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Abstract

Visual hallucination (VH) means that a multi-
modal LLM (MLLM) imagines incorrect de-
tails about an image in visual question an-
swering. Existing studies find VH instances
only in existing image datasets, which results
in biased understanding of MLLMs’ perfor-
mance under VH due to limited diversity of
such VH instances. In this work, we propose
a tool called VHTest to generate a diverse set
of VH instances. Specifically, VHTest finds
some initial VH instances in existing image
datasets (e.g., COCO), generates a text descrip-
tion for each VH mode, and uses a text-to-
image generative model (e.g., DALL·E-3) to
generate VH images based on the text descrip-
tions. We collect a benchmark dataset with
1,200 VH instances in 8 VH modes using VHT-
est. We find that existing MLLMs such as
GPT-4V, LLaVA-1.5, and MiniGPT-v2 hallu-
cinate for a large fraction of the instances in
our benchmark. Moreover, we find that fine-
tuning an MLLM using our benchmark dataset
reduces its likelihood to hallucinate without
sacrificing its performance on other bench-
marks. Our benchmarks are publicly available:
https://github.com/wenhuang2000/VHTest.

1 Introduction

A multi-modal LLM (MLLM) (Yang et al., 2023;
Zhu et al., 2023; Chen et al., 2022; Huang et al.,
2023b; Tiong et al., 2022) generates a text response
for a given image and question. An MLLM typ-
ically comprises three components: a vision en-
coder, a vision-language connector, and an LLM.
The vision encoder (e.g., CLIP (Radford et al.,
2021)) converts an image into an embedding vector.
The vision-language connector projects an image
embedding vector into the LLM’s word embedding
space. The projected vector is concatenated with
the token embeddings of the question to form an
input to the LLM, which generates a text response.

*Equal contributions.

How many lamps are there in
the picture?

Question

Image GPT-4V

There are two lamps in
the picture: one on the
bedside table to the
right, and another on the
desk to the left in the
background.

Text response

Figure 1: An example of MLLM’s visual hallucination.
The text in RED highlights the hallucinated detail in the
image, where there are three lamps.

However, MLLMs often generate text responses
containing factually incorrect details about an im-
age, known as visual hallucination (VH) (Li et al.,
2023; Liu et al., 2024b). Figure 1 shows an ex-
ample where the MLLM hallucinates two lamps,
contradicting the three lamps in the image. VHs
in MLLMs pose obstacles to developing safe and
trustworthy AI, which is emphasized in a recent
U.S. Executive Order calling for rigorous testing
to address potential harms from advanced AI sys-
tems (The White House, 2023).

Prior works have tried to benchmark MLLMs’
VHs related to object existence (Li et al., 2023; Liu
et al., 2024a), optical character recognition (OCR),
object counting, object positions comparing (Fu
et al., 2023), orientation, and viewpoint (Tong et al.,
2024) (concurrent to ours). However, they collect
VH images only from existing image datasets like
COCO (Lin et al., 2014). This limits the diversity
of VH images since they can only find a limited
number of them. Moreover, existing image datasets
may have been used to pre-train an MLLM, leading
to data contamination (Jacovi et al., 2023; Sainz
et al., 2023). As a result, such VH images lead to a
biased understanding of an MLLM’s performance,
e.g., an MLLM is incorrectly concluded to perform
well under VH.

Our Work We propose VHTest, a tool that gener-
ates VH instances through adversarial construction
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The cheese inside the sandwich
is shaped like a triangle.

Question Describe the shape of the cheese
inside the sandwich in the picture.

Shape

Generated image

Visual hallucination
mode

Reference answer Inwardly concave rounded
polygons.

The cheese inside the sandwich
in the picture is triangular.

The shape of the cheese inside the
sandwich can be inferred from the
image provided. Here's what it
looks like: The cheese inside the
sandwich is square in shape and
looks to be relatively thin and
evenly sliced.

Color Size Position

Describe the color of the left
glass.

The color of the left glass appears
to be a gradient, transitioning
from purple at the top to black
and then to red at the bottom.

The glass on the left features a
gradient color design,
transitioning from purple at the
top to dark blue, then into lighter
blue shades, and finally to a
vibrant green at the bottom. This
effect is known as an ombre or
gradient...

The left glass is red.

As you focus on the left glass,
you notice that it has a rich, deep
blue color that seems to swirl and
shift as you look at it from
different angles. The blue is so
vibrant and intricate...

The tallest plant is located on the
far right side of the image?it is the
one with the long slender leaves
that extend upward. The second
tallest plant is immediately to its
left, with broader leaves that also
show an upward growth habit...

In the image, the tallest plant is
located on the left side, and the
second tallest plant is located on
the right side. Both plants are
standing in pots on a checkered
floor.

I apologize, but I cannot accurately
identify or locate specific plants in
the image you provided. Because it
is a generic image with various
plants in different pot sizes and
heights. However, I can suggest
some popular tall houseplants that
are easy to grow and maintain...

Yes, the green apple is to the left
of the orange book in the image.

Yes, the green apple is to the left
of the orange book.

There is no orange book in the
image you provided. The green
apple is on the left of the blanket.

Could you identify and locate the
plant with the tallest and the second
tallest height in the picture?

Fifth from the left and first from
the left.

Is the green apple to the left of
the orange book?

No.

GPT-4V

LLaVA-1.5 13b

🌋

MiniGPT-v2

Figure 2: Example VH instances generated by our VHTest and the text responses of three MLLMs for them. Figure 7
in Appendix shows examples for the other four VH modes.

to expose visual hallucinations within MLLMs. A
VH instance is a triple (an image, a question, a
reference answer). Our VHTest has three key steps.
Step I finds initial VH instances using existing
image datasets like COCO. Specifically, we first
identify image pairs with high CLIP embedding
similarity but low DINO v2 (Oquab et al., 2023)
embedding similarity. Such image pairs have con-
tradictory similarities from two powerful vision en-
coders, indicating potential VHs. We note that Step
I is also used in a concurrent work MMVP (Tong
et al., 2024). Unlike MMVP, which directly col-
lects initial VH instances to build their benchmarks,
we treat them as the raw materials for further ad-
versarial construction. We then manually design
questions and reference answers for these images
to obtain initial VH instances. Step II generates a
text description for a VH mode derived from the
initial VH instances. A text description describes
visual properties of VH images that are likely to
cause MLLMs to hallucinate. Finally, Step III uses

a text-to-image generative model (e.g., DALL-E
3) to generate new images based on the text de-
scriptions. Moreover, based on some templates,
we design questions and reference answers for the
generated images to construct VH instances.

Using our VHTest, we construct a new bench-
mark dataset for evaluating VHs in MLLMs. Our
benchmark contains 1,200 VH instances covering
8 VH modes. The 8 VH modes are related to ex-
istence, shape, color, orientation, OCR, size, po-
sition, and counting of visual objects in an image.
Note that shape and size VH modes are formu-
lated by us, while the other 6 VH modes were also
considered in prior (Yang et al., 2023) and concur-
rent (Tong et al., 2024) studies. Figure 2 and Figure
7 show some VH instances generated by VHTest.

We comprehensively evaluate state-of-the-art
MLLMs, including GPT-4V, LLaVA-1.5, and
MiniGPT-v2 on our benchmark. Our results show
that MLLMs hallucinate for a large fraction of
the VH instances in our benchmark. For exam-
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ple, GPT-4V, LLaVA-1.5, and MiniGPT-v2 only
achieve overall accuracy of 0.383, 0.229, and 0.075
on our benchmark, respectively. We also find that
MLLMs have different performance across VH
modes. For example, GPT-4V is most prone to
orientation VH with 0.153 accuracy; while LLaVA-
1.5 and MiniGPT-v2 are most susceptible to OCR
VH with 0.127 and 0.000 accuracy, respectively.

Finally, we show that fine-tuning an MLLM us-
ing our benchmark dataset mitigates VH. Specif-
ically, we divide our benchmark into the train-
ing/testing splits with a ratio 80%/20%. We then
fine-tune the LLaVA-1.5 model on the training
split. After fine-tuning, we evaluate the model
on the testing split. Our results show fine-tuning
reduces the likelihood for an MLLM to hallucinate.
For example, in position VH mode, the fine-tuned
LLaVA-1.5 gains 0.200 accuracy from 0.333 to
0.533. Moreover, fine-tuning maintains model per-
formance on other benchmark datasets.

2 Definitions

VH Modes We can categorize visual properties
of objects in an image into individual properties,
which can be attributed to individual objects (e.g.,
existence, shape, color, orientation, and OCR), and
group properties, which emerge from comparisons
across multiple objects (e.g., relative size, relative
position, and counting). Based on such categoriza-
tion, we have 8 VH modes as follows. In particular,
each VH mode occurs when an MLLM’s text re-
sponse is factually incorrect with respect to the
corresponding visual property in an image.

1. Existence VH: O is the set of objects in im-
age I , and O′ is the set of objects an MLLM
identifies in I . Existence VH occurs if: ∃oi ∈
O s.t. oi /∈ O′ or ∃o′j ∈ O′ s.t. o′j /∈ O.
In other words, the MLLM misses at least one
object in I or fabricates at least one nonexis-
tent object.

2. Shape VH: Let S = {s(oi)}ni=1 denote the
list of shapes for objects {oi}ni=1 in I , and
S′ = {s′(oi)}ni=1 is the corresponding list of
shapes identified by an MLLM. A shape VH
occurs if: ∃oi s.t. s(oi) ̸= s′(oi). Intuitively,
the MLLM fails to accurately describe the
shape of at least one object in I .

3. Color VH: Let C = {c(oi)}ni=1 denote the
list of colors for objects {oi}ni=1 in I , and
C ′ = {c′(oi)}ni=1 is the corresponding list

of colors identified by an MLLM. A color
VH occurs if the MLLM fails to accurately
identify the color of at least one object in I .
Formally, we have: ∃oi s.t. c(oi) ̸= c′(oi).

4. Orientation VH: An LLM fails to precisely
recognize the facing orientation of at least one
object in an image.

5. OCR VH: An MLLM fails to accurately iden-
tify at least one character in an image.

6. Size VH: An MLLM fails to accurately com-
pare the relative sizes of multiple objects in
an image.

7. Position VH: An MLLM fails to accurately
identify spatial relationships between objects
in an image.

8. Counting VH: An MLLM exhibits a counting
VH mode when it cannot accurately enumer-
ate the number of objects in an image.

VH Instance An VH instance is a triple
{xi, xt, yr}, where xi is an image, xt is a ques-
tion, and yr is a reference answer. We say a VH
instance succeeds for an MLLM if and only if the
MLLM’s text response for xi and xt is factually
incorrect compared to the reference answer yr. For
instance, in the example shown in Figure 1, the ref-
erence answer is “three lamps”, while the MLLM’s
text response indicates two lamps.

3 Our VHTest

3.1 Step I: Finding Initial VH Instances

Since the CLIP vision encoder is the backbone of
many popular MLLMs such as LLaVA (Liu et al.,
2023), LLaMA-Adapter (Gao et al., 2023), and
mPLUG-Owl (Ye et al., 2023), we leverage CLIP
to find initial VH instances. Our goal is to find
images in an existing image dataset (e.g., COCO)
that are incorrectly embedded by the CLIP vision
encoder to have high similarity, despite differences
in visual semantics. Such images may lead to VH
for MLLMs due to their incorrect embeddings.

Specifically, given an image pair (x1, x2), we
compute the cosine similarity between their CLIP
embedding vectors, i.e., cos(fC(x1), fC(x2)),
where fC(·) is an embedding vector output by
CLIP. Moreover, we also use DINO v2 (Oquab
et al., 2023) as a reference vision encoder to com-
pute their embedding vectors and compute their
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"The plane  ... left and
upward ..."

Please choose ... [object]'s orientation ...

An unsuccessful initial VH instance

,
"Describe the color of
the sky in the picture." ,"Orange"

A successful initial VH instance

Step I: Finding Initial VH Instances Step II: Text Description Generation

,

"Please choose ...
plane's orientation"

,
"The plane ... left
and downward."

Image Question

Detected hallucination
in the response,

Description-generation
MLLM

Generate text description that
might lead to hallucinations
based on the initial VH instance.

Text description

Step III: Generating More VH instances 

,
"Please choose ...
plane's orientation ..." ,

"Left and downward within
the pictorial plane"

The sky...warm orange...The plane...left and upward...

Text description

Text-to-image  generative model

VH image

VH question

Towards the camera/viewer.

CLIP

CLIP Cosine Similarity ≥ 0.90

DINO v2

DINO v2 Cosine Similarity ≤ 0.55

Hallucinated
Response

Prompt

VH reference answer

Figure 3: Pipeline of our VHTest. The human-head symbol means a human worker manually generates a question-
answer pair for an image.

cosine similarity, i.e., cos(fD(x1), fD(x2)), where
fD(·) is an embedding vector output by DINO v2.
Then, we find image pairs that have large cosine
similarity under CLIP but small cosine similar-
ity under DINO v2. In particular, we find image
pairs that satisfy cos(fC(x1), fC(x2)) ≥ 0.9 and
cos(fD(x1), fD(x2)) ≤ 0.55. Such image pairs
are our candidates.

Among the candidates, we further select the top
200 pairs with the largest cosine similarity under
CLIP. Moreover, we manually design questions and
reference answers to form 800 initial VH instances,
where 100 for each VH mode and an image may
be used in multiple VH instances. Finally, we test
an MLLM (called testing MLLM, e.g., GPT-4V) on
them. With manual verification, GPT-4V halluci-
nates on 204 of them (called successful initial VH
instances). Table 1 shows the number of successful
initial instances in each VH mode.

3.2 Step II: Text Description Generation

Given the initial VH instances, we use an MLLM
(called description-generation MLLM, e.g., GPT-
4V) to generate a text description for each VH
mode. The text description aims to guide a text-
to-image generative model (in Step III) to gener-
ate more images that are likely to trigger VH in
MLLMs.

Using a Successful Initial VH Instance We first
describe how to leverage prompt engineering to
generate a text description based on one successful
initial VH instance. Specifically, we construct an
example comprised of: 1) the VH instance’s image
and question, 2) the testing MLLM’s hallucinated
response, and 3) the detected hallucination in the

response. We then add an additional prompt ask-
ing the description-generation MLLM to generate
a text description that explains potential causes un-
derlying the observed VH and describes how to
generate more images. We show a summary ver-
sion of our prompt in Figure 4 while the full prompt
is shown in Figure 9 in Appendix.

Summary version

PROVIDE: {image, question, hallucinated response, de-
tected hallucination in the response}
PROMPT: [Through the example, explain the potential
causes of such hallucination and how to produce more
images and questions.]

Figure 4: Summary of our prompt to generate a text
description based on a successful initial VH instance.

Using an Unsuccessful Initial VH Instance We
also design a prompt to generate a text descrip-
tion based on an unsuccessful initial VH instance
for which the testing MLLM does not hallucinate.
Such prompt is needed when not enough successful
initial VH instances are available for a VH mode.
Our idea is to construct a prompt with some hy-
pothetical hallucinated detail regarding the VH
image. Specifically, we construct an example com-
prised of: 1) the VH instance’s image and ques-
tion, 2) a hypothetical hallucinated response, and
3) the detected hallucination in the hypothetical
response. Given the example, we also add an addi-
tional prompt like we discussed above. We show a
summary version of our prompt in Figure 5 while
the full prompt is shown in Figure 10 in Appendix.
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Summary version

PROVIDE: {image, question, hypothetical hallucinated
response, detected hallucination in the hypothetical re-
sponse}
PROMPT: [Through the example, explain the potential
causes of the hallucination and how to generate more
images and questions.]

Figure 5: Summary of our prompt to generate a text de-
scription based on an unsuccessful initial VH instance.

Integrating Multiple VH Instances To increase
diversity of our text description, for each VH mode,
we generate 10 text descriptions based on 10 suc-
cessful initial VH instances. If a VH mode has less
than 10 successful initial VH instances, we gener-
ate the remaining text descriptions based on unsuc-
cessful ones. Then, for each VH mode, we use a
prompt in Figure 11 in Appendix for a description-
generation MLLM to summarize the 10 text de-
scriptions as the final one. Appendix A shows our
generated text description for each VH mode.

3.3 Step III: Generating More VH Instances

We generate more VH instances based on the text
descriptions. Recall that a VH instance consists
of an image, a question, and a reference answer.
Therefore, we describe how to generate each com-
ponent in the following.

VH Image We use a text-to-image generative
model (e.g., DALL·E-3 in our experiments) to gen-
erate VH images based on the text descriptions.
Specifically, to generate an image in a VH mode,
we append the corresponding text description to
the prompt in Figure 12 in Appendix for the text-
to-image generative model to generate an image.

VH Question Given a VH image, we prepare
a question based on it. Specifically, we leverage
object-driven templates to create diverse and rel-
evant VH questions. For instance, “Describe the
shape of the [object] in the picture.” is a template
for the shape VH mode. We curate question tem-
plates for each VH mode and they are shown in
Appendix D. Given a template for a VH mode, a
human worker generates a question via manually
analyzing the objects in the VH image. For in-
stance, the human worker may replace the [object]
as “pear” in the template above when the VH im-
age contains a pear. The human worker verifies
that the question should have a non-ambiguous an-

swer based on the VH image. If no questions with
non-ambiguous answers can be constructed, the
VH image is discarded.

VH Reference Answer Given a VH image and a
question, a human worker also provides a factually
correct answer as a reference answer via manu-
ally analyzing the VH image. The triple (image,
question, reference answer) is a VH instance.

3.4 Benchmark Construction

We use VHTest to build two benchmarks. Specifi-
cally, we find initial VH instances in COCO (Lin
et al., 2014) and we generate 150 VH instances for
each VH mode, which results in 1,200 VH in-
stances across 8 VH modes in total. This bench-
mark consists of “open-ended question” (OEQ),
which requires manually labeling the responses
of MLLMs when testing them on the benchmark.
Therefore, to facilitate automatic evaluation when
testing MLLMs, we also construct a closed-ended
“yes/no question” (YNQ) version of the benchmark.

Specifically, for each VH instance, we convert
the open-ended question into a binary “yes/no”
question. For instance, the open-ended question
“Describe the shape of the pear in the picture.” is
converted into “Is the shape of the pear in the pic-
ture a square?”. Moreover, the reference answer
is converted into yes or no. We construct the bi-
nary questions to ensure that the YNQ benchmark
has a 50/50 split of “yes”/“no” reference answers.
Moreover, to ensure quality of our benchmarks, we
measure the inter-annotator agreement to evaluate
the consistency among different human annotators,
provided in Appendix B.1.

Our benchmark construction took approximately
300 human-hours in total.

4 Experiments

4.1 Experimental Setup

MLLMs We evaluate three state-of-the-art
MLLMs on our benchmarks: GPT-4V with its “gpt-
4-vision-preview” version, LLaVA-1.5-13b (Liu
et al., 2023), and MiniGPT-v2 (Chen et al., 2023a).

Evaluation Metric We use accuracy as an eval-
uation metric. Given an MLLM, we use it to pro-
duce a text response for each VH instance (more
precisely, the image and question in a VH instance)
in our OEQ benchmark; we manually analyze the
text responses and compare with the reference an-
swers; and accuracy is the fraction of the VH in-
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Table 1: Accuracy of GPT-4V on the initial VH instances from COCO. Each VH mode has 100 initial VH instances.

Existence Shape Color Orientation OCR Size Position Counting Average

Accuracy 0.880 1.000 0.920 0.280 0.600 0.980 0.700 0.600 0.745
Number of successful
initial VH instances 12 0 8 72 40 2 30 40 204

Table 2: Accuracy of GPT-4V, LLaVA-1.5 and
MiniGPT-v2 on our OEQ benchmark.

GPT-4V LLaVA-1.5 MiniGPT-v2 Average

Existence 0.427 0.240 0.013 0.227
Shape 0.487 0.167 0.093 0.249
Color 0.460 0.267 0.053 0.260

Orientation 0.153 0.140 0.127 0.140
OCR 0.367 0.127 0.000 0.164
Size 0.413 0.353 0.140 0.302

Position 0.547 0.347 0.147 0.347
Counting 0.213 0.193 0.027 0.144

Average 0.383 0.229 0.075 0.229

stances for which the MLLM’s text responses are
factually correct. For the YNQ benchmark, we can
automatically calculate the accuracy of an MLLM
since the reference answers are just yes or no. Note
that a smaller accuracy indicates that an MLLM
is more likely to hallucinate on our benchmarks,
which shows that our VHTest is better at generating
successful VH instances.

4.2 Testing VH in MLLMs

Initial VH Instances are Insufficient Table 1
shows the accuracy of GPT-4V on the 100 initial
VH instances from COCO for each VH mode, and
the number of successful initial VH instances in
each VH mode. We observe that a large fraction of
the initial VH instances are not successful. In par-
ticular, the average accuracy of GPT-4V across the
8 VH modes is 0.745, which means that only 204
of the 800 initial VH instances make GPT-4V hal-
lucinate. These results show that VH instances in
existing image datasets are insufficient at testing
MLLMs. For instance, given the results in Table 1,
one may conclude that GPT-4V does not halluci-
nate for the shape VH mode since its accuracy is
1.00 for this VH mode. However, as we will discuss
in the following, GPT-4V hallucinates substantially
in the shape VH mode on our benchmarks.

MLLMs Hallucinate on our VHTest Bench-
marks Table 2 and Table 3 show the accuracy
of GPT-4V, LLaVA-1.5, and MiniGPT-v2 on our
OEQ and YNQ benchmarks, respectively. We ob-
serve that these MLLMs achieve a strikingly low

Table 3: Accuracy of GPT-4V, LLaVA-1.5 and
MiniGPT-v2 on our YNQ benchmark.

GPT-4V LLaVA-1.5 MiniGPT-v2 Average

Existence 0.627 0.640 0.540 0.602
Shape 0.760 0.513 0.487 0.587
Color 0.587 0.593 0.487 0.556

Orientation 0.560 0.500 0.527 0.529
OCR 0.573 0.420 0.487 0.493
Size 0.687 0.587 0.540 0.604

Position 0.580 0.687 0.513 0.593
Counting 0.513 0.520 0.527 0.520

Average 0.611 0.558 0.513 0.561

average accuracy across the eight VH modes: on
average 0.229 and 0.561 for all MLLMs on OEQ
and YNQ benchmarks, respectively. For example,
on average, 925 out of the 1,200 VH instances in
our OEQ benchmark induce these MLLMs to hal-
lucinate. It is worth noting that random guessing
can achieve an accuracy of 0.5 on our YNQ bench-
mark since it is a balanced yes/no benchmark. Our
results indicate that VHTest is highly effective at
generating successful VH instances.

Among the three MLLMs, GPT-4V and
MiniGPT-v2 achieve the highest and lowest ac-
curacy on our benchmarks, respectively. This
suggests that GPT-4V is the most truthful while
MiniGPT-v2 is the least truthful on our benchmarks.
Furthermore, we observe that MLLMs perform the
poorest on the orientation, counting, and OCR VH
modes based on their average accuracy for each
VH mode. For example, the average accuracy of
the three MLLMs on orientation VH mode is only
0.14. This implies that orientation is the most chal-
lenging VH mode, causing more VHs in MLLMs
compared to other VH modes.

We also evaluate Gemini-pro-vision (Gemini)
(March 2024 version), ShareGPT4V-13b (Chen
et al., 2023b), InstructBLIP-13b (Dai et al., 2023),
and Qwen-VL-Chat-7b (Bai et al., 2023) on our
YNQ benchmark. The results are shown in Ap-
pendix B.2. We find that these four MLLMs also
suffer from visual hallucinations on our benchmark,
with their accuracies all hovering around 0.54.
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4.3 Ablation Study

Unless otherwise mentioned, we use the counting
VH mode due to the GPT-4V query limitation.

Using Different Text-to-image Generative Mod-
els in Step III We use DALL·E-3 to generate
VH images in Step III of our VHTest. We also
evaluate other text-to-image generative models, in-
cluding Midjourney 6 (Midjourney), Stable Diffu-
sion XL 1.0 (Podell et al., 2024), and Stable Dif-
fusion 2.1 (Rombach et al., 2022) by using each
of them to generate 30 VH instances, respectively.
DALL·E-3 rewrites a prompt automatically to add
more details, whereas the other three models lack
this capability. We find that other text-to-image
generative models cannot generate high-quality im-
ages when directly using the text description from
Step II as a prompt. Therefore, we use GPT-4
to generate prompts given the text description for
other text-to-image generative models. Specifically,
we use the prompt in Figure 13 for GPT-4 to gener-
ate 30 prompts. Then, we use each text-to-image
generative model to generate 30 VH images with
the generated prompts. Finally, we manually craft
the questions and reference answers to form 30
VH instances. Table 4 shows the accuracy of the
three MLLMs on the 30 VH instances generated
by different text-to-image generative models. We
observe that these MLLMs achieve the lowest av-
erage accuracy of 0.144 when using DALL·E-3 in
Step III. This indicates that DALL·E-3 is the most
effective tool in generating VH instances that are
likely to trigger VHs in MLLMs.

Do Successful Initial VH Instances Help? We
analyze the impact of successful initial VH in-
stances on generating VH instances. Specifically,
we use Step II of our VHTest to generate a text
description based on three successful initial VH
instances and a text description based on three un-
successful initial VH instances in the counting VH
mode. Then, we use Step III of our VHTest to gen-
erate 10 VH instances based on each text descrip-
tion. Table 5 shows the accuracy of the 3 MLLMs
on the 10 VH instances in the two scenarios. Our
results show that the VH instances generated us-
ing successful initial VH instances substantially
reduce accuracy across GPT-4V, LLaVA-1.5, and
MiniGPT-v2. A lower accuracy indicates a higher
degree of VH in MLLMs. Our results show that us-
ing successful initial VH instances, our VHTest is
more likely to generate successful VH instances.

4.4 Mitigating VH in MLLMs

Fine-tuning LLaVA-1.5 on our Benchmark We
also study whether fine-tuning an MLLM on our
benchmark makes it less likely to hallucinate. To-
wards this goal, we use the open-source LLaVA-1.5.
Specifically, we split our OEQ benchmark into a
training set comprising 80% (120 VH instances for
each VH mode) and a testing set comprising 20%
(30 VH instances for each VH mode) of the data.
To make the testing set performance as close as
possible to the full OEQ benchmark dataset perfor-
mance before fine-tuning, for every VH mode, we
randomly divide the VH instances into 80%/20%
split 100 times and select the split whose testing
set accuracy is the closest to the accuracy on the
full OEQ benchmark.

We follow LLaVA-1.5’s limited task-specific
fine-tuning setting. However, we unfreeze the vi-
sion encoder since VH may result from its incorrect
embedding vectors for images. We set the learning
rate to 4e-6 during fine-tuning; and we fine-tune
on the 960 training VH instances for one epoch
(more hyperparameters and fine-tuning details are
shown in Appendix F). Our fine-tuning took only
18 minutes on a single A6000.

Fine-tuning Results Table 6 shows the accu-
racy of LLaVA-1.5 and fine-tuned LLaVA-1.5 on
the testing VH instances of our OEQ and YNQ
benchmarks. Table 6 also shows the results on
MME (Fu et al., 2023) and POPE (Li et al., 2023),
two popular existing benchmarks (not necessarily
VH) to evaluate the performance of an MLLM.
MME evaluates the perception and cognition abili-
ties of MLLMs. The scores for MME Perception
and MME Cognition are the sum of scores across
the corresponding subtasks, and the total scores are
2,000 for MME Perception and 800 for MME Cog-
nition. The POPE score represents the average F1-
score on random, popular, and adversarial splits of
POPE. We find that fine-tuned LLaVA-1.5 achieves
higher average accuracy than LLaVA-1.5 in both
our benchmarks, while they achieve comparable
results on MME and POPE benchmarks. Our re-
sults indicate that fine-tuning an MLLM on our
benchmark makes it less likely to hallucinate. We
exhibit several cases as qualitative results, showing
fine-tuning process mitigates visual hallucinations
in Appendix B.3.

Ablation Study on Fine-tuning Figure 6 shows
ablation study results on the MME benchmark and
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Table 4: Accuracy of the 3 MLLMs on VH instances generated by 4 different text-to-image generative models.

DALL·E-3 Midjourney 6 Stable Diffusion
XL 1.0

Stable
Diffusion 2.1

GPT-4V 0.233 0.267 0.500 0.429
LLaVA-1.5 0.167 0.133 0.233 0.233

MiniGPT-v2 0.033 0.067 0.033 0.000

Average 0.144 0.156 0.256 0.221

(a) Fine-tuning components (b) Fine-tuning epochs (c) Learning rate

Figure 6: Ablation study on fine-tuning LLaVA-1.5.

Table 5: Accuracy of the 3 MLLMs on the VH instances
generated by our VHTest using successful initial VH
instances and unsuccessful initial VH instances.

Successful initial
VH instances

Unsuccessful initial
VH instances

GPT-4V 0.300 0.700
LLaVA-1.5 0.200 0.500

MiniGPT-v2 0.100 0.300

Average 0.200 0.500

the testing set of our YNQ benchmark when fine-
tuning LLaVA-1.5. We use our YNQ benchmark
instead of OEQ because it supports automatic eval-
uation. Since an MLLM has three key compo-
nents: vision encoder, vision-language connector,
and LLM, we explore fine-tuning different compo-
nents. Our results show that fine-tuning all compo-
nents achieves the best overall results. As for fine-
tuning epochs, the results show that fine-tuning for
one epoch minimizes overfitting to our benchmark,
retaining the best performance on MME. For learn-
ing rate, both excessively large and small learning
rates lead to a decline in performance on our bench-
mark and MME.

5 Related Work

Hallucinations Hallucinations are well-known
issues for generative AI, including LLMs (Ji et al.,
2023; Huang et al., 2023a), MLLMs (Liu et al.,
2024b; Rawte et al., 2023; Tong et al., 2024), and
text-to-image generative model (Tong et al., 2023).

In general, hallucination refers to a generative
model imagines factually incorrect details in its
response for a given input. VH occurs when an
MLLM imagines incorrect details about an image
in visual question answering.

VH Benchmarks in MLLMs Prior works have
tried to benchmark MLLMs’ VHs (Li et al., 2023;
Liu et al., 2024a; Fu et al., 2023; Tong et al., 2024).
However, they collect VH images only from exist-
ing image datasets. This limits the diversity of VH
images. Moreover, existing image datasets may
have been used to pre-train an MLLM, leading
to data contamination (Jacovi et al., 2023; Sainz
et al., 2023). Our VHTest can generate a diverse
set of new VH images that do not appear in exist-
ing benchmarks. Moreover, the shape and size VH
modes are formulated by us for the first time.

Mitigating VH in MLLMs Existing works on
mitigating VHs in MLLMs can be categorized
into fine-tuning-phase and testing-phase mitigation.
Fine-tuning-phase mitigation focuses on improving
the fine-tuning data quality (Wang et al., 2024; Liu
et al., 2024a) and/or model structure (Tong et al.,
2024). These works typically freeze the vision en-
coder during fine-tuning, following the standard
fine-tuning setting of LLaVA-1.5. We find that fine-
tuning the vision encoder together reduces VHs
in MLLMs. Testing-phase mitigation leverages
prompt engineering with more visual evidence (Li
et al., 2024) or correction tools for hallucinated re-
sponses (Yin et al., 2023). Testing-phase mitigation
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Table 6: Results of LLaVA-1.5 before and after fine-tuning on our benchmarks and existing ones.

(a) Our OEQ benchmark.

Before
Fine-tuning

After
Fine-tuning

Existence 0.233 0.267
Shape 0.167 0.333
Color 0.267 0.267

Orientation 0.133 0.167
OCR 0.133 0.167
Size 0.367 0.367

Position 0.333 0.533
Counting 0.200 0.267

Average 0.229 0.296

(b) Our YNQ benchmark.

Before
Fine-tuning

After
Fine-tuning

Existence 0.633 0.600
Shape 0.423 0.538
Color 0.733 0.700

Orientation 0.500 0.567
OCR 0.433 0.467
Size 0.567 0.700

Position 0.700 0.700
Counting 0.467 0.433

Average 0.557 0.588

(c) MME and POPE benchmarks.

Before
Fine-tuning

After
Fine-tuning

MME Perception 1531.3 1556.6
MME Cognition 295.4 288.2

POPE 85.9 84.8

is complementary to fine-tuning-phase mitigation.

6 Discussion

As shown in Table 2, Table 3, and Table 7, GPT-
4V, LLaVA-1.5, and MiniGPT-v2 all exhibit ex-
tremely low accuracy, with an average of 0.229 on
our OEQ benchmark. Moreover, all seven main-
stream MLLMs achieve accuracy levels close to
random guessing on our YNQ benchmark, with
even the state-of-the-art GPT-4V only reaching an
accuracy of 0.611. Our benchmarks effectively re-
veal visual hallucinations within MLLMs and are
more challenging than most existing benchmarks
for MLLMs.

We attribute such high challenge level to the
adversarial construction idea during VH instance
generation, which is similar in spirit to adversarial
examples (Szegedy et al., 2013) commonly used to
test and improve model robustness. Unlike most
existing MLLM benchmarks that are limited to the
image space of existing image datasets like COCO,
VHTest derives text descriptions from initial VH
instances, which play a role of “adversarial direc-
tion”. Then VHTest exploits text-to-image genera-
tive models to generate challenging VH instances
following such adversarial direction. This moves
beyond the image space of limited existing image
datasets and into the manifold of text-to-image gen-
erative models, thereby making it possible to gen-
erate more challenging VH instances. Thus, our
VHTest offers a new perspective for constructing
MLLM benchmarks for future research.

7 Conclusion

We propose VHTest to generate VH instances to
test MLLMs. We collect VH benchmarks using
VHTest and we find that state-of-the-art MLLMs
exhibit high hallucination rates on our benchmarks.
Moreover, fine-tuning MLLMs on our benchmark

reduces hallucination without sacrificing their other
performance/capability.

8 Limitations and Future Work

We acknowledge that our VHTest still requires
human workers to manually generate a question-
answer pair for an automatically generated VH
image. An interesting future work is to make VHT-
est fully automatic so it can generate as many VH
instances as needed.
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A Generated Text Descriptions of VH
Modes

The following shows the text description for each
VH mode generated by our VHTest.

1. Existence VH: In existence hallucination, a
multi-modal large language model (MLLM)
may encounter two types of hallucinations.
The first type is when an object exists in an
image, but the MLLM asserts that it does not
exist in the picture, called negation existence
hallucination. The other type is when a certain
object does not exist in the image, but the
MLLM creates or infers details, objects, or
its attributes in an image, known as extrinsic
hallucination.

As for the negation existence hallucination,
an MLLM may exhibit challenges in recog-
nizing the existence of certain objects within
an image, particularly when these objects are
not prominently featured within the picture or
are partially obscured. The issue becomes ap-
parent when the model disregards objects that
are present but do not constitute the primary
focus of the image. Factors contributing to
negation existence hallucination include ob-
jects being small, distant, having low contrast
with the background, or being located at the
periphery of the frame. Such conditions can
cause the MLLM to miss or ignore these ele-
ments, leading to an incomplete or inaccurate
understanding of the scene. Negation exis-
tence hallucination is particularly evident in
complex environments where multiple objects
coexist but some are less dominant or visually
prominent.

Extrinsic hallucination occurs when an
MLLM creates or infers details, objects, or
attributes in an image that are not actually
present. This is often due to the model’s re-
liance on learned patterns and associations
from its training data rather than the specific
content of the image it’s analyzing. MLLMs
may "hallucinate" details or objects based on
what they have learned from other contexts,
leading to extrinsic hallucinations. Also, the
model readily associates certain scenes with
typical objects even when those objects are
not present, especially for scenes containing
other complex patterns.

2. Shape VH: A multi-modal large language

model (MLLM) misconstrues shapes, particu-
larly when typical simple shape and undulat-
ing strange shape are crowded. For example,
a plate contains a banana and other fruit, some
of which is undulating and coiled. When faced
with non-standard shapes, it often simplifies
them to more common, recognizable forms
due to biases in training data. In instances
where multiple shapes are present, especially
with varying levels of detail or color inten-
sity, the MLLM might get diverted towards
the more attention-grabbing elements, over-
looking or misreading other shapes in the pro-
cess. Additionally, the MLLM faces difficulty
in discerning subtle differences in shapes, of-
ten generalizing them into broad categories
based on prominent features. These biases
indicate a challenge in the MLLM’s ability to
accurately interpret and distinguish between
shapes, which could lead to incorrect gener-
alizations and potential misinterpretations of
image data.

3. Color VH: A multi-modal large language
model (MLLM) struggles with recognizing
or accurately identifying colors or color varia-
tions present in an image. It can misinterpret
the sequence of color transition, omitting or in-
accurately describing colors. This can be due
to factors like subtle variations, intertwined
colors, lighting, shadows, or adjacent color in-
terference. Moreover, the recognition of color
in little items may be more challenging, espe-
cially when the MLLM’s attention is attracted
by a multitude of various elements inside the
image.

4. Orientation VH: Orientation hallucination in
a multi-modal large language model (MLLM)
often results from a combination of factors
that lead to misinterpretation of the direction
in which objects, like vehicles, are facing. The
primary issues include perspective ambigui-
ties where 3D spatial orientation is not easily
conveyed in a 2D image, dense object overlap,
and environments with complex, busy back-
grounds that distract from or mimic the shape
and color of the target object. The MLLM
might also falter when the object of interest
is situated among others facing various di-
rections, confusing the model’s directionality
cues. Such errors could stem from the MLLM
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Question Could you describe the stairs in
the picture?

Existence

Generated image

Visual hallucination
mode Orientation OCR Counting

From the camera/viewer's perspective,
please choose the direction that is most
proximate to the orientation in which the
green vintage car is facing in the picture.
[Left, 45 degrees leftwards away from the
camera/viewer, Away from the
camera/viewer, 45 degrees rightwards away
from the camera/viewer, Right, 45 degrees
rightwards towards the camera/viewer,
Towards the camera/viewer, 45 degrees
leftwards towards the camera/viewer]

Read the English characters
located in the second row in the
picture.

How many children are there in
the picture?

The image depicts a cozy library scene
with a focus on a luxurious brown leather
armchair where a cat is sleeping. In the
background, there is a set of wooden stairs
on the right side. The stairs appear to be
part of a classic wooden spiral staircase
leading to an upper level or mezzanine.
The balusters are slender and evenly
spaced, supporting a sturdy handrail that
curves along with the staircase...

Reference answer
There are no stairs in the picture.
The bookshelves are densely
arranged together, creating an
illusion of steps in the dim room.

The stairs in the picture are a
spiral staircase, which is located
near a bookshelf filled with books.

Of course! The stairs in the
picture are the stairs leading up to
a large, dark brown leather chair
in front of a fireplace. It appears
to be located in a cozy and dimly
lit library, with many books and
other objects strewn about the
room.The stairs themselves...

45 degrees rightwards towards
the camera/viewer

The green vintage car in the
picture is facing 45 degrees
rightwards away from the
camera/viewer.

Away from the camera/viewer, 45
degrees rightwards away from the
camera/viewer

Based on the information
provided in the picture, the green
vintage car is facing towards the
camera/viewer, which is 4
degrees rightwards away from the
camera/viewer. So, the answer is
"Right, 4 degrees rightwards
towards the camera/viewer".

The English characters located in
the second row spell out
"LLAMAS CAN".

Levitating Llamas Can Dance

Of course! Here are the answers to
the characters in the second row of
the picture: 1. _____ (H) 2. _____
(A) 3. _____ (E) 4. _____ (L) 5.
_____ (M) Now, let me help you
read the words in the picture: 1.
HAT 2. AIRPLANE 3. ELEPHANT
4. LLAMA 5. MOUSE Wow, I hope
that helps!

There are seven children in the
picture. They appear to be having
a great time at a birthday party,
surrounded by balloons and
decorations.

There are several children in the
picture, but the exact number
cannot be determined without
more information.

There are 5 children in the
picture. Congratest answer is:
There are 5 children in the
picture.

LLMAS 8

GPT-4V

LLaVA-1.5 13b

🌋

MiniGPT-v2

Figure 7: VH instances generated by our VHTest for the other four VH modes and the text responses of three
MLLMs for them.

Table 7: Accuracy of Gemini-pro-vision (Gemini), ShareGPT4V-13b (Chen et al., 2023b), InstructBLIP-13b (Dai
et al., 2023), and Qwen-VL-Chat-7b (Bai et al., 2023) on our YNQ benchmark.

Gemini-pro-vision ShareGPT4V-13b InstructBLIP-13b Qwen-VL-Chat-7b

Existence 0.640 0.513 0.620 0.533
Shape 0.567 0.453 0.520 0.593
Color 0.500 0.607 0.600 0.573

Orientation 0.513 0.500 0.480 0.500
OCR 0.467 0.507 0.513 0.467
Size 0.607 0.547 0.547 0.620

Position 0.567 0.647 0.507 0.607
Counting 0.493 0.507 0.480 0.500
Average 0.544 0.535 0.533 0.549

either overlooking dominant visual cues that
indicate orientation or mistakenly assigning
equal importance to all elements in the scene.
Underlying these issues may be a lack of fo-
cused training on discerning object’s orien-
tation especially vehicle’s orientation, which

causes the MLLM to underperform in scenar-
ios where human observers would rely on sub-
tle contextual clues to determine directionality.
This gap between the model’s interpretation
and human perspective underscores the chal-
lenge in encoding and analyzing orientation
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within complex visual contexts.

5. OCR VH: OCR hallucination often stems
from a complex interplay of factors. A
multi-modal large language model (MLLM)
falters when faced with unconventional vi-
sual scenarios, such as irregular character
spacing, similar-looking letters, vertical ar-
rangement of characters, or interference from
nearby visual elements. These issues are com-
pounded when the text contains intentional
misspellings, typos, or uncommon character
combinations that the system attempts to auto-
correct based on standard language patterns.
The ability to accurately recognize characters
is further challenged by the influence of adja-
cent characters and the overall visual context.

6. Size VH: Size comparison in images re-
quires the multi-modal large language model
(MLLM) to recognize and accurately compare
objects based on visual scale. Challenges in
this task arise from factors like perspective,
distortions, overlapping of objects, intricate
patterns, complex backgrounds, discrepancies
in expected real-world proportions, and exces-
sive focus on foreground objects that causes
the size of enormous background objects to
be overlooked. Especially, when conducting a
comparison among multiple objects of similar
types and sizes, with other different types of
objects in the scene that disturb the MLLM’s
attention, the task becomes even more chal-
lenging. The MLLM misjudges which object
is larger or might rank objects incorrectly in
terms of size.

7. Position VH: A multi-modal large language
model (MLLM) encounters difficulties in ac-
curately assessing the spatial positioning re-
lationship between objects within an image.
This is exacerbated in scenarios where ob-
jects are placed in non-linear configurations,
such as circular layouts, which can disrupt
the model’s ability to apply standard left-to-
right reading patterns. Moreover, when the
objects are set against complex or similar
backgrounds that lack clear demarcation lines,
the MLLM’s spatial parsing capabilities can
be further compromised. Contributing fac-
tors such as overlapping objects, inconsistent
scaling, and deceptive perspective or angled
viewpoints also intensify this challenge. In

addition, the presence of shadows or uneven
lighting may cast ambiguity on the object’s
precise location, thereby leading to misinter-
pretation. Such spatial hallucination can be
attributed not just to the inherent complexity
of object arrangement but also to the MLLM’s
processing of visual cues that inform depth,
orientation, and the relationship of elements
within the image space.

8. Counting VH: A multi-modal large language
model (MLLM) has difficulty in accurately
counting the quantity of specific elements or
attributes in an image, especially when the ob-
jects are closely packed, overlap, are of differ-
ent sizes, are partially visible, or have varying
orientations. The task becomes increasingly
complex when attempting to count specific
subtype objects within a larger type category.
Such conditions can lead the model to over-
look certain objects, mistakenly merge similar
items, or misinterpret the image data, thereby
providing an inaccurate counting of numbers,
amounts, or values.

B Additional Results

B.1 Inter-annotator Agreement

Because annotating the whole benchmarks relies
on heavy human labor, we randomly select 100
VH instances from our YNQ benchmark to mea-
sure the inter-annotator agreement. Specifically,
four independent human annotators label these
100 VH instances. Based on these labeling re-
sults, we report Fleiss’ Kappa (κ) to indicate the
inter-annotator agreement. We obtain κ = 0.958
(0.81 ≤ κ ≤1.00), showing a very high degree of
agreement.

B.2 More MLLMs Evaluation on VHTest

We evaluate 4 additional MLLMs on the YNQ
benchmark: the Gemini-pro-vision (Gemini)
(March 2024), ShareGPT4V-13b (Chen et al.,
2023b), InstructBLIP-13b (Dai et al., 2023), and
Qwen-VL-Chat-7b (Bai et al., 2023), as shown in
Table 7. Together with Table 3, GPT-4V shows the
highest average accuracy of 0.611 among these 7
MLLMs.

B.3 Qualitative Results on Fine-tuning

To better elucidate the efficacy of fine-tuning for
mitigating the visual hallucinations within MLLMs,
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Generated Image

Generated Image

LLaVA-1.5 13b (after fine-tuning): 
The chair with the largest size is the one in the center of the room, which is a giant wooden chair. The second
largest chair is located to the left of the giant chair, and it is a large wooden chair as well.

Question: 
Could you identify and locate the chair with the largest and the second largest size in the picture?
   
LLaVA-1.5 13b (before fine-tuning): 
In the image, there are several chairs of different sizes and styles. The chair with the largest size is located in
the middle of the room, while the chair with the second largest size is situated on the right side of the room. 

LLaVA-1.5 13b (after fine-tuning): 
The banana in the picture is curved.

Question: 
Describe the shape of the banana in the picture.
  

LLaVA-1.5 13b (before fine-tuning): 
The banana in the picture is shaped like a heart. 

Figure 8: Qualitative results on mitigating visual hallucinations of LLaVA-1.5.

we report some responses from the LLaVA-1.5 be-
fore and after fine-tuning, as shown in Figure 8.
In these cases, before fine-tuning, LLaVA-1.5 mis-
represented the shapes of objects by assigning ir-
relevant shapes to them, i.e., asserting that the ba-
nana in Figure 8 is heart-shaped; LLaVA-1.5 was
unable to precisely discern the relative size of ob-
jects, as demonstrated in Figure 8 where it wrongly
pinpointed the second-largest chair to the right
side of the image. Fortunately, the fine-tuned
LLaVA-1.5 mitigates these flaws. As shown in
Figure 8, LLaVA-1.5 can accurately describe the
curved shape of the banana and correctly pinpoint
the two largest chairs in the image. We observe
such improvements in response quality across the
entire testing set, indicating the effectiveness of our
method.

C Prompts Used in VHTest

We use the following prompt in Figure 9 for text
description generation in Step II, based on a suc-
cessful initial VH instance.

Prompt for text description generation using a suc-
cessful initial VH instance:

[image]
Question: [question]
Multi-modal LLM (MLLM)’s response: [testing
MLLM’s hallucinated response]
Detected hallucination in the response: [detected hallu-
cination in the response]

Focus on the following elements: image, question,
MLLM’s response, and the detected hallucination in the
response. I’m trying to identify visual hallucinations in
the MLLM associated with its visual process. Through
the specific example, are there any general types of hal-
lucination modes you notice the MLLM makes, or any
visual features that MLLM fails to encode, ultimately
leading to the errors in MLLM’s response? Try to give
hallucination modes that are specific enough that some-
one could enable consistent reproduction of images and
corresponding questions. Please try to include as many
general hallucination modes as possible. These hallu-
cination modes will be used later to generate images
or videos. In your hallucination modes, please clearly
explain why the this hallucination mode would cause
difficulties for the vision encoder of MLLM to under-
stand images related to this hallucination mode. I will
further use this reason to precisely generate images that
match the hallucination mode and are able to mislead the
MLLM. Please encapsulate the essence of the examples
provided, summarize as many as possible and stick to
the examples.

Figure 9: Full prompt to generate a text description
based on a successful initial VH instance.
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We utilize the following prompt in Figure 10
for text description generation in Step II, given an
unsuccessful initial VH instance.

Prompt for text description generation using an un-
successful initial VH instance:

[image]
Question: [question]
A hypothetical response from the multi-modal LLM
(MLLM): [a hypothetical hallucinated response]
Detected hallucination in the hypothetical response: [de-
tected hallucination in the hypothetical response]

Focus on the following elements: image, question,
MLLM’s hypothetical response, and detected hallucina-
tion in the hypothetical response. I’m trying to identify
visual hallucinations in the MLLM associated with its
visual process. Through the specific example, are there
any general types of hallucination modes you notice the
MLLM makes, or any visual features that MLLM fails
to encode, ultimately leading to the errors in MLLM’s re-
sponse? Try to give hallucination modes that are specific
enough that someone could enable consistent reproduc-
tion of images and corresponding questions. Please try
to include as many general hallucination modes as pos-
sible. These hallucination modes will be used later to
generate images or videos. In your hallucination modes,
please clearly explain why the this hallucination mode
would cause difficulties for the vision encoder of MLLM
to understand images related to this hallucination mode.
I will further use this reason to precisely generate im-
ages that match the hallucination mode and are able to
mislead the MLLM. Please encapsulate the essence of
the examples provided, summarize as many as possible
and stick to the examples.

Figure 10: Full prompt to generate a text description
based on an unsuccessful initial VH instance.

We use the following prompt in Figure 11 for
text description integration in Step II.

Prompt for text description integration:

I want you to focus on the [VH mode]: [the definition
of VH mode]. Try to summarize the [VH mode] text
description in ONE paragraph less than 200 words to
explain the causes of the hallucination based on the in-
formation below.

[N text descriptions]

Figure 11: Prompt to integrate N text descriptions into
a final text description for a VH mode.

We use the following prompt in Figure 12 for a
text-to-image generative model to generate a VH
image in Step III.

Prompt for VH image generation:

Generate an image that reflects the given hallucination
mode. After your image generation, we will manually
generate questions based on the image.

Your MAIN GOAL is to ensure that the image aligns
with the hallucination mode well so that querying the
multi-modal LLM with the combination of manual ques-
tions and the image can effectively induce hallucinations.

You will be evaluated on how well you actually perform.
The generated image should ideally align with the hallu-
cination mode, but there’s room for creativity. Be both
creative and cautious. You can try to create image with
different scenes and objects that align with the hallu-
cination mode. Moreover, when you generate images,
remember you are a very clever expert in exploiting the
hallucination mode. For future debugging purposes, en-
sure that the generated images with our manual questions
MUST cause multi-modal LLMs to provide incorrect
responses.

Hallucination Mode:

[Text description of a VH mode]

Figure 12: Prompt for a text-to-image generative
model to generate a VH image under a VH mode.

We use the following prompt in Figure 13 for an
LLM to generate prompts for text-to-image genera-
tive models. We only append extra text at the end
compared with the prompt in Figure 12.
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Prompt for an LLM to generate prompts for text-to-
image generative models:

Generate an image that reflects the given hallucination
mode. After your image generation, we will manually
generate questions based on the image.

Your MAIN GOAL is to ensure that the image aligns
with the hallucination mode well so that querying the
multi-modal LLM with the combination of manual ques-
tions and the image can effectively induce hallucinations.

You will be evaluated on how well you actually perform.
The generated image should ideally align with the hallu-
cination mode, but there’s room for creativity. Be both
creative and cautious. You can try to create image with
different scenes and objects that align with the hallu-
cination mode. Moreover, when you generate images,
remember you are a very clever expert in exploiting the
hallucination mode. For future debugging purposes, en-
sure that the generated images with our manual questions
MUST cause multi-modal LLMs to provide incorrect
responses.

Hallucination Mode:

[Text description of a VH mode]

As an LLM, DO NOT generate images, but generate
prompts for text-to-image generative models aligning
with the hallucination mode. I will use your generated
prompts for text-to-image generative models later.

Figure 13: Prompt for an LLM to generate prompts for
text-to-image generative models under a VH mode.

D Question Templates

We provide question templates for all eight VH
modes below.

Question templates for existence VH mode

1. Could you describe [object] in the picture?
2. Describe the [property] of [object] in the picture.

Question templates for shape VH mode

1. Describe the shape(s) of [object] in the picture.
2. In the photo, is [object] depicted with a conventional,
typical shape?

Question templates for color VH mode

1. Describe the color(s) of [object] in the picture.
2. Describe [n] main color(s) of [object] in the picture.
3. Describe all the colors of [object] in the picture. Do
not miss any color.
4. Describe the original color of [object] in the picture.

Question templates for orientation VH mode

1. From the camera/viewer’s perspective, please choose
the direction that is most proximate to the orientation in
which [object] is facing in the picture. [Left, 45 degrees
leftwards away from the camera/viewer, Away from the
camera/viewer, 45 degrees rightwards away from the
camera/viewer, Right, 45 degrees rightwards towards the
camera/viewer, Towards the camera/viewer, 45 degrees
leftwards towards the camera/viewer]
2. From the camera/viewer’s perspective, please choose
the direction that is most proximate to the orientation in
which [object] is facing in the picture. [Left, Left and
upward within the pictorial plane, Upward within the
pictorial plane, Right and upward within the pictorial
plane, Right, Right and downward within the pictorial
plane, Downward within the pictorial plane, Left and
downward within the pictorial plane]
3. From the camera/viewer’s perspective, please choose
the direction that is most proximate to the orientation in
which [object] is facing in the picture. [Away from the
camera/viewer, Towards the camera/viewer]

Question templates for OCR VH mode

1. Read the (English) character(s)/word(s)/
caption [at WHERE] in the picture.

Question templates for size VH mode

1. Could you identify and locate [object] with the
largest/smallest size in the picture?
2. Could you identify and locate [object] with the
tallest/shortest height in the picture?
3. Could you identify and locate [object] with the second
largest/smallest size in the picture?
4. Could you identify and locate [object] with the
largest/smallest and the second largest/smallest size in
the picture?
5. Could you identify and locate [object] with the
tallest/shortest and the second tallest/shortest height in
the picture?
6. Could you identify and locate the 2/3/4 largest/small-
est [object] in the picture?
7. Which one is larger/smaller/taller/shorter, [object A]
or [object B]?
8. What is the largest [object] in the picture?

9630



Question templates for position VH mode

1. Is [object A] to the left/right of/on the top of/being
placed on/above/under/inside/outside [object B]?
2. Which one is on the left/right/top, [object A] or [object
B]?
3. Which one is closer to/further from the camera or
viewer perspective, [object A] or [object B]?
4. Which one is positioned under/positioned above/-
closer to [reference object], [object A] or [object B]?
5. Regardless of the positional relationship of the actual
scene in reality, from the camera’s perspective in the
photo, is [object A] positioned above/below [object B]?
6. Is [object A] on and touching [object B]?

Question templates for counting VH mode

1. How many [object] are depicted/there/visible/can be
seen [at WHERE] in the picture?

E Special Cases in Step III

In existence VH mode, a human worker uses the
prompt in Figure 14 to find non-existent objects
in a VH image with the aid of an MLLM, such
as GPT-4V. The non-existent objects found in this
way are more likely to trigger VHs in MLLMs.

Prompt to find names of non-existent objects in a VH
image in the existence VH mode

[image]

First, list all the names of objects in the picture. And then
return some names of objects according to Requirement
1 or Requirement 2:

Requirement 1: Objects you associate with the scene that
should be there but are not actually there in the picture.

Requirement 2: Objects that look similar to an object in
the picture but do not actually exist in the picture.

Figure 14: Prompt to find names of non-existent objects
in a VH image in the existence VH mode.

Table 8: Hyperparamters for fine-tuning LLaVA-1.5.

Hyperparameter Setting

Batch size 16
Vision encoder lr 4e-6
Projection lr 4e-6
LLM lr 4e-6
Lr schedule cosine decay
Lr warmup ratio 0.03
Weight decay 0
Epoch 1
Optimizer AdamW
DeepSpeed stage 3

F Details of Fine-tuning Experiments

F.1 Hyperparamters
When fine-tuning LLaVA-1.5 on the training set
of VHTest dataset, we follow LLaVA-1.5’s limited
task-specific fine-tuning setting. Additionally, we
unfreeze the vision encoder. The hyperparameters
are shown in Table 8.

F.2 Pre-processing of the Training Set
As mentioned in (Liu et al., 2023), the short-form
data overfit an MLLM behaviorally to short-form
answers. We follow this work to do pre-processing
on both counting and position VH modes. To be
more specific, for counting VH mode instances, we
use the prompt below in Figure 15 for an LLM
(e.g., GPT-4) to modify every number reference
answer into a reference sentence. As for position
VH mode instances, we add the sentence “Answer
the question using a single word or phrase.” after
all the questions in every position VH instance.

Prompt for reference answer modification in counting
VH mode

Don’t talk nonsense. Turn the ground-truth numbers
into extremely correct, extremely accurate, and only a
little of diverse sentences based on the corresponding
question. Sentences should be independent of each other,
with each sentence occupying one line.

Figure 15: Prompt for reference answer modification in
counting VH modeduring pre-processing of training set.
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