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Abstract

In everyday language use, speakers frequently
utter and interpret sentences that are semanti-
cally underspecified, namely, whose content
is insufficient to fully convey their message or
interpret them univocally. For example, to inter-
pret the underspecified sentence “Don’t spend
too much”, which leaves implicit what (not) to
spend, additional linguistic context or outside
knowledge is needed. In this work, we propose
a novel Dataset of semantically Underspecified
Sentences grouped by Type (DUST) and use it
to study whether pre-trained language models
(LMs) correctly identify and interpret under-
specified sentences. We find that newer LMs
are reasonably able to identify underspecified
sentences when explicitly prompted. However,
interpreting them correctly is much harder for
any LMs. Our experiments show that when
interpreting underspecified sentences, LMs ex-
hibit little uncertainty, contrary to what theo-
retical accounts of underspecification would
predict. Overall, our study reveals limitations
in current models’ processing of sentence se-
mantics and highlights the importance of using
naturalistic data and communicative scenarios
when evaluating LMs’ language capabilities.

1 Introduction

Speakers can almost effortlessly deal with seman-
tic underspecification, a widespread phenomenon
that occurs when a linguistic signal does not fully
convey all the information required for commu-
nication to succeed (Frisson, 2009; Harris, 2020).
This is possible because, in a normal state of af-
fairs, humans have access to further linguistic or
extra-linguistic information coming from the con-
versation, the surrounding context, or shared knowl-
edge. If this is the case, speakers will have no
trouble understanding the sentences “I’ll meet you
there” or “I saw you on the hill with the telescope”,
even though these sentences leave underspecified
where “there” is, or which interlocutor had “a tele-

S1 Don’t spend too much.
S2 Don’t spend too much cash.

Exp. 1 Is S2 more specified than S1? ✓

S1 The bag is on the chair. It is green
S2 The bag is on the chair. The chair

is green.

Exp. 2 Does S1 mean the chair is green? ?
Does S2 mean the chair is green? ✓

Does S1 mean the chair isn’t green? ?
Does S2 mean the chair isn’t green? ✗

Figure 1: In experiment 1 (top), we test if LMs distin-
guish underspecified sentences (S1) from more specified
counterparts (S2) when explicitly prompted. In experi-
ment 2 (bottom), we test if LMs correctly interpret S1
and S2 in a more naturalistic communicative setting.

scope”. It has been argued that underspecification
and the related phenomenon of ambiguity are not
a hindrance in language, but rather a desirable fea-
ture of human language communication (Pianta-
dosi et al., 2012); they allow for more concise ut-
terances, which makes language more efficient. In-
deed, humans excel at making inferences (Grice,
1969), which is less cognitively taxing compared
to articulating speech (Levinson, 2000).

While humans are good at dealing with seman-
tically underspecified language by leveraging ad-
ditional information, how pre-trained transformer
language models (LMs) behave when faced with
this phenomenon is an open question. Despite the
growing literature exploring the semantic capabili-
ties of last-generation LMs (Ettinger, 2020; Rogers
et al., 2020; Hanna et al., 2023), little attention
has been paid to this problem. Furthermore, the
few previous works generally did not distinguish
between the various facets of ambiguity and un-
derspecification (Liu et al., 2023) or only focused
on ambiguity (Stengel-Eskin et al., 2024; Ortega-
Martín et al., 2023; Fantechi et al., 2023).
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However, handling semantically underspecified
language is critical for LMs. Since underspeci-
fied sentences can license multiple interpretations,
choosing one arbitrarily can lead to undesired
or even harmful consequences for communica-
tion (see Hutchinson et al., 2022; Pezzelle, 2023,
for an in-depth discussion of this issue). Cor-
rectly processing underspecified language could
have real-world consequences for NLP systems.
For example, if an embodied virtual assistant were
to misinterpret a question like “Can I hang the
painting with the cup?”, there could be risks: while
the answer may be yes if the cup is the subject of
the painting, the system should answer no if this is
not the case. In machine translation, models should
carefully handle underspecification; for example,
when translating “they”, models must determine
whether the pronoun refers to a group of people
or an individual of unknown, nonbinary, or inten-
tionally underspecified gender. Therefore, LMs
should (1) recognize semantically underspecified
inputs and (2) interpret them appropriately, ideally
with no biases toward a default reading.

We build on and extend previous work by asking
two new questions: (1) to what extent can LMs
detect if a sentence is (under)specified? (2) How
do LMs interpret such underspecified sentences
compared to more specified counterparts? To this
end, we introduce DUST1, a Dataset of semanti-
cally Underspecified Sentences (and more specified
counterparts) grouped by the Type of underspecifi-
cation they belong to, and propose a suite of exper-
iments to answer the questions above using DUST.
To categorize instances of underspecification, we
build on Egg’s (2010) proposed taxonomy.

Our experiments and analysis show that (1) dis-
tinguishing semantically underspecified sentences
from specified counterparts is not a trivial task for
current LMs. While newer, better-performing mod-
els achieve reasonable performance when given ex-
plicit instructions, other models fare only slightly
better than random. Moreover, (2) when asked to in-
terpret underspecified sentences in a more natural-
istic communicative scenario without explicit guid-
ance, all LMs fall into the trap of interpreting them
similarly to their more specified versions. This sug-
gests that, in the absence of a specific prompt, these
models assign biased or default interpretations to
underspecified and ambiguous sentences.

1We release DUST and code for our experiments here:
https://github.com/frank-wildenburg/DUST

Our findings confirm that current LMs, including
the best-performing Llama 2 (Touvron et al., 2023)
and Mistral (Jiang et al., 2023), struggle with un-
derspecified and ambiguous language (in line with
Liu et al., 2023). This reveals more general limi-
tations with the processing of sentence semantics.
Moreover, our study highlights the importance of
methodological choices, such as experimental set-
ting, or the level of informativeness of prompts, in
fine-grained evaluations of LMs’ capabilities.

2 Related work

2.1 Semantic Underspecification

Semantic underspecification is a phenomenon in
which the semantic material of a sentence “leaves
open” possibilities for readers of the text that may
then be “filled in” through non-linguistic informa-
tion (Zwicky and Sadock, 1975; Frisson, 2009;
Egg, 2010; Harris, 2020). The phenomenon has
traditionally been studied through the lens of (for-
mal) linguistics and semantics (Zwicky and Sadock,
1975; Lappin, 2000; Egg, 2010; Harris, 2020, in-
ter alia), although it has also been studied in other
fields, such as the neuroscience of language pro-
cessing (Frisson, 2009) and information theory (Pi-
antadosi et al., 2012; Franzon and Zanini, 2022).

Semantic underspecification is often studied in
tandem or in contrast with ambiguity, a related
phenomenon. The difference between the two
is that underspecified sentences sometimes have
only one reading (which may be clarified by non-
linguistic information), whereas ambiguous sen-
tences have multiple readings (Zwicky and Sadock,
1975). However, all ambiguous sentences are also
underspecified; after all, some non-linguistic infor-
mation will disambiguate between readings. Hence,
underspecification can be seen as a generalization
of ambiguity. Despite this, the terms are sometimes
used interchangeably or in tandem; Sennet (2023)
points out that “often simple underspecificity will
suffice for a charge of ambiguity”.

Egg (2010) gives a detailed categorization of
underspecification, grouping instances into four
types based on whether the instance’s constituent
parts comprise the same semantic value across its
readings, and whether it is possible to give a sin-
gle syntactic analysis for all the readings. As this
classification allows us to explore the interaction
between the semantic and syntactic dimensions of
underspecification and their effects on LMs, we use
it as the theoretical backbone to build our dataset.
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2.2 Semantic Underspecification in NLP

NLP has long studied problems around semantic
underspecification. Early work explicitly modeled
underspecification by creating formal, symbolic
representations of underspecified sentences that
captured each sentence’s potential meanings, with-
out generating them (Poesio, 1994; Niehren et al.,
1997; Pinkal, 1999, inter alia). NLP systems could
then use such representations to make processing
sentences more tractable, despite their potentially
numerous interpretations (Wahlster, 2000).

Another line of work focuses instead on identify-
ing or resolving underspecification. Stengel-Eskin
et al. (2024), for example, identify the meanings
of ambiguous sentences by training a model to
map from such sentences to formal representations
of their multiple potential meanings. Berzak et al.
(2015) train a model to resolve underspecification
and determine the correct reading of an ambiguous
caption, given an accompanying image. More gen-
erally, many classic NLP tasks, such as word sense
disambiguation and coreference resolution, involve
resolving a word’s meaning in a context where it is
underspecified. Where underspecification cannot
be resolved, studies have tried to identify or gen-
erate clarifications or clarification questions (Roth
et al., 2022; Testoni and Fernández, 2024).

Some recent work has addressed ambiguity and
underspecification in the context of pre-trained
LMs. Considering multi-modal models, Prasad
et al. (2023) find that vision-language architectures
often struggle with underspecified inputs; specify-
ing inputs improves performance. Pezzelle (2023)
reports similarly negative results, discovering that
CLIP (Radford et al., 2021) sometimes prefers in-
valid but highly specified captions to valid but un-
derspecified ones. Multi-modal models’ challenges
with underspecification concern not only perfor-
mance but also ethics: Hutchinson et al. (2022)
warn that image generation models might rely on
social biases to fill in underspecified details.

Related questions have been studied in a uni-
modal, text-only context as well, though existing
work focuses on ambiguity, rather than underspeci-
fication more broadly. For example, Ortega-Martín
et al. (2023) and Fantechi et al. (2023) study Chat-
GPT’s ability to explicitly identify ambiguity, and
report mixed results. Most pertinently, Liu et al.
(2023) study how pre-trained LMs process ambigu-
ous sentences, and find that they are unable to use
context to infer which potential reading of an am-

T Phenomenon #S Source
1 Logical Form 35 LAVA

Ellipsis 18 LAVA
2 PP attachment amb. 48 LAVA

VP attachment amb. 60 LAVA
Conjunction amb. 40 LAVA

3 Referential amb. 36 LAVA
Referential amb. 273 WSC
Added compound 774 CLAIRE
Fused head 532 CLAIRE
Implicit reference 216 CLAIRE
Metonymic reference 91 CLAIRE

Table 1: Number of sentences (#S) and source per type
(T) and phenomenon of underspecification in DUST.
Phenomena containing underspecification without am-
biguity are italicized. ‘amb.’ stands for ambiguity.

biguous sentence is correct. In the present work,
we aim to expand the existing literature to cover not
just ambiguity, but all types of underspecification.

3 Dataset

To study how LMs deal with semantically under-
specified language, and since there currently exists
no comprehensive resource on underspecification,
we construct DUST, a Dataset of Underspecified
Sentences by Type, consisting of 2,123 English un-
derspecified sentences and equally many specified
counterparts, based on Egg’s (2010) categorization;
see Table 1 for an overview. Below, we discuss
the construction of the dataset by type; note that
although Egg’s taxonomy includes 4 types of under-
specification, we only include 3 in our dataset due
to the features of one type (more details below).

Type 1 Egg (2010)’s first type consists of seman-
tically and syntactically homogeneous expressions,
i.e., sentences with multiple readings that all share
the same syntactic structure, and word/token-level
meaning. To cover this type of underspecification,
we collect 53 sentences from the Language and
Vision Ambiguities (LAVA) dataset (Berzak et al.,
2015), a multimodal dataset containing ambigu-
ous sentences and visual data that disambiguated
them. For each sentence in this dataset, we cre-
ated a more specified counterpart using its visual
disambiguations. An example of such a sentence is

Andrei approached Danny; Yevgeni, too.

which leaves underspecified whether Yevgeni ap-
proached Danny, or was approached by Andrei. A
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potential specified version of this sentence is

Andrei approached Danny; Andrei ap-
proached Yevgeni, too.

Type 2 The second type consists of semanti-
cally but not syntactically homogeneous expres-
sions. The multiple readings of such expressions
stem from the multiple ways of analyzing the ex-
pression’s structure; different analyses can lead to
different meanings. The LAVA dataset (Berzak
et al., 2015) provides 108 sentences containing VP
and PP attachment ambiguity and conjunction am-
biguity, for example

Andrei looked at the green bag with a
telescope.

which leaves ambiguous whether ‘with a telescope’
attaches to ‘the green bag’ or to ‘looked at’. It is
thus unclear whether the bag contains a telescope,
or was looked at using one. A more specified coun-
terpart of this sentence might be

Andrei looked at the green bag through a
telescope.

Type 3 The third type consists of syntactically
but not semantically homogeneous expressions,
which share a single syntactic structure but do not
share the same semantic material in its constituent
parts. It is unique in that, besides instances of ref-
erential ambiguity, all examples of type 3 in DUST
are underspecified but not ambiguous. It is thus
particularly interesting for our work, as underspec-
ified but not ambiguous expressions are important
for LMs to handle, but currently understudied. Ex-
amples include deictic expressions and expressions
that are underspecified due to missing information.

As examples of this type of underspecification,
we first collect 89 sentences from LAVA that con-
tain referential ambiguity or missing information.
We then extend our collection with sentences from
the CLArifying Insertions from REvision Edits
(CLAIRE) dataset (Roth et al., 2022), which con-
sists of wikiHow instructional texts, and revisions
that clarify the original sentences by inserting ad-
ditional information. We treat the pre-edit text
as underspecified due to missing information, and
the post-edit text as more specified. Due to the
original authors’ pre-processing, some pre-edit sen-
tences are ungrammatical; we thus score pre-edit
sentences’ grammaticality with GRUEN (Zhu and
Bhat, 2020) and exclude low-scoring sentences.

We also include the original 273 sentences from
the Winograd Schema Challenge (WSC; Levesque
et al., 2012) in our dataset as examples of referen-
tial ambiguity. For each sentence from this dataset,
we crafted a more specified counterpart by chang-
ing the gender or plurality of one of the antecedents
in the sentence, removing the referential ambiguity.
An example sentence of this type is

Don’t spend too much.

which does not specify what should not be spent.
A more specified counterpart might be

Don’t spend too much cash.

Type 4 Egg’s fourth and final type, consisting
of expressions that are neither syntactically nor se-
mantically homogeneous, concerns phenomena that
occur at the word level, such as homonymic expres-
sions. While a word (e.g. “plant”) can have mul-
tiple syntactically and semantically distinct read-
ings, most sentences that contain homonyms have
readings that rely on the same syntactic structure.
For example, “he walked to the bank” contains the
homonym “bank”, which could refer to a riverbank
of a financial institution, but the syntactic structure
of the sentence is the same across both readings.

Unlike the three types described above, the phe-
nomena belonging to this type cannot be easily
studied using an experimental setup based on mini-
mal pairs—the one used in this work—where the
two interpretations are embedded in two phrases
or sentences that only differ by a single, minimal
intervention (see Appendix A for a preliminary ex-
ploration of the problem). For this reason, we do
not include type 4 in our benchmark and leave a
comprehensive exploration of it to future work.

4 Models

We focus on pre-trained autoregressive models, in-
cluding both older and newer (generally stronger)
LMs to consider the influence of general perfor-
mance improvements on LMs’ underspecification
processing. As our experiments require sentence
probabilities, we use only openly available models,
which provide these. Specifically, we consider the
following models, accessed using HuggingFace’s
Transformers library (Wolf et al., 2020):2

• GPT-2 XL (Radford et al., 2019), a 1.5 bil-
lion parameter decoder-only LM trained on a
40GB dataset of webpages.

2See Appendix C for more model details.
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• FLAN-T5 XXL (Chung et al., 2022), a 11 bil-
lion parameter encoder-decoder LM. FLAN-
T5 is an enhanced version of T5, finetuned in
a mixture of language modeling tasks.

• OPT-13b (Zhang et al., 2022), a 13 billion
parameter decoder-only transformer model.

• Llama 2 7b and 13b (Touvron et al., 2023), 7
and 13 billion parameter3 models trained on
publicly available online data.

• Mistral 7b v0.1 (Jiang et al., 2023), a 7.3 bil-
lion parameter model designed to provide a
balance between performance and efficiency.

Except for Flan-T5, the models we use in our
research were not instruction-tuned during pre-
training. This allows us to test the abilities of base
LMs to process underspecification.

5 Detecting Semantic Underspecification

We test whether LMs recognize that a sentence is
more or less specified by looking at the perplexity
it assigns to a prompt comparing the degree of (un-
der)specification of two embedded sentences. This
task seeks to replicate the process of assessing hu-
man speakers’ understanding of this phenomenon
by asking them to provide a metalinguistic assess-
ment. We use a perplexity-based approach, rather
than evaluating the generative behavior of the mod-
els in response to a prompt, as there is growing
evidence that prompt-based approaches are not suit-
able for this purpose (Hu and Levy, 2023). For com-
parison, we include a preliminary experiment ex-
ploring model-generated responses in Appendix D.

5.1 Experimental Setup
We create inputs of the form “This is an under-
specified sentence: [sentence1]. This is its
more specified counterpart: [sentence2]”, where
[sentence1] and [sentence2] are a pair of sen-
tences from DUST. For each pair, we create a ver-
sion of the input where the sentences are correctly
labeled as under- and more specified and one where
their labels are switched.

If the models can recognize underspecification,
we would expect that the inputs where the speci-
fication labels are correct would receive a higher
probability / lower perplexity than the same input
with incorrect labels. That is, the input

3Due to compute limits, we only use the 13 billion param-
eter variant of Llama 2 in our second experiment

This is an underspecified sentence: ‘An-
drei left the chair with a green telescope’.
This is its more specified counterpart:
‘Andrei left the chair on which lay a
green telescope’.

should be judged by LMs as more likely than the
input where the blue (underspecified) and red (more
specified) sentences are switched. We test this by
computing, for a given prompt, the product of the
model perplexities assigned to each token in it.

To ensure prompt diversity, and because models
may not have been exposed to terminology such as
“underspecified” during training, we also use alter-
nate versions of our prompts, where “under-” and
“more specified” are replaced by “(un)ambiguous’,
or “contain (little/a lot of) (information/detail)”.
We also create prompts that reverse the order in
which the under- and more specified sentences are
presented.4 In total, we create 33,968 input pairs:
2,123 sentence pairs × 4 prompt variants × 4 or-
ders. Then, for each model and input pair, we
record whether the model correctly assigns a lower
perplexity to the specification-matched input than
to its mismatched counterpart.
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Figure 2: Proportion of specification-matched inputs
that receive lower perplexity than their specification-
mismatched counterparts; higher is better. Asterisks (*)
indicate performance significantly (p < .05) different
from chance (50%). The leftmost column, Overall, re-
ports the proportion computed over the whole dataset.

Sanity check Our experimental setup aims to
determine if models can recognize underspecifica-

4For more example inputs, see Appendix E.
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tion when prompted to do so; however, prior work
suggests that models may struggle to understand
their prompts (Webson and Pavlick, 2022). So, we
first verify the soundness of our setup by using
it to test models in an easier domain: sentiment.
We gather “very positive” and “very negative” sen-
tences from the SST-5 dataset (Socher et al., 2013),
and insert them into prompts of the form “This is
a positive sentence: [sentence1]. This is a neg-
ative sentence: [sentence2]”. All models assign
lower perplexity to sentiment-matched inputs with
at least 65% and an average of 75% accuracy (see
Appendix G for details). This indicates that current
LMs can be tested using this experimental setup.

5.2 Results

Newer models perform better Our results (Fig-
ure 2) indicate that some LMs can recognize under-
specification. All models besides Flan-T5 do so at
a rate significantly higher than chance; Flan-T5’s
poor performance may be due to its architecture,
i.e., a fine-tuned encoder-decoder model and not
a decoder-only model trained on causal language
modeling like the others. Stronger models more of-
ten prefer specification-matched prompts: Mistral,
which performs significantly better than all other
models across the board (p < .001), achieves an
overall accuracy of 0.74. The second-best model,
Llama 2, lags behind Mistral by almost 10 accu-
racy points, with an overall accuracy of 0.65. In
turn, this LM significantly (p < 0.001) outper-
forms OPT (0.55) and GPT-2 (0.53) by as many
accuracy points, indicating a clear ranking between
the various models.

Given the models’ high performance in the con-
trol experiment with sentiment, the generally lower
accuracy observed here is likely due to models’ dif-
ficulties in recognizing and identifying underspeci-
fication, rather than prompt-related challenges.

Results vary across types Even for top mod-
els, performance across different types of under-
specification is not uniform, with gaps of up to
12 accuracy points between the best- and worst-
performing types. Mistral, for example, achieves
a peak in performance on type 1 (0.85), followed
by type 2 (0.79), and type 3 (0.73). For the sec-
ond best-performing model, Llama 2, type 1 is also
the easiest (0.76). However, in contrast with Mis-
tral, types 2 and 3 are equally challenging; Llama 2
achieves similar performance (0.65) on both. These
different patterns suggest that the models not only

differ in their quantitative ability to perform the
task but also in the types of errors they make.

Qualitative analysis To shed light on the cases
where each model succeeds and fails, we conduct
a qualitative analysis on a handful of samples,
i.e., one underspecified sentence per linguistic phe-
nomenon, with the best-performing Mistral, Llama
2, and OPT LMs. The actual sentences considered
in this analysis can be found in Table 2.

Among types 1 and 2 of underspecification, we
find that for almost all phenomena, the qualitative
inspection closely mirrors the quantitative results
reported in Figure 2 – Mistral is consistently better
than all other models, and Llama 2 outperforms
OPT. However, this is much less the case for the
conjunction scopal ambiguity, where both OPT-
13B and Llama2-7B perform at a similar level and
are much closer to Mistral. This is in line with
the overall quantitative trends in Appendix F. We
hypothesize that this may be because the under-
specified sentences displaying this phenomenon
can be considered difficult to parse. If true, this
would suggest that LMs may use some notion of
sentence complexity (e.g. the difficulty to parse it)
as a stand-in for underspecification.

We also observe that, for referential ambiguity,
performance for all models is very low. This may
be because most sentences containing referential
ambiguity are part of the Winograd Schema Chal-
lenge dataset, which may be part of the training
data of the tested LMs. As an effect of this, the per-
plexity assigned to these underspecified sentences
may be lower than that of the more uncommon
control sentences.

Takeaways and discussion Overall, our results
suggest that modern LMs can moderately identify
underspecification if explicitly asked to do so via
prompting. In particular, the observation that newer
models perform better suggests that pre-training
with more and better data, using more parameters,
and relying on various (even if minor) architectural
improvements could eventually lead to models that
can accurately recognize underspecified language.

However, our current approach does involve sig-
nificant prompting, which has several disadvan-
tages when evaluating LMs’ linguistic abilities.
Model performance is highly sensitive to the spe-
cific prompt used (Mizrahi et al., 2024). Moreover,
previous work has shown that using meta-linguistic
prompts, which explicitly ask for a model’s linguis-
tic judgment, often yields different results than eval-
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Phenomenon Sentence OPT Llama Mistral
Logical Form Danny approached Andrei; Yevgeni, too 0.25 0.75 1
Ellipsis Andrei and Danny put down a yellow chair 0.5 0.75 1
PP attach. amb. Andrei approached the person with a yellow bag 0.5 0.75 1
VP attach. amb. Danny looked at Andrei moving a green chair 0.5 0.75 1
Conjunction amb. Andrei and Danny held the yellow bag and chair 0.75 0.75 1
Referential amb. Although they ran at about the same speed, 0.25 0.25 0.25

Sue beat Sally because she had such a bad start
Added compound Get yourself a flannel shirt and wear it 0.75 0.75 0.75

over a plain tee shirt.
Fused head This means you have broken the seal and 0.5 1 0.75

can now twist off the lid.
Implicit reference 4. Do not slurp. 0.75 0.75 1
Metonymic ref. Think about your plant’s activity 0.25 1 1

Table 2: Underspecified sentences and proportion of examples (across prompts and orderings) where the specification-
matched input received lower perplexity than its mismatched counterpart for OPT-13B, Llama2-7B, and Mistral
7B; higher is better. Horizontal lines demarcate the types of underspecification as per Egg’s (2010) taxonomy.
Phenomena containing underspecification without ambiguity are italicized. ‘amb.’ stands for ambiguity, ‘ref.’ for
reference.

uating linguistic tasks using naturalistic data (Hu
and Levy, 2023). While our experiments do not
directly ask models if a given sentence is under-
specified (we instead compare two versions of the
same sentence), our inputs still do not reflect natu-
ralistic data. Our second experiment is motivated
by the need to account for this issue.

6 Interpreting Underspecified and
Specified Sentences

The results of our first experiment suggest that
some LMs may be able to recognize underspecifi-
cation when asked about it. However, as discussed
above, there is no guarantee that the results ob-
tained using metalinguistic prompts are indicative
of the actual capabilities of LMs. In the second ex-
periment, we use a more naturalistic setting where
underspecification is not mentioned in the prompt.

6.1 Experimental Setup
We create two specified versions of each DUST
sentence originating from the LAVA dataset, cor-
responding to the possible readings of the original
sentence. We also create two continuations to the
sentence, which again correspond to distinct read-
ings of the original. Each continuation is compati-
ble with the underspecified sentence, but only one
of the fully specified sentences. We slightly adjust
the LAVA sentences to make them more correct.5

5Uses of ‘put-down’ and ‘picked-up’ were changed to ‘put
down’ and ‘picked up’, and sentences of the form “NNP1 V

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Log difference

GPT-2 xl

Flan-T5 xxl

OPT-13B

Llama2-7B

Llama2-13B

Mistral

M
od

el

Type of sentence
Underspecified
More specified

Figure 3: Log difference of perplexity of correct and in-
correct continuations for underspecified (blue) and more
specified (orange) sentences, averaged over prompts.
The underspecified condition is not significantly lower
than the more specified condition for any model.

We then embed these sentences and continua-
tions in simple templates like “[sentence]. That
is, [continuation]”. Given an underspecified
sentence, where both continuations are equally
plausible, LMs should ideally assign roughly equal
perplexity to both.6 For more specified sentences,

NNP2. Also NNP3.” were changed to “NNP1 V NNP2; NNP3 too.”
6Underspecified sentences could still have a more frequent

“default reading”, making one continuation more likely in
human speakers’ interpretation. For example, when resolving
referential ambiguity, it has been documented that a reader
might default to the first possible referent encountered in the
text. Alternatively, it has been proposed that, when parsing
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in contrast, only one interpretation is possible; the
corresponding continuation should therefore re-
ceive a higher probability than the incompatible
one.

For example, given the underspecified sentence
“Danny looked at Andrei with a telescope,” the con-
tinuations “That is, Andrei had a telescope,” and
“That is, Danny had a telescope,” should be simi-
larly likely. However, given the sentence “Danny
looked at Andrei, who had a telescope,” the first
continuation would be more likely.

We experiment with connecting the sentence
and continuation in different ways; besides insert-
ing “That is,” between them, we also try using no
connector (“[sentence]. [continuation]”), and
stating a more explicit connection: “[sentence].
Therefore, it is more likely that [continuation1]
than [continuation2].”.

We record the absolute value of the difference in
the perplexities assigned to each continuation given
an underspecified sentence. We expect models will
generally have only weak preferences between con-
tinuations when given underspecified sentences,
leading to smaller absolute differences; specified
sentences should have larger differences. For each
specified sentence, we also record if LMs prefer
the plausible continuation over the implausible.

6.2 Results

LMs do not have stronger preferences toward
specified, rather than underspecified sentences
Our results (Figure 3) indicate that the tested mod-
els do not interpret underspecified sentences and
their specified counterparts correctly: there is no
statistically significant difference between the dif-
ferences in perplexities assigned to continuations of
underspecified sentences, and differences in those
assigned to continuations of more specified sen-
tences. This suggests that models might incorrectly
assign one single interpretation to underspecified
sentences, or they might also fail to assign only
one interpretation to more specified sentences; a
combination of these is also possible.

The more explicit the prompt, the better the
results Our results (Figure 4) indicate that the
type of prompt used heavily influenced the degree
to which models preferred the correct, plausible

a sentence, speakers could leave ambiguities unresolved if
resolving is not strictly necessary (Swets et al., 2008). Since
we consider both sentence readings in our experiment, we
hypothesize that the effects of such default readings cancel
out and therefore do not affect our results.
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Figure 4: Proportion of inputs where the plausible con-
tinuation to a specified sentence received lower perplex-
ity; higher is better. Asterisks (*) indicate performance
that differs significantly (p < .05) from chance (50%).

continuation; however, unlike in experiment 1, per-
formance is poor overall. In the base case, where no
prompts were used, only Llama 2 7B performs sig-
nificantly above chance. With the “that is” prompt,
model performance improves, though there is no
clear trend in which models perform best. It is
only with the most extensive prompt that we re-
cover both better performance and the trend from
experiment 1, where newer models perform better,
with Mistral once again performing significantly
(p = .002) better than all other models.

This trend, where more explicit prompts yield
better results, is surprising: prior work (Hu and
Levy, 2023) suggested that metalinguistic prompts
might more poorly capture LM capabilities, under-
estimating them. We hypothesize that this could oc-
cur because the continuations we crafted are some-
times more like conclusions that follow from the
first sentence (as in NLI), and less like genuinely
probable continuations. We note, however, that
other work has observed that both LMs and humans
sometimes default to NLI when given sentence
pairs without instructions (Webson et al., 2023).

Qualitative analysis We also examine the de-
gree to which models assign less univocal inter-
pretations to underspecified sentences than their
specified counterparts. Table 3 shows the absolute
difference in perplexity assigned to the continua-
tions of one under- and one more specified sen-
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Sentences and Continuations OPT-13B Llama2-7B Mistral
Andrei looked at Danny holding a yellow bag 20.49 2.26 48.51
Andrei looked at Danny while holding a yellow bag 13.77 2.74 32.61
→[Andrei / Danny] had a yellow bag
Andrei looked at Danny holding a yellow bag 5.07 2.42 12.81
Andrei looked at Danny while holding a yellow bag 6.03 5.54 13.32
→That is, [Andrei / Danny] had a yellow bag
Andrei looked at Danny holding a yellow bag 1.47 0.68 2.91
Andrei looked at Danny while holding a yellow bag 1.34 0.23 5.84
→Therefore, it is more likely that [Andrei...] than [Danny...]

Table 3: For each prompt type (base, that is, and more likely), an underspecified sentence and one more specified
counterpart, along with the absolute difference in perplexities assigned to the continuations of each. The LM is right
when this number is higher for the second, more specified, than the first, underspecified, sentence (bold cases).

tence, by prompt and model. On this particular
example, the models unanimously assign the more
specified sentence a more univocal reading only on
the “that is” prompt; on the others, they disagree,
echoing the noisiness of our quantitative results.

This noisiness is also reflected in the differences
between linguistic phenomena and between type
of prompt. We find that for referential and VP at-
tachment ambiguity, a greater proportion of inputs
resulted in the correct continuation receiving lower
perplexity. This seems to suggest that correctly
interpreting sentences containing these two phe-
nomena is handled better by the models, although
this differs greatly per model and type of prompt.
However, we note that relatively few sentences con-
tain these linguistic phenomena, limiting our ability
to draw strong conclusions from this observation.

7 Discussion

Underspecification, much like ambiguity (Liu et al.,
2023), remains a challenging phenomenon for LMs.
Older LMs, such as GPT-2, perform near chance
level at recognizing underspecification; newer mod-
els, such as Llama 2 and Mistral, perform much
better, but still leave ample room for improvement.
Processing sentences containing underspecification
is an even harder task for LMs. Models seem to
fail to recognize when underspecified sentences li-
cense continuations that their more specified coun-
terparts do not; moreover, their interpretations of
more specified sentences are often incorrect.

The striking difference between the results of
our two experiments highlights the importance of
carefully choosing a setup when evaluating model
capabilities. In the first, metalinguistic prompts
elicited good underspecification judgments from

high-performing models. But, in surprising con-
trast to previous work (Hu and Levy, 2023), testing
models’ ability to process underspecification in a
more naturalistic setting led to lower performance.
This is important: LM use cases involving under-
specification will most likely involve processing un-
derspecification, rather than identifying it upon ex-
plicit request. Our second experiment may thus be
a better indicator of LMs’ practical abilities. How-
ever, future work may be needed to compare LM
processing of underspecified sentences to results
of human studies, which have shown that speakers
do have default interpretations of such sentences
(Kurtzman and MacDonald, 1993; Dwivedi, 2013).

By introducing DUST and studying underspeci-
fication in LMs as distinct from ambiguity, we have
taken the first step towards evaluating LMs’ per-
formance on a commonplace but understudied phe-
nomenon that can affect LM behavior. Our findings
show that current LMs are limited in their ability to
deal with underspecification, especially in genuine
communicative scenarios. Hence, a thorough eval-
uation of the abilities of LMs should include (var-
ious facets of) underspecification, unlike current
benchmarks, in which ambiguous and underspec-
ified sentences are often systematically excluded.
We hope that our research further showcases the
relevance of underspecification as a direction of
research in the study of language models.

Limitations

DUST is arguably a small dataset, and would bene-
fit from expansion. While we considered existing
resources and extracted linguistic data with the de-
sired features from those, future work could expand
it by collecting new data via human annotation,
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generation, or other data-driven approaches. This
holds particularly true for type 1, which contains
much fewer examples than the other types.

While the present work performs an in-depth
evaluation of how LMs behave when faced with
semantic underspecification, our research does not
explore the inner mechanisms that underlie this ca-
pability. We acknowledge that doing so would pro-
vide complementary evidence that may be needed
to shed full light on the phenomenon. Moreover,
research could focus on how LMs handle under-
specification in more naturalistic scenarios, e.g., in
the context of real-world NLP applications, which
is something the current work does not explore.

Our research builds on the formal categoriza-
tion of semantic underspecification by Egg (2010).
While this theoretical framework is both compre-
hensive and generally suitable for our purposes,
we are aware that other theoretical accounts may
define the semantic underspecification slightly dif-
ferently, by including more/less phenomena or by
categorizing them according to different criteria.
Future work could explore whether and how our
findings generalize to other formalizations.

Ethics Statement

While this work presents no serious ethical con-
cerns, a general consideration needs to be made
about the use of pre-trained LMs. As is commonly
acknowledged, these models should be used with
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present in their training data. Furthermore, there
is a risk that they will generate false or misleading
output. In our work, we minimize these risks as we
do not use the LMs to generate output, but only to
score the plausibility of sentences fed as input. At
the same time, we are also aware that some biases
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In an attempt to collect sentences containing this
type of underspecification, we collect sentences
containing homonymic expressions from a sam-
ple of English Wikipedia (Mukherjee and Bhat-
tacharyya, 2012). We do so by selecting sen-
tences that contain any homonym from a list of
100 homonyms, selected by Maciejewski and Kle-
pousniotou (2016) based on linguistic principles,
dictionary entries, and subjective ratings. We cre-
ated more specified counterparts by selecting ran-
dom sentences from the that contain none of the
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sentence pairs; note that unlike other pairs in DUST,
these are not minimal pairs. One (partial) sentence
of this type (though not from our dataset) is

The elderly fish.
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Figure 5: Proportion of specification-matched in-
puts with lower perplexity than their specification-
mismatched counterparts; higher is better. Asterisks
(*) indicate performance significantly (p < .05) above
or below chance (50%).

which is underspecified because ‘fish’ can be both
a noun or a verb in this context. A more specified
counterpart of this (partial) sentence could be

The elderly people fish.

Note, however, that the reading where ‘fish’ is a
noun is not a full sentence, and would only be
grammatical when placed in a context (e.g. an
enumeration) where it is suitable.

Running experiment 1 with these sentences in-
cluded, we get the results shown in Figure 5. We
can see that models achieve poor performance on
type 4 sentences across models. We hypothesize
that this is because that type of underspecification
does not consist of minimal pairs; though one item
of the pair does include a homonymic expression,
this does not guarantee that it is overall less speci-
fied than its counterpart. Due to these caveats, we
have excluded this type from our dataset.

B Dataset Information

In this section, we review important licensing and
privacy information regarding the datasets com-
posing DUST, as well as DUST itself. DUST is
composed of data from 3 datasets.

• LAVA (Berzak et al., 2015), available at
https://web.mit.edu/lavacorpus/, was

released with an unclear (potentially open-
source) license. LAVA contains images of the
authors, which DUST does not include. How-
ever, the names used in the sentences in LAVA
refer to its authors. These sentences contain
no other personally identifiable or offensive
content.

• CLAIRE (Roth et al., 2022), available at
https://github.com/acidAnn/claire, is
composed of WikiHow articles released un-
der a CC BY-NC-SA 3.0 license, and was
itself released under the same license. We did
not filter the articles and revisions of which
CLAIRE is comprised for personally identifi-
able or offensive content.

• The Winograd Schema Challenge dataset
(Levesque et al., 2012), available at
https://huggingface.co/datasets/
winograd_wsc, was released under a CC
BY 4.0 license. All sentences were created
by experts, and do not contain personally
identifiable or offensive content.

DUST is a non-commercial dataset which, like all
of its component datasets, is intended for research
purposes. We have also provided attribution to the
creators of the component datasets, allowing it to
be released in accordance with all of the licensing
terms of these component datasets. Owing to the
WikiHow data contained within, we also release
DUST with a CC BY-NC-SA license.

C Model and Experimental Details

In this section, we provide further information re-
garding our models and experiments. We use the
HuggingFace transformers implementations of all
models, available at https://huggingface.co/
models. We also use the HuggingFace weights for
all models except Llama 2, which must be down-
loaded separately at https://llama.meta.com/
llama-downloads/. To compute perplexities, we
use LM-PPL: https://github.com/asahi417/
lmppl.

We ran these experiments on compute nodes
equipped with Nvidia A100 GPUs (40GB RAM);
for all models but Llama 2 13B, one such GPU
should suffice. The runtime of our experiments is
no more than 5 GPU days.

D MCQ experiment

In this experiment, we test whether language mod-
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els can recognize semantic underspecification by
explicitly asking them to generate an answer about
the underspecification of a sentence pair. In prac-
tice, we prompt GPT2-xl, OPT-13B, and Llama2-
7B to generate a response using the following
prompt:

Here are two sentences. A: ‘Andrei left
the chair with a green telescope’. B: ’An-
drei left the chair on which lay a tele-
scope’. Which one of these is more se-
mantically underspecified? Please re-
spond by outputting only A or B. An-
swer:

where the red and blue sentences are replaced by
either an underspecified or its corresponding con-
trol sentence from the dataset. The order in which
the two sentences are placed is randomized to pre-
vent bias in the model from unduly influencing the
final accuracy. Each sentence pair in the dataset
is included in a prompt once. In Table 4, we re-
port model accuracy and number of A, B, or other
responses.

model acc. #A #B #other
GPT2-xl 0.31 696 638 789
OPT-13B 0.49 2105 18 0
Llama2-7B 0.48 888 1138 97

Table 4: MCQ task. Model accuracy and number of
responses per class by GPT2, OPT, and Llama 2.

The results show that the models perform very
poorly when the task is formulated as a multiple-
choice task. While the low accuracy might be a
result of the models being unable to do this task—
something that could perhaps improve when using
instruction-tuned models—the observation that all
the models are either biased towards one of the op-
tions or unable to consistently answer the prompt
with one of the two given options, or both, suggests
that they are incapable of performing the task in
this experimental setup. This matches earlier find-
ings (e.g., Hu and Levy, 2023) and validates our
decision to perform perplexity-based evaluation
over a MCQ-like type of experiment even further.

E Experiment 1 Prompts

Suppose we have the underspecified sentence ‘An-
drei left the chair with a blue telescope’ and the
more specified counterpart ‘Andrei left the chair
on which lay a blue telescope’. Examples of

specification-matched prompts we would then ob-
tain are:

This is an underspecified sentence: ‘An-
drei left the chair with a blue telescope’.
This is its more specified counterpart:
‘Andrei left the chair on which lay the
blue telescope’.

and

This is a sentence that contains a lot of
detail: ‘Andrei left the chair on which lay
the blue telescope’. This is a sentence
that contains little detail: ‘Andrei left the
chair with a blue telescope’.

and examples of mismatched prompts are:

This is an ambiguous sentence: ‘Andrei
left the chair on which lay the blue tele-
scope’. This is its unambiguous counter-
part: ‘Andrei left the chair with a blue
telescope’.

and

This is a sentence that contains a lot of
information: ‘Andrei left the chair with
a blue telescope’. This is its counterpart
that contains little information ‘Andrei
left the chair on which lay the blue tele-
scope’.

These examples show all variations of phrasing and
order of parts

F Experiment 1 Results per Phenomenon

In Figure 6, we report the results of Experiment 1
split by linguistic phenomenon.

G Sentiment perplexity

To test whether the experimental design of exper-
iment 1 functions correctly, we first ran this ex-
periment with sentiment classification instead of
recognition of underspecification as a goal. The
models were prompted with prompts of the form
“prompt1: ‘sentence1’. prompt2: ‘sentence2’.",
where the prompts are of the form "This is a posi-
tive/negative sentence" and the sentences are sen-
tences rated ‘very positive’ or ‘very negative’ in
the SST-5 dataset (Socher et al., 2013). The results
of this can be seen in Figure 7.
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Figure 6: Proportion of specification-matched inputs with a lower perplexity than their specification-mismatched
counterparts, split by linguistic phenomenon; higher is better. Asterisks (*) indicate performance significantly
(p < .05) above or below chance (50%).

H Experiment 2 Prompts

Suppose we have the underspecified sentence ‘An-
drei looked at Danny moving a green bag’ and
the more specified counterpart ‘Andrei looked at
Danny who was moving a green bag ’. Examples
of specification-matched prompts we would then
obtain, from low to high levels of prompting, are:

Andrei looked at Danny who was moving
a green bag. Danny was moving a green
bag.

Andrei looked at Danny who was moving
a green bag. That is, Danny was moving
a green bag.

Andrei looked at Danny who was moving
a green bag. Therefore, it is more likely
that Danny was moving a green bag than
Andrei was moving a green bag.

and examples of mismatched prompts are

Andrei looked at Danny who was moving
a green bag. Andrei was moving a green
bag.

Andrei looked at Danny who was moving
a green bag. That is, Andrei was moving
a green bag.

Andrei looked at Danny who was moving
a green bag. Therefore, it is more likely
that Andrei was moving a green bag than
Danny was moving a green bag.
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Figure 7: Percentage of sentences from experiment 1
with sentiment instead of underspecification where the
perplexity of the correct prompts is lower than that of
the incorrect prompts, averaged over orders of prompts
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Variable Coefficient Standard Error z P > |z| [0.025 0.975]

sen. len. -0.155 0.0623 -2.3418 0.2135 -0.2775 -0.0328
avg. AoA. -0.2616 0.2443 -1.046 0.3642 -0.7405 0.2173
avg. conc. 1.7596 0.65 2.6663 0.0262 0.4855 3.034
avg. word freq. -2.9801 2.1483 -1.394 0.1245 -7.1908 1.2307
avg. word len. 0.0367 0.4773 0.062 0.3468 -0.8987 0.972

Table 5: Average regression coefficients averaged over all tested models with sentence length, average age of
acquisition (Kuperman et al., 2012), average concreteness (Brysbaert et al., 2014), average word frequency (Norvig,
2009) and average word length as independent variables, and whether the perplexity of the correct continuation of
the specified counterpart is higher than that of the incorrect continuation as the dependent variable

I Could models be detecting surface
statistics instead of underspecification?

To investigate whether the models’ ability to inter-
pret underspecification as underspecification cor-
relates with some surface-level statistic of the sen-
tences in the dataset, we fit a logistic regression
model with surface-level descriptive statistics about
each sentence as independent variables and the
model ‘correctness’ from Figure 4 as the depen-
dent variable. The results of this can be seen in
Table 5.

These results suggest that models are better able
to recognize semantic underspecification when the
words in the sentence are more concrete. No other
surface-level statistic we test shows a significant
correlation with the ability of the models to inter-
pret underspecification.

This agrees with intuition: unlike other features
like age of acquisition, word frequency or sen-
tence length, concreteness is something humans
also associate with (under)specification – for ex-
ample, when a speaker wants to make things less
underspecified, they might say “let’s make things
concrete". However, the fact that models do not
correctly interpret underspecified sentences when
these sentences are abstract in nature does pose a
problem, given the fact that certain types of text
(e.g. legal texts or product specification documents)
can be very abstract while requiring all potential
underspecification to be correctly interpreted.
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