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Abstract

The meta-learning paradigm has demonstrated
significant effectiveness in few-shot text clas-
sification. Currently, numerous efforts are
grounded in metric-based learning, utilizing
textual feature vectors for classification, with
a common emphasis on enlarging inter-class
distances to achieve improved classification
effectiveness. However, many methods pre-
dominantly focus on enhancing the separa-
tion of prototypes without taking the seman-
tic relationships between prototypes and class
clusters into consideration. This oversight re-
sults in incomplete and inaccurate encoding
of prototypes within the semantic space, af-
fecting the generality of the learned metric
space. In this paper, we propose the utilization
of Semantically Enhanced Labels for calibrat-
ing class Prototypes (SELP), thereby obtaining
prototypes that are more separated and semanti-
cally accurate. Additionally, we have devised a
center loss to enhance intra-class compactness,
coupled with the introduction of a simulated
label distribution method to address the overfit-
ting problem. Extensive experiments on eight
few-shot text classification datasets show that
the proposed method outperforms baselines
significantly. Our code is available at https:
//github.com/tttyyyzzz-zty/SELP.git.

1 Introduction

Text classification is a crucial and foundational
task in natural language understanding, widely em-
ployed across various domains such as intent recog-
nition (Dopierre et al., 2021) and sentiment anal-
ysis (Kumar and Abirami, 2021). The application
of deep learning approaches to text classification
tasks, combined with extensive supervised training
on vast data, has demonstrated substantial efficacy
in achieving superior performance in text classifi-
cation endeavors (Devlin et al., 2019; Raffel et al.,
2020; Song et al., 2020). However, the collection
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of such a substantial volume of annotated data is
time-consuming and laborious, rendering it imprac-
tical across numerous real-world domains, thereby
motivating few-shot text classification.

There are several methods proposed to solve
few-shot text classification tasks. Fine-tuning
based methods (Howard and Ruder, 2018; Shen
et al., 2021) often use a pre-trained language model
(PLM) and then fine-tune the model to the down-
stream task. A variant of this approach is prompt-
based methods (Li and Liang, 2021; Schick and
Schütze, 2021), which typically transform text clas-
sification tasks into closed-text formats to bridge
the gap between pre-train and downstream tasks
to better utilize the capabilities of the pre-trained
model. However, transforming the task into a fill-
in-the-blank format entails inherent limitations, de-
manding meticulous and precise task design, which
might lack applicability across various real-world
tasks. Data augmentation based methods (Liu et al.,
2019b; Dopierre et al., 2021) aim to utilize auxil-
iary data or information for data augmentation or
feature augmentation of few-shot datasets, but they
may introduce new noisy data, which are more de-
pendent on prior knowledge, and may lead to fea-
ture loss. Meta-learning based methods (Lei et al.,
2023; Chen et al., 2022) aim to give the model
the ability to quickly generalize to novel classes
by learning on different simulated small episodes
(tasks). Meta-learning based methods have shown
promising results in few-shot tasks and are consid-
ered a highly promising methodology.

Although all of the above methods achieve good
performance, there are still some problems with the
current methods. For methods that utilize textual
feature vectors for classification, their performance
is highly dependent on the inter- and intra-class
variance in the query set. The key to solving this
problem is to encourage greater intra-class com-
pactness and inter-class separability explicitly, and
there are already some works to do so. ContrastNet
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(a) - ContrastNet (b) - TART (c) - SELP (ours)

prototype query instance qa/currency qa/definition qa/stockqa/factoid qa/maths

Figure 1: t-SNE visualization of text representation for a testing episode (N = 5, K = 1, Q =25) sampled from
HWU64. Note that the 5 classes are not seen in the training set. The text representation is given by (a) ContrastNet
(b) TART and (c) SELP (ours).

(Chen et al., 2022) and TART (Lei et al., 2023)
employ contrastive learning methods to promote
mutual separation among prototypes. However,
these methods primarily emphasize prototypes that
are more separated, neglecting the advanced se-
mantic relationships between prototypes and class
clusters. In some cases, the computed prototypes
may not effectively represent their corresponding
classes. This leads to inaccuracies in encoding pro-
totypes within the semantic space, consequently
affecting the generality of the learned metric space
and diminishing model generalization. We propose
to address the aforementioned issues by employing
labels to calibrate prototypes, aiming to obtain sep-
arable and more accurate prototypes. While some
existing work utilizes labels for classification (Luo
et al., 2021; Du et al., 2023), they do not manipu-
late the prototypes. Moreover, some methods resort
to leveraging external knowledge bases to augment
label semantics due to the limited information con-
tained in labels (Zhang et al., 2022). We contend
that this approach is intricate, and the obtained
labels lack genuine instance-based information, re-
sulting in limited generalization capability.

In this study, we introduce a simple yet effective
approach that utilizes a prompt pool to enrich the
semantic content of labels. This method ensures
that labels encapsulate richer information about the
underlying semantics of instances within their as-
sociated classes. Subsequently, we utilize these
enriched labels to calibrate class prototypes, en-
couraging increased distinctiveness among proto-
types and bolstering their semantic accuracy. Ad-
ditionally, we introduce a center loss to enhance
intra-class compactness and a simulated label distri-
bution method to mitigate the overfitting problem.

Figure 1 illustrates the comparison between our ap-
proach and two strong baseline methods. It can be
observed that our method effectively pulls back the
prototypes to the locations where class clusters ag-
gregate, achieving better intra-class compactness.

2 Related Work

2.1 Fine-Tuning Based Methods

Fine-tuning based methods typically use pre-
trained language models (PLMs) and then fine-tune
them on specific downstream tasks to obtain mod-
els adapted to the downstream task. Some methods
(Howard and Ruder, 2018; Shen et al., 2021) aim to
preserve the transferability of the model by apply-
ing distinct learning rates to each layer during train-
ing. However, fine-tuning based methods suffer
from the overfitting problem due to the scarcity of
training data. Recently, prompt-based approaches
have achieved promising results. PET (Schick and
Schütze, 2021) models classification problems as
fill-in-blank problems, bridging the gap between
upstream and downstream tasks. LM-BFF (Gao
et al., 2021) uses the T5 (Raffel et al., 2020) for
automated template generation, and in turn com-
bines examples with the current text, enriching the
contextual information. However, transforming the
task into a fill-in-the-blank format entails inher-
ent limitations, demanding meticulous and precise
task design, which might lack applicability across
various real-world tasks.

2.2 Data Augmentation Based Methods

The core idea of data augmentation based ap-
proaches is to utilize auxiliary data or information
for data augmentation or feature augmentation of
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few-shot datasets. Dopierre et al. (2021) propose a
short text paraphrase model, which produces differ-
ent paraphrases of the original text as data augmen-
tation. TPN (Liu et al., 2019b) employs a transduc-
tive approach by constructing an undirected graph
that integrates all unlabeled and labeled data, ob-
taining labels for all unlabeled data through label
propagation. Way-DE (Liu et al., 2023) assumes a
Gaussian distribution for each class and utilizes the
original support set along with the nearest minority
query samples to estimate the mean and covari-
ance. Subsequently, it augments labeled samples
by sampling from the estimated distribution. While
data augmentation remains a reliable method for
addressing few-shot problems, it may inadvertently
introduce new noisy data, become more reliant on
prior knowledge, and potentially lead to feature
loss.

2.3 Meta-Learning Based Methods

Meta-learning aims to enhance the multi-tasking
generalization of the model by sampling episodes
on the seen classes so that it can be quickly
adapted to novel classes. Existing meta-learning
based methods can be divided into three types.
(1) Optimization-based methods, such as MAML
(Finn et al., 2017) and MAML++ (Antoniou et al.,
2019), aim to learn a good model initialization pa-
rameter that can be quickly adapted to a new task
within a few steps of gradient updating. (2) Model-
based methods, such as MANN (Santoro et al.,
2016) and Meta-ticket (Chijiwa et al., 2022), de-
velop specific model architectures that enable rapid
adaptation to novel tasks. (3) Metric-based meth-
ods like prototypical network (Snell et al., 2017)
and induction network (Geng et al., 2019), utilize
a metric function to calculate the distance or sim-
ilarity between different samples, which in turn
determines the category of the sample to be pre-
dicted. Current metric-based methods focus on
generating separable feature representations, Con-
trastNet (Chen et al., 2022) through supervised
contrastive learning and two unsupervised con-
trastive learning approaches at the task level and
instance level, achieves more discriminative pro-
totype representations and alleviates the issue of
overfitting. TART (Lei et al., 2023) transforms
the class prototypes to per-class fixed reference
points in task-adaptive metric spaces and uses a dis-
criminative reference regularization to further max-
imize divergence between transformed prototypes.
Meta-learning stands as a promising approach for

addressing few-shot tasks.

3 Model

3.1 Problem Formulation

In this paper, we follow the traditional N-way K-
shot setting. Specifically, let Ctrain, Cval, Ctest de-
note the disjoint set of training classes, validation
classes and test classes, and they have no overlap-
ping classes, i.e., Ctrain

⋂ Cval
⋂ Ctest = ∅.

In the training phase, we construct training
episodes Ntrain from Ctrain, and each task contains
a support set S and a query set Q. We randomly
select N classes of K samples each to form the
support set, i.e., S = {(xi, yi)}N×K

i=1 , where xi is
a data sample, yi is the class label. The query set
consists of a portion of the remaining samples from
these N classes, i.e., Q = {(xj , yj)}N×q

j=1 , where q
is the number of queries.

In the validation and testing phases, we use the
same approach to construct Nval and Ntest from
Cval and Ctest, respectively. But in the testing phase,
as the labels of queries are unknown in the testing
stage, the query set in a test task can be represented
as Q = {xj}N×q

j=1 . A meta-learner is trained on
such episodes that attempt to classify the texts in
the query set Q on the basis of few labeled texts in
the support set S.

3.2 Overview

Our approach employs BERT (Devlin et al., 2019)
as a text encoder and utilizes a prompt pool to en-
hance the semantic content of labels. Subsequently,
the enhanced labels are used to calibrate text proto-
types, aiming for more distinctive and semantically
accurate text representations. Additionally, we de-
sign a center loss to enhance intra-class compact-
ness and introduce a label distribution estimation
method to mitigate overfitting issues. The overall
model structure is shown in Figure 2. All notations
in Figure 2 will be defined in the rest of this section.

3.3 Class-Dependent Prompt

Prompt Pool In contrast to using only a single
initialization for the prompt, Wang et al. (2022)
propose to learn a prompt pool. Prompt pool
can extract more knowledge about the task than
a single prompt and is more suitable for hard
and complex tasks. The prompt pool comprises
T trainable prompts, which are dynamically up-
dated across tasks to acquire transferable meta-
knowledge. Specifically, we define the prompt pool
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Figure 2: Illustration of the pipeline of SELP for a 3-way 1-shot task with one query example. First, a Prompt is
computed for each label name using Prompt Pool, which is then connected with the corresponding label name. After
obtaining embeddings for label names, support set, and query set, the prototypes are calibrated using label names.
Simultaneously, a simulated label distribution is computed for each query statement, followed by the calculation of
both the center loss and label distribution loss.

as follows:

V = {V1,V2, ...,VT },Vi ∈ RL×dh , (1)

where T is the number of prompts in the pool, L
is the length of each prompt and dh is the word
embedding dimension. Each prompt is attached to
a learnable key kj :

K = {k1,k2, ...,kT },ki ∈ Rdh . (2)

Prompt Enhanced Labels Here, we are not using
the prompt pool to build prompt templates, but
rather to use the prompt pool to enhance labels.
Prompt pool is able to learn meta-knowledge that
is transferable across tasks, in each episode, we can
compute a prompt for each class name through the
attention mechanism. Specifically, given a class c,
the weight between class name ac and prompt Vj

is computed as:

wc
j =

k⊤
j a

cls
c∑T

j′=1
k⊤
j′
acls
c

, (3)

where ac = E(ac) ∈ RLc×dh is the label name
features of class c, obtained from the pre-trained
language model(i.e., E(·)). And acls

c ∈ Rdh is a

standalone token embedding encompassing the en-
tire semantic label (we employ the CLS token from
BERT here). Then the class-dependent prompt for
class c is generated by weighted all the prompt
values:

vc =
T∑

j=1

wc
jVj . (4)

Because the prompt for each class is computed
based on the class name, it is task-independent, and
this design also allows for quick adaptation and
computation for novel classes. Following the com-
putation of a class-specific prompt, we concatenate
the class name with the generated prompt to obtain
a new label name tc = [vc;ac].

It is worth noting that, to ensure the enhanced la-
bel representations and text representations remain
in the same space, we further pass their representa-
tions through an additional encoder, mapping them
into a unified space. Specifically, in our imple-
mentation, we employ the first 11 layers of BERT
as the first text encoder (i.e., E(·) ) and use the
last layer of BERT as the second text encoder (i.e.,
fe(·)). Consequently, we obtain the label repre-
sentation t′ = fe(t) and the text representation
x = fe(E(x)) within the same vector space.

9735



Calibrated Prototype Representation To address
the issue of insufficient separation and accuracy
of prototypes, we calibrate the prototypes using
enhanced labels. Specifically, we first obtain the
class prototype pc of each class through the support
set

pc =
1

K

∑

(xi,yi)∈Strain

I(yi = c)xi, (5)

where xi ∈ Rdh is the text features, I(·) is the in-
dicator function. We calibrate it with semantically
enhanced labels to get the final class prototype p′

c:

p′
c = α× pc + (1− α)× t′c. (6)

Here, α is a hyperparameter ranging between 0 and
1.

3.4 Center Loss
In the previous step, we have achieved improved
separation among class prototypes. Now, our goal
is to ensure greater compactness within each class.
We propose a simple regularized loss:

Lcen =
1

2Nq

Nq∑

i=1

||xi − p′
yj ||2, (7)

where Nq is the number of query samples in an
episode. With such a simple loss, it is possible to
force each sample to move closer to the prototype
of the class, making the compactness within each
class increase.

3.5 Label Distribution Estimation
Due to the scarcity of training samples, few-shot
text classification tasks often suffer from the over-
fitting problem. One contributing factor to model
overfitting is the inadequacy of the current one-hot
encoding of labels, which fails to fully capture the
relationships between instances and labels. This
inadequacy arises from the non-complete indepen-
dence among labels, and instances may, in practice,
be associated with multiple labels. This results in
the model exhibiting overconfidence on the seen
classes, consequently leading to diminished gener-
alization performance on unseen classes.

Inspired by Guo et al. (2021), we aim to trans-
form the current one-hot encoding, a "hard label,"
into a "soft label" by modeling the relationships
between instances and labels. This approach is em-
ployed to facilitate the model in learning as much
information as possible from the instances, thereby
alleviating overfitting concerns. Specifically, in a

specific episode, for each query sample, we calcu-
late its similarity with each label:

y(c) = softmax(xiT
⊤W + b), (8)

where T = [t′1, t
′
2, ..., t

′
N ] is the set of labels that

have been enhanced in this episode. The similar-
ity we calculated is then weighted with the origi-
nal one-hot label y(t), and after weighting, we get
the simulated label distribution (SLD) that we ulti-
mately wish to obtain.

y(s) = softmax(βy(t) + y(c)). (9)

Based on the prototypes obtained from Eq.6, we
calculate the distance between each sample and the
prototypes as the predicted label of the sample:

p(y = c|xq) =
exp (−d(xq,p

′
c))∑N

i=1 exp (−d(xq,p′
i))

, (10)

y(p) = softmax([p1, p2, ..., pN ]), (11)

where xq is a query instance. We use the Kull-
back–Leibler divergence as the loss function to
measure the difference between y(p) and y(s).

Llcm = KL-divergence(y(s), y(p))

=
N∑

i=1

y
(s)
i log(

y
(s)
i

y
(p)
i

)
. (12)

3.6 Objective and Prediction

Overall Objective During the training phase, we
amalgamate the computed losses Lcen in Eq.7 and
Llcm in Eq.12. Given that different losses may
exhibit varying scales, and manually adjusting
weights can be a challenging and expensive pro-
cess, we employ uncertainty weights (Kendall et al.,
2018) to automatically compute the weight for each
loss. The overall objective is:

L =
1

2σ2
1

Lcen +
1

2σ2
2

Llcm + log σ1σ2. (13)

Testing In the testing phase, given an N -way
K-shot task, we first compute the corresponding
prompt for each label, then compute prototypes for
each class using the samples in the support set, then
calibrate the resulting prototypes with the labels,
and finally compute the distance from the samples
in the query set to each prototype for classification.
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Dataset #samples #tokens per sample
(mean±std)

#tokens per class name
(mean±std)

#classes
(train/valid/test)

HuffPost (Bao et al., 2020) 36900 13 ± 4 1 ± 1 20 / 5 / 16
Amazon (He and McAuley, 2016) 24000 152 ± 33 3 ± 1 10 / 5 / 9
Reuters (Bao et al., 2020) 620 207 ± 148 1 ± 1 15 / 5 / 11
20News (Lang, 1995) 18828 357 ± 528 5 ± 3 8 / 5 / 7

Banking77 (Casanueva et al., 2020) 13083 14 ± 9 6 ± 3 25 / 25 / 27
HWU64 (Liu et al., 2019b) 11036 7 ± 3 4 ± 1 23 / 16 / 25
Liu57 (Liu et al., 2019b) 25478 8 ± 4 1 ± 1 18 / 18 / 18
Clinc150 (Larson et al., 2019) 22500 9 ± 3 3 ± 2 50 / 50 / 50

Table 1: Dataset statistics.

4 Experiments

4.1 Datasets

In line with previous work (Liu et al., 2023),
our experiments will be conducted on eight com-
monly used datasets, including four intent de-
tection datasets: Banking77, HWU64, Clinc150,
and Liu57, and four news or review classification
datasets: HuffPost, Amazon, Reuters, and 20News.
The detailed statistics for all datasets are summa-
rized in Table 1. We provide a brief introduction to
the dataset:
HuffPost (Bao et al., 2020) consists of news head-
lines published on HuffPost between 2012 and
2018.
Amazon (He and McAuley, 2016) consists of 142.8
million user reviews across 24 product categories.
Following (Han et al., 2021), we use a subset, se-
lecting 1,000 reviews for each category.
Reuters (Bao et al., 2020) is collected shorter
Reuters articles in 1987. Following (Bao et al.,
2020), we employ a subset of 31 classes.
20News (Lang, 1995) is comprised of informal dis-
course from news discussion forums, covers 18828
documents under 20 topics, is a subset of 20 news
groups.
Banking77 (Casanueva et al., 2020) is a fine-
grained intent classification dataset specific to bank-
ing domain.
HWU64 (Liu et al., 2019a) is a fine-grained intent
classification dataset.
Liu57 (Liu et al., 2019a) is a highly imbalanced
intent classification dataset collected on Amazon
Mechanical Turkcollected from Amazon Mechani-
cal Turk.
Clinc150 (Larson et al., 2019) comprises 150 in-
tents and 23,700 examples spanning 10 domains.

4.2 Baselines
We compare the proposed few-shot text classifica-
tion models with the following baselines:
Prototypical Network (Snell et al., 2017) learns
class prototype representations and employs
nearest-neighbor classification, emphasizing in-
stance similarity to prototypes.
MAML (Finn et al., 2017) optimizes for rapid
adaptation to new tasks through iterative train-
ing across multiple tasks, acquiring generic initial
parameters for quick learning and generalization
across diverse tasks.
Induction Network (Geng et al., 2019) uses dy-
namic routing to represent and condense samples
within categories into class-level representations,
facilitating query sample classification.
HATT (Gao et al., 2019) utilizes a hybrid attention
mechanism, encompassing both instance-level and
feature-level attention, to enhance robustness and
expedite the iteration speed of the model.
DS-FSL (Bao et al., 2020) focuses on learning
the relationship between the importance of words
and distributional signatures, thereby weighting to
obtain a more refined sample representation.
MLADA (Han et al., 2021) is a meta-learning
framework integrated with an adversarial domain
adaptation network, aiming to improve the adaptive
ability of the model and generate high-quality text
embedding for new classes.
ContrastNet (Chen et al., 2022) through super-
vised contrastive learning and two unsupervised
contrastive learning approaches at the task level
and instance level, achieved more discriminative
prototype representations and alleviated the issue
of overfitting.
TPN (Liu et al., 2019b) employs a transductive
approach by constructing an undirected graph that
integrates all unlabeled and labeled data, obtaining
labels for all unlabeled data through label propaga-
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Method HuffPost Amazon Reuters 20News Average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Prototypical Networks 35.7 41.3 37.6 52.1 59.6 66.9 37.8 45.3 42.7 51.4
MAML 35.9 49.3 39.6 47.1 54.6 62.9 33.8 43.7 40.9 50.8
Induction Networks 38.7 49.1 34.9 41.3 59.4 67.9 28.7 33.3 40.4 47.9
HATT 41.1 56.3 49.1 66.0 43.2 56.2 44.2 55.0 44.4 58.4
DS-PSL 43.0 63.5 62.6 81.1 81.8 96.0 52.1 68.3 59.9 77.2
MLADA 45.0 64.9 68.4 86.0 82.3 96.7 59.6 77.8 63.9 81.4
ContrastNet 51.8 67.8 73.5 83.6 88.5 94.6 70.9 80.5 71.2 81.6
TPN 50.6 69.5 76.0 84.9 91.4 93.1 63.0 69.4 70.3 79.2
TART 45.7±1.5 68.7±2.0 71.7±6.6 83.8±3.2 87.6±0.9 95.2±0.7 72.0±4.2 83.6±3.4 69.3±3.3 82.8±2.3
Way-DE 51.9±2.4 71.7±2.4 76.1±6.3 87.4±3.2 90.6±0.7 95.2±0.8 71.0±4.0 83.2±4.1 72.4±3.4 84.4±2.6

SELP (Ours) 66.1±4.0 73.0±3.1 80.4±5.0 87.9±3.3 91.3±2.4 95.6±1.6 77.5±4.2 85.2±3.6 78.8±3.9 85.4±2.9

Table 2: The 5-way 1-shot and 5-shot average accuracy on news or review classification datasets.

Method Banking77 HWU64 Liu57 Clinc150 Average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PROTAUGMENT 86.9 94.5 82.4 91.7 84.4 92.6 94.9 98.4 87.2 94.3
PROTAUGMENT (bigram) 88.1 94.7 84.1 92.1 85.3 93.2 95.8 98.5 88.3 94.6
PROTAUGMENT (unigram) 89.6 94.7 84.3 92.6 86.1 93.7 96.5 98.7 89.1 94.9
ContrastNet 91.2 96.4 86.6 92.6 85.9 93.7 96.6 98.5 90.1 95.3
TPN 90.4 94.8 83.7 91.5 86.6 93.2 97.1 98.1 89.5 94.4
TART 89.5±1.0 94.7±0.5 85.4±1.7 93.4±0.9 87.9±2.0 94.5±1.0 96.4±0.6 98.7±0.2 89.8±1.3 95.3±0.7
Way-DE 90.5±1.6 95.4±1.0 87.1±1.9 93.4±1.1 90.4±2.2 95.5±1.1 98.0±0.5 99.3±0.2 91.5±1.6 95.9±0.9

SELP (Ours) 92.1±1.0 96.5±0.4 89.8±1.3 93.9±0.8 91.7±1.4 94.9±0.9 98.2±0.5 99.1±0.2 92.9±1.1 96.1±0.6

Table 3: The 5-way 1-shot and 5-shot average accuracy on intent detection datasets.

tion.
PROTAUGMENT (Dopierre et al., 2021) is a data
augmentation technique that uses a model to gener-
ate paraphrases of short texts. It applies an unsuper-
vised loss at the instance level on the vanilla pro-
totypical network (Snell et al., 2017). PROTAUG-
MENT (unigram) and PROTAUGMENT (bigram)
employ different strategies for word paraphrasing.
TART (Lei et al., 2023) transform the class pro-
totypes to per-class fixed reference points in task-
adaptive metric spaces and use a discriminative
reference regularization to further maximize diver-
gence between transformed prototypes.
Way-DE (Liu et al., 2023) assumes a Gaussian
distribution for each class and utilizes the original
support set along with the nearest minority query
samples to estimate the mean and covariance. Sub-
sequently, it augments labeled samples by sampling
from the estimated distribution.

4.3 Implementation Details

Evaluation Metric We follow Liu et al. (2023)
to use accuracy to assess the performance of our
model. The datasets used in our experiments, as
provided by Chen et al. (2022), consist of five ran-
dom class partitions for each dataset. All reported
results are averages obtained across these five par-
titions.

Parameter Settings We follow Liu et al. (2023) to
conduct experiments on 5-way 1-shot and 5-shot
settings. Across the news or review classification
datasets, we employed bert-base-uncased model as
the feature extractor. Our reported average accu-
racy is based on 1000 episodes sampled from the
test set, with each episode comprising 25 query
instances. Across the intent detection datasets, we
employed a further pre-trained BERT model pro-
vided in Dopierre et al. (2021) as the feature ex-
tractor. Our reported average accuracy is based on
600 episodes sampled from the test set, with each
episode comprising 5 query instances. We set the
number of prompts T , to 8, and the length of the
prompt is chosen from {8, 16} using the validation
set. In the simulation of label distribution, we set β
to 4.0. We optimize the models using AdamW with
an initialized learning rate of 2e-5. In the prototype
calibration stage, we opt for distinct values of α for
each dataset from {0.5,0.6,0.7,0.8} based on the
performance of the validation set.

4.4 Main Results

Tables 2 and 3 report the experimental results for
the news or review classification task and the intent
detection task. Most baseline results are taken from
Liu et al. (2023). The results for TART in Table 2
and Table 3 are obtained from our re-run of their
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Method HuffPost HWU64

1-shot 5-shot 1-shot 5-shot

Ours 66.1±4.0 73.0±3.1 89.8±1.3 93.9±0.8

-Llcm 65.6±3.9 72.1±2.8 87.5±1.5 93.2±0.9
-Lcen 63.1±3.1 71.8±2.6 88.9±1.4 92.9±0.7
-PromptPool 62.4±3.6 70.1±3.0 86.7±1.3 92.7±0.9
-Label 35.7 41.3 82.4 91.7

Table 4: Ablation study results.

experiment. The best results are highlighted in
bold.

From Table 2, it is evident that our approach
achieves state-of-the-art performance on most
datasets, particularly excelling in the 1-shot setting
with an average improvement of 6.4% over other
baselines. In the 1-shot setting of the HuffPost
dataset, our method outperforms the best baseline
by 14.2%. The reason behind this lies in the 1-
shot scenario, where prototypes, being computed
from a single sample, are more prone to deviate
from class clusters. Our method effectively pulls
back these deviated prototypes, leading to superior
performance. This underscores the superiority of
our approach in handling few-shot tasks. Besides,
we notice that the performance gains for 1-shot
intent detection are smaller than the gains for 1-
shot text classification. We believe there are two
main reasons for that: (1) The baselines of the in-
tent detection datasets are very high, and there is
not much room for improvement. (2) The texts in
the intent datasets are shorter and provide limited
information, which is a limitation for our method.

As depicted in Table 3, our method demonstrates
consistent effectiveness, outperforming baselines
on the majority of datasets. Similarly, our approach
exhibits more pronounced improvements in the 1-
shot setting, 1.6% in 1-shot on Banking77, and
2.7% in 1-shot on HWU64, respectively This fur-
ther validates the effectiveness of our method for
both long and short texts.

4.5 Visualization

In Figure 1, we employ t-SNE to visualize the query
and prototype representations generated by Con-
trastNet, TART, and our method. We sample 5
classes from the test set of HWU64, sampling one
prototype and 25 samples for each class. From Fig-
ure 1(a), ContrastNet roughly distinguishes class
textual representations. However, the prototype rep-
resentations sometimes significantly deviate from
the class clusters, leading to a substantial impact

on the classification accuracy of ContrastNet. As
illustrated in Figure 1(b), TART maps the represen-
tations to another space, resulting in a different dis-
tribution compared to the other two methods. It can
be observed that, although TART attempts to sepa-
rate the prototypes as much as possible, the query
samples are intermingled without clear boundaries.
In Figure 1(c), our approach demonstrates that simi-
lar classes still cluster together. However, class pro-
totypes are drawn back to their respective seman-
tic regions through label calibration. Furthermore,
the intra-class cohesion is relatively enhanced, and
inter-class boundaries are clearer, affirming the ef-
fectiveness of our method.

4.6 Ablation Study

To demonstrate the impact of each component of
the model, we conduct ablation experiments on the
HuffPost and HWU64 datasets, as shown in Table
4.

The SELP -Llcm donates that we do not apply
Llcm (Eq.12) and directly use one-hot label and
cross-entropy loss. The decrease in the model’s
performance indicates the effectiveness of the de-
signed LCM loss.

The SELP -Lcen donates that we do not apply
Lcen (Eq.7) and solely employ Llcm as the loss
function for model updates. There is also a decline
in the effectiveness of the model.

The SELP -PromptPool donates that we ex-
cluding the prompt pool, we directly employ the
embeddings of the raw labels to calibrate the pro-
totypes and compute the overall loss for model
updates. The model exhibits a significant perfor-
mance decline, indicating that the prompt pool has
learned meta-knowledge, which enhances the rep-
resentation of labels.

When removing the label information (SELP-
Label), the model regresses to the original proto-
type network. And the model performs the worst,
indicating the strong guidance role of label infor-
mation in classification.

5 Conclusion

In this paper, we employ a prompt pool to compute
a distinctive prompt for each label. This prompt
encompasses learned transferable meta-knowledge,
providing additional semantic information related
to instances. Subsequently, the prototypes are cal-
ibrated using these enhanced labels, resulting in
prototypes that are more separated, semantically
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accurate, and closer to their respective class clus-
ters. Additionally, we introduce a straightforward
center loss to enhance intra-class compactness and
apply a simulated label distribution method to miti-
gate overfitting issues. Experimental results affirm
the effectiveness of our proposed approach.

Limitations and Potential Risks

Limitations In this paper, we employed BERT as
the text encoder. While our proposed approach is
applicable to any PLM that provides text represen-
tations, we did not conduct experiments on other
PLMs due to time and efficiency constraints. Ad-
ditionally, our method relies on meta-learning and
therefore requires at least one available training
episode. In future work, we aim to further inves-
tigate the application of labels in the context of
small-sample and zero-shot scenarios.
Potential Risks Our research is dedicated to in-
vestigating how to enhance natural language un-
derstanding under low-resource conditions, with a
focus on improving the performance of text clas-
sification. Our efforts contribute to an uplift in
text classification efficiency, with no inherent risks
posed to society or individuals.
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