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Abstract

Tokenisation is a core part of language mod-
els (LMs). It involves splitting a character se-
quence into subwords which are assigned ar-
bitrary indices before being served to the LM.
While typically lossless, however, this process
may lead to less sample efficient LM training:
as it removes character-level information, it
could make it harder for LMs to generalise
across similar subwords, such as now and Now.
We refer to such subwords as near duplicates.
In this paper, we study the impact of near dupli-
cate subwords on LM training efficiency. First,
we design an experiment that gives us an up-
per bound to how much we should expect a
model to improve if we could perfectly gen-
eralise across near duplicates. We do this by
duplicating each subword in our LM’s vocab-
ulary, creating perfectly equivalent classes of
subwords. Experimentally, we find that LMs
need roughly 17% more data when trained in
a fully duplicated setting. Second, we inves-
tigate the impact of naturally occurring near
duplicates on LMs. Here, we see that merg-
ing them considerably hurts LM performance.
Therefore, although subword duplication nega-
tively impacts LM training efficiency, naturally
occurring near duplicates may not be as similar
as anticipated, limiting the potential for perfor-
mance improvements.

antonschafer/duplicate-subwords

1 Introduction

Most modern language models (LMs) do not have
direct access to the bits or characters which make
up the text that they must model. Rather, they
operate on higher-level units, so-called tokens,
which are elements of a finite set of previously
defined subwords. This set of subwords is
typically obtained as the output of a tokenisation
method and forms an LM’s vocabulary (Gage,

*Shared supervision.

Model Near Duplicate Rate

GPT-{3.5, 4, 4-turbo} 43%
Claude 2.1 46%
Llama 1 & 2 35%
Mistral 7B & 8x7B 37%
Gemma 7B 39%

Table 1: Near duplicate rates of modern LLM vocabular-
ies. We consider subwords that only differ in whitespace,
capitalization, or plural suffix as equivalent (Sall dedu-
plication mapping, see §5.2.1). For details, see App. B.

1994; Sennrich et al., 2016; Kudo, 2018; Wu et al.,
2016). Importantly, most tokenisation algorithms
are lossless: the original character sequence is
perfectly recoverable from its tokenised version.

A language model’s vocabulary, however, may
contain several near duplicate subwords: mini-
mal pairs like now and Now, with roughly the same
semantic meaning, but which differ due to typos,
whitespace marking, or capitalisation (Stanić
et al., 2023). Such near duplicates can make up
over 40% of the vocabulary of modern LMs (see
Table 1). Intuitively, if the model had access to
character-level information, it should trivially
generalise what it learns from one of these forms
to the other. Given only access to subword-level
inputs, however, the model may not be able to do
the same, or may require more data to do so.

Previous work tried to address this issue by mod-
elling language directly at the character, byte, or
even pixel level (Kim et al., 2016; Clark et al.,
2022; Xue et al., 2022; Yu et al., 2023; Rust et al.,
2023, inter alia).1 However, while the existing lit-
erature has proposed several solutions to improve

1These works are not solely motivated by near duplicates.
Other commonly named advantages of character/byte-level
models include: the possibility of optimising them end-to-end
without relying on a two-stage approach, greater flexibility by
not committing to a (potentially suboptimal) tokeniser, and
more direct access to word forms which might be relevant in,
e.g., word-play related tasks (Rozner et al., 2021).
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LMs generalisation across near duplicates, a proper
quantification of the issue is still lacking.

In this work, we thus take a step back and assess
the actual impact of near duplicate subwords on
LMs’ performance. To this end, we first propose
a controlled synthetic setting where we duplicate
every subword in our LM’s vocabulary, allowing us
to (1.) quantify an LM’s ability to generalise across
perfectly equivalent duplicates and to (2.) carefully
investigate how the generalisation happens. This
yields an upper bound on the cost incurred due to
limited generalisation across real near duplicates:
a vocabulary with 40% duplicates (common for
LLMs, see Table 1) may reduce data efficiency by
up to 10%. We then (3.) investigate the tightness
of this upper bound by merging naturally occurring
near duplicates in an LM’s vocabulary. We find
that deduplicating the vocabulary in this way, in
general, hurts performance instead of improving
it. This suggests that real near duplicates might be
less similar than anticipated, which might impose
challenges when trying to leverage their similarity
to improve LMs’ performance.

2 Language Modelling

Let Σ be a vocabulary of subwords. A language
model p̂ is formally defined as a probability distri-
bution over the set of all finite sequences of sub-
words w = (w1, w2, ...) ∈ W def

= Σ∗:2

p̂(w) =

|w|∏

t=1

p̂(wt | w<t) (1)

where p̂(wt | w<t) is the probability of token wt

given the sequence of previous tokens w0, ...wt−1.
In order for p̂ to approximate the true distribu-

tions over natural strings p(w), we train this model
to minimise its cross-entropy with p:

Ĥ(W) =
∑

w∈W
p(w)

|w|∑

t=1

log
1

p̂(wt | w<t)
(2)

where W represents a W-valued random variable.
Since we do not know p, we approximate this objec-
tive using a finite training set Dtrn = {wn}Nn=1 ∼
p(w). This leads to the loss function:

L(p̂(w),Dtrn) =
1

N

∑

w∈Dtrn

|w|∑

t=1

log
1

p̂(wt | w<t)

(3)
2We define Σ with a special end-of-sequence symbol (eos).

Any string with mid-sequence eos is assigned probability zero.

3 Subword Duplication

Now, let’s assume there exist in our alphabet pairs
or groups of subwords which are nearly identical—
in both their orthography and semantics. Such near
duplicates can arise from various sources, including
but not limited to capitalization differences (e.g.,
now vs. Now), typographical errors (language vs.
langauge), the presence or absence of whitespace
(e.g., the vs. _the),3 and variations in spelling (e.g.,
modeling vs. modelling). The question we are
concerned with is: how might such subword dupli-
cation affect the performance of language models?

To define this question formally, let S be a set of
disjoint sets of near duplicate subwords:

S =

{
{w 1 , w 2 , w 3 , w 4 },

{w 5 , w 6 }, · · · , {w i , w i+1 }

}
(4)

We index these as S i to represent the i’th set
of near duplicates. Further, let S = {c i | 0 <
i ≤ |S|} be a set of canonical symbols which
we will use to represent each of these duplicate
sets. To find out how duplication affects LMs, we
can create a map S : Σ → Σ which deduplicates
subwords, mapping duplicates to the corresponding
canonical symbols. This map is defined as:

S(w) =
{

w if w /∈ flatten(S)
c i if w ∈ S i

(5)

with Σ
def
= (Σ \ flatten(S)) ∪ S. We are now in a

position to define a distribution over deduplicated
subword sequences:

p(c) =
∑

w∈W
p(w)1{c = S(w)} (6)

where we overload S to operate on sequences
w by applying it elementwise on each subword
wt ∈ w. Note that p(c) is now a distribu-
tion over deduplicated subword sequences
c = (c1, c2, ...) ∈ C def

= Σ∗. We can further define
a hybrid conditional projected distribution as:

pS(ct | w<t) = (7)
∑

w∈Σ
p(w | w<t)1{ct = S(w)}

In words, the conditional probability pS(ct | w<t)
of a deduplicated subword ct is defined as the sum
of the conditional probabilities of all subwords
which map to it through S(w).

3We denote spaces as ‘_’ for readability.
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3.1 Comparing (De-)Duplicated LMs
Typically, LMs are evaluated based on their cross-
entropy (or perplexity) on a held-out test set. It
would, however, be unfair to simply compare
the cross-entropies of LMs trained on p(c) and
p(w). The cross-entropy is lower bounded by
the entropy—with a perfect model’s cross-entropy
equalling the entropy. If p(c)’s and p(w)’s en-
tropies are different, they would impose different
optima achievable by LMs trained in each setting.
We write these distributions’ entropies as:

H(W) =
∑

w

p(w)

|w|∑

t=1

log
1

p(wt | w<t)
(8)

and H(C), analogously, where C denotes a C-
valued random variable. Now note that, given their
definition in Eq. 6, deduplicated sequences C are
deterministic given the original subwords W. The
two entropies above are thus related via equation:

H(W) = H(C) + H(W | C) (9)

Assuming W cannot be deterministically predicted
from C, we have that H(W | C) > 0; this implies
that predicting W is strictly harder than C.

To make these settings more easily comparable,
we define p(w)’s projected entropy as:

HS(W) =
∑

w∈W
p(w)

|w|∑

t=1

log
1

pS(S(wt) | w<t)

(10)

This entropy measures the uncertainty in predicting
a deduplicated subword ct given the duplicated
context w<t. Interestingly, we can show that:

HS(W) = H(C)−MI(W<T;CT | C<T) (11)

where MI(W<T;CT | C<T) is the mutual infor-
mation between a subword context w<t and the
next deduplicated token ct conditioned on the pre-
vious deduplicated tokens c<t (see App. A for a
proof and the precise definition of this mutual in-
formation). In both §5.1 and §5.2, we discuss how
this value relates to our research question.

4 Experimental Setup

We implement all of our experiments in the code-
base of the Languini Kitchen (Stanić et al., 2023).
Below, we provide an overview of the models and
datasets used here. We refer the reader to Stanić
et al.’s (2023) work for more details regarding im-
plementation choices, training setup, and dataset
collection.

Model. We use the GPT model from Languini,
which is a GPT-2 style transformer decoder (Rad-
ford et al., 2019). Unless otherwise noted, we use
the “small” configuration with 12 layers, hidden
size 768, and 85M non-embedding parameters. We
train models with sequence length 512, batch size
128, the Adam optimiser (Kingma and Ba, 2015),
and a cosine learning rate schedule from 6e-4 to
6e-6 with 500 warmup steps.

Data. We train on the Languini training data, a
filtered version of the books3 subset from the Pile
(Gao et al., 2020). For evaluation, we use the held-
out Languini test set, which contains 11M tokens.
This data is pre-tokenised into a vocabulary of size
16k using a BPE tokeniser (Gage, 1994; Sennrich
et al., 2016) trained using SentencePiece (Kudo
and Richardson, 2018). Unless otherwise noted,
we train our models for 18,265 steps—i.e., the first
1.2B tokens in our dataset—which corresponds to
training the small GPT model for 6h on an RTX
3090 GPU; this is Languini’s GPT small 6h setting.

Evaluation. We generally report our model’s
perplexity on the test set as our evaluation metric.
To ensure sufficient context for all predictions,
we use a sliding window with steps of 128: we
fill in a 512 tokens context, ignore the model’s
outputs on the initial 384, and evaluate it only
using the last 128 tokens. For models p̂(c) trained
on the deduplicated setting, we simply report
their perplexities, defined as the exponentiated
cross-entropy evaluated on a held-out test set Deval:
PPL(C) = exp (L(p̂(c);Deval)). When evaluat-
ing models p̂(w), trained in the duplicated setting,
we report their projected perplexity, defined as:

PPLS(W) = exp (LS(p̂(w);Deval)) (12)

= exp


1

N

∑

w∈Deval

|w|∑

t=1

log
1

p̂S(S(wt) | w<t)




where p̂S is defined analogously to pS (see Eq. 7).
Intuitively, we add up the probabilities of subwords
w that are equivalent under S (i.e., which map to
the same canonical symbol c), to avoid giving p̂(c)
an unfair advantage over p̂(w).

5 Experiments and Results

We evaluate our LM’s ability to generalise over
(near) duplicates in two settings: perfect and natu-
ral duplication. In the perfect duplication setting,
we compare LMs trained using either the default
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or a synthetically duplicated vocabulary; this gives
us an upper bound for the impact of real near du-
plicates, as synthetically duplicated subwords are
perfectly comparable in terms of their semantics.
In the natural duplication setting, we deduplicate
the default vocabulary by merging real near dupli-
cates. By comparing performance on the default
and the deduplicated vocabulary, we verify whether
the effect of natural near duplicates in LMs is com-
parable to the effect of perfect duplicates.

5.1 Perfect Duplication
In this first set of experiments, we assume an
idealised situation where all subwords in a near
duplicate set w ∈ S i are perfectly interchangeable
with each other. Choosing among these subwords,
then, is neither impacted by prior subwords nor
impacts future subword choices. In this case, we
can relate distributions p(w) and p(c) as:

p(w) =

|w|∏

t=1

p(ct | c<t) p(wt | ct)︸ ︷︷ ︸
duplicate choice

(13)

Further, we can show that in this idealised setting
MI(W<T;CT | C<T) = 0; this is because
the decomposition above implies conditional
independence between wt and any ct′ given ct. We
thus have:

HS(W) = H(C) (14)

which creates a perfectly controlled setting to eval-
uate language models. If we could train a perfect
language model on either distribution p(w) or p(c),
we would achieve the same performance in both
settings. Any difference in language modelling
performance between these settings must thus
derive from a language model’s lack of ability to
generalise from observing near duplicate subwords.

5.1.1 Empirical Implementation
To achieve the perfect duplication described above,
we simulate Eq. 13 by duplicating every entry
in our subword vocabulary. First, we assume
our BPE-generated vocabulary is composed of
canonical symbols Σ = {c 1 , c 2 , ...}. This set
is composed of 16k subwords. We then dupli-
cate each to get a vocabulary of size 32k:4 Σ =
{w 1 , w

′
1 , w 2 , w

′
2 , ...}. This gives us the dedupli-

cation mapping S(w i ) = S(w′
i ) = c i . Given

4Model p̂(w) thus has more embedding parameters than
p̂(c); these extra parameters, however, should not yield an
unfair advantage (see App. D).

PPLS

Model GPT-S GPT-M

p̂(c) 21.9 16.3
p̂(c), 85% of data 22.6 16.7
p̂(c), 50% of data 25.3 -

p̂(w) 22.7 16.7

Table 2: Impact of duplication on PPLS. Lower is
better. The right column shows results for Languini’s
GPT-medium model with 370M parameters (vs 111M
for small), trained on 2.8B tokens (vs 1.2B for small).

a sequence c from our training set Dtrn, we then
create a duplicated sequence w by independently
sampling the form of each token c i ∈ c to be ei-
ther w i or w′

i . Unless specified differently, we
set all duplicate choice probabilities to be uniform
(i.e., p(w i | c i ) = p(w′

i | c i ) = 0.5 for all i).

5.1.2 Raw Performance
In this section, we describe our main results using
the perfect duplication setting. First, we note that,
when training with p(w′

i | c i ) = 0.5, each sub-
word w i or w′

i is only seen half as often by p̂(w)
as its original version c i is seen by p̂(c). However,
we achieve significantly better performance with
p̂(w) than with p̂(c) trained on only 50% of the
dataset (see Table 2). The model thus seems to
generalise across duplicates, with data containing
w leading to improved performance on w′ and
vice versa. Still, duplication significantly hurts
performance. Using the duplicated data, the model
p̂(w) is only about 85% as data efficient as p̂(c),
which is trained on the original data. This suggests
our LMs cannot generalise perfectly. Interestingly,
this trend stays relatively consistent across different
amounts of training data (up to 3x, see Fig. 1) and
also applies to a 3x larger GPT-medium model
(see Table 2). Further, if we vary the number of
subwords we duplicate, interpolating from 0%
of the vocabulary (p̂(c) setting) to 100% of the
vocabulary (p̂(w) setting), we obtain a roughly
linear increase in PPLS (see Fig. 2).

Takeaway 1. The model is capable of generalis-
ing across duplicates, yet their presence negatively
impacts performance.

5.1.3 Duplicates’ Alignment
One strategy the model could use to generalise
across duplicated pairs w i and w′

i is to fully align
their representations. If these word pairs have a
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Figure 1: Left: Fitted power laws capturing the relationship between training data and PPLS. Our standard training
set contains around 1.2B tokens. Right: Data required to achieve the same performance with p(c) and p(w),
computed based on the fitted scaling law curves. In the considered interval, this curve’s slope—which roughly
corresponds to number of training tokens for p(w)

number of training tokens for p(c) —is approximately equal to 1
0.85 .

Figure 2: Impact of duplication on PPLS while varying
the fraction of subwords in the vocabulary that are du-
plicated (1.0 corresponds to p̂(w), 0.0 to p̂(c)). Lower
PPLS is better. When duplicating 70% of the vocabu-
lary (which yields a 41% duplication rate in the final
vocabulary, roughly the rate of near duplicates in real
vocabularies), we obtain PPLS ≈ 22.4; this is equiva-
lent to a ≈ 10% decrease in data efficiency.

cosine similarity of 1.0, then any change to other
model components would affect them similarly.
When we analyse our model p̂(w)’s embeddings,
we indeed observe a high average cosine similarity
of around 0.8 among duplicate pairs. This number
is even higher for frequent subwords (see Fig. 3); it
appears that a subword’s frequency during training
is an underlying driver for alignment. This observa-
tion is intuitive: the representations of w i and w′

i

are both randomly initialised and converge to each
other after a certain number of gradient updates.

What causes this alignment of representations

Figure 3: Input embedding cosine similarity of dupli-
cates w i , w′

i , by frequency. Frequencies binned and
similarities averaged per bin.

and what is it impacted by? Loosely speaking, the
contexts in which the duplicates appear follow the
same distribution; this might lead to similar gradi-
ent signals throughout training. If this is the case,
then this high cosine similarity should not be an
exclusive property of transformers, but apply to
simpler architectures as well. Interestingly, when
training a word2vec model (Mikolov et al., 2013)
on the same data, we observe its embeddings ex-
hibit even stronger alignment (details in App. E).

Takeaway 2. Representations of frequent dupli-
cates have high cosine similarity.

5.1.4 Finetuning Generalisation
Presumably, the alignment of duplicated word pairs
may cause the model to use the same “circuits”
when processing those words, allowing it to gener-
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GLUE Accuracy

Model on w i on w′
i

p̂(c) 0.72 -
p̂(w) 0.71 0.71

Table 3: GLUE average validation accuracy achieved by
fine-tuning solely on w i inputs (and not on w′

i ) while
keeping the embedding layer frozen.

Subset Mean ∆ Surprisal

All 0.015
Duplicated 0.018
Not Duplicated 0.012

Table 4: Duplication of half the vocabulary: mean differ-
ence in surprisal to p̂(c) for subwords within the treat-
ment (duplicated) and control (non-duplicated) groups.

alise what it learns across them (Cammarata et al.,
2020; Elhage et al., 2021). To verify this hypothe-
sis, we finetune our p̂(w) model on GLUE (Wang
et al., 2019), employing only one subword from
each duplicate pair as input (specifically, w i and
never w′

i ). Intriguingly, when this finetuned model
is subsequently evaluated on the unseen subwords
(i.e., w′

i ) it generalises perfectly, achieving the
same accuracy (see Table 3).

Takeaway 3. GLUE performance of p̂(w)
generalises across duplicate pairs despite being
finetuned with w i and evaluated with w′

i .

5.1.5 Comparing Duplicating or Not a Pair
We observed that the alignment of duplicate sub-
word representations seems to drive generalisation.
If infrequent subwords have less aligned represen-
tations, does this mean that they generalise less? To
investigate the effects of duplication in a more con-
trolled manner, we now duplicate only half of our
vocabulary and train a model in this setting. This
gives us a treatment group of duplicated subwords
and a control group of non-duplicated subwords,
allowing us to isolate the causal effect of duplica-
tion. We will now analyse this effect on the out-
put side (predicting duplicated tokens compared to
non-duplicated tokens) and on the input side (pre-
dictions based on a context with many duplicated
tokens vs few duplicated tokens).

On the output side, we measure the effect
of duplication by first taking the difference in

5To reduce noise and ensure readability, we only consider
subwords that occur at least 10 times in the test set and bins
that contain at least 3 subwords.

Figure 4: Duplication of half of the vocabulary:
Analysing the mean surprisal difference per subword
between p̂(w) and p̂(c). Frequencies are categorised
into bins, with averages computed for each bin.5

surprisal (negative log probability) assigned to
each original subword token ct by either model
p̂(w) (through p̂S(ct | w<t)) or p̂(c) (through
p̂(ct | c<t)). We then average these delta surprisals
within either the set of actually duplicated
(treatment) subwords, or the ones not duplicated
(control). We observe that subword duplication
leads to an increase in surprisal which is around
50% higher when predicting duplicated tokens
compared to non-duplicated ones (see Table 4).
This might seem unexpected, considering that, e.g.,
a simple n-gram model’s predictions would not be
affected by duplicated outputs.6 Yet, in our LM,
the output embeddings of duplicated subwords
receive only half as many gradient updates, which
could explain the lower performance. In line with
this, we observe that infrequent subwords are
affected the most by this performance loss (see
Fig. 4), likely because their output representations
are not well aligned after receiving few updates.

To evaluate the impact of duplication on the
LM’s input side, we assess how surprisal on
subwords changes depending on the number of
duplicated (vs non-duplicated) subwords in its
context. Here, we observe no clear trend between
the number of duplicates in our model’s full
context window and its performance loss on
observed subwords (see Fig. 5). However, when
limited to a more local context of size 16, the
number of duplicate tokens seems to have a clear
negative impact on prediction performance.

Takeaway 4. Infrequent subwords are predicted
worse when duplicated, and duplicated tokens in
the LM’s local context tend to hurt its predictions.

6An n-gram’s probabilities are defined by count statistics,
and: count(c∥context)

count(context) = count(w∥context)
count(context) + count(w′∥context)

count(context)
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Figure 5: Duplication of half of the vocabulary. Difference between the surprisal assigned to each token by p̂(w)
and p̂(c), depending on fraction duplicated subwords

non-duplicated subwords in context. Fractions are categorised into bins, with average
surprisal differences computed for each bin. “Support” shows the number of samples per bin.

5.2 Natural Duplication
After exploring the impact of perfect duplicates in
LMs, we now turn our attention to the influence
of naturally occurring near duplicates on LM per-
formance. Notably, despite their similarity, near
duplicates are seldom perfectly interchangeable.
For example, _individual differs from _individu-
als, the _he in ‘and he writes’ does not convey the
same meaning as he in ‘breathe’ (we analyse this
in App. C), and a Now at the start of a sentence can
subtly vary from a now used mid-sentence. When
merging near duplicates, we lose information about
such small differences. If this lost information is
relevant for predicting a token ct = S(wt), the task
should become harder through deduplication. We
have MI(W<T;CT | C<T) > 0 and hence

H(C) > HS(W) (15)

which means that even a perfect model would per-
form worse on the deduplicated data distribution.
This subsection examines whether merging natu-
rally occurring near duplicates yields comparable
advantages to merging perfect duplicates.

5.2.1 Empirical Implementation
We consider four types of near duplicates, defined
by their corresponding mapping S:

Sspace ignores leading or trailing whitespace, map-
ping, e.g., _the to the. Around 10% of sub-
words are merged.

Slower ignores capitalisation, mapping, e.g., Now
to now. Around 12% of subwords are merged.

Splural ignores plural markings,7 mapping, e.g.,
_individuals to _individual. Around 8% of
subwords are merged.

7For simplicity, we implement it as an easy rule-based

Sall combines all of the previous mappings,
mapping, e.g., _Books to book. Around 29%
of subwords are merged.

We train models p̂(c) for each of these deduplica-
tion mappings S and compare them to the perfor-
mance of the regular model p̂(w) when evaluated
under the same projection.

The first three mappings all reduce the vocab-
ulary size by around 10%. If the near duplicates
were perfectly equivalent, we could expect p̂(c)
to perform marginally better than p̂(w), which is
what we observe in the synthetic setting with a low
duplication rate (see Fig. 2). For the combined Sall,
with 29% near duplicates, we would expect a per-
formance boost corresponding to roughly 5% better
data efficiency; or, alternatively, a PPLS decrease
of roughly 0.2 from p̂(w) to p̂(c) (see the results
for 40% duplication rate8 in Fig. 2).

Modern large models show even higher duplica-
tion rates than our small vocabulary. Their vocab-
ularies contain around 40% near duplicates under
Sall (see Table 1). This translates to duplicating
roughly 70% of a canonical vocabulary; in the syn-
thetic case, this corresponds to a potential data
efficiency increase of around 10% due to dedupli-
cation, assuming the trends in Fig. 2 apply. In the
following, we examine whether this is plausible by
verifying to what extent these trends transfer from
perfect duplicates to near duplicates for our models.

Note that, different to the previous subsection
where we duplicated our standard vocabulary, here

mapping: If a subword has a trailing s and at least four char-
acters, not counting whitespace, we ignore the s. While this
approach yields false positives, manual inspections suggests
the results are generally acceptable.

8A ratio of 29% of duplicates in vocabulary Σ corresponds
to duplicating around 40% of the initial Σ ( 0.4

1+0.4
≈ 0.29).
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PPLS

Setting Sspace Slower Splural Sall

p̂(w)∗ 21.80 (± 0.11) 21.50 (± 0.11) 21.56 (± 0.11) 20.99 (± 0.11)
p̂(w), 95% data 22.00 21.71 21.77 21.56
p̂(w), 90% data 22.21 21.91 21.97 21.76

p̂(c)∗ 22.14 (± 0.16) 21.87 (± 0.15) 21.82 (± 0.11) 22.08 (± 0.09)

p̂(c) + enon-canonical
∗ 21.92 (± 0.17) 21.45 (± 0.12) 21.59 (± 0.14) 21.15 (± 0.09)

Table 5: Impact of deduplication on PPLS. For rows with ∗, the reported values represent means and standard
deviations over four runs. Note that, for each column, p̂(c) refers to a different model trained under the respective S.

we deduplicate it; this means the p̂(c) in the pre-
vious subsection and p̂(w) in this subsection both
refer to a “baseline" over our standard vocabulary.

5.2.2 Raw Performance & Duplicate
Alignment

We observe that deduplication hurts performance
(see Table 5). Across all considered S, training
p̂(c) on deduplicated data yields worse results
than the setting p̂(w) in which near duplicates
remain untouched. The performance degradation
is equivalent to training on 5-10% less data. This
is in stark contrast to the trends we observed on
perfectly equivalent synthetic duplicates, where
deduplication boosts performance. Near duplicates
thus seem to be less equivalent than one might
expect, noticeably differing in their semantics.

The near duplicates’ learned embeddings, which
tend to contain information about the subwords’ se-
mantics, reflect this discrepancy. Near duplicates’
embeddings are not nearly as similar as the embed-
dings of synthetic perfect duplicates, which had
a cosine similarity of 0.8: all three types of natu-
ral duplicates exhibit average cosine similarities of
around 0.4. This indicates that the model perceives
semantic differences between the near duplicates.
As described earlier, if we merge them, we will
lose information. The associated decline in perfor-
mance indicates that the information is significant.

Takeaway 5. Near duplicates are not equivalent
and merging them hurts performance.

5.2.3 Comparing Deduplicating or Not a Pair
Are predictions worse when more deduplicated to-
kens are in the context, since more information is
“lost”? We investigate this again through a con-
trolled experiment. We run experiments where we
deduplicate only half of the near duplicates, ob-
taining a deduplicated treatment group and an un-

Mean ∆ Surprisal

Setting Deduplicated Not Deduplicated
Sspace 0.014 0.010
Slower 0.009 0.008
Splural 0.010 0.009

Table 6: Deduplication of half of the vocabulary. Mean
difference to baseline surprisal, for subwords in treat-
ment (duplicated) and control (not duplicated) group.

changed control group. This setup is similar to the
one in the previous subsection, but treatment and
control group do not cover the entire vocabulary;
both consist only of subwords that have a near du-
plicate. To isolate the causal effect of duplication,
we investigate differences between these groups.

We first compare the effects of the number
of deduplicated subwords and non-deduplicated
subwords in the LMs context, i.e., measuring
the effect of deduplication on the input side. An
increased number of deduplicated subwords seems
to generally lead to a steeper increase in surprisal
than an increased number of non-deduplicated
subwords, at least in the local context (see Fig. 8 in
App. F). This suggests that deduplicated subwords
in the context do hurt performance, presumably
due to the lost information.

Interestingly, deduplicated subwords are also
predicted slightly worse on the output side (see
Table 6). In this setting, the model is forced
to learn only one output embedding for each
pair of merged near duplicates. If these merged
subwords have different meanings, finding a single
embedding to represent both of them might be
challenging, as this embedding would need to
produce large dot products with the hidden states
of contexts from both subwords.

Takeaway 6. The presence of merged near dupli-
cates in the local context tends to reduce an LM’s
prediction accuracy.
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5.2.4 Re-adding Information
If the missing information in the input causes worse
predictions, can we improve performance by re-
injecting it? If we provide the model with an extra
input that allows it to distinguish between merged
near duplicates while still sharing their embeddings,
could we obtain the benefits of deduplication with-
out the downside of losing information?

To investigate this, we introduce an extra learn-
able embedding enon-canonical. This is a single
shared vector which is added to the model’s input
at every token that corresponds to a non-canonical
subword. (A non-canonical subword w is any sub-
word where S(w) ̸= w, e.g., Now when operating
under Slower, since Slower(Now) = now ̸= Now.)
As Sall combines the three different types of dedu-
plication, we use three different learnable embed-
dings for the Sall setting, one for each type.

When comparing p̂(c) with and without
enon-canonical, such an embedding’s availability
significantly improves performance (p ≤ 0.05 in
one-sided t-test) in all four deduplication settings
(see Table 5). Further, p̂(c) with enon-canonical
roughly matches p̂(w) performance for Sspace,
Slower, and Splural (differences not statistically
signficant with p = 0.22, 0.48, 0.72, respectively,
in two-sided t-test). However, we still do not see
the same performance improvements due to dedu-
plication as we observed in the synthetic setting;
this is especially clear for Sall which has a higher
deduplication rate, but clearly fails to improve
performance (p̂(c) with enon-canonical is significantly
worse than p̂(w) with p ≤ 0.05 in two-sided t-test).
Presumably, even if they belong to the same type
(Sspace, Slower, or Splural), near duplicate pairs’ se-
mantic differences are diverse and can thus not be
fully captured by a single shared embedding vector.

Takeaway 7. Performance losses can be mitigated
by accounting for semantic differences of near
duplicates via a shared learned embedding. Still,
this approach does not achieve the same benefits
as observed when merging perfectly equivalent
duplicates.

6 Related Work

Our experiments are partly inspired by a number of
works on cross-lingual LM generalisation. These
works also use duplicated vocabularies, terming the
duplicates “fake-english”. Unlike our work, how-
ever, they sample entire sequences of either English
or “fake-english” tokens (we perform token-wise

i.i.d. sampling; K et al., 2020; Dufter and Schütze,
2020; Schäfer et al., 2024). Relatedly, Huang
et al.’s (2023) lex-invariant LMs can be interpreted
as an extreme case of token duplication; essentially
creating infinite “fake languages”, they show that
LMs can learn, to a certain extent, even in the ab-
sence of a fixed set of embeddings. More similar to
our duplication method is the work of Kharitonov
et al. (2021), who use duplicates sampled at the
token level to isolate the effect of vocabulary size
when investigating the role of BPE tokenisation in
a model’s ability to memorise training data.

Another set of related work studies subword reg-
ularisation techniques, such as, e.g., BPE dropout
(Kudo, 2018; Provilkov et al., 2020). Certain char-
acter sequences can be represented by multiple
equivalent sequences of subwords. These tech-
niques then non-deterministically choose between
these equivalent choices at training time, which can
lead to improved LMs. Our perfect duplication ex-
periments, where we train LMs with either of two
duplicated tokens, can be seen as similar to these
methods. Unlike them, however, our approach du-
plicates a model’s vocabulary to introduce this am-
biguity, which may explain the fact that our results
diverge. Relatedly, our projected entropy measure
(which sums over subword duplicates) is analogous
to the marginalisation proposed by Cao and Rimell
(2021), which sums over spurious tokenisations.

7 Conclusion

In this paper, we investigate to what extent (near)
duplicate subwords impact language modelling per-
formance, conducting controlled experiments on
synthetic perfect duplicates and natural near dupli-
cates. We find that LMs can generalise across du-
plicated subwords, although this incurs extra cost.
When operating on a fully duplicated vocabulary,
the LM is about 17% less data efficient. This num-
ber depends roughly linearly on the fraction of
the vocabulary that is duplicated. Assuming that
roughly 40% of subwords are near duplicates in
common LM vocabularies, our findings imply that
LMs with improved generalisation across dupli-
cates, e.g., by modelling language at the character-
level, could achieve data efficiency gains of up to
10%. This bound is reached for perfectly equiva-
lent duplicates. However, we find that natural near
duplicates are not perfectly equivalent: in practice,
the potential for such performance improvements
is likely limited.
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Limitations

We conduct most of our experiments on models
with about 100M parameters, training on roughly
1.2B tokens in English. Although the trends we
identify are consistent in up to 3x larger models
and datasets, it is uncertain whether they extend
to the scale of modern large language models.9

Furthermore, we have not validated that our results
transfer to languages beyond English.

When we study the causal effects of
(de)duplication on the input and output side,
we do not fully isolate the two effects from each
other. After a manual inspection, it appears
that this does not confound the results; e.g.,
duplicated subwords are not more frequent in
the input/context of duplicated subwords than
non-duplicated subwords are. However, to fully
exclude the possibility that such patterns affect
results, one should run experiments where only the
inputs or only the outputs are (de)duplicated.

Finally, while studying natural near duplicates,
we only investigate deduplication mappings that
can be described by simple heuristics. Alterna-
tively, one could use more involved methods to
also deduplicate, e.g., typos or wordform variations
beyond plural forms.
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A Lemma 1 and Proof

Definition 1 (Time-dependent Conditional Entropy and Mutual Information). We define a time-dependent
conditional entropy as:

H(W<T | C≤T)
def
=

∑

w∈W

∑

c∈C
pS(w, c)

|w|∑

t=1

log
1

pS(w<t | c≤t)
(16)

with H(W<T | C<T) defined analogously. Note that, while pS(w) stands for the probability of the
single event {w}, we write pS(w<t) to represent the probability of the event composed by the union of all
sequences with this prefix, i.e., ∪w′∈W{w<t ◦w′}, where ◦ stands for concatenation.

Accordingly, we define a time-dependent mutual information as:

MI(W<T;CT | C<T) = H(W<T | C<T)−H(W<T | C≤T). (17)

Lemma 1. Let S : Σ → Σ be a deterministic function which maps duplicated subwords w ∈ Σ to their
deduplicated versions c ∈ Σ. We then have that:

HS(W) = H(C)−MI(W<T;CT | C<T) (18)

Proof. We start with the definition of HS(W) and derive Lemma 1:

HS(W) =
∑

w∈W
p(w)

|w|∑

t=1

log
1

pS(S(wt) | w<t)
(19a)

=
∑

w∈W

∑

c∈C
pS(w, c)

|w|∑

t=1

log
1

pS(ct | w<t)
pS(w, c) = p(w) if S(w) = c else 0 (19b)

=
∑

w∈W

∑

c∈C
pS(w, c)

|w|∑

t=1

log
1

pS(ct | c<t,w<t)
pS(c<t | w<t) is deterministic (19c)

=
∑

w∈W

∑

c∈C
pS(w, c)

|w|∑

t=1

log
pS(w<t | c<t)

pS(ct | c<t) pS(w<t | c≤t)
Bayes rule (19d)

=
∑

w∈W

∑

c∈C
pS(w, c)

|w|∑

t=1

(
log

1

p(ct | c<t)
+ log

pS(w<t | c<t)

pS(w<t | c≤t)

)
Split log (19e)

=
∑

c∈C
p(c)

|c|∑

t=1

log
1

p(ct | c<t)
+

∑

w∈W

∑

c∈C
pS(w, c)

|w|∑

t=1

log
pS(w<t | c<t)

pS(w<t | c≤t)
Split sum (19f)

= H(C) +
∑

w∈W

∑

c∈C
pS(w, c)

|w|∑

t=1

log
pS(w<t | c<t)

pS(w<t | c≤t)
Definition of H(C) (19g)

= H(C) + H(W<T | C≤T)−H(W<T | C<T) Definitions of conditional entropies (19h)

= H(C)−MI(W<T;CT | C<T) Definition of mutual information (19i)

Note that pS(w, c) > 0 =⇒ S(w) = c =⇒ |w| = |c|, which is required for arriving at Eq. (19f).
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B Near Duplicates in Modern LLMs

Table 7 shows the near duplicate rates in vocabularies of modern large language models, namely GPT-3.5
and GPT-4 models (Brown et al., 2020; OpenAI et al., 2023), Claude 2.1 (Anthropic, 2023), Llama
(Touvron et al., 2023a,b), Mistral 7B and Mixtral 8x7B (Jiang et al., 2023, 2024), and Gemma (Gemma
Team et al., 2024).

Near Duplicate Rate

Model Vocabulary Size Sspace Slower Splural Sall

GPT-{3.5, 4, 4-turbo} 100k 19% 24% 9% 43%
Claude 2.1 65k 25% 23% 9% 46%
Llama 1 & 2 32k 17% 31% 22% 35%
Mistral 7B & Mixtral 8x7B 32k 15% 32% 23% 37%
Gemma 7B 256k 21% 20% 7% 39%

Table 7: Near duplicate rates of modern LLM vocabularies. Computed as 1− |Σ|
|Σ| , i.e., the ratio by which the size of

the vocabulary decreases when mapping all subwords to their canonical versions using the respective S. For the
definitions of the deduplication mappings S, see §5.2.1.

C Near Duplicates under Sspace

Near duplicates under Slower and Splural are generally very close in meaning. Slower pairs often consist of
the lowercase and the capitalized version of a subword, where the latter might appear at the beginning of
sentences. And (sub)word pairs under Splural tend to refer to the same lemma. For Sspace, however, the
contexts in which subword variants with and without a leading space appear might differ much more: in
particular, we observe this with shorter subwords that can appear both as their own word (e.g., _he in ‘and
he writes‘) and as a substring of a longer unrelated word (e.g., he in ‘breathe‘).

To quantify how frequently Sspace near duplicate pairs show such differences, we manually inspect
100 randomly sampled pairs and note whether the subwords convey comparable meaning in their first
occurrences in the training data. We find that 53% of the pairs carry highly similar meaning in both
occurrences. Examples include use in compound words (e.g., _writing in isolation vs writing in ‘handwrit-
ing’, or _held in isolation vs held in ‘long-held’) or after special characters like newlines, parentheses,
or quotation marks (e.g. _wide in isolation vs wide in ‘(wide [...])’). Of the remaining 47%, around half
appear in contexts that are clearly different (e.g., he and _he as in example above) while the rest are very
short subwords where the conveyed meaning is hard to determine (e.g. _sche in ‘schemed’ vs sche in
‘Nietzsche’).
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D Effect of Added Parameters for Duplicates

A model p̂(w) over duplicated subwords has more embedding parameters than its deduplicated counterpart
p̂(c). In the perfect duplication setting, however, these extra parameters should not yield an unfair
advantage. In particular, assume an equiprobable duplicates setting, where p(w i | c i ) = p(w′

i |
c i ) = 0.5. We can show that, in this setting, if there exists an optimal model p̂(w) (which achieves
Ĥ(W) = H(W)), then there also exists an equivalent model p̂(c). Further, the input and output
embeddings for duplicates w i and w′

i are perfectly interchangeable; the added embeddings thus provide
no benefits, as the embedding of any w′

i can be replaced with the embedding of the respective w i without
affecting performance.

To see this, note that for the optimal p̂(w), we have p̂(w) = p(w) almost everywhere. Consequently,
by Bayes, p̂(w | w<t) = p(w | w<t). We thus obtain

p̂(w i | w<t) = p̂(w′
i | w<t) (20)

which means that the model makes identical predictions for duplicate subwords. Predictions are thus not
affected if we assign all w′

i the output embedding of the respective w i (or vice-versa).
An analogous argument holds for input embeddings. Let w<t[w

′
i → w i ] denote the token sequence

obtained when replacing every occurrence of w′
i in w<t with w i . For the true distribution, we know that

p(w i | w<t) = p(w i | w<t[w
′
i → w i ]) due to the perfect equivalence, and thus also:

p̂(w i | w<t) = p̂(w i | w<t[w
′
i → w i ]) (21)

This means that p̂(w) makes identical predictions, whether we replace w′
i with w i in the context or

not. If we assign w′
i the input embedding of w i , model performance is not affected. By applying this

argument iteratively for all i, we can show that all duplicates’ input embeddings can be made identical. If
the input embeddings of all duplicates can be made identical, then there exists a model p̂(c i | c<t) which,
when given as input S(w), outputs the same probability as p̂(w i | w<t) + p̂(w′

i | w<t). In particular,
let vw be the output embeddings associated with w. We can show that:

p̂(w i | w<t) + p̂(w′
i | w<t) = 2 p̂(w i | w<t) (22a)

= 2
exp(vw i

h)
∑
w∈Σ

exp(vw h)
(22b)

= 2
exp(vw i

h)

|Σ|∑
j=1

exp(vw j
h) +

|Σ|∑
j=1

exp(vw′
j
h)

(22c)

=
2 exp(vw i

h)

2
|Σ|∑
j=1

exp(vw j
h)

(22d)

=
exp(vc i

h)

|Σ|∑
j=1

exp(vc j
h)

(22e)

= p̂(c i | c<t) (22f)

So we can construct a p̂(c) model from p̂(w) by simply making the embeddings of c i the same as w i .
The identical input embeddings preserve the value of the hidden state h for any context, which, along
with the identical output embeddings, ensures identical model outputs.
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E Embedding Similarity Results

While in Fig. 6, it appears that a balance between duplicated and non-duplicated subwords (i.e. p(w′
i |

c i ) = 1− p(w i | c i ) close to 0.5) leads to higher similarity of their embeddings, Fig. 7 shows that the
underlying factor driving embedding alignment seems to be subword frequency, or more precisely, how
often the rarer version of the subword (here always w′ as p(w′

i | c i ) < 0.5) occurs.

Figure 6: Embedding cosine similarity of duplicates w i , w′
i and random pairs w i , w j to control for anisotropy.

Left: Our GPT model. Right: Word2vec embeddings trained on the same data (computed with Gensim).

Figure 7: Embedding cosine similarity of duplicates w i , w′
i , by frequency of the rarer w′

i . Frequencies binned
and similarities averaged per bin.
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F Effect of Deduplicated Subwords in the Context

An increased number of deduplicated subwords in the context seems to generally lead to a steeper increase
in surprisal than an increased number of non-deduplicated subwords, at least in the local context of 16
tokens (see Figure Fig. 8). For the full context, the trend is less clear.

Figure 8: Deduplication of half of the vocabulary. Difference to baseline (p̂(w)) surprisal, depending on fraction of
(non-)deduplicated subwords in context. Fractions binned and surprisal differences averaged per bin. To reduce
noise and ensure readability, we only plot bins that contain at least 1k predicted tokens.
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