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Abstract

Pre-trained speech models, such as wav2vec
2.0, have significantly advanced speech-related
tasks, including speech recognition and transla-
tion. However, their applicability in stream-
ing scenarios is limited because these mod-
els are trained on complete utterances, lead-
ing to a mismatch with incremental streaming
inputs. This paper identifies three critical de-
sign aspects within the architecture of wav2vec
2.0 and proposes a novel model, wav2vec-S,
which incorporates simple modifications to en-
sure consistent speech representations during
both training and inference phases for stream-
ing speech inputs. Furthermore, we demon-
strate that wav2vec-S models can be efficiently
adapted from pre-trained wav2vec 2.0 models
through continued pre-training and effectively
finetuned to meet various latency requirements
in downstream applications. Experiments on
speech recognition and translation tasks show
that wav2vec-S outperforms strong baseline
models and achieves a superior balance be-
tween quality and latency.

1 Introduction

The advent of pre-trained speech models, such as
wav2vec (Schneider et al., 2019; Baevski et al.,
2020b), HuBERT (Hsu et al., 2021), WavLM (Chen
et al., 2022), and data2vec (Baevski et al., 2022,
2023), have catalyzed significant progress in
speech-related tasks, including automatic speech
recognition (ASR) (Baevski et al., 2020b; Hsu et al.,
2021) and speech translation (ST) (Xu et al., 2021;
Fang et al., 2022; Wang et al., 2022; Fang and Feng,
2023). These models learn powerful speech repre-
sentations from large amounts of unlabeled speech
data through self-supervised learning techniques,
leading to significant performance improvements.

∗ Work was done during Biao Fu’s internship at Alibaba.
† Corresponding author.

Despite the advancements, their potential has not
yet been fully harnessed for streaming scenarios.
These models, trained and optimized for process-
ing complete utterances, yield sub-optimal perfor-
mance when applied to partial speech inputs in
streaming scenarios. Previous efforts to bridge this
gap have often utilized knowledge distillation tech-
niques (Cao et al., 2021; Shim et al., 2023; Fu et al.,
2023a), with the goal of transferring knowledge
from offline pre-trained models to streaming stu-
dent models. However, these strategies require task-
specific distillation, and generally involve complex,
multi-stage training processes (Cao et al., 2021;
Yang et al., 2022) or the need to balance multiple
distillation objectives (Shim et al., 2023; Fu et al.,
2023b,a). This limits their applicability as univer-
sal pre-trained models. Moreover, these methods
do not fully exploit the potential of large-scale un-
labeled data for streaming speech tasks.

In this paper, we focus on wav2vec 2.0 (Baevski
et al., 2020b) and identify three critical design
aspects of its architecture that hinder its applica-
bility to streaming tasks. Accordingly, we pro-
pose a novel model, wav2vec-S, which incorpo-
rates simple modifications to accommodate stream-
ing requirements. Specifically, we substitute layer
normalization for group normalization in the fea-
ture extractor, shift from convolution-based relative
position encoding to absolute position encoding,
and implement a block-wise unidirectional self-
attention mechanism, all designed to eliminate or
restrict dependency on future context, as required
for maintaining consistent representations during
training and inference for streaming inputs. We
demonstrate that instead of training from scratch,
wav2vec-S can be efficiently adapted from pre-
trained wav2vec 2.0 models through continued pre-
training on unlabeled speech using the same self-
supervised training objectives. In addition, we in-

11465



troduce mechanisms in both the pre-training stage
and the fine-tuning stage to allow the model to meet
various latency requirements in downstream tasks.

In summary, our contributions are threefold:

1. We present wav2vec-S, a model adapted from
wav2vec 2.0 with straightforward architec-
tural modifications tailored for streaming
tasks, which can be efficiently adapted from
pre-trained wav2vec 2.0 models through con-
tinued pre-training.

2. We conduct comprehensive experiments on
two popular streaming speech tasks: ASR
and ST, to demonstrate that fine-tuning from
wav2vec-S outperforms multiple strong base-
line approaches in balancing between quality
and latency.

3. We release the source code and trained mod-
els to facilitate future research of pretrained
models for streaming tasks.1

2 Preliminary

Wav2vec 2.0 represents a significant advancement
in speech processing and has been widely utilized
as a backbone for various speech-related tasks (Yi
et al., 2021; Pepino et al., 2021; Fan et al., 2021;
Xu et al., 2021; Siuzdak et al., 2022; Popuri et al.,
2022). Our proposed model is based on wav2vec
2.0 with essential modifications to support stream-
ing applications. We first briefly review its model
architecture and training objectives.

2.1 Model Architecture

The architecture of wav2vec 2.0 includes three
main components: a feature encoder, a context
network, and a quantization module.

Feature Encoder. The feature encoder converts
the raw audio waveform into feature representa-
tions. It consists of seven temporal convolutional
layers, each followed by group normalization (Wu
and He, 2018) and a GELU activation function
(Hendrycks and Gimpel, 2023).

Context Network. The context network adopts
the Transformer architecture (Vaswani et al., 2017)
along with a convolution-based relative position
embedding layer. It processes the output of the
feature encoder to extract contextualized represen-
tations of the speech.

1The source code and trained models are available at
https://github.com/biaofuxmu/wav2vec-S

Quantization Module. This module employs
vector quantization to map the continuous feature
representations from the feature encoder to discrete
tokens via a codebook and a Gumbel-Softmax oper-
ation (Jang et al., 2016). These discrete tokens are
used as target labels for self-supervised learning of
the entire network.

2.2 Training Objectives
The training of wav2vec 2.0 integrates both con-
trastive loss and diversity loss, as follows:

L = Lc + αLd, (1)

Contrastive Loss. The loss Lc leverages the
contextualized representation ct from the context
network, based on feature representations masked
at time step t. It aims to differentiate the true
quantized vector qt from a set of negative sam-
ples q̄t = q̄1, q̄2, . . . , q̄k, sampled from different
masked time steps of the same utterance. The loss
is calculated as follows:

Lc = −
∑

t

log
exp (sim (ct, qt) /τ)∑
q̄∈q̄t

exp (sim (ct, q̄) /τ)
(2)

Diversity Loss. The loss Ld encourages the
model to utilize the entire spectrum of quantized
speech representations, by maximizing the entropy
of the averaged distribution of codebook entries.

3 Our Proposal: wav2vec-S

We next describe how to adapt wav2vec 2.0 to
wav2vec-S for streaming, focusing on three key
aspects: architecture, pre-training, and fine-tuning.

3.1 Architectural Modifications
We identify three critical design aspects within the
architecture of wav2vec 2.0 that hinder its appli-
cation to streaming scenarios. We propose simple
modifications to preserve its modeling capabilities
while enabling streaming processing.

3.1.1 Feature Normalization
In the wav2vec 2.0 architecture, group normaliza-
tion (GN) (Wu and He, 2018) is applied within
the feature encoder, where the normalization pro-
cess calculates the mean and standard deviation
across both the sequence and feature dimensions of
complete utterances. However, this methodology
results in sub-optimal performance for streaming
applications, in which only partial utterances are
available during real-time processing, due to the
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difference in statistical computation between the
training and inference stages.

To address this issue, we utilize layer normal-
ization (LN) (Ba et al., 2016), which determines
the mean and standard deviation exclusively along
the feature dimension, disregarding the sequence
length. This ensures consistent processing, whether
dealing with complete or partial utterances. While
other normalization techniques like weight normal-
ization (Salimans and Kingma, 2016), employed
in Encodec (Défossez et al., 2022) for streaming
models, may also be viable, since it reparametrizes
the layer’s parameters instead of altering the data
values. We leave the investigation of various nor-
malization methods for future research.

3.1.2 Positional Encodings
wav2vec 2.0 incorporates implicit relative posi-
tional encodings (PE), as detailed in (Mohamed
et al., 2020), within its context network. These
encodings are generated through a 1D convolution
layer with a substantial kernel size, representing
2560ms of speech. This extensive context size ne-
cessitates significant latency to accurately compute
positions at the most recent segments of stream-
ing input, without resorting to padding, to maintain
alignment with the training on complete utterances.

To overcome these challenges, wav2vec-S
adopts absolute sinusoidal PE (Vaswani et al.,
2017) for its context network.2 This method en-
sures stable positional information, regardless of
the availability of future context, making it suitable
for streaming applications.

3.1.3 Self-Attention
Despite its strong modeling capabilities by access-
ing both past and future contexts, the use of bidirec-
tional self-attention in wav2vec 2.0 presents two
limitations for streaming applications. Firstly, the
absence of future context for the latest segment in
streaming input creates a mismatch between train-
ing on complete utterances and inference on partial
ones. Secondly, past segments require repeated
computation of their bidirectional self-attentions
as their future context expands. Although unidirec-
tional self-attention, as investigated in prior studies
(Ren et al., 2020; Ma et al., 2020b), avoids these

2There are several alternative solutions for PE, such as
relative PE. Considering our main goal is to adapt the model
for streaming use cases rather than to assess the effectiveness
of different PE techniques, we opted for absolute PE for its
simplicity, though the other approaches were also viable. We
leave the study of various PE methods for future research.

pitfalls by only leveraging past context, it results in
degraded performance due to the lack of utilizing
any future context. Research has shown that incor-
porating even a small amount of future context can
markedly enhance the quality of streaming speech
features with minimal latency (Fu et al., 2023a).

In response, we employ block-wise self-attention
(Liu et al., 2021), which allows for the utilization of
all past context and a limited amount of future con-
text. Specifically, the hidden states in the l-th layer,
denoted as hl

0 :T−1, are segmented into m-sized
non-overlapping blocks, bl

i = hl
m×i :m×(i+1)−1,

and are calculated in a block-wise manner. The
input hidden states at the (l − 1)-th layer are par-
titioned into overlapping blocks, adopting a block
processing strategy (Tsunoo et al., 2019; Liu et al.,
2021) with a stride of m and a block size of m+ r,
under the constraint that r ≤ m/2. This re-
sults in two parts for each block: the main block
bl−1
i = hl−1

m×i :m×(i+1)−1 and its right-side future

context rl−1
i = hl−1

m×(i+1) :m×(i+1)+r−1, which
overlaps with the next block.

To compute the hidden states in each block bl
i

of the l-th layer, the query, key, and value matrices
are calculated by facilitating bidirectional attention
within blocks and unidirectional attention across
blocks, as follows:

ql−1
i = Wq

[
bl−1
i , rl−1

i

]

kl−1
i = Wk

[
bl−1
0 , · · · ,bl−1

i , rl−1
i

]

vl−1
i = Wv

[
bl−1
0 , · · · ,bl−1

i , rl−1
i

]

3.2 Pre-training
The proposed wav2vec-S model can be pretrained
from scratch using a substantial volume of unla-
beled speech data, similarly to the wav2vec 2.0
model. However, such a process demands con-
siderable computational resources and time, com-
parable to the efforts required for training other
large pretrained speech models. Given its signifi-
cant architectural resemblance to wav2vec 2.0, a
more efficient strategy is to begin with the pre-
trained weights from wav2vec 2.0 and continue
pre-training on unlabeled speech data, adhering to
the same training loss formula presented in Eq. (1).
This method leverages the extensive computational
work previously applied to the wav2vec 2.0 model
and its learned complex speech patterns, enabling
the wav2vec-S model to be trained more efficiently
with significantly fewer updates. This approach
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is validated by the empirical results discussed in
Section 4.6.

The size of blocks in block-wise self-attention
directly impacts the latency of the pre-trained
model. Utilizing a fixed block size during pre-
training could limit performance in streaming ap-
plications with diverse latency requirements, as
will be demonstrated in Section 4.5. To make the
pre-trained wav2vec-S model versatile in stream-
ing scenarios with varied latency needs, we im-
plement a mechanism to dynamically adjust the
block size during the pre-training stage. Specifi-
cally, the sizes m of the main context and r of the
future context are randomly selected during each
training step from the ranges of [160ms, 640ms]
and [80ms, 320ms], respectively, at increments of
40ms, with the constraint that r ≤ m

2 .

3.3 Fine-tuning

In this work, we focus on streaming speech-to-text
tasks as downstream applications, pairing wav2vec-
S for parameter initialization of the speech encoder
with a separate text decoder. Following recent re-
search trends in this field (Liu et al., 2021; Tang
et al., 2023), we primarily apply the Cross Atten-
tion Augmented Transducer (CAAT) (Liu et al.,
2021) as the decoder due to its state-of-the-art per-
formance. CAAT extends the Recurrent Neural
Network Transducer (RNN-T) (Graves, 2012) to
support streaming tasks involving reordering, such
as speech-to-text translation. For details of the
CAAT architecture, please see (Liu et al., 2021).

Central to the design of CAAT is its goal to
jointly optimize a READ/WRITE policy and a
translation model. Latency management within
the CAAT framework is facilitated through a hyper-
parameter known as the decision step d, which
dictates that read-write decisions are made every
d blocks. In the original CAAT framework, to
achieve optimal performance, the d value selected
during inference must match the value used during
training, leading to the increased cost of training
and maintaining multiple models to accommodate
different latency requirements. To mitigate this
challenge, we propose randomly selecting differ-
ent d values for each mini-batch within a single
training session, akin to the dynamic block size
approach in pre-training discussed in Section 3.2.
This strategy enables training a single fine-tuned
model capable of meeting a wide range of latency
demands.

In addition we also adapt wav2vec-S to other
streaming models that use wav2vec 2.0 as a speech
encoder to verify its generalization, as will be
demonstrated in Section 4.4.

4 Experiments

4.1 Experiments Settings

Datasets For continued pre-training, we use the
960 hours of unlabeled speech data from Lib-
riSpeech3 (Panayotov et al., 2015) or the 60k
hours of unlabeled speech data from LibriVox
(Kahn et al., 2020). For streaming ASR fine-
tuning, we use the 960 hours of labeled speech
data from LibriSpeech dataset as the training set.
For streaming ST fine-tuning, we use the MuST-C
v14 English-German (EnDe) and English-Spanish
(EnEs) datasets (Di Gangi et al., 2019). Detailed
data statistics are given in Appendix A. Our models
are tuned on the development sets of LibriSpeech
or MuST-C.
Pre-Training Settings We pre-trained two variants
for wav2vec-S: BASE and LARGE, both of which
adhere precisely to the model configurations of
their wav2vec 2.0 counterparts. In terms of train-
ing settings, our models align with the wav2vec 2.0
(Baevski et al., 2020b) settings, with the sole mod-
ification being the reduction of the warmup steps
to 5000 due to its initialization with wav2vec 2.0
pre-trained weights. Our implementation is based
on Fairseq5 (Ott et al., 2019).
Finetuning Settings The streaming ASR and ST
models share the same model configuration. As
with our pre-trained model, we test two model con-
figurations: BASE and LARGE. The BASE and
LARGE models contain 6 and 12 Transfomer de-
coder layer, respectively, and maintain consistency
in the decoder hidden size with their respective
pre-trained encoders. The total number of param-
eters for our pretrained and fine-tuned models see
Appendix B. More training details see Appendix C.
Baseline Models We compare our method with
several strong baselines that have a similar number
of parameters.

CAAT (Liu et al., 2021) utilizes an RNN-T style
architecture with transformer layers. CAAT BASE

and LARGE models have similar hidden dimen-
sions and layers to our model configurations, with

3https://www.openslr.org/12
4https://ict.fbk.eu/must-c
5https://github.com/pytorch/fairseq
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the exception that they do not employ pre-trained
models learned from unlabeled data.

MU-ST (Zhang et al., 2022) trains an offline
ST model and then optimizes a speech segmenter
to learn an adaptive segmentation policy to detect
meaningful units. MU-ST BASE is trained from
scratch, and MU-ST LARGE uses the pre-trained
wav2vec LARGE and mBART50 to initialize their
model and then fine-tunes with external ST data.

FAST (Fu et al., 2023a) uses wav2vec 2.0 as the
speech encoder to train an offline ST model and
then introduces future-aware distillation and future-
aware inference to mitigate the mismatch between
offline training and streaming inference, adapting
this offline model to streaming ST.

MoSST (Dong et al., 2022) applies wav2vec
2.0 as the speech encoder with a monotonic seg-
mentation module to train an offline ST model for
streaming inference.
Evaluation We average the checkpoints of the best
10 epochs on development set for evaluation (Tang
et al., 2023; Fu et al., 2023a). We measure the
ASR quality by the word error rate (WER) and
apply a text normalizer6 (Radford et al., 2023) to
standardize text before the WER calculation. We
use SacreBLEU7 to compute case-sensitive deto-
kenized BLEU for the translation quality. The la-
tency8 is evaluated with Average Latency (AL) (Ma
et al., 2019) in the SimulEval9 (Ma et al., 2020a).

4.2 Streaming Results

Streaming ST We presents the streaming ST re-
sults in Figure 1. Compared to the CAAT BASE and
MU-ST BASE models without self-supervised pre-
training, our BASE model achieves higher BLEU
in all latency regions. There is an improvement of
over 1 BLEU score in both EnDe and EnEs. Other
methods, such as MoSST, using original wav2vec
2.0 as the speech encoder, show inferior translation
quality in low and medium latency areas due to the
mismatch between bidirectional pre-training and
streaming inference. While FAST alleviates this
mismatch to some extent, it still exhibits a signifi-
cant performance gap compared to our method.

6https://github.com/openai/whisper
7https://github.com/mjpost/sacrebleu
8The extended results for other latency metrics (Average

Proportion (AP) (Cho and Esipova, 2016) and Differentiable
Average Lagging (DAL) (Cherry and Foster, 2019)) are de-
scribed in Appendix D.3.

9https://github.com/facebookresearch/
SimulEval
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Figure 1: The translation quality (BLEU) against the
latency metrics (AL) on the tst-COMMON set of MuST-
C EnDe and EnEs datasets.

When scaling the models to the LARGE size,
CAAT LARGE shows no improvement in trans-
lation quality for EnDe, whereas for EnEs, the
improvement is marginal. This can be attributed
to overfitting due to the absence of pre-training.
MU-ST LARGE, which directly uses bidirectional
wav2vec 2.0, only improves in high latency scenar-
ios, with no gains in low latency. In contrast, our
LARGE model shows significant improvements in
all latency regions, with approximately 0.4 BLEU
in EnDe and about 0.8 BLEU in EnEs.

Streaming ASR Figure 2 illustrates the results of
streaming ASR on the LibriSpeech test-clean
and test-other sets when finetuning on the
LibriSpeech 960h labeled data. Our BASE slightly
outperforms the CAAT BASE across all latency
regions on test-clean set and achieves com-
parable performance on test-other set. The
relatively small difference between two BASE mod-
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Figure 2: ASR quality (WER) against the latency met-
rics (AL) on the LibriSpeech test sets when fine-tuning
on the LibriSpeech 960h data.
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Figure 3: ASR quality (WER) against the finetuing data
size on the LibriSpeech test sets.

els may be attributed to two primary factors: firstly,
the BASE model was pre-trained solely on the Lib-
riSpeech 960h data, without introducing additional
data compared to the fine-tuned data; secondly, the
large quantities of fine-tuning data leveraged may
mitigate performance gains.

Upon scaling to the LARGE configuration, which
benefits from pre-training on an large-scale Libri-
Light 60k hours of unlabeled data, we observe more
substantial performance gains. Our LARGE model
not only achieves lower WER compared to its
BASE counterpart but also maintains a significant
advantage over the CAAT LARGE model. How-
ever, we observe that the performance of the CAAT
LARGE model becomes inferior when scaled up.
As in Section 4.2, this is attributed to overfitting
caused by the lack of pre-training on large-scale
unlabeled data.

To further explore the second hypothesis regard-
ing the influence of fine-tuning data size, Figure
310 compares the streaming ASR performance of

10For a fair comparison, we try our best to set the AL of
different data size to be approximately equal (AL≈ 1000ms).
The complete latency-quality curves for different data sizes

Model EnDe EnEs

Fairseq ST (Wang et al., 2020a) 22.70 27.20
ESPnet-ST (Inaguma et al., 2020) 22.91 27.96
Wav2vec2-Transformer (Ye et al., 2021) 24.15 28.10
wav2vec-S-Transformer (Ours) 23.82 28.24

Table 1: The performance of offline ST on the MuST-C
tst-COMMON set.

Model test-clean test-other

ContextNet (Han et al., 2020) 2.1 4.6
Conformer (Gulati et al., 2020) 2.1 4.3
wav2vec 2.0 BASE (Baevski et al., 2020b) 3.4 8.5
wav2vec 2.0 LARGE (Baevski et al., 2020b) 2.2 4.5

wav2vec-S BASE 4.5 12.6
wav2vec-S LARGE 2.9 6.6

Table 2: The performance of offline ASR finetuned
on LibriSpeech 960h labeled data and evaluated the
LibriSpeech test sets without LM or lexicon. The results
of baselines are obtained from the corresponding papers.

our BASE and CAAT BASE models11 when fine-
tuning on the 960h, 500h, 360h and 100h subsets
of Librispeech. As the fine-tuning data is scaled
down from the full 960h to a more constrained
100h, we witness a striking enhancement in the per-
formance gains of our BASE model relative to the
CAAT BASE. Notably, when fine-tuned with just
100h of data, our BASE model achieves a remark-
able increase in WER by ~6 absolute points on
the test-clean subset and ~10 absolute points
on the test-other subset. These results sug-
gest the effectiveness of our model in scenarios
with limited fine-tuning data due to pre-training on
large-scale unlabeled data.

4.3 Offline Results

Besides the streaming speech-to-text tasks, we also
verify the capability of wav2vec-S on offline tasks.

Offline ST We implement a baseline ST model
Wav2vec2-Transformer following Ye et al. (2021),
which integrates wav2vec 2.0 with a two-layer
CNN and a Transformer. Our offline ST model fol-
lows the same configuration as the baseline, except
the original wav2vec 2.0 component is replaced
by our wav2vec-S to investigate its performance
in a non-streaming setting, where the block size
is set to 960ms (m = 640ms and r = 320ms).
Table 1 reports the comparison results on MuST-

are shown in the Appendix D.2.
11Since our LARGE model has achieved significant gains,

we only compare the performance of the BASE models in this
experiment.
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C EnDe and EnEs datasets. In comparison to
Fairseq-ST and ESPnet-ST, which do not apply
pre-training, wav2vec based models show signif-
icant better performance. When compared to the
Wav2vec2-Transformer, our model shows a de-
crease in EnDe by a narrow margin of 0.33 BLEU
but an increase for EnEs by 0.14 BLEU. We hy-
pothesize that translation performance disparities
among language pairs are due to syntactic variances
in word order. Our wav2vec-S’s block-size self-
attention, limited by a narrow contextual window,
struggles with long-range dependencies. This limi-
tation hampers translations into languages like Ger-
man with subject-object-verb (SOV) order, unlike
English’s subject-verb-object (SVO) order. How-
ever, for languages with similar SVO word order,
like Spanish, wav2vec-S’s localized context suf-
fices for precise translation. These results demon-
strate that our wav2vec-S, even when applied in an
offline setting, maintains competitive performance
against established offline models.
Offline ASR We strictly follow wav2vec 2.0
(Baevski et al., 2020b) to fine-tune our offline ASR
models on LibriSpeech 960h data with connec-
tionist temporal classification (CTC) loss (Graves
and Graves, 2012). The block size is consistent
with the settings used in our offline ST model.
Table 2 shows the performance of offline ASR
models without a language model (LM) or lex-
icon in decoding. wav2vec-S BASE model ex-
hibits an increase in Word Error Rate (WER) by
1.1 on the test-clean set and by 4.1 on the
test-other set compared to wav2vec 2.0, This
reduction in performance is largely due to the block-
size self-attention mechanism used in wav2vec-S,
which is tailored for streaming scenarios but strug-
gles with modeling the long-term dependencies.
When scaling up to the LARGE configuration and
pretraining on more unlabel data, the performance
gap narrows. Despite the decrease in performance
when compared to wav2vec 2.0, it is imperative
to recognize that wav2vec 2.0’s architecture is not
inherently suited for streaming applications.

4.4 Adapting to Other Streaming ST Models

To validate the generalizability of wav2vec-S, we
extended its application to other streaming ST
methods, including MoSST and ITST, which tra-
ditionally employ wav2vec 2.0 directly. Figure
4 presents a comprehensive comparison of ITST,
MoSST, and our adapted versions of these mod-
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Figure 4: Comparison with ITST and MoSST on MuST-
C EnDe tst-COMMON set. Solid curves represent AL,
dashed curves represent AL_CA.

els, which we refer to as wav2vec-S-ITST and
wav2vec-S-MoSST, respectively. We employ AL
represented by solid curves, and AL_CA depicted
by dashed curves to measure ideal and computation-
aware latency, respectively.

Our adapted models, wav2vec-S-MoSST and
wav2vec-S-ITST, outperform the original MoSST
and ITST models in both low and high latency
settings (AL < 2s), with an improvement of ap-
proximately 4 BLEU for MoSST and 1 BLEU for
ITST. These results indicate that our adjustments
to wav2vec 2.0 benefit streaming speech-to-text
(ST) tasks. Considering computational latency
(AL_CA), our models demonstrate a significant
reduction in latency due to eliminating the need
for re-encoding speech frames, unlike the origi-
nal models. Overall, our experiments confirm that
wav2vec-S delivers both high translation quality
and reduced computational latency.

4.5 Ablation Study

To study the effectiveness of our methods, we com-
pare our BASE model with several variants in the
streaming ST task12. The results are shown in Fig-
ure 5. All ablation results are evaluated on the
MuST-C EnDe tst-COMMON set.

To validate the effectiveness of our proposed
modifications, we sequentially remove three key
modifications. The experimental results, as illus-
trated in Figure 5, include the following variants:
"w/o FN modification" (removal of the feature
normalization modification), "w/o FN and PE

12Unless otherwise specified, the BASE configuration is
used in the subsequent experiments.
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Figure 5: Ablation study of our approach on the
tst-COMMON set of MuST-C EnDe dataset. FN: fea-
ture normalization, PE: position encoding.

modifications" (removal of both the feature nor-
malization and positional encoding modifica-
tions), and "w/o any modifications" (removal of all
three modifications). We observe that each variant
performs significantly worse than "Ours" model in
the low latency region. Moreover, the streaming
translation performance progressively deteriorates
as the modifications are incrementally removed.
These results indicate that all three modifications
must be implemented to adequately support stream-
ing applications; otherwise, a training/inference
mismatch problem may occur.

Subsequently, we investigate appropriate stream-
ing settings to explore the effects of different model
configurations. Specifically, we evaluate:
(1) The impact of dynamic versus fixed block
size. Our results, as shown in Figure 5, demonstrate
that a dynamic block size ("Ours") can adapt to
different latency settings without compromising
performance, achieving consistent improvement
over the "fixed block size" model13.
(2) The effects of different training strategies.
We compare the approach of pre-training wav2vec-
S from scratch versus continued pre-training with
parameters initialized from wav2vec 2.0. The supe-
rior performance of "Ours" compared to the "pre-
training from scratch" model, as illustrated in Fig-
ure 5, underscores the benefits of the continued
pre-training strategy.
(3) The impact of using different pre-trained
models for downstream streaming ST task. In
Figure 5, we contrast the performance of a stream-

13The block size is fixed to 480ms during pre-training
(m = 320ms, r = 160ms).
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Figure 6: BLEU scores and loss values over pre-training
steps. We evaluate the BLEU scores on the MuST-C
EnDe tst-COMMON set and present the loss values on
the validation set during pre-training. For fair compari-
son, the six points in the BLEU curve have similar AL
values, all around 1100ms.

ing model (with the same encoder architecture as
wav2vec-S) fine-tuned from wav2vec-S ("Ours")
against models fine-tuned from wav2vec 2.0 ("fine-
tuning w/ w2v2 init") or without a pre-trained
model ("w/o pretraining"). The results show that
"Ours" consistently outperforms others across all
latency regions, demonstrating the advantage of
pre-trained streaming models.

In summary, these results demonstrate the contri-
bution of our pretraining method and the superiority
of streaming pretraining for streaming tasks.

4.6 Analysis on Continued Pre-training

In this section, we investigate the pretraining effi-
ciency of our continued pre-training strategy. Fig-
ure 6 illustrates the changes of BLEU scores and
loss values with pre-training steps for continued
pre-training and pre-training from scratch. Firstly,
the continued pre-training approach exhibits a no-
tably faster convergence rate in terms of loss re-
duction, signifying a more efficient optimization
process. Moreover, the loss values associated with
continued pre-training remain lower throughout
the training process compared to pretraining from
scratch. This suggests that continuous pre-training
not only accelerates the convergence process, but
also enhances the model’s overall optimization,
leading to better performance. Additionally, the

11472



continued pre-training strategy achieves a compa-
rable BLEU score to the pre-training from scratch
with significantly fewer training steps. For in-
stance, at the 100k training steps, the continued pre-
training model exhibits a BLEU score improvement
that the pre-training from scratch only matches at a
later stage, up to 400k steps. These results demon-
strate the efficiency of our continued pretraining.

5 Related Works

Pre-trained Speech models Existing work can
be broadly categorized by the pre-training objec-
tive into three main classes: contrastive learning-
based models (Schneider et al., 2019; Baevski et al.,
2020a,b), mask prediction-based models (Hsu et al.,
2021; Chen et al., 2022; Baevski et al., 2022), and
masked autoencoder-based models (Gong et al.,
2022; Huang et al., 2022; Baevski et al., 2023;
Chen et al., 2023). However, these methods can-
not be effectively applied to streaming scenarios as
they are essentially designed for offline tasks.
Streaming ST This method consists of a speech
translation model and a read-write policy. Existing
research primarily focuses on the exploration of the
read-write policy, categorizing them into fixed (Ren
et al., 2020; Ma et al., 2020b; Zeng et al., 2021;
Papi et al., 2022; Wang et al., 2023) and adaptive
policy (Liu et al., 2021; Zhang and Feng, 2022,
2023b; Papi et al., 2023a,b; Zhang et al., 2023a;
Zhao et al., 2023; Chen et al., 2024). Additionally,
recent studies leverage the wav2vec 2.0 model to
enhance the quality of the ST model (Dong et al.,
2022; Zhang and Feng, 2022, 2023a; Zhang et al.,
2023b; Yang et al., 2023). While significant per-
formance improvements are achieved at higher la-
tency region, this integration has resulted in poorer
performance at lower and medium latency regions
due to the mismatch between offline training and
streaming inference (Fu et al., 2023a). To this end,
some research efforts introduces various distilla-
tion losses (Fu et al., 2023a) or multi-stage training
objectives (Zhang et al., 2023a), which have been
effective in mitigating the mismatch to some extent.
Streaming ASR Current methods can be broadly
classified into transducer-based approaches, such
as RNN-T (Graves, 2012), Neural Transducer
(Jaitly et al., 2015), and Transformer Transducer
(Yeh et al., 2019), and local attention-based meth-
ods, including monotonic attention (Raffel et al.,
2017; Ma et al., 2020c), chunk/block-wise atten-
tion (Chiu and Raffel, 2018; Zhang et al., 2020;

Wang et al., 2020b). Additionally, some studies
apply wav2vec 2.0 or large amounts of unlabeled
data to streaming ASR (Cao et al., 2021; Yang
et al., 2022; Shim et al., 2023; Fu et al., 2023b).
However, such approaches often involve complex
training procedures and require intricate balancing
of multiple objectives, limiting their application to
other streaming tasks.

Distinctively, wav2vec-S, through streaming pre-
training, addresses above issues, achieving signifi-
cant improvements across all latency regions.

6 Conclusion

In this paper, we propose a streaming pre-trained
speech model, wav2vec-S, which is effectively
adapted from the pretrained wav2vec 2.0 model
for streaming tasks through simple architectural
modifications and continued pretraining. Experi-
ments on both streaming ASR and ST tasks show
the superiority of wav2vec-S in terms of perfor-
mance, pre-training and inference efficiency.
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Limitation

Our method primarily focus on adapting the
wav2vec 2.0 framework for streaming speech in-
puts. While wav2vec 2.0 serves as a robust foun-
dation due to its proven effectiveness in various
speech-related tasks, our approach does not extend
to other pre-trained speech models such as Hu-
BERT (Hsu et al., 2021). However, these pretrained
models share an identical or similar Transformer
architecture as wav2vec 2.0. Thus, the principles
behind the modification strategies we applied to
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wav2vec 2.0 can also be extended to these mod-
els, with necessary changes in some cases. We
focus on wav2vec 2.0 serves as a case study to il-
lustrate the applicability and effectiveness of adapt-
ing pretrained models for streaming applications.
Additionally, the lack of computing resources also
prevented us from conducting comprehensive stud-
ies using other pretrained models. We found that
focusing on wav2vec 2.0 strikes a good balance
as it allows us to directly compare with baseline
methods that are based on wav2vec 2.0. We leave
the extension to other pre-trained models for future
research.

Our evaluation of the proposed wav2vec-S
model is confined to ASR and ST tasks. While
these tasks are critical benchmarks for spoken lan-
guage understanding, our method has not been val-
idated across a wider spectrum of speech-related
tasks, such as speech-to-speech task.
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A Data Statistics

We evaluate our model on MuST-C V1 English-
German (EnDe) and English-Spanish (EnEs), and
LibriSpeech 960h datasets. For ST data, following
(Dong et al., 2022; Papi et al., 2023b; Fu et al.,
2023a), we filter out short speech of less than 1000
frames (62.5ms) and long speech of more than
480,000 frames (30s) in the training set. The data
statistics are illustrated in Table 3.

split EnDe EnEs LibriSpeech

train 225,271 260,041 281,242
dev 1,418 1,312 2,703 (clean) 2,864 (other)
test 2641 2502 2620 (clean) 2939 (other)

Table 3: Number of samples for each split of finetuning
data.

B The Number of Parameters of The
Models

The number of parameters of wav2vec-S and the
fine-tuned model are provided in Table 4 and 5.

BASE LARGE

CNN
strides 5, 2, 2, 2, 2, 2, 2

kernel width 10, 3, 3, 3, 3, 2, 2
channel 512

Encoder

layer 12 24
embedding dim. 768 1024
inner FFN dim. 3072 4096
attention heads 8 16

Projection dim. 256 768

Number of Parameters 91M 309M

Table 4: Model architecture summary for wav2vec-S
BASE and LARGE models

C Additional Training Details

For speech data, we use the raw 16-bit 16kHz
mono-channel audio wave. For text data, the Sen-

tencePiece14 model (Kudo and Richardson, 2018)
is used to learn a unigram vocabulary of size
10k. We use an Adam optimizer with β1 = 0.9,
β2 = 0.98. For streaming ST finetuning, the learn-
ing rate is set to 2e-4 for the BASE and LARGE

models. We warm up the learning rate for the first
4k steps and then decay it with the inverse square
root schedule. For streaming ASR finetuning, we
set learning rate to 5e-4 and 1e-4 for the BASE and
LARGE models, respectively. Following wav2vec
2.0 (Baevski et al., 2020b), we use a tri-state rate
schedule that initially warms up the learning rate
during the first 10% of updates, maintains it at a
steady level for the subsequent 30%, and then ap-
plies a linear decrease for the remaining updates,
and wav2vec-S is not updated in the first 10k steps.
The label smoothing and dropout rate are set to
0.1 for robust training. We train on 8 A100 GPUs
with the max speech tokens of 1,400,000 (87.5
seconds) per GPU for BASE model, and the max
speech tokens of 800,000 (50 seconds) per GPU for
LARGE model. If the loss on the dev set does not
decrease over ten epochs, the training process will
be stopped early. Both models are trained for about
30h, where the LARGE model converges faster.

D Additional Results

D.1 Comparison with EDAtt

The baselines we compared in Section 4.2 do not
leverage additional machine translation (MT) data,
which can typically provide further improvement.
EDAtt (Papi et al., 2023b), one of the strong base-
lines, utilizes an MT model trained on the OPUS
dataset for knowledge distillation, making a di-
rect comparison unfair. Therefore, we opted not
to include a direct comparison with EDAtt in Sec-
tion 4.2. Despite not utilizing additional MT data,
our model still significantly outperforms EDAtt in
low-latency regions, with improvements of about
6 BLEUs on both the EnDe and EnEs datasets, as
indicated in the Figure 7. Moreover, Our model
achieves comparable performance to EDATT in
medium to high latency areas.

D.2 Latency-Quality Curves for Different
Data Sizes

We present the latency-quality curves for different
fine-tuned data sizes in Figures 8, 9, and 10.

14https://github.com/google/
sentencepiece
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encoder layer decoder layer embed dim inner FFN dim #Params (M)

Our BASE 12 6 768 3072 183
Our LARGE 24 12 1024 4096 622
CAAT BASE 12 6 768 3072 182
CAAT LARGE 24 12 1024 4096 620
MU-ST BASE 12 + 12 6 - - -
MU-ST LARGE 24 + 12 12 - - -
FAST 12 + 8 6 768 2048 202
MoSST 12 + 8 6 768 2048 202

Table 5: Model architecture summary for our finetuning and baseline models. MU-ST additionally contains a
12-layer Transformer layer for speech Segmentor. FAST and MoSST additionally include an 8-layer Transformer
layer semantic encoder.

D.3 Numeric Results for the Figures
We also provide the numeric results for Figures 1
and 2 in Tables 6.
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Figure 7: The translation quality (BLEU) against the
latency metrics (AL) on the tst-COMMON set of MuST-
C EnDe and EnEs datasets.
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Figure 8: ASR quality (WER) vs. latency metrics (AL)
on LibriSpeech 500h subset.
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Figure 9: ASR quality (WER) vs. latency metrics (AL)
on LibriSpeech 360h subset.
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Figure 10: ASR quality (WER) vs. latency metrics (AL)
on LibriSpeech 100h subset.
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Model d
En-De En-Es LibriSpeech test-clean LibriSpeech test-other

AL AP DAL BLEU AL AP DAL BLEU AL AP DAL WER AL AP DAL WER

Our LARGE

2 683 0.68 1327 23.08 550 0.67 1340 27.91 644 0.60 1205 6.37 678 0.61 1248 7.84
4 1101 0.74 1799 24.60 928 0.73 1796 29.06 978 0.65 1704 4.69 1000 0.66 1715 6.36
10 2140 0.86 3052 25.88 2000 0.85 3111 30.00 2086 0.79 3332 3.81 2108 0.80 3314 5.54
20 3518 0.95 4385 26.48 3471 0.94 4530 30.15 3823 0.91 5164 3.52 3810 0.92 5042 5.26

Our BASE

2 711 0.68 1336 22.64 555 0.67 1339 26.95 701 0.61 1258 6.11 728 0.62 1300 9.29
4 1119 0.74 1795 24.49 941 0.73 1800 28.17 1024 0.66 1737 4.57 1043 0.67 1749 7.88
10 2157 0.86 3056 25.43 1993 0.85 3101 29.23 2103 0.79 3345 3.93 2122 0.81 3326 7.22
20 3528 0.95 4385 26.05 3470 0.94 4523 29.40 3826 0.91 5169 3.90 3813 0.92 5046 7.11

CAAT LARGE

2 769 0.69 1363 21.51 544 0.67 1334 25.95 753 0.62 1322 6.29 793 0.63 1375 9.62
4 1152 0.74 1812 22.60 940 0.73 1797 27.31 1070 0.67 1776 5.20 1103 0.68 1802 8.43
10 2175 0.86 3055 23.63 1989 0.85 3102 28.06 2134 0.80 3350 4.66 2158 0.81 3334 7.71
20 3523 0.95 4375 23.78 3455 0.94 4522 28.32 3845 0.91 5167 4.50 3834 0.92 5045 7.47

CAAT BASE

2 803 0.69 1398 21.66 582 0.68 1362 25.61 705 0.61 1270 6.19 735 0.62 1317 9.17
4 1172 0.75 1826 22.72 965 0.73 1812 26.96 1031 0.66 1744 4.88 1051 0.67 1760 7.82
10 2170 0.86 3062 23.82 2009 0.85 3105 27.64 2107 0.79 3340 4.25 2124 0.81 3322 7.00
20 3515 0.95 4379 24.09 3469 0.94 4523 27.95 3829 0.91 5166 3.96 3814 0.92 5044 6.68

Table 6: Numeric results on MuST-C EnDe and EnEs tst-COMMON sets, and LibriSpeech test-clean and
test-other sets for our models and CAAT models (Figure 1).
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