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Abstract

The ancestor of Chinese character – the an-
cient characters from about 1300 BC to 200
BC are not fixed in their writing glyphs. At
the same or different points in time, one char-
acter can possess multiple glyphs that are dif-
ferent in shapes or radicals. Nearly half of
ancient glyphs have not been deciphered yet.
This paper proposes an innovative task of an-
cient Chinese glyph identification, which aims
at inferring the Chinese character label for the
unknown ancient Chinese glyphs which are not
in the training set based on the image and rad-
ical information. Specifically, we construct a
Chinese glyph knowledge graph (CGKG) as-
sociating glyphs in different historical periods
according to the radical semantics, and pro-
pose a multimodal Chinese glyph identification
framework (MCGI) fusing the visual, textual,
and the graph data. The experiment is designed
on a real Chinese glyph dataset spanning over
1000 years, it demonstrates the effectiveness of
our method, and reports the potentials of each
modality on this task. It provides a prelimi-
nary reference for the automatic ancient Chi-
nese character deciphering at the glyph level.

1 Introduction

The ancient Chinese characters before 200 BC
are largely different from the modern ones, which
mainly include the Oracle bone script (Oracle) in
about 1300 BC (Boltz, 1986), the Chinese bronze
script (Bronze, about 1000 BC) (Shaughnessy,
1991) and the script belonging to the Warring States
period (States, about 400 BC) (Qiu, 2014).

The glyphs of ancient character are not fixed.
Figure 1 shows 17 glyphs of the character “春”
(spring) distributed in 5 time stages of evolution
(Oracle, Bronze, States, Small Seal and Clerical).
Although they look different, there are potential
semantic relations between their radicals: their rad-
ical systems both express the “spring” meaning by
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Figure 1: The 17 representative glyphs (g1 - g17) of the
Chinese character “春” (spring) which are distributed
on 5 time stages of character evolution (Oracle, Bronze,
States, Small Seal and Clerical). Their radicals are
annotated below the image.

portraying a picture of “plants are growing under
the sun”. Thus, many of the glyphs contain seman-
tic radicals of “屮” (grass), “木” (tree) and “日”
(sun), and nearly all of glyphs contain the phonetic
radical “屯” (“屯” and “春” are homophones).

At present, about half of the ancient glyphs have
not been deciphered, which means that we do not
know the modern Chinese characters they corre-
sponded, and can not completely interpret the his-
torical documents containing them. Experts have
to compare all related glyphs in history for reason-
ing. However, there are tens of thousands of glyphs
distributed in various time stages with complex rela-
tionships between their radicals and shapes, which
makes deciphering a difficult work that heavily re-
lies on human memory and experience.

Please imagine a real scenario: given a un-
known ancient Chinese glyph, we can obtain its
images and radical information, and learn the radi-
cal semantics and potential usage patterns from the
known glyphs in history. Then, can we automati-
cally speculate the Chinese character to which the
unknown glyph belongs? And to what extent the
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visual and radical information can support this task
respectively? Answering these questions has signif-
icance for ancient Chinese character deciphering.

In this background, our contributions include:
(1) we propose an innovative task of ancient Chi-
nese glyph identification, to infer the Chinese char-
acter label for unknown glyphs in training set based
on the image and radical information (Figure 2);
(2) we devise a radical semantics powered multi-
modal method, including constructing a Chinese
glyph knowledge graph (CGKG) and proposing a
glyph identification framework (MCGI) fusing the
visual, textual and graph features; (3) we evaluate
the method on a glyph dataset spanning over 1000
years in both synchronic and diachronic views. It
proves the validity of our method compared with
the baselines, and gives the conclusion of the con-
tributions for each modality to this task.

This paper provides a preliminary reference for
the ancient character deciphering. It has potential
applications in ancient Chinese, ancient character,
history, and other related fields. For instance, to
help experts discover the top-k possible character
labels for the unknown glyph, as well as their rele-
vant glyphs in history; and to improve the effects
of optical character recognization through radical
semantics.

The organization of this paper is as follows: Sec-
tion 2 presents the related works; Section 3 de-
scribes the key knowledge and the task definition;
Section 4 introduces CGKG; Section 5 introduces
our glyph identification framework (MCGI); the
evaluation is proposed in Section 6; Section 7 de-
scribes the limitations and future works; and Sec-
tion 8 concludes this paper.

2 Related Works

Related works on Chinese characters: Most of
the related works concentrated on optical character
recognition (OCR) (Cao et al., 2020; Diao et al.,
2023; Huang et al., 2022; Zhang et al., 2018). How-
ever, different from them, our focus is not on im-
age recognition, but to identify the unknown an-
cient glyphs based on image and radical seman-
tics. Chi et al. (2022) introduced an ancient Chi-
nese glyph similarity measurement method that
extracted radical semantic features from the graph,
but the method is not designed for glyph identifi-
cation. Zhang et al. (2021) presented an unknown
image as a query, to receive a set of similar images
from an adjacent writing system with associated

scholarly information, and so help guide the deci-
phering of the query. Chang et al. (2022) presented
an image-to-image translation networks to generate
corresponding modern Chinese forms by simulat-
ing and restoring the real historical evolutionary
process of Oracle characters, which enables archae-
ologists to use the generated modern characters to
infer possible lexical natures of Oracle characters.
Although these works also can serve for decipher-
ing, the specific tasks are not identical with ours.
And compared with these works, because of in-
troducing radical semantics, our method is more
suitable for identifying the unknown glyphs who
have different radical composition to their corre-
sponding modern glyph or other variant glyphs. It
is consistent with the theory of human deciphering:
in the deciphering works, experts not only need to
compare with visual similar glyphs but also dis-
cover and reason those glyphs that are related in
semantics and pronunciations based on the radicals.

Multimodal Methods: the related works are dis-
tributed in domains of vision-and-language models
(Kim et al., 2021; Radford et al., 2021; Xu et al.,
2023), NLP and multimodal knowledge graph rep-
resentation (Li et al., 2023; Wang et al., 2022;
Zhang et al., 2023). Most of the multimodal models
follow an universal workflow: generating the em-
bedding for each modality through the pre-trained
uni-modal encoders, such as BERT (Devlin et al.,
2019), the Deep Residual Network (ResNet) (He
et al., 2016), and the Graph Attention Network
(GAT)(Velickovic et al., 2018), respectively for tex-
tual, visual and graph modality. These embeddings
will be fed into a cross-modal encoder for data fu-
sion, which can be a simply dot product operation,
multimodal attention mechanisms or more compli-
cated transformers. ViLT (Kim et al., 2021) took
shallow embedding layers and used transformer on
textual and visual embedding interactions. In the
knowledge graph domain, HRGAT (Wang et al.,
2022) proposed a multimodal fusion method based
on text and visual co-attention. IMF (Li et al.,
2023) proposed a two-stage interactive multimodal
fusion framework for link prediction.

3 Key Information and Task Definition

3.1 Chinese Radicals

Chinese characters are composed of radicals, which
are also characters or variants of character. The
number of radicals is less than that of character
significantly because they are commonly shared by
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different glyphs. Radical can express the semantic
or phonetic information, therefore, it is the smallest
units to describe Chinese glyphs.

3.2 Variant Glyphs
The variant glyphs (异体字) refer to a group of
glyphs with the same meaning, pronunciation, us-
age but different in their graphics. The represen-
tative example is the traditional Chinese character
(e.g., “鳥”, bird) and the corresponding simplified
Chinese character (e.g.,“鸟”). They belong to the
same Chinese character label in this paper.

We divide the variant glyphs based on the fol-
lowing three indicators: (1) different in radical
types; (2) different in radical quantity, location
or glyph (e.g., “虎”(tiger) and “虍”(tiger)); (3) dif-
ferent in living time stages. We take the Oracle,
Bronze and States as three ancient time stages, and
others after them as the Modern stage.

In addition, we call a group of variant glyphs
as the synchronic variant glyphs if they lived in
the same time stage, otherwise, we call them di-
achronic variant glyphs. Correspondingly, the
testing glyphs in this work is divided into two
groups: the synchronic testing glyph, if it has at
least one synchronic variant glyphs in the training
set, otherwise, it is diachronic testing glyph. We
will separately show the results of the two groups in
evaluation, because the latter is more difficult to be
identified and is common in practical applications.

3.3 ZiNet Knowledge Base
The available data for this work is limited, because
most of the Chinese character image resources do
not integrate at the glyph level. The dataset of this
work (Section 6.1) is from ZiNet (Chi et al., 2022).
ZiNet is a diachronic knowledge base describing
relationships and evolution of Chinese characters.
Up to now, it records up to 16000 glyphs in various
historical periods of Oracle, Bronze and States, and
associates them with the character, radicals and
images.

3.4 Task Definition
Our task is shown in Figure 2. In this task, there
is a character set C = {ci|i = 1, 2, ..., |C|}
containing Chinese character labels; a training
glyph set Gtrain = {gi|i = 1, 2, ..., |Gtrain|} con-
taining Chinese glyphs distributed in all of time
stages; and a testing glyph set Gtest = {gi|i =
1, 2, ..., |Gtest|} containing Chinese glyph samples
in ancient time stages, which is unseen for the

Figure 2: Definition of the ancient Chinese glyph identi-
fication task in this paper.

model, Gtrain ∩ Gtest = ∅. Each Chinese glyph
belongs to one Chinese character label. Thus, the
training dataset is {(g, c)|g ∈ Gtrain, c ∈ C} and
the testing dataset is {(g, c)|g ∈ Gtest, c ∈ C}.

The Chinese glyph in this task is described by
two kinds of data: the images and a short radical
description text (Figure 2). Each glyph gi has one
or more than one images, it’s image set is defined as
Pgi . And it also has a radical sequence Rgi , which
contains the radicals of ranking in the writing order.

There is a graph KG, KG = (V,Rel), V =
Vg ∪ Vr, where V is the entity node set, Vg is the
glyph entity node set and Vr is the radical entity set.
Rel is the edge set between entities. KG contains
all glyphs in Gtrain and their radicals, as well as
the edges between them.

The goal of this task is to predict the corre-
sponding character label c, c ∈ C for the glyph
g, g ∈ Gtest: f(Pg, Rg,KG|θ) = c, where θ is
the parameters of the model gotten from trainings.
All of the supervised learnings are based on the
training dataset and KG.

4 Chinese Glyph Knowledge Graph

As shown in Figure 3, the CGKG has two types
of entities of glyph and radical, and two relations:
the inclusion relation between glyph and radical
Rel1(g, r), and the semantic relation between two
radicals Rel2(r, r). Two radicals would be linked
with Rel2 if they met the following relationships:

• They belong to the same character (e.g.,
“虎”(tiger) and “虍”(tiger)).

• They are derived from the same mother char-
acter (e.g., “東” (bag) and “束”(tie)).

• They have the indication relationship (指事)
(e.g., “生” (to grow) and “屮”(grass)).
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Figure 3: The Chinese glyph knowledge graph (CGKG),
which contains two types of entities: glyph (g) and
radical (r); and two relations: Rel(g, r) and Rel(r, r).

• They express the same or similar meaning
(e.g., “屮”(grass) and “木”(tree)).

• They have the same or similar pronunciation
and usually can be mutual borrowing used (通
假) in the ancient Chinese (e.g., “匕” (female
ancestor) and “比”(close to each other)).

• They are the interchangeable radicals (“屮”
(grass) and “木” (tree) is a pair of interchange-
able radical observed in the variant glyph pair
“屮, 屮, 屯, 日” and “木, 木, 屯, 日” of the
character “春”).

The first five relations were annotated by our ex-
perts, and the last one was automatically extracted
from dataset. We automatically extracted inter-
changeable radical pairs from all of variant glyph
pairs in dataset: if only the target radical pair are
replaced with each other and other parts are the
same, they will be set as the candidate, the radical
pairs appeared over 2 times will be added into KG.

These relations are not independent but highly
relevant. We do not specify the relationship cat-
egories, if two radicals satisfy any of above pro-
fessional indicators, we will add an edge between
them in KG, and finally construct an undirected
graph. Ultimately, there are 1907 edges between
657 radical nodes in KG.

5 Chinese glyph identification Method

5.1 Method Overview
The architecture of MCGI is shown in Figure 4.
Given a glyph gk, the inputs include an image set
Pgk , a radical token sequence Tgk , which is the
textual representation of Rgk and the graph KG.

Figure 4: The MCGI framework for glyph identification.
It has three encoders to generate visual, textual and
multimodal glyph embeddings and one decoder to get
the scores for character labels from these embeddings.

MCGI consists of three encoder modules: the im-
age encoder (IE) encodes images in Pgk into high-
dimension embeddings and generates the visual
glyph embedding evgk ; the graph encoder (KGE)
represents glyph and radical entities in KG as the
KG glyph embedding ekggk and the radical embed-
dings er for all radical entities; the multimodal
encoder (ME) generates the multimodal glyph em-
bedding emgk , which fuses the initialized token em-
beddings of Tgk provided by BERT with the image
and radical embeddings from IE and KGE.

Finally, the Decoder module outputs the result
based on the glyph representations from three en-
coders: Decoder(evgk , e

kg
gk , e

m
gk
) = {s(gk, ci)|i =

1, 2, ..., |C|}, s(g, c) is the score between the glyph
and the character label.

In this section, we will introduce the IE in Sec-
tion 5.2, the KGE in Section 5.3, the ME in Sec-
tion 5.4, the Decoder in Section 5.5, and the work-
ing steps of MCGI in Section 5.6.

5.2 Image Encoder

For a target glyph gk, IE generates the embedding
set E(Pgk) of its images: E(Pgk) = {evi

gk
|evi

gk
∈

Rdv , i = 1, 2, ..., |Pgk |}, dv is the dimension of the
visual feature space. And it’s visual glyph repre-
sentation evgk is set as the average of E(Pgk):

evgk =
1

|Pgk |
∑

pi∈Pgk

IE(pi) (1)

IE is a computer vision model, such as ResNet.
It is pre-trained on the image classification task,
which classifies image samples into the character
label: fp−>c using the images of the glyphs in
training dataset.
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Figure 5: Architecture of the Multimodal Encoder. It takes three kinds of input: the token embeddings initialized
from BERT, the image embedding acquired from IE, and the radical embeddings acquired from KGE. These
embeddings are fused in the fusion layer and fed into BERT to output the multimodal representation.

5.3 Knowledge Graph Encoder
KGE embeds the glyph and radical entities in
KG into E(KGg) = {ekggi |e

kg
gi

∈ Rdkg , i =
1, 2, ..., |Vg|} for glyphs, and E(KGr) =
{eri |eri ∈ Rdkg , i = 1, 2, ..., |Vr|} for radicals,
where dkg is the dimension of the graph feature
space, Vg and Vr are the glyph and radical node set,
respectively, which are the subsets of V .

The KGE is a graph representation model. Here
we use node2vec (Grover and Leskovec, 2016) to
initialize the entity embeddings and further train
a GAT network on the glyph entity classification
task fg−>c based on Gtrain.

5.4 Multimodal Encoder
The architecture of ME is shown in Figure 5,
which is based on BERT. For each glyph gk, ME
inputs each of its image embedding evi

gk
, evi

gk
∈

E(Pgk); the radical token embeddings E(Tgk) ini-
tialized from BERT; and the entity embeddings for
radicals of gk: E(KGr(gk)

). It outputs the fused
multimodal representation emi

gk
:

emi
gk

= ME(evi
gk
, E(Tgk), E(KGr(gk)

)) (2)

We get the multimodal glyph representation
emgk by averaging all embeddings in {emi

gk
|emi

gk
∈

Rdm , i = 1, 2, ..., |Pgk |} gotten from ME, dm is
the dimension of the multimodal feature space.

Specifically, for T , we arrange the radicals in
order from top to bottom, from left to right and
from outside to inside to the maximum extent, and
“,” is the spacing symbol. The radical of the single
glyph is set as itself. The T should contain all
levels of radicals, for instance, T of the glyph g14
(Figure 1) is {艸, 屮, 屮, 屯, 日}, in which “屮,
屮” are the second level radicals making up “艸”.

The specific symbols for BERT are added to
T : {[CLS], t2, ..., tn−3, [SEP ], [IMG], [SEP ]},

where n is |T |, [CLS], and [SEP ] are the start and
end symbols, [IMG] is the position where will be
filled with the image embedding ev, and t2 to tn−3

are the tokens. The initialized embedding sequence
of T is: E(T ) = {eti |eti ∈ Rdt , i = 1, 2, ..., n},
dt is the dimension of the textual feature space.

The fusion layer fuses E(T ) with ev and radi-
cal embeddings from E(KGr), and generates an
unified input embedding sequence E(O), E(O) =
{eoi |eoi ∈ Rdt , i = 1, 2, ..., n}:





eoi = Linear(ev), i = n− 1
eoi = Linear(eti ||er(ti)), r(ti) ∈ V ′

r

eoi = eti , Otherwise

where Linear is the linear layer and || is con-
catenation operation, r(ti) is the radical entity cor-
responding to the token ti and er(ti) is the radical
embedding of it. V ′

r is the set of radical entities
that have Rel2 relation in KG, V ′

r ⊂ Vr.
E(O) is fed to ME and outputs the hidden vi-

sual representation hv of on−1, and the hidden
textual representation ht, which is the average of
the outputs of o1 to on−2, at the last layer. The
multimodal embedding em is:

em = hv + ht (3)

We pre-train ME on the classification task based
on the training data. The em will be mapped to the
scores for character labels through a linear layer
and softmax function.

5.5 Decoder
We take a unsupervised Decoder. Every charac-
ter label ci corresponds to a set of glyphs G(ci) =
{gcij |gcij ∈ Gtrain, j = 1, 2, ...,m}, m is the num-
ber of glyph of ci in Gtrain. We calculate the Co-
sine Similarity between each glyph embedding pair
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in Gtest and Gtrain and set the score of (gk, ci) as
the max score between gk and the glyphs in G(ci).

There are three similarity scores between gk
and ci: sm(gk, ci), sv(gk, ci) and skg(gk, ci), cor-
responding to the three input glyph embeddings of
emgk , evgk , and ekggk . The final score s(gk, ci) is:

s = αsm + βsv + γskg (4)

where α, β and γ are hyperparameters.
For comparison, we also realized a supervised

Decoder which is trained on glyph classifica-
tion: fg−>c, in which the hidden glyph represen-
tation is egk = αLinear(emgk)+βLinear(evgk)+

γLinear(ekggk ), where α, β and γ are parameters
gotten from training.

5.6 Working Steps and Loss Function
MCGI follows a staged training and predicting
framework: in the pre-training stage, it separately
trains encoders of IE, KGE and ME, and ac-
quires the visual, graph and multimodal glyph em-
beddings for glyphs in Gtrain, as well as the radical
entity embeddings.

In the predicting stage, given a glyph gtest: (1)
it acquires image embeddings and visual glyph
embedding through IE; (2) adds gtest into the KG,
including creating a new glyph node and linking
it to the corresponding radical nodes, and trains
KGE to get the KG glyph embeddings for gtest
and glyphs in Gtrain; (3) acquires the multimodal
embedding through ME; (4) outputs the character
label through Decoder.

We use the cross-entropy loss on the training of
three encoders. Given a (x, ci) pair, x is the target
glyph or image, s(x, ci) is the score between x and
the character ci, the loss function is:

loss = −s(x, ci) + log

|C|∑

l=1

exp(s(x, cl)) (5)

6 Evaluation

6.1 Dataset Information
The statistics is shown in Table 1. It has 6941 char-
acter labels and 1974 radicals. There are 14931
glyphs and 53452 images for training, and 1279
ancient glyphs and 5319 images for testing. The
glyph samples are distributed in different time
stages (Oracle, Bronze, States and Modern).

There is an average of only 2.15 (14931/6941)
glyph samples per character label for training. It

Dataset Data Statistics

-
Character (C) 6941
Radical (R) 1974

Train
Glyph (Gtrain)

14931
(Oracle: 2478;
Bronze: 2839;
States: 6042;
Modern: 3572)

Image (Ptrain) 53452

Test
Glyph (Gtest)

1279
(Oracle: 414;
Bronze: 468;
States: 397)

Image (Ptest) 5319

Table 1: The statistic information of dataset.

Consistent Inconsistent Sum
S 145 453 598
D 110 571 681
Sum 255 1024 1279

Table 2: Statistics of the categories of testing glyphs
(“S” represents the synchronic testing glyphs; “D” is
the diachronic testing glyphs).

Figure 6: The proportion distributions of training glyph
samples for per number of images and radicals.

is because of the incompleteness of the current
dataset in this field, and the real-world discovered
variant glyphs themselves are limited in quantity.
Thus, in the current research, the testing glyphs
only overs 805 commonly used character labels,
and each testing glyph has at least one variant glyph
in the training set.

And the proportion distributions of image and
radical quantities for training glyph samples are
shown in Figure 6. The average number of image
for per glyph is 3.73 and radical is 2.62. The image
dataset has the long tail effect due to the differences
in usage frequency. It conforms to the real world
distribution for ancient Chinese character.

The categories of testing glyphs is shown in Ta-
ble 2, among the 1279 testing glyphs, there are
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Method Synchronic testing group Diachronic testing group

R@1 R@3 R@10 MR MRR R@1 R@3 R@10 MR MRR

(v) DenseNet121 29.9% 39.6% 50.5% 410.9 0.369 23.8% 35.1% 47.9% 591.0 0.316
(v) ResNet50(ours) 35.6% 48.7% 61.4% 291.6 0.441 28.8% 40.2% 53.2% 368.9 0.369
(k) GAT_CGKG 58.7% 77.8% 85.5% 33.9 0.691 36.9% 51.5% 68.0% 153.0 0.469
(t) LCS 50.5% 66.1% 76.9% 58.4 0.599 28.6% 43.3% 52.9% 479.4 0.378
(t) SikuBERT 67.4% 79.4% 85.5% 85.7 0.742 35.7% 47.6% 57.7% 482.0 0.435
(t) BERT(ours) 70.6% 82.8% 88.0% 82.0 0.777 40.4% 53.5% 62.4% 453.5 0.485

(t+v) ViLT (Kim et al., 2021) 66.7% 81.1% 87.5% 69.5 0.743 51.7% 63.3% 70.8% 348.3 0.587
(t+v) HRGAT (Wang et al., 2022) 65.2% 74.4% 81.6% 185.3 0.710 36.1% 46.0% 53.3% 721.7 0.424
(t+v+k) IMF (Li et al., 2023) 63.0% 76.1% 85.6% 68.4 0.710 38.6% 54.8% 68.4% 156.7 0.448
(t+v+k) GlyphSim (Chi et al., 2022) 69.6% 85.8% 91.6% 9.3 0.784 44.1% 62.0% 79.1% 62.2 0.557

MCGI (ME(t+v)) 68.6% 80.3% 85.5% 84.1 0.755 55.9% 64.3% 72.1% 260.1 0.618
MCGI (ME(t+k)) 71.9% 84.1% 89.0% 69.8 0.782 41.1% 53.7% 61.7% 362.7 0.487
MCGI (ME(t+v+k)) 69.2% 79.3% 85.8% 93.6 0.754 56.5% 65.9% 73.3% 270.7 0.625

MCGI (ME(t+v+k)+IE) 69.4% 83.6% 89.0% 32.1 0.772 50.4% 65.8% 75.3% 130.7 0.594
MCGI (ME(t+v+k)+KGE) 70.7% 85.3% 90.5% 19.4 0.785 52.7% 69.3% 79.1% 96.8 0.625
MCGI (ME(t)+KGE+IE) 72.1% 87.1% 92.8% 13.0 0.801 51.7% 68.1% 80.9% 72.9 0.619
MCGI (ME(t+v)+KGE+IE) 72.6% 88.3% 93.0% 11.9 0.808 54.8% 71.1% 82.5% 68.6 0.648
MCGI (ME(t+v+k)+KGE+IE) 73.5% 88.5% 93.0% 13.1 0.812 56.5% 71.8% 82.1% 70.0 0.659
MCGI (ME(t+v+k)+KGE+IE-(s)) 73.7% 86.5% 92.0% 29.9 0.810 55.7% 70.6% 80.8% 90.9 0.646

Table 3: The results of the quantitative comparisons with uni-modal and multimodal baseline methods on the
synchronic and diachronic testing groups, respectively. MCGI (ME(t+v+k)+KGE+IE) is our full method. The
best results are highlighted in red color, and the best results in four sub groups are highlighted in blue color.

598 synchronic testing glyphs (S, Section 3.2) and
681 diachronic ones (D). In addition, we count
the consistency of radical types (Section 3.2) be-
tween testing glyphs and their variant glyphs that
are in training set. The testing glyph in “Consis-
tent” group has at least one training variant glyph
with the same radical types as it (they are only dif-
ferent in radical location, quantity, glyph or time
stage), while the testing glyph in “Inconsistent”
group changed the radical types. There are 1024
inconsistent testing glyphs and only 255 consistent
ones, which makes a certain difficulty for this task.

6.2 Indicators and Baseline Models
Our evaluation indicators include: R@1, R@3 and
R@10, which are the average proportion of top-
n correct label rankings; the Mean Rank (MR)
and the Mean Reciprocal Ranking (MRR). The
potential application scenario of this work is to
recommend experts with a set of most possible
(top-n) character labels to inspire their thoughts
and reduce the candidate character scope. So the
ranking score is most suitable to evaluate this task
and the MR score can show the human workload
in the real applications.

We classified the models according to the modal-
ity of data they used. The uni-modal models in-
cludes ((v) is visual modality; (t) is textual modal-

ity; (k) is graph modality):

• (v): (1) DesNet121; (2) ResNet50 (ours): we
pre-trained a ResNet model on the image
dataset of ancient Chinese characters based
on unsupervised contrastive learning.

• (k): GAT_CGKG, the GAT network on
CGKG.

• (t): (1) LCS (longest common subsequence)
of the radical text; (2) SikuBERT1, which was
trained on ancient Chinese corpus; (3) BERT
(ours): we trained it from SikuBERT on the
unearthed ancient Chinese contexts.

All the uni-modal models were trained on the
glyph or image classification tasks. For the (v)
models, the score between (g, c) is set to the sum
of the (p, c) scores of all images of the glyph g.

There are four multimodal baseline methods
(Section 2): (t+v) ViLT (Kim et al., 2021); (t+v)
HRGAT (Wang et al., 2022); (t+v+k) IMF (Li et al.,
2023); and (t+v+k) GlyphSim (Chi et al., 2022).
Apart from GlyphSim, their tasks are very differ-
ent from ours. We only realized their multimodal

1https://huggingface.co/SIKU-BERT/
sikubert
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fusion parts and trained their models on glyph clas-
sification task, to show the effects of the potential
available methods on our dataset and task.

For our MCGI, the IE, KGE and ME en-
coders used the uni-modal models of ResNet50
(ours), GAT_CGKG and BERT(ours) respec-
tively. To do the ablation study, we firstly
individually evaluated the three kinds of ME
encoder that use different combinations of T ,
KGr and P information: ME(t+v+k); ME(t+v);
and ME(t+k), in which ME(t+v+k) is our
full method. And then, we evaluated our
full MCGI method: ME(t+v+k)+KGE+IE in
Decoder and several combinations of three en-
coders: ME(t+v+k)+IE; ME(t+v+k)+KGE;
ME(t)+KGE+IE; ME(t+v)+KGE+IE. We
also evaluated the supervised Decoder for com-
parison: ME(t+v+k)+KGE+IE-(s).

6.3 Configuration

In pre-training of IE, the batch size was 64, the
learning rate was 0.001, epoch was 150 and dv was
768; For ME pre-training, we used the basic BERT
with 768 dimensions, batch size was 64, the learn-
ing rate was 0.00002, dm was 768, and we trained
it for 100 epochs. For KGE, the embeddings were
initialized by using the opened OpenNE2 tool, we
used their default parameters and the dimension of
the output vector was 1000. And we trained GAT
network through 5 epochs, the learning rate was
0.0005 and batch size was 256, the dk was 2000.
The hyperparameters α, β and γ in Decoder were
0.4,0,5, and 0,7 respectively, which were set by
testing 50 extra validate glyph samples on the com-
binations between 0.1 and 1.0. For all supervised
models, we ran for 3 times and chose the best score
as the result. The training time of our ME and IE
is about 8 hours on the NVIDIA RTX 3090 GPU.

6.4 Results and Discussions

Validity of our method: The results are shown in
Table 3, our model achieves the best results in most
indicators except MR compared with the baselines.

The results of ME encoder (ME(t+v+k)), on
the D group, are improved from the uni-modal and
also better than the multimodal data fusion base-
lines (Kim et al., 2021; Li et al., 2023; Wang et al.,
2022). However, we observed slight declines for S
group after fusing the visual features (comparing
BERT(ours) and ME(t+v)).

2https://github.com/hengdos/OpenNE

The Decoder module further enhances the
overall performance. The ablation study proves
the validity of all encoders: (1) it shows
the contribution of our KGE encoder and
the graph CGKG (comparing ME(t+v+k)+IE
and ME(t+v+k)+KGE+IE; ME(t+v+k) and
ME(t+v+k)+KGE). It improves the top-n rank-
ings especially for S group, and reduces the MR
indicator observably; (2) by comparing directly
using BERT (ME(t)+KGE+IE) and using ME
encoder (ME(t+v+k)+KGE+IE)), it proves the
effectiveness of our ME encoder, especially for
improving the results for D group; (3) we did not
observe the improvement of supervised Decoder
(ME(t+v+k)+KGE+IE-(s)) in most indicators.
It may because that one character label only has
limited glyph samples for training in our specific
task; (4) the unsupervised method GlyphSim (Chi
et al., 2022) has better MR scores compared with
ours, however, we have much better top-n rankings
through pre-training of encoders.

Effectiveness for each modality: There are
overlarge pictorial differences between ancient vari-
ant glyphs, which limited the performance of (v)
methods. The results of (t) and (k) models are
better than the visual models, the (t) models have
better scores in the top-n ranks and (k) model suits
to reduce the mean rankings. However, we also
observed limitations of them, most glyphs contain
less than 3 radicals, which is insufficient to distin-
guish features of similar characters. We randomly
selected 150 error samples for ME(t+k) model,
and found that 108 of them were classified into
character labels with very similar radical combi-
nations. The multimodal fusion can leverage the
advantages of each modality, in which the radical
semantics has a better effect on the S testing group
(ME(t+k)), while the D group more requires vi-
sual features (ME(t+v)). The reason we analyzed
is that there is a greater radical semantic correla-
tion between S variant glyphs, making them benefit
more from our glyph knowledge graph.

7 Limitations

The limitations of this work includes:
(1) We only tested 1279 deciphered glyphs in

805 commonly used character labels. The uncom-
mon or undeciphered glyphs should be more diffi-
cult to be reasoned, thus the effectiveness would be
reduced. And the datasets in this field are imperfect
currently for those uncommon characters.
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(2) Our method only suits for the glyph who has
variant glyphs in training set. And the effects of
the method were observed slightly worse for those
glyphs with single radical, as well as the glyphs
whose radicals are both newfound and not shared
with training glyphs, but this situation is rare in this
task.

(3) Except the radical and visual features,
the contexts of historical documents, dictionary
records, pronunciations and so on are very impor-
tant, which should be considered in the future.

Currently, we are associating Chinese glyphs
with more textual resources such as the historical
documents, dictionary records and so on. The ul-
timate goal is to provide a complete methodology
and refined model for ancient Chinese character
deciphering. And in application level, we will de-
velop the glyph recognization and recommendation
serves based on this work.

8 Conclusion

This paper introduces an innovative research of
glyph identification of ancient Chinese charac-
ters and devises a knowledge powered multimodal
method based on visual and radical semantic in-
formation for this task. The results proved the
effectiveness of our glyph knowledge graph and
the multimodal method, which achieves the best
results in most indicators, and shows the potentials
of visual and radical information in this task for the
first time. This work can be applied in the related
fields of ancient Chinese linguistics and characters.
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