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Abstract

Continual few-shot relation extraction (CFRE)
aims to continually learn new relations with
limited samples. However, current methods
neglect the instability of embeddings in the
process of different task training, which leads
to serious catastrophic forgetting. In this pa-
per, we propose the concept of the following
degree from the perspective of instability to
analyze catastrophic forgetting and design a
novel method based on adaptive gradient cor-
rection and knowledge decomposition to alle-
viate catastrophic forgetting. Specifically, the
adaptive gradient correction algorithm is de-
signed to limit the instability of embeddings,
which adaptively constrains the current gradi-
ent to be orthogonal to the embedding space
learned from previous tasks. To reduce the in-
stability between samples and prototypes, the
knowledge decomposition module decomposes
knowledge into general and task-related knowl-
edge from the perspective of model architec-
ture, which is asynchronously optimized during
training. Experimental results on two standard
benchmarks show that our method outperforms
the state-of-the-art CFRE model and effectively
improves the following degree of embeddings.

1 Introduction

The purpose of CFRE is to continuously train a
model on limited new data. Compared to traditional
continual relation extraction(CRE) models, it can
learn new relations without accessing a large num-
ber of previous task data, and avoid catastrophic
forgetting (French, 1999; McCloskey and Cohen,
1989) of the old relations.

Due to limited training data, the features learned
by the model at each time step of continual learn-
ing are relatively unstable and are easily modified
by the model when learning other class samples in
subsequent time steps. As a result, traditional CRE
methods cannot be directly applied to CFRE (Qin
and Joty, 2022). To fully utilize data resources,

Figure 1: Representation of distance relative offset dis-
tance and absolute offset distance. {x1, · · · , x5} and
{x′

1, · · · , x′
5} are sample embeddings with the same

class before and after training at a certain time step,
respectively. p and p′ are embeddings of prototypes of
those. The red dashed arrow represents the AOD of the
sample x4 or prototype p. The difference distance of the
two yellow dotted arrows represin-ents ROD between
x2 and p.

scholars have explored many methods (Wang et al.,
2022b; Zhong et al., 2021; Zhang et al., 2022). And
the methods based on memory replay (Chen et al.,
2023; Wang et al., 2023; Qin and Joty, 2022) made
great achievements in CFRE. However, these mod-
els mainly focus on the strategies of in-memory
samples in the process of replaying or learning and
perform direct fine-tuning of the model parame-
ters through the gradient of the loss function. Fur-
thermore, in-memory samples are used to generate
gradients that benefit the performance on previous
tasks, but the direction optimized by these gradi-
ents may contradict the optimization direction of
the current task gradient, which leads to the instabil-
ity of samples with respect to prototypes. In metric
learning (Kaya and Bilge, 2019), the prototype of
one class is the center of this class.

In essence, during continuous learning with min-
imal data usage, when samples are equivalently
shifted with the embedding of prototypes, the la-
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bels of samples will not be easily changed and
catastrophic forgetting of the model will be alle-
viated. Thus, we formally provide the definition
of following degree of class y at time step t: the
degree of deviation between class y samples and
class y prototype before and after training at t. Ob-
viously, the smaller the offset between the previous
sample embedding and its prototype, the higher the
following degree of this class, and the less unstable
the samples are. In this way, the model can have
less catastrophic forgetting of previous samples.

Intuitively, there are two main reasons for the
low following degree of the model on a task: 1)
the model is not sufficiently optimized for some
samples, which makes the prototypes deviate from
the optimization direction of the samples; 2) af-
ter optimization, all embeddings change too much
compared with the previous will also increase the
risk of low following degree. Relative offset dis-
tance (ROD) and absolute offset distance (AOD)
are proposed to express the above two factors, re-
spectively. As shown in Fig. 1, |x′4−x4| and |p′−p|
represent AOD of x4 and p. (|p′ − x′2| − |p− x2|)
represents ROD between x2 and p. The lower the
AOD and ROD, the higher the following degree.

In this paper, an adaptive gradient correction
algorithm is proposed to directly constrain and cor-
rect the vector space of the gradient in transformer-
based language models. Since the modified gra-
dients are orthogonal to the embeddings of the
previous sample, this special optimization method
for the transformer can effectively reduce AOD.
Specifically, for each previous task, we calculate a
gradient direction, which has the greatest impact
on in-memory samples, as the correction criteria.
When updating the gradient of the current task, the
correction matrix based on this criteria is used to
make a linear transformation of the gradient, which
can constrain the subspace of parameters orthogo-
nal to the previous tasks.

In addition, knowledge contained in model pa-
rameters is decomposed into general and task-
related knowledge. Based on this decomposition,
general knowledge is used to identify a generic rep-
resentation of relations with the corresponding enti-
ties. We employ task-related knowledge to identify
categorical decision boundaries between specific
tasks based on general knowledge. In practice, we
apply a pre-trained language model (PLM) to en-
code the general knowledge and use an adaptive
gradient correction algorithm to avoid mutual cov-
erage of knowledge. Since there is no gradient

transmission between task prototypes, we integrate
task-related knowledge into task prototype embed-
ding. These prototypes are updated discretely and
continuously in three different training stages to
reduce ROD. In the continuous optimization stage,
we add an additional loss to increase the distance
between prototypes, which can prevent confusion
between the new and the old task prototypes.

To sum up, the contributions of this paper mainly
include the following three aspects:

• We attribute catastrophic forgetting in CFRE
to the low following degree between samples
and prototypes, and analyze how to improve
the following degree from the perspectives of
AOD and ROD.

• According to the correction matrix calculated
by in-memory samples, an adaptive gradient
correction algorithm is proposed that makes
the model directly adjust the gradient to re-
duce AOD.

• We design a knowledge decomposed method
and corresponding update strategies to avoid
the confusion of knowledge between different
tasks, which can limit ROD during training.

Experimental results on two public datasets show
that our method can effectively alleviate the catas-
trophic forgetting in CFRE.

2 Related Work

RE aims to extract the implied relation from sen-
tences. For example, given the sentence "Steve
Jobs is the co-founder of Apple", the model needs
to determine the relation "CEO_of" between the
entity "Steve Jobs" and "Apple". It is a basic step
for many downstream tasks such as language un-
derstanding, question answering, and knowledge
graph construction (Nasar et al., 2021).

Most traditional RE models are built based on
a fixed dataset (Eberts and Ulges, 2020; Liu et al.,
2022b; Shang et al., 2022; Li et al., 2018, 2021).
However, RE is often an open vocabulary problem
(Liu et al., 2022a), and it is difficult to model all
relations for any limited set. Therefore, the contin-
ual learning ability (Chen and Liu, 2018) of the RE
model has gradually attracted attention (Zhao et al.,
2023; Xia et al., 2023).

But there will be serious catastrophic forget-
ting for the model in continual learning, that is,
the model will forget the old knowledge when
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learning new tasks. To solve this problem, the
existing methods for continual learning mainly in-
clude: regularization-based approach (Zhai et al.,
2019), memory-based approach (Cha et al., 2021),
optimization-based approach (Schwarz et al.,
2018), representation-based approach (Yan et al.,
2022), and architecture-based approach (Wang
et al., 2022a). The existing methods (Wang et al.,
2022c; Zhou et al., 2022) are often based on a
large number of labeled data for training, which
is time-consuming and expensive. When the num-
ber of training is small, overfitting of memory data
and knowledge coverage (Song et al., 2023) is also
one of the causes of catastrophic forgetting. The
existing methods mainly solve this problem from
the following three levels: data level (Wang et al.,
2022b), feature level (Zhong et al., 2021), and task
level (Zhang et al., 2022).

Directly adjusting the gradient is also one of the
methods to overcome catastrophic forgetting with
limited data (Chen et al., 2023; Zhou et al., 2022).
He and Jaeger (2018) proposed Concept Aided
BackProp for disaster forgetting, in which the gradi-
ent is shielded by a conceptor to prevent the degra-
dation of previous tasks. Zeng et al. (2019) intro-
duced orthogonal projection and context-dependent
processing module for the current gradient. Guo
et al. (2022) put forward the paranoid factor related
to the previous task to estimate the input space, but
the accumulation strategy for embedding of differ-
ent samples may lead to confusion in the projection
space. Although, the GEM algorithm (Lopez-Paz
and Ranzato, 2017) introduced gradient projection
to make the loss of previous tasks slowly increase
in subsequent training, the embeddings computed
by this method are not equivariant and cannot be
applied to transformer-based language models.

In contrast, our method innovatively uses the cor-
rection matrix calculated by in-memory samples to
directly constrain the gradient update in backpropa-
gation to reduce the overall AOD, so as to limit the
risk of reduced following degree. A model archi-
tecture based on knowledge decomposition and the
corresponding asynchronous optimization method
is designed to further reduce the ROD of samples.

3 Methodology

3.1 Problem Definition

CFRE model extracts the relations from a series
of tasks {T 1, T 2, · · · , TK}. Every task T k has
its own training dataset Dk

train, validation dataset

Dk
valid, test dataset Dk

test and relation label set
Rk. Each set contains a small number of sam-
ple pairs {(xi, yi)}|D|

i=1, where the label yi ∈ Rk.
For example, in N -way M -shot constraint, we
make |Rk| = N and |Dk

train| = N × M . At
time step k, the model will only train on Dk

train

and we hope that the model will perform well on
{D1

test ∪D2
test ∪ · · · ∪Dk

test} after training.
The memory mechanism is applied to prevent

catastrophic forgetting in CFRE. Memory is de-
fined as a series of sample sets M̂K = ∪Kj=1M

j ,

where each Mk = {(xi, yi)}|M
k|

i=1 corresponds to a
task T k. At time step k, a portion of the sample
is selected to be stored in the memory set Mk as
classical samples. In this paper, only one sample is
in memory for each category.

3.2 Training Process
Algorithm. 1 describes the whole training pro-

cess of our method at time step k. It mainly in-
cludes three different training stages to continu-
ously and discretely adjust ROD between proto-
types and samples.

In the first stage, we initialize the current mem-
ory set Mk and proto-embedding P k. Then, the
temporary memory {M̂k−1 ∪Mk} with all train-
ing data is applied to preliminarily update the PLM
parameters θk−1 through the corrected gradient.

In the second stage, we introduce cosine simi-
larity to find one sample that is most similar to the
center of the category cluster and add it to memory
M̂k−1. The PLM parameters update is similar to
the first stage, except for using selected memory
data.

In the final stage, we freeze the gradient of PLM
and view proto-embeddings P̂ k as learnable param-
eters, fine-tuning them on training data.

The data and gradient flow are shown in Fig. 2.

3.3 Knowledge Decomposition
To prevent the parameters in the model from being
covered and confused due to continuous task iter-
ation, we abstractly decompose them into general
and task-related knowledge. Since they do not in-
terfere with each other during the update process,
ROD for different categories can be effectively re-
duced.

3.3.1 General knowledge encoder
Because of the training with mask prediction on a
large number of corpora, the knowledge of BERT
parameters is independent of specific downstream
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Figure 2: The data and gradient flow of our method, where the solid lines describe the data flow in forward
propagation and the dashed lines describe the gradient flow in backpropagation.

tasks. Therefore, we choose BERT as PLM to
encode the general knowledge of the whole re-
lation extraction model. Specifically, for a sen-
tence x = {Tok1, T ok2, · · · , T okn}, we first con-
struct a template function based on prompt learning
(Liu et al., 2023) by adding a special [MASK] to-
ken to the sentence and get the sequence xseq =
{[CLS], eh, [MASK], et, [SEP ], x, [SEP ]}. eh
and et respectively represent the head and tail en-
tity in the sentence x. Then the embedding of
[MASK] token is taken as the relation representa-
tion of the whole sentence:

h[MASK] = fθ(xseq) (1)

To facilitate symbolic representation, xseq is re-
placed by x.

3.3.2 Task-related knowledge encoder
To ensure that the new task knowledge learned
by the model does not conflict with the previous
task and model general knowledge respectively, we
encode the knowledge of different tasks into the
corresponding category proto-embedding. Since
the proto-embeddings of different categories are
disconnected, the knowledge from new and pre-
vious tasks will not affect each other naturally.
And this part of knowledge is updated and trained
asynchronously with BERT, so it also does not

conflict with the general knowledge. The proto-
embeddings are updated with different strategies in
the three stages of training.

In the first stage of task k, we apply all samples
of each new relation in the current task to calculate
the new proto-embedding. To get the most repre-
sentative vector in the sample embedding space,
the average method is introduced to aggregate all
embeddings of samples. For the proto-embedding
pkj of class j task k, the calculation formula is as
follows:

P k
j =

1

|Dk
j |

∑

(xi,yi)∈Dk
j

fθ(xi) (2)

where Dk
j = {(xi, yi)|(xi, yi) ∈ Dk

train, yi = rj}
and |Dk

j | is the number of samples in Dk
j .

In the second stage, there is only one sample
for each class in memory, so we directly use the
relation embedding of that sample as the proto-
embedding of the corresponding class.

The updating of proto-embeddings in the first
two stages is discrete. In the third stage, we
freeze the parameters of BERT and regard the
proto-embedding as a parameter that can be up-
dated by the gradient descent algorithm. The proto-
embeddings are continuously updated by the gradi-
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Algorithm 1 Training procedure for T k(k > 1)

Input: The PLM parameters θk−1 and proto-
embedding P̂ k−1 = ∪k−1

j=1P
j trained on T k−1,

training data set Dk
train, memory set M̂k−1, learn-

ing rate γ
Output: θk, P k

Use all samples in Dk
train to initialize Mk and

P k

Freeze the gradient of P̂ k−1, unfreeze the gradi-
ent of θk−1

for i ∈ {1, · · · , epoch1} do
Calculate correction matrix C using M̂k−1

Calculate corrected gradient ∆θk−1 using C
with Lgen on D = {M̂k−1 ∪Mk ∪Dk

train}
Update θk−1 ← θk−1 − γ∆θk−1

Recalculate P k using Mk

end for
Select typical samples from Dk

train to update
Mk

M̂k ← M̂k−1 ∪Mk

for i ∈ {1, · · · , epoch2} do
Calculate correction matrix C using M̂k−1

Calculate corrected gradient ∆θk−1 using C
with Lgen on D = {M̂k ∪Dk

train}
Update θk−1 ← θk−1 − γ∆θk−1

Recalculate P k using Mk

end for
P̂ k ← P̂ k−1 ∪ P k

Freeze the gradient of θk, unfreeze the gradient
of P̂ k

for i ∈ {1, · · · , epoch3} do
Calculate gradient ∆P̂ k with Ltask on D =
Dk

train

Update P̂ k ← P̂ k − γ∆P̂ k

end for

ent.

pkj ← pkj − γ
∂Ltask

∂pkj
(3)

where γ is the learning rate. Ltask is calculated
using cross entropy function, which is similar to
Eqn. 5. We set P k = ∪|R

k|
j=1p

k
j .

3.3.3 Calculation of loss function

To optimize the learned embeddings of relations,
the training and inference of our model are based
on metric learning. At time step k, by measuring
the similarity between each sample xi and proto-
embedding P̂ k, the relation distribution is calcu-

lated as:

p(ri|xi) =
exp(d(fθ(xi), pi))∑|Pk|
l=1 exp(d(fθ(xi), pl))

(4)

where d(·, ·) is the distance metric function (cosine
similarity in this paper) and pl is proto-embedding
in P̂ k.

Further, the cross entropy loss function is cal-
culated to measure the classification error of the
model:

Lce = −
∑

(xi,yi)∈D
logp(ri|xi) (5)

While alleviating catastrophic forgetting, it is
also important to correctly handle the information
entropy of new tasks in the model. To avoid the
confusion of similar relation between new task and
previous tasks, we select the proto-embedding sets
P sim
i = {pl|d(fθ(xi), pi) − d(fθ(xi), pl) < α}

and Pneg
i = {pl|max(d(fθ(xi), pl), l ̸= i}, which

are easy to be confused with the correct category
for each sample xi. α is the set similarity thresh-
old. The following probability is reduced by cross
entropy loss function:

Lsim = −
∑

(xi,yi)∈D

log
exp(d(fθ(xi), pi))

∑|P sim
i ∪Pneg

i ∪pi|
l=1 exp(d(fθ(xi), pl))

(6)

The final general knowledge loss is calculated as:

Lgen = Lce + Lsim (7)

3.4 Adaptive Gradient Correction
Through the decomposition of parameters, the task-
related knowledge will not interfere with each other
and ROD of previous tasks will be kept at a low
level in the process of continual learning. How-
ever, when updating the parameters of the general
knowledge encoder, there will still be gradient inter-
ference between tasks, which leads to the coverage
of the general knowledge in BERT. These coverage
may make the embedding and AOD of previous
task sample change dramatically, which will in-
crease the risk of reducing the following degree.

To avoid the interference of previous task embed-
dings when BERT learns a new task, the memory
embedding of the corresponding hidden layer is
extracted to adaptively correct the feed forward

11809



networks (FFN) and query matrix gradient in each
layer during the model back-propagation. And the
other gradients in BERT are frozen besides these
two kinds of gradients.

To express simplicity, we first abstract all lay-
ers of the encoder into fully connected layers to
introduce our idea. At time step k, we first extract
the hidden state H l ∈ Rd×|M̂k−1| of samples in
M̂k−1 before inputting each unfrozen layer. Then
the gradient correction matrix C l of a certain layer
is calculated according to H l (The superscripts are
omitted for clarity):

C = I −H(HTH)−1HT (8)

Obviously, we can get CH = HTCT = 0. To
guarantee the reversibility in the specific calcula-
tion, we add a small offset: (αI +HTH)−1. The
calculation method of α is consistent with Guo et al.
(2022).

When using the back-propagation algorithm to
calculate the gradient of a certain layer, the un-
frozen gradient of BERT is corrected by C l. The
parameter W l update formula for a certain layer is
shown as follows:

∆W l =
∂Lgen

∂W l
C l

W l ←W l − γ∆W l
(9)

where γ is the learning rate.
For the parameters in a transformer, we only

update the FFN layer parameters and the parame-
ters related to the query matrix in the self-attention
layer. The method of updating parameters in the
FFN layer is similar to Equation 9. The gradi-
ent update method of the query matrix in the self-
attention layer is designed as,

∆W q = (Cq)T
∂Lgen

∂W q

W q ←W q − γ∆W q
(10)

where (Cq)T is the transpose row of matrix Cq,
W q is parameters to calculate query matrix. The
detailed discussion and further proof are included
in the Appendix A.

4 Experiments

4.1 Experimental Setup
Datasets Consistent with previous work on
CFRE (Chen et al., 2023), our experiment will be
conducted on two common datasets. FewRel (He

and Jaeger, 2018) is a RE dataset that includes 80
relations, with 700 samples of each relation. We
divide these relations into 8 tasks {T 1, · · · , T 8},
where each task contains 10 relations. M samples
are randomly drawn to form Dk

train with the con-
straint of 10-way M-shot. TACRED (Zhang et al.,
2017) is a large-scale RE dataset based on news
networks and online documents, containing 42 re-
lation labels and 106,264 samples. Samples in TA-
CRED are imbalanced compared with FewRel. We
remove the particular relation "n/a" (not available)
and divide the remaining 41 relations into eight
subsets. The first subset has one more relation than
other subsets

Evaluation Metrics At time step k, we test the
model on D̂k

test, the union of all visible relation test
sets, which can simultaneously reflect the model
performance on new and old tasks. Since CFRE
may be affected by the task sequence, we run ran-
dom seeds six times on different task sequences to
ensure the randomization of that. The mean and
variance of relation classification accuracy on six
different task sequences are introduced as the per-
formance of the model. The training details are
discussed in Appendix B.

Baselines Four baselines are introduced to com-
pare our method (AGCKD). CEAR (Zhao et al.,
2023) is a CRE approach that designs memory-
insensitive relation prototypes and memory aug-
mentation to overcome the overfitting problem.
SCKD (Wang et al., 2023) is a contrastive learning
scheme for CFRE, which employs serial knowl-
edge distillation and pseudo-samples for con-
trastive learning to keep the representation of
samples in different relations distinguishable. In
ERDA (Qin and Joty, 2022), the embedding spatial
regularization and data augmentation algorithms
are proposed to optimize memory expression in
CFRE tasks. ConPL (Chen et al., 2023) is the
state-of-the-art method for CFRE. Prototype-based
classification module, memory enhancement mod-
ule, and consistency learning module are used to
enhance the consistency of distribution as well as
avoid catastrophic forgetting. In addition to these
baselines, we also added two experimental settings
to observe the upper and lower limits. In Joint
Training setting, the model saves all training sam-
ples in the memory. Since the model can replay all
past data at every time step, there is no catastrophic
forgetting. In SeqRun setting, the memory does
not save any samples. This setting may cause the

11810



Method Task index
1 2 3 4 5 6 7 8

10-way 5-shot of FewRel

Joint Training 97.93±0.47 96.25±0.35 94.09±0.45 92.37±0.39 91.96±0.71 91.15±0.56 90.35±0.40 88.9±0.03

SeqRun 97.06±1.34 92.77±1.36 85.76±3.06 80.95±2.82 75.19±3.87 66.62±3.71 55.53±2.05 42.57±2.26

CEAR 69.46±7.49 64.53±1.7 62.22±3.01 61.27±3.88 60.04±2.37 58.70±3.51 57.88±2.66 55.77±2.63

SCKD 94.77±0.35 82.83±2.61 76.21±1.61 72.19±1.33 70.61±2.24 67.15±1.96 64.86±1.35 62.98±0.88

ERDA 96.55±0.43 92.56±2.29 88.56±3.34 84.47±3.25 84.14±3.01 79.94±2.46 78.45±1.74 77.02±2.93

ConPL 95.23±2.29 92.77±2.78 90.58±2.17 89.03±0.96 88.64±1.39 88.09±1.06 87.29±0.95 85.83±0.62

AGCKD (Ours) 97.78±0.95 95.93±1.30 94.13±0.81 92.67±0.40 91.71±0.79 90.97±0.65 90.11±0.53 88.68±0.47

5-way 5-shot of TACRED

Joint Training 97.93±0.47 96.25±0.35 94.09±0.45 92.37±0.39 91.96±0.71 91.15±0.56 90.35±0.40 88.9±0.03

SeqRun 97.06±1.34 92.77±1.36 85.76±3.06 80.95±2.82 75.19±3.87 66.62±3.71 55.53±2.05 42.57±2.26

CEAR 82.14±7.28 68.43±8.46 57.43±6.80 51.83±6.75 48.71±6.04 45.23±4.25 43.29±2.88 40.74±4.08

SCKD 88.42±0.83 79.35±4.13 70.61±3.16 66.78±4.29 60.47±3.05 58.05±3.84 54.41±3.47 52.11±3.15

ERDA 94.57±2.72 86.55±3.55 78.59±2.88 74.58±3.92 69.31±1.63 66.53±3.12 61.92±4.61 55.97±2.16

ConPL 96.79±3.01 88.65±4.61 85.40±4.66 82.67±2.67 80.82±2.79 79.46±3.26 77.47±2.34 75.82±1.12

AGCKD (Ours) 98.85±1.37 91.43±3.17 87.89±3.89 85.04±2.26 83.12±1.69 81.99±2.34 80.48±2.24 78.56±1.10

Table 1: Accuracy (%) of various methods for each task on Fewrel’s 10-way 5-shot and TACRED’s 5-way 5-shot.

Figure 3: Comparison results for each task on Fewrel’s 10-way 2-shot, Fewrel’s 10-way 10-shot and TACRED’s
5-way 10-shot. The variance is reported as light color regions.

model to face severe catastrophic forgetting, so it
serves as a lower bound.

4.2 Main Results

4.2.1 FewRel Benchmark

The accuracy of AGCKD for each task on Fewrel’s
10-way 5-shot, 2-shot and 10-shot is described in
Table 1 and Fig. 3. From these results, we can
observe that:

(1) By comparing the mean in Table 1, we can
find that AGCKD is significantly higher than the
traditional method at each time step. The perfor-
mance in T 1 indicates that AGCKD can effectively
adopt the general knowledge learned by BERT.
Meanwhile, AGCKD also achieves state-of-the-art
performance in T 8, reflecting that the interference
between different task parameters in AGCKD is
the least, which mainly benefits from adaptive cor-
rection of the gradient and efficient decomposition

of knowledge during model training. As a tradi-
tional method of CRE, CEAR requires many train-
ing data to learn the memory and embedding of
a new task. When there is less training data, the
features learned by the model will become unsta-
ble, which makes it collapse with the performance.
ConPL and ERDA adjust the consistency of embed-
ding indirectly only from the perspective of the loss
function and data augmentation, which has limited
ability to improve following degree. We further
discuss the forgetting metrics of ConPL, ERDA
and AGCKD in Appendix C.

(2) The standard deviation of AGCKD on the
final task T 8 remains at a low level compared with
the other methods, which indicates that it has a
small fluctuation range when faced with different
task sequences. It further reflects the robustness of
AGCKD under different task sequences, thanks to
the gradient correction matrix constraining the off-
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Figure 4: The sum of AOD and ROD of baselines on
FewRel’s 10-way 5-shot. The abscissa represents all 7
task indexes of models.

set of the previous samples’ embedding during pa-
rameter update. To prove this, we calculate the sum
of AOD and ROD for each task in the model and
show them in Fig. 4. It can be seen that AGCKD
has low-level AOD and ROD on all tasks. In com-
bination with Table 1, we observe that the smaller
the sum of AOD and ROD of the model, the higher
the accuracy. This is also consistent with our pre-
vious theoretical analysis of the following degree
and offset distance.

(3) As is shown in Fig. 3, the performance of
AGCKD is close to Joint Training, which indicates
that AGCKD is less affected by catastrophic for-
getting during training. In this case, we consider
that more information introduced by new tasks also
unexpectedly leads to the decline of model perfor-
mance. Because the training times of samples at
different time steps may be uneven during joint
training, AGCKD even exceeds Joint Training on
some tasks.

4.2.2 TACRED Benchmark
The performance of AGCKD for each task on TA-
CRED’s 5-way 5-shot and 10-shot is shown in Ta-
ble 1 and Fig. 3. It can be observed from these
results that AGCKD still has advantages over state-
of-the-art methods. AGCKD has a strong gener-
alization ability, which depends on our approach
without any dataset-specific components.

4.3 Ablation Study

To verify the effectiveness of each part in AGCKD,
we performed ablation experiments. Specifically,
we separately remove adaptive gradient correc-
tion (w.o.AGC) and knowledge decomposition
(w.o.KD). Average ablation results for the final
tasks are presented in Fig. 5. The ablation experi-
ments regarding the three training stages are shown

Figure 5: Box line diagram of ablation study on
FewRel’s 10-way-5-shot. The vertical axis represents
accuracy of the model on the final task T 8.

in the Appendix 4.
Through the box line diagram, the adaptive gradi-

ent correction and knowledge deconstruction mod-
ule have a great impact on the average accuracy
and performance stability of the model. The sepa-
rate use of these two modules leads to confusion
about the corresponding part of knowledge, which
greatly damages the performance of the model. Ac-
cording to the definition, while reducing AOD, it
also indirectly reduces ROD. Thus, the adaptive
gradient correction has a greater impact on the final
result. This phenomenon again demonstrates the
effectiveness of the adaptive gradient correction
algorithm and the importance of reducing the im-
pact of subsequent tasks on previous tasks in the
embedding space.

5 Conclusion

In this paper, a method of direct decoupling pa-
rameters and modifying gradient is proposed to
improve the following degree of samples, which
can eventually reduce the catastrophic forgetting
for CFRE. Specifically, we first propose the con-
cept of the following degree and analyze it from
the perspectives of AOD and ROD. The parame-
ters of the model are decomposed into general and
task-related knowledge based on metric learning.
For general knowledge, an adaptive gradient cor-
rection algorithm is proposed to reduce the impact
of gradient updates on previous knowledge, which
can reduce the AOD of samples. For task-related
knowledge, we update the parameters discretely
and continuously in three different training stages
to optimize ROD between prototypes and samples.
The theoretical derivation and experimental results
on two standard benchmarks verify the superiority
of AGCKD.
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Limitations

In practical calculations, a small ROD is a suffi-
cient and unnecessary condition for better model
performance. Specifically, if ROD is large and the
distance between prototypes is also relatively large,
the model performance will not also be poor. In
future work, we hope to consider the distance be-
tween classes in ROD and obtain a necessary and
sufficient condition for model performance.

Currently, in the field of NLP, since the
transformer-based model is the most widely used
language model, we have only explored gradient
correction algorithms for the relevant structures in
the transformer. The performance of AGCKD in
CFRE based on a transformer shows us the poten-
tial for designing gradient correction algorithms
in other model architectures. And we will further
explore the algorithm for gradient correction of pa-
rameters in other network structures (such as CNN,
RNN, etc.).
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A Mathematical Proof of Adaptive
Gradient Correction Algorithm

To prove that the algorithm can adaptively correct
the gradient so that the model updates have less
impact on the previous task samples, we record
H l

i ∈ Rd×1 as the layer l embedding correspond-
ing to the in-memory sample of category i and
El

i ∈ Rd×1 as that corresponding to any training
sample of category i. Since the in-memory samples
are calculated according to the maximum cosine
similarity of the average class sample, the vector
angle of H l

i and El
i is much smaller than that of

H l
j(j ̸=i) and El

i (also thanks to the optimization of
metric learning). C l

i is essentially a linear transfor-
mation of any vector into the space which is orthog-
onal to H l

i . Accordingly, when the angle between
H l

i and El
i is small, El

i is approximately equal to
zero vector after linear transformation through C l

i .
From a single vector to the entire C l matrix, we
can get:∆W lEl =

∂Lgen

∂W l (C
lEl) ≈ 0.

For the FFN layer in BERT, it avoids the inter-
ference of the gradient update of subsequent tasks
on the embeddings of previous tasks:

OutFFN
k = X +WFFNX

= X + (WFFN + γ
∂Lgen

∂WFFN
CFFN )X

= OutFFN
k+1

(11)

where OutFFN
k is the output of FFN at time step

k, X ∈ Rd×1 is [MASK] token embedding of
any previous sample, and CFFN is calculated by
memory M̂k.

For the self-attention module in BERT, we freeze
the key and value matrices, while the gradient cor-
rection and parameter update are only performed
on the query matrix. The common self-attention
formula is as follows:

Q = XTW q

K = XTW k

V = XTW v

SelfAttention(Q,K, V ) = softmax(
QKT

√
d

)V

(12)

where X = [x1, · · · , x[mask], · · · , xn] ∈ Rd×n

is the token embedding sequence of any previous

sample. We set the updated Q as Q′:

Q′ =XT (W q + γ(Cq)T
∂Lgen

∂W q
)

=[q′1, · · · , q[mask], · · · , q′n]T
(13)

where vector q′n ∈ R1×d is the nth row of matrix
Q′.

Q′KT =



q′1k
T
1 q′1k

T
2 · · · q′1k

T
n

...
...

. . .
...

q[mask]k
T
1 q[mask]k

T
2 · · · q[mask]k

T
n

...
...

. . .
...

q′nk
T
1 q′nk

T
2 · · · q′nk

T
n




(14)

Let A′ = softmax(Q
′KT
√
d

), then the row vec-
tor corresponding to [MASK] token in matrix
A′ is consistent with that in A, that is, A′ =
[a′1, · · · , amask, · · · , a′n]T . Thus, the embedding
of [MASK] token in A′V is consistent with that
before the gradient update, i.e. the output of self-
attention related to previous tasks is not affected by
the updated gradient of subsequent tasks. In other
words, our gradient correction method can also
avoid the knowledge coverage caused by gradient
updates in the self-attention layer.

B Training Details

The BERT-base (Devlin et al., 2018) is used as the
encoder and is trained using AdamW (Loshchilov
and Hutter, 2018) optimizer at a learning rate γ =
2e − 5. The head of the attention mechanism is
set to 8 and the embedding size of BERT is 768,
i.e. d = 768. The batch size is set to 5. We
train the model one time at the first training step
(epoch1 = 1), and three times at the second step
and third step (epoch2 = epoch3 = 1). We set
α = 0.2 in P sim. The memory is size set to 1 for
each class. AGCKD can complete all tasks in about
20 minutes using one NVIDIA 4060Ti GPU. We
run the model 6 times with different task sequences
and report the mean result.

C Forgetting Metrics

The degree of catastrophic forgetting of AGCKD
is measured by the forgetting metrics proposed by
Chaudhry et al. (2018). After learning all tasks, the
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Method Task index
1 2 3 4 5 6 7 Mean

Joint Train 7.07 4.28 3.02 2.00 1.43 3.99 0.50 3.18
SeqRun 49.28 49.08 44.18 39.69 28.93 11.14 7.29 32.80

ERDA 21.52 15.54 13.18 13.14 9.69 9.46 6.93 12.78
ConPL 11.47 6.11 3.79 2.47 0.46 −0.12 −0.98 3.31

AGCKD (Ours) 7.87 5.34 5.39 2.40 2.46 −1.05 0.30 3.24

Table 2: Forgetting (%) of various methods after train-
ing for each task on FewRel’s 10-way-5-shot.

Method Task index
1 2 3 4 5 6 7 8

Related to T 1 2.50 2.40 2.40 1.90 2.10 1.90 2.00 1.60

Related to T̂ k 2.50 4.50 6.40 9.40 11.60 12.20 12.60 16.60

Table 3: The error rate (%) of AGCKD for each task on
D1

test. After the learning of T k, the first line represents
the error rate related to T 1; the second line represents
that related to all tasks visible to the model.

following formula is calculated on all test datasets:

Fk =
1

n− k

n∑

j=k+1

max
l∈{k,...,j−1}

(al,k − aj,k) (15)

where al,k is the accuracy of the model on task k
after the training step l and n is the total number of
tasks. Fk(k ∈ [1, · · · , n−1]) is the forgetting met-
rics of task k after all training steps. Obviously, the
smaller Fk, the less knowledge the model forgets.

Table 2 shows the forgetting metrics after train-
ing for each task on FewRel’s 10-way-5-shot. The
average forgetting metrics of AGCKD are lower
than that of other methods and are closest to Joint
Training, which indicates that AGCKD can reduce
catastrophic forgetting to a certain extent. At the
same time, we find that even if all the training data
are available, forgetting still exists. This may be
because this index does not fully consider the in-
formation increment of the newly introduced task.

To observe the forgetting metrics more intu-
itively, Table 3 directly shows the total error rate
and that related to T 1 at each time step k on D1

test.
The errors related to the first learning task of the
model almost do not continue to increase, which in-
tuitively reflects that AGCKD can effectively avoid
the catastrophic forgetting of previous tasks.

D Forgetting Metrics

To explore the impact of different training stages
on model performance, we conduct ablation ex-
periments for each of the three training stages. As
shown in Table 4, the absence of each training stage
reduces the model’s performance on the final task

to varying degrees. The absence of the second train-
ing stage has the greatest impact on the model. The
second training stage focuses on in-depth learning
of in-memory samples and current task samples,
whose absence has the greatest impact on the model.
PLM learns basic discriminative skills and stable
general knowledge from a large amount of data in
pre-training, which are sufficient to support model
inference when the number of tasks is small. The
features learnt by models using small amounts of
data in the second stage instead lead to unstable
general knowledge in the PLM, which makes mod-
els missing the second phase perform better in the
early phase. However, when the number of tasks
is increasing, the lack of in-depth learning of the
current task samples leads to an accumulation of
errors. When the number of tasks is increasing, the
general knowledge in the PLM can no longer sup-
port the model to make accurate inferences, which
leads to the worst performance in the later stages
of the model missing the second training phase.

Setting Task index
1 2 3 4 5 6 7 8

w.o. stage 1 97.56 95.58 93.48 91.74 90.37 89.64 88.79 87.36
w.o. stage 2 97.68 96.15 94.27 92.58 91.05 89.70 88.52 86.87
w.o. stage 3 96.31 94.06 92.29 90.87 90.1 89.39 88.65 87.11

Original 97.78 95.93 94.13 92.67 91.71 90.97 90.11 88.68

Table 4: Ablation experiments at different training
stages. The data in the table represents the average
accuracy of the model after missing different training
phases for each task on Fewrel’s 10-way 5-shot.
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