. Initially
observed by Madaan et al. (2023) on a math dataset,
Huang et al. (2023) further demonstrate this short-
coming of self-correction in 2 additional datasets.

While previous work typically present self-
correction as a single process, we divide it into
mistake finding and output correction to better
understand each component individually.

Mistake finding is a fundamental reasoning
skill that has been studied and utilised exten-
sively in philosophy, psychology, and mathematics,
spawning concepts such as critical thinking, and
logical and mathematical fallacies. One might ex-
pect that the ability to find mistakes should also be
an important requirement for LLMs. However, our
results show that state-of-the-art LLMs currently
cannot find mistakes reliably.

Output correction involves partially or com-
pletely changing previously generated outputs.
With self-correction, this is typically done with
outputs generated by the same model (see Pan
et al. (2023)). Despite LLMs’ inability to find
mistakes, our results show that they can correct
outputs, if given information about the mistake lo-
cation. While LLMs struggle with mistake-finding

13894



in few-shot conditions, we can obtain more reliable
mistake location information using a small, trained
classifier.

Our contributions for this paper are as follows:
1. With Chain-of-Thought prompting, any task can

be turned into a mistake-finding task. We collect
and release1 to the research community BIG-
Bench Mistake, a dataset of CoT-style traces2

generated using PaLM 2 (Anil et al., 2023), and
annotated according to where the first logical
mistake is. To our knowledge, BIG-Bench Mis-
take is the first dataset of its kind that goes be-
yond problems in mathematics.

2. We produce benchmark results for our dataset
to test the reasoning capabilities of five state-of-
the-art LLMs. We demonstrate that these LLMs
struggle with mistake finding, even for ob-
jective, unambiguous cases. We hypothesise
that this is a main contributing factor to LLMs’
inability to self-correct reasoning errors.

3. We test LLMs’ ability to correct reasoning er-
rors separately from mistake-finding, by feed-
ing to the model the ground truth (or oracle)
mistake location information through a back-
tracking method. We demonstrate that LLMs’
correction abilities are robust, effectively cor-
recting outputs that are originally incorrect, with
minimal effect on outputs that are originally cor-
rect.

4. We demonstrate that LLMs’ low accuracy at
few-shot mistake-finding can be improved upon
without using in-domain training data. As
a proof-of-concept, we train a small mistake-
finding classifier using out-of-domain data,
which performs better than prompting a large
model. We leave the development of more so-
phisticated methods to future work.

2 BIG-Bench Mistake

BIG-Bench Mistake contains 2186 sets of CoT-
style traces. Each trace is generated with PaLM 2
Unicorn (Anil et al., 2023), and annotated with the
location of the first logical error. Table 1 shows an
example trace where the mistake location3 is the
4th step.

1Publicly available at https://github.com/WHGTyen/
BIG-Bench-Mistake.

2We refer to a set of CoT reasoning steps as a trace.
3As some traces may not contain mistakes, we use the term

mistake location as a multi-class label that can refer to either
the integer N where the N th step contains the first mistake, or

Sort the following words alphabetically: List:
hypochlorite ponderosa phone credulity

Thought 1:

I should start by looking at the first letter
of the words in the list. The first letter:
"hypochlorite": "h" (8). "ponderosa": "p"
(16). "phone": "p" (16). "credulity": "c" (3).

Thought 2:
We now have: (3) "credulity" < (8)
"hypochlorite" < (16) ["ponderosa" ?
"phone"].

Thought 3:

Now let’s sort this subpart ["ponderosa" ?
"phone"] by looking at their second letters.
The second letter: "ponderosa": "o" (15).
"phone": "h" (8).

Thought 4:
(MISTAKE)

We now have: (8) "phone" < (15) "pon-
derosa" for the subpart. Hence, we have
"credulity" < "phone" < "ponderosa".

Thought 5: I have now sorted all the words. The answer
is credulity hypochlorite phone ponderosa

Table 1: Example of a CoT trace for the word sort-
ing task. There is a mistake in Thought 4: the order-
ing "credulity" < "phone" < "ponderosa" is missing the
word hypochlorite.

Our traces span across a set of 5 tasks from the
BIG-bench dataset (Srivastava et al., 2023): word
sorting, tracking shuffled objects, logical deduction,
multi-step arithmetic, and Dyck languages4. CoT
prompting is used to prompt PaLM 2 to answer
questions from each task. As we wanted to sepa-
rate our CoT traces into distinct steps, we follow
Yao et al. (2022) and generate each step separately,
using the newline as a stop token.

All traces are generated with temperature = 0.
The correctness of answers are determined by exact
match. Prompts can be found at https://github.
com/WHGTyen/BIG-Bench-Mistake along with
the dataset.

2.1 Annotation
Each generated trace is annotated with the first
logical error. We ignore any subsequent errors as
they may be dependent on the original error.

Note that traces can contain a logical mistake
yet arrive at the correct answer. To disambiguate
the two types of correctness, we will use the terms
correctans and incorrectans to refer to whether the

that there are no mistakes.
4These 5 tasks are selected because 1) Anil et al. (2023)

demonstrate that PaLM 2 performs poorly on these tasks, so
it is likely to generate mistakes in CoT traces; 2) mistakes in
these tasks are likely to be unambiguous, therefore minimising
subjectivity during annotation; and 3) identifying mistakes for
these tasks does not require expertise knowledge.
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Task # of correctans traces # of incorrectans traces # of incorrectmis traces Total
Word sorting 45 255 266 300

Tracking shuffled objects 45 255 260 300
Logical deduction 45 255 294 300

Multistep arithmetic 45 255 238 300
Dyck languages 482 504 650 986

Dyck languages (sampled) 88 504 545 592

Table 2: Number of traces in our dataset that are correct and incorrect. Dyck languages (sampled) is a set of traces
sampled so that the ratio of correctans to incorrectans traces matches other tasks.

final answer of the trace is correct. Accuracyans
would therefore refer to the overall accuracy for the
task, based on how many final answers are correct.
To refer to whether the trace contains a logical
mistake (rather than the correctness of the final
answer), we will use correctmis and incorrectmis.

2.1.1 Human annotation
For 4 of the 5 tasks, we recruit human annotators
to go through each trace and identify any errors.
Annotators have no domain expertise but are given
guidelines5 to complete the task.

Before annotation, we sample a set of 300 traces
for each task, where 255 (85%) are incorrectans,
and 45 (15%) are correctans. Since human annota-
tion is a limited and expensive resource, we chose
this distribution to maximise the number of steps
containing mistakes and to prevent over-saturation
of correct steps. We also include some correctans
traces because some may contain logical errors
despite the correct answer, and to ensure that the
dataset included examples of correct steps that are
near the end of the trace. To account for this skewed
distribution, results in section 4 are split according
to whether the original trace is correctans or not.

Following Lightman et al. (2023), annotators
are instructed to go through each step in the
trace and indicate whether the step is correct
or not (binary choice). Annotators only submit
their answers when all steps are annotated, or
there is one incorrect step. If an incorrect step is
identified, the remaining steps are skipped. This
is to avoid ambiguities where a logically correct
deduction is dependent on a previous mistake.
Our annotation guidelines can be found at https:
//github.com/WHGTyen/BIG-Bench-Mistake/
tree/main/annotation_guidelines, and we
include a screenshot of the user interface in
Appendix D.

Each trace is annotated by at least 3 annotators.
If there are any disagreements, we take the majority

5https://github.com/WHGTyen/BIG-Bench-Mistake
contains further details.

label. We calculate Krippendorff’s alpha (Hayes
and Krippendorff, 2007) to measure inter-rater reli-
ability (see Table 3).

Task Krippendorff’s α
Word sorting 0.979

Tracking shuffled objects 0.998
Logical deduction 0.996

Multistep arithmetic 0.984

Table 3: Inter-rater reliability for the human-annotated
tasks, measured by Krippendorff’s alpha.

2.1.2 Automatic annotation
For Dyck languages, we use mostly automatic in-
stead of human annotation, as the traces show lim-
ited variation in phrasing and solution paths.

For each trace, we algorithmically generate a set
of steps based on the format used in the prompt
examples. Using pattern matching, we identify
whether each model-generated step conforms to
the same format. If so, we compare the two and
assume that the trace is incorrect if the symbols
do not match. Additionally, we account for edge
cases such as where the final two steps are merged
into one, or variations in presentation where sym-
bols may or may not be placed in quotes. We re-
lease the code at https://github.com/WHGTyen/
BIG-Bench-Mistake along with our dataset.

3 Can LLMs find reasoning mistakes in
CoT traces?

Table 4 shows the accuracy of GPT-4-Turbo, GPT-
4, GPT-3.5-Turbo, Gemini Pro, and PaLM 2 Uni-
corn on our mistake-finding dataset. For each ques-
tion, the possible answers are either: that there are
no mistakes, or; if there is a mistake, the number N
indicating the step in which the first mistake occurs.
A model’s output is only considered correct if the
location matches exactly, or the output correctly
indicates that there are no mistakes.

All models are given the same 3-shot prompts5.
We use three different prompting methods:

• Direct trace-level prompting involves using
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the whole trace as input to the model and di-
rectly prompting for the mistake location. The
model must output either the number represent-
ing the step, or "No".

• Direct step-level prompting prompts for a bi-
nary Yes/No output for every step, indicating
whether or not the step is correct. In each gen-
eration call, the input contains the partial trace
up to (and including) the target step, but does
not contain results for previous steps. The final
answer is inferred from where the first "No"
output occurs (subsequent steps are ignored).

• CoT step-level prompting is an extension of
direct, step-level prompting. Instead of a bi-
nary Yes/No response, we prompt the model to
check the (partial) trace through a series of rea-
soning steps. This method is the most resource
intensive of all three methods as it involves gen-
erating a whole CoT sequence for every step.
As with direct step-level prompting, the final
answer is inferred from where the first "No"
output occurs (subsequent steps are ignored).

3.1 Discussion

All five models appear to struggle with our mis-
take finding dataset. GPT-4 attains the best results
but only reaches an overall accuracy of 52.87 with
direct step-level prompting. While exact parame-
ter counts are undisclosed, GPT-4 is likely one of
the largest models, along with PaLM 2 Unicorn6,
while Gemini Pro and GPT-3.5-Turbo are among
the smaller models.

Our findings are in line with and builds upon
results from Huang et al. (2023), who show that
existing self-correction strategies are ineffective on
reasoning errors. In our experiments, we specifi-
cally target the models’ mistake finding ability and
provide results for additional tasks. We show that
state-of-the-art LLMs clearly struggle with mistake
finding, even in the most simple and unambiguous
cases. (For comparison, humans can identify mis-
takes without specific expertise, and have a high
degree of agreement, as shown in Table 3.)

We hypothesise that LLMs’ inability to find mis-
takes is a main contributing factor to why LLMs are

6Note that the traces in our dataset are generated using
PaLM 2 Unicorn and are sampled according to whether the
final answer was correct or not. Therefore, we expect that
using PaLM 2 itself to do mistake finding will produce dif-
ferent and likely biased results. Further work is needed to
elucidate the difference between cross-model evaluation and
self-evaluation.

unable to self-correct reasoning errors. If LLMs are
unable to identify mistakes, it should be no surprise
that they are unable to self-correct either.

Model Direct
(trace)

Direct
(step)

CoT
(step)

Word sorting (11.7)
GPT-4-Turbo 36.33 33.00 –

GPT-4 35.00 44.33 34.00
GPT-3.5-Turbo 11.33 15.00 15.67

Gemini Pro 10.67 – –
PaLM 2 Unicorn 11.67 16.33 14.00

Tracking shuffled objects (5.4)
GPT-4-Turbo 39.33 61.67 –

GPT-4 62.29 65.33 90.67
GPT-3.5-Turbo 10.10 1.67 19.00

Gemini Pro 37.67 – –
PaLM 2 Unicorn 18.00 28.00 55.67

Logical deduction (8.3)
GPT-4-Turbo 21.33 75.00 –

GPT-4 40.67 67.67 10.33
GPT-3.5-Turbo 2.00 25.33 9.67

Gemini Pro 8.67 – –
PaLM 2 Unicorn 6.67 38.00 12.00

Multistep arithmetic (5.0)
GPT-4-Turbo 38.33 43.33 –

GPT-4 44.00 42.67 41.00
GPT-3.5-Turbo 20.00 26.00 25.33

Gemini Pro 21.67 – –
PaLM 2 Unicorn 22.00 21.67 23.67

Dyck languages† (24.5)
GPT-4-Turbo 15.33* 28.67* –

GPT-4 17.06 44.33* 41.00*
GPT-3.5-Turbo 8.78 5.91 1.86

Gemini Pro 2.00 – –
PaLM 2 Unicorn 10.98 14.36 17.91

Overall
GPT-4-Turbo 30.13 48.33 –

GPT-4 39.80 52.87 43.40
GPT-3.5-Turbo 10.44 14.78 14.31

Gemini Pro 16.14 – –
PaLM 2 Unicorn 17.09 23.67 24.65

Table 4: Mistake finding accuracy across 5 tasks. The
average number of steps in CoT reasoning traces in
each task is in brackets. Unless otherwise indicated, the
number of traces is in Table 2. We provide scores split
by correctnessans of the original trace in Appendix E.
Due to cost and usage limits, we are unable to provide
results indicated by –.
† indicates that traces were sampled to contain 15%
correctans and 85% incorrectans traces (see Table 2).
* indicates that traces were sampled to contain 45
correctans and 255 incorrectans traces to reduce costs.
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3.2 Comparison of prompting methods
As we compare results across the three methods,
we find that the accuracy on traces with no mistakes
goes down7 considerably from direct, trace-level
prompting to CoT, step-level prompting. Figure 1
demonstrates this trade-off.

We hypothesise that this is due to the number of
outputs generated by the model. Our three methods
involve generating increasingly complex outputs,
starting with direct, trace-level prompting requir-
ing a single token, then direct, step-level prompt-
ing requiring one token per step, and finally CoT
step-level prompting requiring several sentences
per step. If each generation call has some proba-
bility of identifying a mistake, then the more calls
made on each trace, the more likely the model will
identify at least one mistake.

Figure 1: Graph of mistake location accuracies for each
prompting method (excluding GPT-4-Turbo and Gem-
ini Pro which we do not have all results for). Blue
bars show accuracies on traces with no mistakes, so
the model must predict that the trace has no mistake
to be considered correct; orange bars show accuracies
on traces with a mistake, so the model must predict the
precise location of the mistake to be considered correct.

3.3 Few-shot prompting for mistake location
as a proxy for correctness

In this section, we investigate whether our
prompting methods can reliably determine the
correctnessans of a trace rather than the mistake
location. Our motivation was that even humans
use mistake finding as a strategy for determining
whether an answer is correct or not, like when go-
ing through mathematical proofs or argumentation.

7Note that the traces in BIG-Bench Mistake are sam-
pled to contain more incorrectans traces than correctans

traces (and therefore more incorrectmis traces than correctmis

traces), so the overall mistake location accuracy appears higher
for per-step prompting in Table 4, despite the poor accu-
racy for correctmis traces. For a full set of scores split by
correctnessmis, see Appendix E.

Additionally, it may be the case that directly pre-
dicting the correctnessans of a trace is easier than
pinpointing the precise location of an error.

Model Direct
(trace)

Direct
(step)

CoT
(step)

Word sorting
GPT-4-Turbo 87.73 86.68 –

GPT-4 81.50 85.12 81.19
GPT-3.5-Turbo 6.58 35.07 77.79

Gemini Pro 69.93 – –
PaLM 2 Unicorn 21.08 56.66 62.92

Tracking shuffled objects
GPT-4-Turbo 52.23 74.31 –

GPT-4 76.38 75.69 95.03
GPT-3.5-Turbo 32.04 77.61 78.11

Gemini Pro 79.66 – –
PaLM 2 Unicorn 22.18 48.77 78.29

Logical deduction
GPT-4-Turbo 86.46 81.79 –

GPT-4 84.54 83.38 23.96
GPT-3.5-Turbo 10.34 67.62 61.31

Gemini Pro 48.57 – –
PaLM 2 Unicorn 31.67 37.93 21.21

Multistep arithmetic
GPT-4-Turbo 71.17 86.24 –

GPT-4 72.97 78.67 79.67
GPT-3.5-Turbo 3.76 53.18 64.08

Gemini Pro 32.21 – –
PaLM 2 Unicorn 33.69 13.42 70.94

Dyck languages
GPT-4-Turbo 51.96 85.87 –

GPT-4 62.33 85.73 79.60
GPT-3.5-Turbo 46.57 79.31 77.79

Gemini Pro 61.24 – –
PaLM 2 Unicorn 31.17 31.63 25.20

Table 5: Weighted average F1 scores for predicted
correctnessans of traces across 5 tasks. Baseline is 78
if we only select the incorrectans label. As in Table 4,
traces for the Dyck languages task has been sampled to
match the ratio of correctans to incorrectans traces of
the other tasks. See Table 2 for a full breakdown.

We calculate averaged F1 scores based on
whether the model predicts there is a mistake in
the trace. If there is a mistake, we assume the
model prediction is that the trace is incorrectans.
Otherwise, we assume the model prediction is that
the trace is correctans. In Table 5, we average the
F1s calculated with correctans and incorrectans as
positive labels, weighted according to the number
of times each label occurs. Note that the naive base-
line of predicting all traces as incorrect achieves a
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weighted F1 average of 78.
The weighted F1 scores show that prompting for

mistakes is likely a poor strategy for determining
the correctness of the final answer. This is in line
with our previous finding that LLMs struggle to
identify mistake locations, and also builds upon
results from Huang et al. (2023), who demonstrate
that improvements from Reflexion (Shinn et al.,
2023) and RCI (Kim et al., 2023) are only from
using oracle correctnessans information.

4 Can LLMs correct reasoning mistakes
in CoT traces?

In this section, we examine LLMs’ ability to cor-
rect mistakes, independently of their ability to find
them. To do so, we feed oracle mistake location in-
formation from BIG-Bench Mistake into the model
and prompt it for a corrected version of the original
CoT trace.

As a simple baseline, we use the following back-
tracking method (visualized in Figure 2):

(a) First, the model generates an initial CoT trace.
In our experiments, we use temperature = 0.

(b) We then determine the mistake location in this
trace, either from oracle labels (in this section)
or with a classifier (in section 5).

(c) If there are no mistakes, we move onto the next
trace. If there is a mistake (e.g. at Thought 4
in the example trace in Table 1), we prompt the
model again for the same step but at temperature
= 1. We use same prompt and the partial trace
containing all steps up to but not including the
mistake step (e.g. up to Thought 3, prompting
for Thought 4).

(d) In our experiments, we found that (c) often pro-
duced steps that are identical to the original. We
therefore repeat (c) until a different step is gen-
erated (or up to a fixed number, whichever is
less). For this paper, we use 8 as the maximum
number of re-generations; the effects of vary-
ing this number is left for future investigation.
To reduce computational cost, we generate 8
outputs simultaneously but only select one for
backtracking.

(e) Finally, with the new, regenerated step in place
of the previous one, we generate the remaining
steps of the trace again at temperature = 0.

This backtracking method is designed to be a
very simple baseline, with no specific prompt text
or phrasing, and without relying on generating a

large number of alternatives. For our experimental
results below, we specifically use the same model
(PaLM 2 Unicorn) to correct the traces it originally
generated, to test its ability to self-correct.

4.1 Results

The results are shown in Table 6. To show that per-
formance increases are not due to randomly resam-
pling outputs, we compare our results to a random
baseline, where a mistake location8 is randomly se-
lected for each trace and we perform backtracking
based on the random location.

Note that Table 6 separates results into num-
bers for the correct set and the incorrect set, refer-
ring to whether the original trace was correctans
or not. This gives a clearer picture than the over-
all accuracyans, which would be skewed by the
proportion of traces that were originally correctans
(15%) and incorrectans (85%).

Scores represent the absolute differences in
accuracyans. We perform backtracking on both
correctans and incorrectans traces, as long as there
is a mistake in one of the steps.

∆accuracy3 refers to differences in accuracyans
on the set of traces whose original answer was
correctans. Note that we take losses here because,
despite the correct answer, there is a logical mistake
in one of the steps. Therefore, the answer may
change to an incorrect one when we backtrack.

∆accuracy7 is the same but for incorrectans
traces, so the answers may have been corrected,
hence increasing accuracyans.

For example, for the word sorting task, 11.11%
of traces that were originally correctans became
incorrectans, while 23.53% of traces that were orig-
inally incorrectans became correctans.

4.2 Discussion

The scores show that the gains from correcting
incorrectans traces are larger than losses from
changing originally correct answers. Additionally,
while the random baseline also obtained improve-
ments, they are considerably smaller than if the
true mistake location was used. Note that tasks
involving fewer steps are more likely to improve
performance in the random baseline, as the true
mistake location is more likely to be identified.

8As described above, the mistake location can be either the
number representing the step, or that there are no mistakes. If
there are no mistakes, we do not use backtracking and simply
use the original trace.
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Figure 2: Visualization of our backtracking method, which is used to feed mistake location information to the
model for correction. t refers to the temperature used during generation.

With mistake location With random location Avg. num.
of stepsTask ∆ accuracy 3 ∆accuracy7 ∆ accuracy 3 ∆accuracy7

Word sorting -11.11 +23.53 -15.56 +11.76 11.7
Tracking shuffled objects -6.67 +43.92 -6.67 +20.39 5.4

Logical deduction -11.43 +36.86 -13.33 +21.57 8.3
Multistep arithmetic -0.00 +18.04 -8.89 +10.59 5.0

Dyck languages -6.82 +18.06 -15.91 +5.16 24.5

Table 6: Absolute differences in accuracyans before and after backtracking. "With mistake location" indicates
that backtracking was done using oracle mistake locations from the dataset; "With random location" indicates that
backtracking was done based on randomly selected locations. ∆accuracy3 refers to differences in accuracyans
on the set of traces whose original answer was correctans; ∆accuracy7 for traces whose original answer was
incorrectans. The average number of steps in a trace is shown to demonstrate the likelihood of randomly selecting
the correct mistake location in the random baseline condition.

Our results show that, with mistake location in-
formation available, LLMs can correct their own
outputs and improve overall downstream perfor-
mance. This suggests that the main bottleneck in
self-correction methods is the identification of mis-
takes, rather than the correction process. This bot-
tleneck can be overcome by using ground truth
feedback (as in Reflexion (Shinn et al., 2023) or
RCI (Kim et al., 2023)), or by training a classifier
(see section 5).

While our numbers do show that our gains are
higher than our losses, it should be noted that
changes in the overall accuracy depends on the
original accuracy achieved on the task. For exam-
ple, if the original accuracy on the tracking shuffled
objects task was 50%, the new accuracy would be
68.6%. On the other hand, if the accuracy was
99%, the new accuracy would drop to 92.8%. As
our dataset is highly skewed and only contains 45

correctans traces per task, we leave to future work
a more comprehensive assessment of backtracking,
as well as the development of more sophisticated
ways to incorporate mistake location information
into the self-correction loop.

5 Obtaining mistake location
information with a trained classifier

As shown in section 4, if mistake location infor-
mation is available, LLMs can correct their own
CoT traces and boost downstream performance.
However, these experimental results are based on
oracle labels, which are typically not available in
downstream tasks.

One possible solution is to obtain mistake loca-
tion information from a smaller, trained classifier.
If training data is available, one might ask why this
approach is preferable to simply fine-tuning the
larger, generator model. The reasons are:
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• Training a small classifier is far more efficient
in terms of computing resources and available
data.

• Once the classifier is trained, it can be used
with any LLM as the generator and be updated
independently. This can be especially helpful
with API-based LLMs that cannot be fine-tuned.

• The process of mistake finding is more inter-
pretable than updating the weights of the gen-
erator model directly. It clearly pinpoints the
location at which an error occurs, which can
help the debugging process and allow faster de-
velopment and iterations of models.

In this section, we seek to answer two questions
in the following subsections:

5.1: What mistake-finding accuracy is required
for backtracking to be effective?
A trained classifier is unlikely to reach 100%
mistake-finding accuracy. If backtracking is only
effective when mistake location is 100% accurate,
we would not be able to replace oracle labels with
a trained classifier.

5.2: Is it possible to improve on results in sec-
tion 3 without in-domain training data?
Sufficient in-domain training data typically guar-
antees a performance boost, but can be hard to
obtain. We investigate whether mistake-finding in
reasoning traces is transferable across tasks. If so,
one can use BIG-Bench Mistake or similar datasets
to fine-tune a mistake-finding classifier for other
tasks.

5.1 Minimum mistake finding accuracy

To explore what level of mistake-finding accu-
racy is needed, we simulate classifiers at different
levels of accuracy and run backtracking for each
level. We use accuracymis to refer to the mistake-
finding accuracy classifier, to differentiate from
downstream task accuracyans.

For a given classifier at X% accuracyclf , we use
the mistake location from BIG-Bench Mistake X%
of the time. For the remaining (100 − X)%, we
sample a mistake location randomly. To mimic the
behaviour of a typical classifier, mistake locations
are sampled to match the distribution found in the
dataset. We also ensure that the sampled location
does not match the correct location.

Results are shown in Figure 3. We can see that
the losses in ∆accuracy3 begins to plateau at 65%.

Figure 3: ∆accuracy3 and ∆accuracy7 on each dataset
as accuracyclf increases.

In fact, for most tasks, ∆accuracy3 is already larger
than ∆accuracy7 at around 60-70% accuracyRM .
This demonstrates that while higher accuracies pro-
duce better results, backtracking is still effective
even without gold standard mistake location labels.

5.2 Training a classifier on out-of-domain
data

We test whether mistake-finding can benefit from
a dedicated classifier trained on out-of-distribution
tasks. We fine-tune PaLM 2 Otter, a model much
smaller than PaLM 2 Unicorn, with our BIG-Bench
Mistake data for 20k steps and choose the check-
point with the best validation results. For each task,
we hold out the in-domain data for evaluation while
training the classifier on the other 4 tasks.

We show the relative improvements and losses
in Table 7 vs. a 3-shot baseline on PaLM 2 Unicorn
(scores from section 3). We see gains for 4 out of
5 of the tasks. Note the classifiers we train are
significantly smaller than our inference model, and
is trained on out-of-domain data. This suggests that
it may be possible to train classifiers to assist in
backtracking, and that these classifiers do not have
to be large. Further, such a classifier can work on
out-of-distribution mistakes.

Despite this, the performance of our classifiers
do not meet the threshold required for effective
backtracking, as demonstrated in subsection 5.1.
We believe more data may be necessary to improve
results across the board on all tasks. We leave to
future work the collection of this larger dataset and
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Held-out task Trained classifier
accuracymis (Otter)

3-shot prompting
accuracymis (Unicorn) Difference

Word sorting 22.33 11.67 +11.66
Tracking shuffled objects 37.67 18.00 +19.67

Logical deduction 6.00 6.67 -0.67
Multi-step arithmetic 26.00 22.00 +4.00

Dyck languages 33.57 10.98 +22.59

Table 7: Absolute difference in mistake finding accuracy between PaLM 2 Unicorn and a small, trained classifier.
Bold indicates the best score for each task. Note that PaLM 2 Otter is significantly smaller than PaLM 2 Unicorn,
and is trained on out-of-domain data.

a more rigorous investigation of the trade-offs of
model size vs. performance of the classifier.

We also leave for future investigation the effect
of backtracking iteratively with a classifier: for
example, the generator model may make another
mistake after backtracking for the first time, which
can then be identified and corrected again.

6 Related work

6.1 Datasets

To our knowledge, the only publicly available
dataset containing mistake annotations in LLM out-
puts is PRM800K (Lightman et al., 2023), which
is a dataset of solutions to Olympiad-level math
questions. Our dataset BIG-Bench Mistake cov-
ers a wider range of tasks to explore the reasoning
capabilities of LLMs more thoroughly. Addition-
ally, our dataset explores the more general case of
prompting API-based LLMs, whereas PRM800K
uses a generator LLM that was heavily fine-tuned
for math-specific problems.

6.2 Self-correction

The term self-correction can be applied to a wide
variety of techniques. Pan et al. (2023) present a
survey of self-correction methods in recent litera-
ture. Broadly, proposed self-correction methods
can vary in the following dimensions:

Source of feedback Some techniques rely on ex-
ternal feedback inherent to the task such as code
execution errors (Yasunaga and Liang, 2020; Chen
et al., 2023a, 2024b), or feedback from humans (e.g.
Chen et al., 2024a; Yuan et al., 2024). Some explic-
itly train a model to produce feedback (e.g. Madaan
et al., 2021; Welleck et al., 2023; Bai et al., 2022b;
Lee et al., 2023; Paul et al., 2023; Ouyang et al.,
2022; Bai et al., 2022a; Ganguli et al., 2023), while
others rely on prompting only (e.g. Shinn et al.,
2023; Miao et al., 2024). It has been demonstrated
that prompting-only setups can work well for stylis-
tic or qualitative improvements (e.g. Madaan et al.,

2023; Chen et al., 2023b), but would require ex-
ternal feedback for reasoning tasks (Huang et al.,
2023; Shinn et al., 2023; Kim et al., 2023; Madaan
et al., 2023).

Time of correction Feedback can be incorpo-
rated at various points during the self-correction
process. Some methods do so by updating weights
during training time (e.g. Ouyang et al., 2022; Bai
et al., 2022a; Ganguli et al., 2023); some do so
during generation time (e.g. Weng et al., 2023;
Dalvi Mishra et al., 2022; Xie et al., 2023); others
apply correction to output that has already been
generated (e.g. Saunders et al., 2022; Kim et al.,
2023; Shinn et al., 2023). Our method falls into
the final category (post-hoc correction), as it in-
volves identifying an incorrect step in a complete
CoT trace; however, it is also possible to apply a
mistake-finding classifier at every step during gen-
eration.

7 Conclusion

In this paper, we investigate LLMs’ ability to find
mistakes and correct outputs. We find that LLMs
generally struggle to find mistakes, but, when given
mistake location information, are able to correct
outputs to boost performance. We therefore hy-
pothesise that mistake finding is an important bot-
tleneck preventing self-corrections strategies from
performing well on reasoning tasks.

We show initial evidence that a dedicated clas-
sifier for mistake finding can overcome this bottle-
neck. We train a small, baseline classifier on out-
of-domain data and demonstrate improvement over
few-shot prompting results. While the classifier
does not reach the threshold required for effective
backtracking, our results show that it is possible
to improve on mistake-finding accuracy using stan-
dard machine learning techniques. We leave the de-
velopment of more sophisticated methods to future
work, and release our dataset BIG-Bench Mistake
to encourage this direction of research.

13902



Limitations

One main limitation of our dataset is that it features
tasks that are artificial and unrealistic for real-world
applications. We made this choice to minimise am-
biguity and subjectivity during the mistake finding
process, but further work needs to be done to deter-
mine the effectiveness of backtracking in a more
realistic setting.

Another limitation is that our paper does not ex-
periment with backtracking on the original datasets
on BIG-Bench, only showing results on the limited
set that we sampled in a skewed manner, in order to
maximise the value of the human annotators’ time.
We leave the full evaluation to future work as this
is beyond the scope of this paper, which is intended
as a proof-of-concept to show the importance of
mistake-finding.
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A Dataset details

Our dataset, BIG-Bench Mistake, is avail-
able at https://github.com/WHGTyen/
BIG-Bench-Mistake under the Apache Li-
cense 2.0. The five tasks used in our dataset are
based on BIG-Bench (Srivastava et al., 2022), also
released under the Apache License 2.0. All five
tasks are in the English language.

A.1 3-shot CoT prompting to generate traces
for BIG-Bench Mistake

We use PaLM 2 (Unicorn) to generate the traces
used in BIG-Bench Mistake. All traces are gener-
ated at temperature = 0.

Our prompts and examples can be
found at https://github.com/WHGTyen/
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BIG-Bench-Mistake. Our prompts are based
on chain-of-thought prompts in the BIG-Bench
Hard dataset (Suzgun et al., 2022), with four main
changes:

1. Example CoT traces in the prompt are broken
up into smaller steps (typically one sentence
per step). This is done so that mistake location
information is more precise.

2. Following Yao et al. (2022), each step in
the prompt is signposted with “Thought 1”,
“Thought 2:”, etc. This allows us to refer to
the number of the step when prompting for
mistake location.

3. For the logical deduction task, we find that the
notation used in the original prompt with ques-
tion marks is often inconsistent. It becomes
difficult for annotators to determine whether a
question mark is a mistake or not, because the
correctness of the question mark is dependent
on its interpretation. To minimise such ambi-
guity, we replace the question mark notation
with text descriptions of the objects.

4. For the multistep arithmetic task, one of the
prompt examples is altered to increase the
length of the equation. This is because the
BIG-Bench Hard dataset (where the prompts
are taken from) only used equations of a spe-
cific length, but our dataset contains equations
of averaged a variety of lengths, in accordance
with the original BIG-Bench dataset (Srivas-
tava et al., 2022).

Following Yao et al. (2022), we use the newline
as the stop token, thereby generating one step with
every generation call. We algorithmically append
“Thought N:” before each step. This allows us to
split up steps in a clear and systematic way. We
stop generating once an answer is reached, which
is detected using the following regex:
(?<=[Tt]he answer is).*$

A.2 3-shot prompting to identify mistakes in
BIG-Bench Mistake

As described in section 3, we explore three differ-
ent methods of prompting for mistake location: di-
rect trace-level prompting, direct step-level prompt-
ing, and CoT step-level prompting. We use 3-shot
prompting for all methods, and our prompts and
examples can be found at https://github.com/
WHGTyen/BIG-Bench-Mistake.

Our prompts follow OpenAI’s chat completion
format. All results were obtained with temperature
= 0 and no stop tokens.

B Annotation

We release our annotation guidelines at https:
//github.com/WHGTyen/BIG-Bench-Mistake.
Our annotators are recruited via our institution and
contracted at the market rate in their country of
residence.

During annotation of the multistep arithmetic
task, we found that the first CoT step given in the
original BIG-Bench Hard prompt examples (Suz-
gun et al., 2022) was incorrect. Since all generated
traces contained the same first step, we removed
that step before showing traces to the annotators.

Figure 4 contains an example screenshot of the
user interface. For every trace, we provide the input
question as well as the target answer, with a note
to be aware of errors that may occur in correctans
traces.

Annotators can click on words to highlight the
same word across the trace and the question text,
which we found was particularly helpful for some
tasks such as word sorting and tracking shuffled
objects. Buttons on the right automatically become
inactive if a previous step has been labelled as neg-
ative.

C Training mistake-finding classifiers

To train our mistake-finding classifiers (see subsec-
tion 5.2), we fine-tune PaLM 2 Otter on 4 of our 5
tasks, holding out one task for evaluation. This is
done for each of our 5 tasks.

All 5 models are fine-tuned for 20k steps with
a batch size of 32. The learning rate is 1e−5 with
a linear ramp and cosine decay. After 20k steps,
we select the checkpoint with the best validation
results. The number of steps trained for each model
are shown in Table 8.

Held-out task Training steps
Word sorting 6800

Tracking shuffled objects 8000
Logical deduction 9000

Multi-step arithmetic 10000
Dyck languages 10000

Table 8: Number of training steps to fine-tune each clas-
sifier.

All models are trained as a binary classifier on
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whether a CoT step is correct, given the task and
previous steps. Due to the limited data, we include
in training the CoT steps that occur after the first
mistake step. These steps are considered incor-
rect for the purposes of training (despite not being
human-annotated as such).
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D User interface

Figure 4: Screenshot of the user interface for a question from the tracking shuffled objects task.

13907



E Benchmark scores

Model Direct
(trace)

Direct
(step)

CoT (step)

Word sorting
GPT-4-Turbo 67.74 38.24 –

GPT-4 88.24 82.35 58.82
GPT-3.5-Turbo 100.00 97.06 20.59

Gemini Pro 44.12 – –
PaLM 2 Unicorn 100.00 73.53 35.29

Tracking shuffled objects
GPT-4-Turbo 90.00 77.50 –

GPT-4 82.50 82.50 80.00
GPT-3.5-Turbo 67.50 0.00 0.00

Gemini Pro 12.50 – –
PaLM 2 Unicorn 100.00 85.00 47.50

Logical deduction
GPT-4-Turbo 100.00 83.33 –

GPT-4 100.00 100.00 0.00
GPT-3.5-Turbo 100.00 50.00 100.00

Gemini Pro 33.33 – –
PaLM 2 Unicorn 100.00 100.00 50.00

Multistep arithmetic
GPT-4-Turbo 57.69 40.32 –

GPT-4 53.23 46.77 27.42
GPT-3.5-Turbo 96.77 79.03 58.06

Gemini Pro 83.87 – –
PaLM 2 Unicorn 83.87 93.55 29.03

Dyck languages
GPT-4-Turbo 96.42 30.00 –

GPT-4 98.41 78.57 13.79
GPT-3.5-Turbo 95.74 4.76 0.00

Gemini Pro 0.00 – –
PaLM 2 Unicorn 100.00 80.95 19.05

(a) Mistake finding accuracy for traces that do not contain
mistakes (correctmis).

Model Direct
(trace)

Direct
(step)

CoT (step)

Word sorting
GPT-4-Turbo 32.71 32.33 –

GPT-4 28.20 39.47 30.83
GPT-3.5-Turbo 0.00 4.51 15.04

Gemini Pro 6.39 – –
PaLM 2 Unicorn 0.38 9.02 11.28

Tracking shuffled objects
GPT-4-Turbo 31.54 59.23 –

GPT-4 59.14 62.69 92.31
GPT-3.5-Turbo 1.17 1.92 21.92

Gemini Pro 41.54 – –
PaLM 2 Unicorn 5.38 19.23 56.92

Logical deduction
GPT-4-Turbo 20.81 74.83 –

GPT-4 39.46 67.01 10.54
GPT-3.5-Turbo 0.00 24.83 7.82

Gemini Pro 8.16 – –
PaLM 2 Unicorn 4.76 36.73 11.22

Multistep arithmetic
GPT-4-Turbo 34.27 44.12 –

GPT-4 41.60 41.60 44.54
GPT-3.5-Turbo 0.00 12.18 16.81

Gemini Pro 5.46 – –
PaLM 2 Unicorn 5.88 2.94 22.27

Dyck languages
GPT-4-Turbo 6.99 28.46 –

GPT-4 7.37 40.81 43.91
GPT-3.5-Turbo 1.28 6.05 2.08

Gemini Pro 2.25 – –
PaLM 2 Unicorn 0.38 6.43 17.77

(b) Mistake finding accuracy for traces that contain mis-
takes (incorrectmis).

Table 9: Mistake finding accuracy across 5 tasks for correctmis and incorrectmis traces. The combined scores of
Table 9a and Table 9b make up Table 4.
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