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Abstract

Multi-modal Event Reasoning (MMER) en-
deavors to endow machines with the ability
to comprehend intricate event relations across
diverse data modalities. MMER is fundamen-
tal and underlies a wide broad of applications.
Despite extensive instruction fine-tuning, cur-
rent multi-modal large language models still
fall short in such ability. The disparity stems
from that existing models are insufficient to
capture underlying principles governing event
evolution in various scenarios. In this paper, we
introduce Multi-Modal Event Evolution Learn-
ing (MEEL) to enable the model to grasp the
event evolution mechanism yielding advanced
MMER ability. Specifically, we commence
with the design of event diversification to gather
seed events from a rich spectrum of scenarios.
Subsequently, we employ ChatGPT to generate
evolving graphs for these seed events. We pro-
pose an instruction encapsulation process that
formulates the evolving graphs into instruction-
tuning data, aligning the comprehension of
event reasoning to humans. Finally, we ob-
serve that models trained in this way are still
struggling to fully comprehend event evolution.
In such a case, we propose the guiding discrim-
ination strategy, in which models are trained to
discriminate the improper evolution direction.
We collect and curate a benchmark M-EV2 for
MMER. Extensive experiments on M-EV2 val-
idate the effectiveness of our approach, show-
casing competitive performance in open-source
multi-modal LLMs. Code and Dataset are avail-
able on https://github.com/TZWwww/MEEL.

1 Introduction

Events are instances or occurrences that are the
fundamental semantic units. Events are not in-
dependent, and they are usually interconnected
by the following relations: causality, temporal-
ity, and intention. Multi-modal Event Reasoning
(MMER) is to comprehend these events and their
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Figure 1: Part of the event evolution of a hurricane sce-
nario. The queried event is in red. MEEL endows the
model with the knowledge of all events in the scenario
evolution. Current methods only train the model of few
clips of event reasoning of the green one.

relations in both visual and textual modalities, and
finally pave a path to better understanding the true
world. MMER is expected to serve as the underpin-
ning for various multi-modal applications, includ-
ing visual storytelling (Huang et al., 2016), visual
event prediction (Huang et al., 2021), event-related
VQA (Park et al., 2020), MM knowledge graph
construction (Ma et al., 2022), and video genera-
tion (Li et al., 2018; Liu et al., 2024). Such intricate
tasks require an understanding of the event evolu-
tion mechanism across diverse scenarios.

With the deepening of research on multi-modal
instruction tuning, Multi-modal large language
models (MLLM) have been able to handle various
multi-modal tasks effectively (Liu et al., 2023; Zhu
et al., 2023; Chen et al., 2023; Dai et al., 2023; Li
et al., 2023b). These models master some abilities
of MM event reasoning implicitly during training
in diversified sorts of tasks. Among all the task
categories, the perception tasks such as referring
expression comprehension, referring expression
generation, and grounded image captioning (Mao
et al., 2016; Kazemzadeh et al., 2014; Peng et al.,
2023) enable the model to comprehend the entities
of the events in the image and text. The cognitive
tasks, namely image caption and VQA (Lin et al.,
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2014; Goyal et al., 2017), endow the model with
the semantic understanding capability of events.
However, the models trained by these tasks are
unable to perceive event evolution because of the
static nature of all modality inputs. Existing visual
instruction-tuning methods only consist of ques-
tions for few clips of the entire event scenario. As
shown in Figure 1, current methods only model
the queried events with the green event and ignore
the rest of the scenario. They lack a vision of a
broad spectrum of other events in the evolving
context. Such contextual absence impedes mod-
els from learning abundant evolution knowledge
resulting in poor performances in MMER.

To address this issue, we propose Multi-Modal
Event Evolution Learning (MEEL) for endowing
the model to understand the event evolution to en-
hance the ability of MMER, leading to improved
performances on downstream tasks. Specifically,
we first design the event scenario diversification
to acquire various events from abundant scenar-
ios. Then, we employ ChatGPT to generate the
evolving graphs of these seed events. The aim is to
use these graphs to train the model to understand
the rich knowledge of the evolution of events. To
accomplish this goal, we propose the instruction
encapsulation process to adapt the evolving graphs
into instruction-tuning data to train the model. In
this way, the training allows the model to com-
prehend more event evolutional knowledge of the
scenario leading to better performance of MMER.
However, allowing the model to learn only the
evolving graphs is insufficient. Without acknowl-
edging the incorrect evolving events, the model
would improperly forward the process, resulting in
the hallucination of event reasoning. To mitigate,
we perform the guiding discrimination. The model
requires judging the incorrect evolution. We design
various negative mining strategies to harvest incor-
rect events. Then, we train the model to classify
the right event. We also adapt the guiding discrimi-
nation into instruction tuning. After obtaining all
the data, we finetune the LLaVA (Liu et al., 2023)
model after its stage-1 pre-taining with LoRA (Hu
et al., 2021) to get our model.

To validate the effectiveness of MEEL, we
curate a benchmark M-EV2 for Multi-modal
EValuation of EVent reasoning. M-EV2 is col-
lected or curated from nine existing datasets cov-
ering visual storytelling (Huang et al., 2016), vi-
sual event prediction (Huang et al., 2021), and
event-related VQA (Yeo et al., 2018; Zhang et al.,

2021a). Overall, M-EV2 is a challenging task de-
manding the model to be capable of reasoning for
diverse inter-event relations, like causality, tem-
porality, and intent. It consists of two reasoning
paradigms: close and open reasoning. We con-
ducted extensive experiments on M-EV2 and com-
pare MEEL against some strong MLLM baselines.
Our results demonstrate that MEEL does enhance
the MMER ability of the model yielding significant
improvements in downstream tasks. We conclude
our contributions as:

• We propose the Multi-Modal Event Evolution
Learning (MEEL). It aims to train the model
to comprehend the intricate event evolution of
diversified scenarios. Our method may shed
light on other MM event reasoning research.

• We further design the Guiding Discrimination
to guide the evolution and mitigate the hallu-
cinations of MMER.

• We collect and curate the M-EV2 benchmark
for MMER. M-EV2 covers diversified inter-
event relations. We conduct extensive experi-
ments on M-EV2 to test the effectiveness of
our model. We achieve competitive perfor-
mance among open-source MLLMs.

2 Multi-Modal Event Evolution Learning

We strive to enhance a multi-modal large language
model’s capability in multi-modal event reason-
ing (MMER) to boost performance on downstream
tasks. The key is to enable the model to compre-
hend event evolution. As shown in Figure 1, cur-
rent multi-modal SFT data only model the target
events with the green event and ignore the rest of
the scenario. They lack a vision of a broad spec-
trum of other events in the evolving context. Such
contextual absence impedes models from learning
abundant evolution knowledge resulting in poor
performances in MMER. The intuitive motivation
is to endow the model with the knowledge of all
events in the whole scenario.

To do that, we propose Multi-Modal Event Evo-
lution Learning (MEEL). We leverage ChatGPT
to obtain the evolution graph via our Event Graph
Evolution mechanism, which starts from diversified
seed events. The evolving graphs contain the entire
event semantics of a whole scenario. Then we trans-
form the evolving graphs into instruction-tuning
data to train our model. Note that instruction tuning
is one of the feasible ways to learn the knowledge
of event-evolving graphs. One can also leverage
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Figure 2: Overview of MEEL. We first implement the Event Diversification to harvest seed events. Then we perform
the Event Graph Evolution to obtain the evolving graphs. We adapt the evolving graphs into instruction-tuning data
through our Instruction Encapsulation. The Guiding Discrimination aims to improve the evolution learning with our
two negative event mining strategies.

other methods such as in-context learning based
on our data. We find that only when trained on
the instruction-tuning data does the model turn to
generate hallucinations. Therefore, we further add
Guiding Discrimination loss to require the model
to distinguish the correct events.

This section is organized as follows: Section 2.1
details the MMER task. The main purpose of
MEEL is to enhance the comprehension of event
evolution. We initiate with an event diversification
step to generate a diverse mix of seed events of
various scenarios (Section 2.2). Then we construct
the event-evolving graphs through a novel method
named event graph evolution (Section 2.3). Our
next objective is to leverage these event-evolving
graphs for model instruction tuning training (Sec-
tion 2.4). Finally, we incorporate a guiding discrim-
ination training strategy to refine evolution path-
ways and reduce reasoning errors (Section 2.5).
MEEL’s comprehensive framework is graphically
represented in Figure 2.

2.1 Multi-Modal Event Reasoning

Multi-Modal Event Reasoning (MMER) involves
deducing events based on certain inter-event re-
lations across different modalities. Specifically,
events as semantic units can be characterized by
text, but their semantics are often more richly con-
veyed through associated images (Zhang et al.,
2021b). The pursuit of MMER is to harness
these multi-modal inputs to establish various re-
lationships between events (temporal, causal, in-
tentional, etc.), facilitating sophisticated reasoning

processes (Tao et al., 2023b,a; Han et al., 2021).
This reasoning underlies a spectrum of downstream
tasks (Huang et al., 2016; Park et al., 2020).

We elaborate on the MMER formulation,
wherein an event is expressed by a textual sen-
tence E and represented by an image I. Text pro-
vides argument structure, such as subject, verb,
and object (Doddington et al., 2004), while images
contextualize the event with environmental and sit-
uational details (Yang et al., 2023; Zellers et al.,
2021). MMER can be modeled as inferring a target
event E t based on a given relation R:

E t = M (E , I,R), R ∈ SR. (1)
Here, M denotes the model and SR represents the
set of possible inter-event relations. For example,
in Figure 1, E is the red event, I is the image, the
queried relation R is "cause", the answer E t is the
green event. Therefore, the entire data is:

Question: Given the image, what is the cause of
"The buildings and facilities were damaged.".

Answer: A hurricane or severe weather event
caused significant damage to the buildings.

This question can not be answered only based
on the E since there can be many reasons for build-
ing damage. Seeing the image, we can reason the
damage could be caused by a hurricane. Models
require analysis of both E and I to get the answer.

2.2 Event Diversification
Event diversification aims to curate a varied collec-
tion of seed events, encompassing multiple types
and scenarios for ensuing evolutionary learning.
We initiate this process with a corpus of text and
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Consider the context that {caption}.Given a mentioned event: {event},
list events that each has a certain relation to the mentioned event.
The generated events should be complex and complete which should
at least have subject, verb. Leverage richer common sense knowledge
to generate events. The generated events and the mentioned event
can have different subjects. \nExamples: {examples} \nOutput:

(a) Evolving Prompt

Give me 100 instructions. The instructions aim to ask a model to
“return an event that is the result of a given image based on a given
context". The generated instructions should be as rich as possible in
syntax, semantics, and form, covering various task difficulties. Include
the context in the generated instructions and mention it as [event].
Don't generate double quotation marks.

Considering the {event}, describe an event that unfolds as a
consequence of the depicted image.

(b) Instruction Generation & Generated Template

Give me 50 instructions that aim to choose the most possible
consequence of a given image from given choices based on a given
context. The generated instructions should be as rich as possible in
syntax, semantics, and form, covering various task difficulties. Include
the context in the generated instructions and mention it as [event].
Don't generate double quotation marks.

Draw upon the {event} to interpret the image, then pick the
consequence that emerges as the most plausible.

(c) Instruction Generation & Generated Template (MC)

Figure 3: (a) Evolving prompt. The sentence in brown
only exists if E is the seed event. In such a case, we
add the caption of I. (b) Instruction templates genera-
tion of Result relation and one example of generated
template. (c) Multiple-choice Instruction templates gen-
eration of Result relation and one example of generated
template. {caption} is the placeholder for the image cap-
tion. {event} and {examples} are for the event E and
in-context examples.
image pairs {(Ei, Ii)}, where each pair jointly rep-
resents an event. We next extract the trigger words
to represent the events. Trigger words are typi-
cally verbs that explicitly signify the event’s occur-
rence (Doddington et al., 2004). We employ the
Spacy tool1 to identify the primary verb VEi within
each text Ei as the trigger.

Observing a long-tail distribution in trigger fre-
quency, we only include K events per trigger to
establish a balanced seed event set, denoted as
SE = {(Ei, Ii)}. The outcome of this event di-
versification step is more diversified event types
and scenarios, thereby broadening our model’s gen-
eralization capabilities and strengthening its under-
standing of varied contexts.

2.3 Event Graph Evolution

For the goal of enhancing the comprehension of
event evolution, we utilize the seed events SE to

1https://spacy.io/

Algorithm 1: Event Graph Evolution algo-
rithm.

Input :Seed event E and the caption C, evolving
relations RE , evolving steps L.

Output :Event-evolving graph G.
1 G.AddNode(E), Ẽ = [E ]
2 for i← 1 to L do
3 N = [ ]

4 for Ej in Ẽ do
5 if i == 1 then
6 {(Ek,Rk)} =

Evolve(Ej , C, SampleRel(RE , 2))
7 else
8 {(Ek,Rk)} =

Evolve(Ej , SampleRel(RE , 2))
9 end if

10 for Ek,Rk in SampleEvent({(Ek,Rk)}, 2)
do

11 G.AddNode(Ek)
12 G.AddEdge(Ej ,Rk, Ek)
13 N.Append(Ek)
14 end for
15 end for
16 Ẽ = N
17 end for
18 return G

construct event-evolving graphs through our de-
signed event graph evolution methodology. Build-
ing on insights from prior work where LLMs like
ChatGPT2 have demonstrated proficiency in gener-
ating coherent event narratives (Gunjal and Durrett,
2023; Li et al., 2023e), we apply a breadth-first
search (BFS) strategy using the ChatGPT to ex-
pand each seed event (E , I) ∈ SE both forward
and backward in event happening time. We show
the process of either direction in Algorithm 1.

We introduce the process of forward evolu-
tion. Starting from the seed event E , we con-
sider forward-oriented relations such as RE =
{Result, After, HasIntention}3. For each iter-
ation, we invoke the ChatGPT to produce events
consistent with sampled relations from RE , as de-
scribed in Equation 1. In the beginning, due to
the bias of relying solely on textual events, we
incorporate visual information of the seed event.
Specifically, while evolving a seed event, we add
its image caption to provide contextual details, pro-
moting more accurate evolution. When evolving
the intermediate events, we only use just their text.
The prompt template for this evolution process is
depicted in Figure 3(a). After L iterations, we ac-
quire an event-evolving graph G.

2https://openai.com/
3Relations are directed from the generated to the queried

event, for instance, generating the Result for a given event.
HasIntention implies the head event is intended by subjects
in the tail event.
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Besides, we also consider backward evolution.
Our motivation for that is intuitive. We want the
model to cognize event evolution in an complete
timeline including both directions. Since we al-
ways start from an intermediate event in the time-
line, we need to perform both forward and back-
ward evolution. To do that, we consider evolving
relations RE = {Cause, Before, IsIntention}
and remains the other steps the same.

After the both sides evolution, we denote the
outputs as the event-evolving graph G which entails
the rich evolution mechanism of the event scenario.

2.4 Instruction Encapsulation
To endow the knowledge of the evolving graphs
G for model training, we turn to multi-modal
instruction-tuning, a technique with proven effi-
ciency in adapting models to human-like compre-
hension (Zhu et al., 2023; Sun et al., 2023; Li et al.,
2023a; Liu et al., 2023; Li et al., 2023b; Dai et al.,
2023). Our approach involves transforming the
components of G, represented as G = (V,W) with
nodes V and edges W, into instruction-tuning data.

For each node Ei ∈ V, we aim to create a
datum comprising the seed event Es, its asso-
ciated image I, the relation Ri, and the event
Ei 4. However, directly inferring Ri between
nodes Es and Ei is not straightforward if they
are non-adjacent. We address this by introduc-
ing induction rules that leverage the properties of
inter-event relations, as detailed in Table 1. For
example, in an evolving graph G, there exists a
path from the seed event Es and another event
E2: Es⇒[After]⇒E1⇒[Result]⇒E2. According
to rule 1 in Table 1: (After)⋆(Result)+(After)⋆ in-
fers Result, where ⋆ denotes there exists zero or
more, + means there is at least one. We induce
Es⇒[Result]⇒E2. By applying these rules, we
derive the indirect relation Ri.

Then we embed all the data with our instruction-
tuning templates to form an instruction-tuning
dataset. To avoid the laborious task of creating
manual templates, we employ ChatGPT to generate
diverse question templates for each relation type.
With 100 templates from ChatGPT, the templates
aim to reason about the tail event based on the pro-
vided visual and/or textual events in accordance
with Equation 1. Considering the possible absence
of textual input, we generate two variations for
each of the |SR| relations: one with textual input

4We also tried to keep the intermediate nodes between Es
and Ei into the training data but found poorer performances.

RULE INDUCTION

(After)⋆(Result)+(After)⋆ Result
(After)⋆(HasIntention)+( After)⋆ HasIntention
(After)+ After
(Before)⋆(Cause)+(Before) Cause
(Before)⋆(IsIntention)+(Before) IsIntention
(Before)+ Before

Table 1: Relation induction rules. ⋆ denotes there exists
zero or more. + means there is at least one.

GRAPH NODE TRAINSET AVG INPUT TOKEN

3600 38.36 14,290 104.17

Table 2: Trainset statistics. GRAPH is the number of
generated graphs. NODE stands for the average nodes
in a generated graph. TRAINSET is the number of gen-
erated data. AVG INPUT TOKEN is the average number
of tokens of the input instruction.
and one without.

For any given data (Es, I,Ri, Ei), we randomly
determine whether to include textual event infor-
mation. We then match a suitable template to the
relation type Ri and encapsulate all the items into
our instruction-tuning dataset. An example of an
encapsulated datum is illustrated in Figure 3(b).

2.5 Guiding Discrimination

To ensure accuracy during event graph evolution
and guide the model away from generating erro-
neous events, we introduce a guiding discrimina-
tion training paradigm. This mechanism is pivotal
in preventing the evolution process from producing
hallucinations which is similar to DPO (Rafailov
et al., 2023). In this paradigm, we task the model
with identifying the correct event amongst a set of
carefully selected negative events.

E t = M (E , I,R,D), R ∈ SR, (2)

where D is the candidate set consisting of the cor-
rect event E t and a few negative events.

The discrimination training is challenging to per-
form due to the sourcing of these negative events.
For which we formulate two negative event acqui-
sition strategies:

Semantic: This strategy requires model to dis-
criminate the semantic similar events. To forge
semantically similar negative events, we first com-
pile a pool of all events of the generated graphs.
For any positive event E , utilizing Spacy for depen-
dency parsing, we compute the tree edit distance
and the word overlap rate between E and each event
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in this pool5. Filtering by the preset thresholds for
these metrics, we select the top two events that
are close to E . This method sharpens the model’s
ability to distinguish between events with closely
related linguistic structures.

Evolving: This strategy enhances the model’s
grasp on the directionality of event evolution.
Leveraging the bidirectional nature of our event
generation, namely forward and backward direc-
tions, we select two negative events from the op-
posite direction of the positive event’s evolution.
These negatives are particularly challenging as they
maintain shared arguments within the same sce-
nario but differ in their logical sequence. This
practice further refines the model’s reasoning skills
for establishing the correct evolution path.

From the total four negative events generated
through these strategies, we randomly select two
of them. These, alongside the correct event, are
then encapsulated into a multiple-choice format.
We also create diverse multiple-choice question
templates for each relation type via ChatGPT. An
example of such a generation prompt and a corre-
sponding template is presented in Figure 3(c).

2.6 Training
After acquiring both MMER and guiding discrimi-
nation dataset, we finetune the backbone by com-
bining the MMER loss LR (from Eq.1) and the
guiding discrimination loss LD (from Eq.2):

LR = −
∑

(E,I,R)

logP (E t|E , I,R),

LD = −
∑

(E,I,R,D)

logP (E t|E , I,R,D),

L = LR + LD

(3)

3 Experiments
3.1 Construction of M-EV2

To comprehensively evaluate the models’ abilities
of MMER on diversified inter-event relations, we
collect and curate a benchmark M-EV2. It incor-
porates nine test sets covering event-related visual
question answering (VCOPA, VisCa, VisualComet),
visual event prediction (IgSEG), and storytelling
(VIST). M-EV2 evaluates event relations of causal-
ity, temporality, and intent. Besides, M-EV2 also
covers two reasoning paradigms that are multiple-
choice close reasoning tasks (CLOSE) and open
reasoning without candidates (OPEN). We show

5https://github.com/timtadh/zhang-shasha

the statistics of M-EV2 in Table 7. We elaborate
on the curation process as follows.
VCOPA This is the task of commonsense VQA (Yeo
et al., 2018). Given an image I and two candi-
date options, the task is to select a more plausi-
ble cause or effect option. We also transform this
dataset into an open reasoning task. We denote the
original multiple-choice task as VCOPA-C and the
transformed task as VCOPA-O.
VisCa This is a dataset of learning contextual
causality from the visual and textual signals (Zhang
et al., 2021a). The original task is formulated as
that given two images as the context and two textual
sentence descriptions, models need to determine if
the former sentence causes the latter one. We trans-
form it into our VQA task. We keep the image and
first sentence and regard the second sentence as the
label to generate. We retrieve one negative sentence
by the ground truth and form it as a multiple-choice
task. We also adapt the multiple-choice task into
an open reasoning similar to VCOPA-O. We denote
these two tasks as VisCa-C and VisCa-O.
VisualComet This is an open commonsense VQA
task which is to answer situations before or af-
ter (Park et al., 2020). We also retrieve a negative
answer to formulate it into a multiple-choice task.
We denote these two tasks as VC-O and VC-C.
IgSEG This dataset aims to predict future events
based on what has happened (Huang et al., 2021).
Specifically, given a sequence of sentences in se-
quential order and the image of what will happen
next, the models need to generate a sentence for
this image. In addition, we also retrieve one nega-
tive event and form it as a multiple-choice task. We
denote these two tasks as IgSEG-O and IgSEG-C.
VIST It’s the storytelling task which is to generate
the next story given the previous story in sentences
and an image (Huang et al., 2016).

3.2 Baselines

We compare baselines as LLaVA-Lora (Hu et al.,
2021), InstructBLIP (Dai et al., 2023), Ot-
ter (Awadalla et al., 2023), MiniGPT-4 (Zhu et al.,
2023), MiniGPT-4-v2 (Chen et al., 2023). We show
more details in Appendix B.

3.3 Implementation Settings

We use InstructBLIP (Dai et al., 2023) to generate
the image captions for event graph evolution. We
set the evolution steps as 3 and constructed 14,290
instruction-tuning data. Comprehensive statistics
of the dataset are detailed in Table 2.

8917



♣ VCOPA-C VisCa-C VC-C VCOPA-O VisCa-O VC-O

VQA

InstructBLIP (Dai et al., 2023) 63.33 64.78 51.25 7.57 / 2.31 / 9.32 7.56 / 1.01 / 14.87 12.30 / 4.84 / 13.72
Otter (Li et al., 2023b) 57.27 55.97 45.10 11.78 / 1.35 / 17.12 10.29 / 0.51 / 10.51 7.96 / 3.18 / 9.13
LLaVA-Lora (Liu et al., 2023) 46.06 45.28 45.60 7.66 / 1.44 / 0.64 7.06 / 0.67 / 5.66 7.57 / 2.31 / 3.32
MiniGPT-4 (Zhu et al., 2023) 56.67 47.80 51.40 9.78 / 2.44 / 7.05 7.87 / 1.55 / 10.30 6.92 / 1.78 / 0.42
MiniGPT-4-v2 (Chen et al., 2023) 49.70 52.83 54.60 8.90 / 2.13 / 2.09 8.89 / 1.21 / 8.55 7.54 / 3.03 / 5.06
MEEL (Ours) 66.06 72.33 68.10 19.18 / 2.92 / 26.02 19.16 / 3.40 / 29.58 16.28 / 3.99 / 22.93

Table 3: Main results of VQA tasks. The bold number represents the highest score.

♣ IgSEG-C IgSEG-O VIST

PREDICTION STORYTELLING

InstructBLIP 55.10 8.13/2.63/15.91 6.71/1.22/11.31
Otter 53.20 7.57/1.35/4.34 7.63/1.20/10.51
LLaVA-Lora 46.40 9.03/1.50/4.46 9.09/3.03/5.53
MiniGPT-4 49.90 8.72/1.54/3.24 8.66/1.67/9.64
MiniGPT-4-v2 51.30 8.69/1.45/3.73 8.95/1.68/10.44
MEEL (Ours) 66.50 14.00/1.41/19.41 14.38/1.44/25.60

Table 4: Main results of visual event prediction and
storytelling. The bold numbers represent the best score.

For our model, we use LLaVA-v1.3 after the
first pre-training stage as our backbone (Liu et al.,
2023) and train with Lora (Hu et al., 2021). LLaVA-
Lora-v1.3-7B is the most comparable baseline to
our method since the only difference is the visual
instruction-tuning dataset. We use deepspeed6,
zero-2 without CPU offloading. We set the batch
size to 16 on 4×V100 GPUs.

In pilot experiments, we conducted tests with
multiple input prompts for each model in order
to identify the most effective prompts for evalua-
tion. Despite variations in prompts, we observed
only minimal fluctuations in the results. To ensure
consistency and mitigate the other influences, we
maintained uniformity by using the same prompt
for all models performing a task. Detailed prompts
can be located in the Appendix E. For the multiple-
choice tasks, we transformed them into multiple-
choice questions and instructed the model to re-
spond with the corresponding label of choice. For
CLOSE tasks, we design an answer decoding strat-
egy and show in Algorithm 2. We find this strategy
can handle almost all situations. For CLOSE tasks,
we employ accuracy as the metric. For OPEN tasks
we utilize BLEU-1/2 (Papineni et al., 2002) and
BERT-SCORE (Zhang et al., 2019) as measures.

3.4 Main Results
We test our model on M-EV2 benchmark. We
show the VQA results in Table 3, visual event pre-
diction and visual storytelling in Table 4. We calcu-

6https://www.deepspeed.ai/

♣ VQA PRED STORY OPEN CLOSE ALL

InstructBLIP 33.01 35.50 11.31 12.53 54.11 25.16
Otter 28.40 28.77 10.51 9.66 49.06 21.64
LLaVA-Lora 23.92 25.43 5.53 4.64 45.85 17.17
MiniGPT-4-v2 26.49 26.57 9.64 6.44 51.30 20.08
MiniGPT-4 28.86 27.51 10.44 7.84 53.11 21.60
MEEL (Ours) 45.53 37.95 25.60 23.06 67.64 36.61

Table 5: Various kinds of average results. The bold num-
bers represent the best score. PRED stands for visual
event prediction. STORY is visual story telling. CLOSE
and OPEN are close and open reasoning tasks respec-
tively. ALL is the average performance on all test set.

late the various kinds of average scores in Table 5.
MEEL can effectively enhance performances of
VQA. MEEL achieves the highest scores on three
CLOSE VQA, namely VCOPA-C, VisCa-C, and
VC-C in Tabel 3. The results indicate MEEL can
distinguish the right events since the improvements
from event graph evolution with guiding discrimi-
nation. For the three OPEN VQA datasets, among
all metrics, BERT-SCORE can mostly evaluate the
answering quality. We find MEEL outperforms
all other baselines to a large extent. These re-
sults demonstrate the effectiveness of our method
on OPEN VQA. We also notice the BLEU-1/2 of
MEEL is higher than almost all models. Since
BLEU-1/2 measures lexical similarity, MEEL can
generate more well-formed events as the ground
truth. In all, our method improves the MMER.
MEEL outperforms baselines in visual event
prediction. MEEL performs the best among all
baselines in Table 4. The results demonstrate our
training method enables the model to capture cor-
rect temporal relations leading to more precise pre-
diction for the future. Compared to VQA tasks,
We find all models perform worse in visual event
prediction, indicating it needs more knowledge and
reasoning ability to complete this task. In OPEN

visual prediction, MEEL also achieves the highest
scores in BERT-SCORE. This shows our model
can forecast semantic similar events. However, we
find MEEL performs slightly lower in BLEU-2
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Figure 4: Analysis of steps of event graph evolution.

♣ VCOPA-O VisCa-O VC-O IGSEG-O VIST

MEEL w.o. D 19.63 21.78 21.79 18.83 24.67
MEEL 26.02 29.58 22.93 19.41 25.60

Table 6: Ablation study. MEEL w.o. D is our method
without guiding discrimination.

on IgSEG-O. Since BLEU calculates the 2-gram
lexical similarity, this may indicate MEEL can pre-
dict more diversified events with correct semantics
rather than words merely in the context.
MEEL can generate advanced story. In Table 4,
we find MEEL can excel all baselines in VIST.
The results show MEEL can tell better stories by
capturing more scenario knowledge and compre-
hending the inter-event relations. The event graph
evolution affects the training of the model to ac-
knowledge enriched event information rather than
merely shallow step reasoning.
In all, MEEL can significantly improve the per-
formance of the downstream tasks attributed
to boosted capabilities of MMER. In Table 5,
MEEL excels all baselines on the average score
of all datasets demonstrating the effectiveness of
our method. Our event graph evolution process
stimulates the contextual understanding of events.
The guiding discrimination further mitigates the
hallucinations of event reasoning yielding better
performances.

Among all relation types, the improvements of
VQA and STORYTELLING are larger than PRE-
DICTION. It indicates our method benefits more
for these tasks. PREDICTION is the hardest to learn
attributed to its demand for pertaining for more
abundant knowledge of events.

3.5 Analysis

Evolution steps. We conduct experiments on dif-
ferent evolution steps to verify the effectiveness of

event graph evolution. We tested steps 1-4 respec-
tively and calculated various average scores. We
show the results in Figure 4.

As the average of all results, the performance
of MEEL increases from steps 1 to 3 in Figure 4
(a). This is consistent with our motivation that the
event graph evolution enables the model to learn
the rich knowledge of event evolution. Then, the
model can complete MMER better.

We find the performances drop when the step is
too large, namely larger than four. This may be
attributed to the semantic drift of the event graph
evolution. ChatGPT would generate less relevant
content compared to the seed event if it evolves fur-
ther. We find that the drop is most obvious in VQA,
which may be probably due to VQA being the most
strict relation among all event interrelations.

We find MEEL can achieve a high score for
STORYTELLING when the evolution step is only
one in Table 4 (b). MEEL is 25.51 BERT-Score
while InstructBLIP is 11.31. As the number of
steps increases, MEEL maintains a high score.
This indicates that MEEL completes the STORY-
TELLING even on few evolution steps.

Effect of guiding discrimination. We ablate guid-
ing discrimination and show the results in Table 6.
We find that all performances drop if MEEL trains
without guiding discrimination. It indicates that
discrimination can guide the evolution and mitigate
hallucinations.

Examples of event graph evolution. We show-
case two examples of event graph evolution in
Figure 5. We find our evolving graphs can suffi-
ciently contain information and knowledge of event
scenarios. With the aid of event-evolving graphs,
MEEL learns more abundant event knowledge and
relation inter-connections.
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Figure 5: An example of an event-evolving graph. The event pointed to by the head cut is a tail event generated that
satisfies the color relationship of the head cut.

4 Relation Works
Multi-Modal Event Relational Reasoning As one
of the relation types, causality reasoning is crucial
for exploring the cause and effect of events (Yeo
et al., 2018; Zhang et al., 2021a; Chadha and
Jain, 2021; Ignat et al., 2021). Apart from causal-
ity, event temporal reasoning forms a basic abil-
ity (Zellers et al., 2019; Park et al., 2020; Zellers
et al., 2021). Event intentional reasoning uncovers
the intentions of the subjects of the events (Park
et al., 2020; Li et al., 2023c). Besides, there exists
research on other relation types as well (Kim et al.,
2022; Hessel et al., 2022). Multi-modal event rela-
tional reasoning constitutes a foundational capabil-
ity for a range of downstream tasks in the realm of
multi-modal reasoning. Our research endeavors to
further enhance this crucial skill.
Multi-Modal Instruction tuning With the signif-
icant success of instruction tuning (Ouyang et al.,
2022; Xu et al., 2023, 2024), current research has
extended its capability to multi-modality. MM in-
struction tuning trains the model the follow instruc-
tions for questions about the images. Compared
to textual instruction tuning, harvesting MM data
with instructions is tougher. Zhu et al. (2023) trains
MiniGPT-4 by further aligning pretrained EVA-
CLIP (Fang et al., 2023) and Vicuna (Chiang et al.,
2023). Liu et al. (2023) generate visual instruc-
tion data by requiring ChatGPT/GPT-4 with the
given image and its caption. Dai et al. (2023) adapt
human-labeled dataset into instruction data with
pre-made templates. Li et al. (2023a) construct
in-context learning data with instructions and use
this dataset to train an MM LLM. These methods
merely model shallow event evolving situations
leading to poor ability of MMER.
Script Induction Script induction is to induce or

generate chains or graphs of events representing the
evolving mechanism. Du et al. (2022) induces 11
scripts of newsworthy scenarios from documents.
Gunjal and Durrett (2023) attempt to generate event
chains by querying large language models. Zhang
et al. (2023) constructs scripts by designing interac-
tions between humans and LLM. Li et al. (2023e)
create event graphs in a pipeline operation with gen-
eration, ordering, and verification. In our work, we
are the first to utilize the ability of script induction
from ChatGPT to construct our MM event-oriented
instruction-tuning data. We expect our work may
shed light on other event-oriented approaches.

5 Conclusion
We propose the Multi-Modal Event Evolution
Learning for MMER. We design the event graph
evolution process based on the diversified seed
events. We then encapsulate the evolving graphs
into instruction-tuning data. We introduce the guid-
ing discrimination training paradigm to further im-
prove the learning of evolution. We conduct experi-
ments on our collected and curated M-EV2 bench-
mark for MMER. Results show the effectiveness
of MEEL and it achieves competitive performance
among open-source baselines.

Limitations

Our method is limited to MMER of a single image.
However, a more complex MMER may contain
several images to express a scenario. We leave the
construction of methods and benchmarks of this
complex MMER to future work.
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Appendix

A Baselines

We show statistics of M-EV2 in Table 7.

B Baselines

LLaVA-Lora This is a MLLM trained on visual
instruction-tuning. It’s based on the visual en-
coder ViT-L/14-336px (Radford et al., 2021) and
the textual chat LLM vicuna-v1.3-7b (Chiang et al.,
2023). In the first pre-train stage, it is trained with
image-text pairs. In the second stage, it is fine-
tuned by LLM-generated instruction-tuning data
with LoRA (Hu et al., 2021).
InstructBLIP It uses BLIP-2 (Li et al., 2023d)
framework as its foundation, InstructBLIP strate-
gically restructures 26 pre-trained public datasets,
including image captioning and VQA, into a format
conducive to instruction tuning (Dai et al., 2023).
Otter This model combines multi-modal in-
context learning with multi-modal instruction
tuning, building upon the foundation of Open-
Flamingo (Awadalla et al., 2023). This involves
updating the perceiver module and relevant compo-
nents of the LLM throughout the training process.
The instructional data is sourced from reputable
datasets including VQAv2 (Antol et al., 2015),
GQA (Hudson and Manning, 2019), LLaVA, as
well as a proprietary video dataset not available to
the public.
MiniGPT-4 This model conducts visual instruc-
tion tuning on the pre-trained BLIP-2 (Li et al.,
2023d), specifically focusing on updating the linear
layer (Zhu et al., 2023). The instructions primarily
draw from the domain of image captioning tasks.
MiniGPT-4-v2 This model performs as a unified
interface to complete various tasks such as VQA,
visual grounding, and image caption (Chen et al.,
2023). Different from MiniGPT-4, it adds task iden-
tifiers into the prompt to guide the task completion.
The backbone of MiniGPT-4-v2 is LLama-2 (Tou-
vron et al., 2023).

C Decoding Protocol

We show our decoding protocol for extracting an-
swers of CLOSE tasks as in Algorithm 2.

D Effect of event diversification.

We compute the event verb distribution. We show
two verb distributions with or without event diver-
sification. The results are in Figure 6. We find

Algorithm 2: CLOSE answer decoding.
Input :Prediction P , candidate set D.
Output :Answer A.

1 pattern =
"the(?: correct)? (?:option|answer) is[\ s:]+([A-H])"

2 if P.startsWithAlphabet() then
3 A = starts_alphabet
4 else if re.match(pattern, P) then
5 A = re.extract(P,patten)
6 else
7 A=argmax

c∈D
(WordOverlap(c, P))

8 return A

Figure 6: Distribution of verbs before and after event
diversification. Each part of the pie chart is the propor-
tion of a verb. We present the 100 most frequent verbs
with and without event diversification. (a) w.o. event
diversification. (b) w.t. event diversification.

the distribution is significantly diversified after the
event diversification process. It enables MEEL to
be trained in various event scenarios and domains.

E Inference Prompts

We show inference prompts of all test set in Fig-
ure 7. We test various prompts in our pilot experi-
ments and choose the prompts shown in Figure 7
which perform the best among others. We use the
same prompts for all models.
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VCOPA-O VCOPA-C VISCA-O VISCA-C VC-O VC-C IGSEG-O IGSEG-C VIST

Number of tasks 330 330 282 159 2,000 2,000 1,000 1,000 4,379
Number of images 330 330 128 191 1,735 1,627 739 465 1,677
Relation types C C C C T,I T,I T T T

Table 7: Statistics of M-EV2. C, T, and I stand for Causal, Temporal, and Intentional inter-event relations. The
number of tasks is not equal to the number of images resulting from duplicated images in these tasks.

VCOPA
Cause:
What caused "{event}"?

Effect:
What is the result of "{event}"?

Cause:
Answer the question by returning A or B.

Question: What is causes "{event}"?
Choices: {cs}
The answer is

Effect:
Answer the question by returning A or B.

Question: What is the result of "{event}"?
Choices: {cs}
The answer is

open

close

VIST

Before:
From the picture, what happened before "{event}"?

After:
Form the picture, what happened after "{event}"?

open

VisCa
Cause:
What caused "{event}"?

Effect:
What is the result of "{event}"?

Cause:
Answer the question by returning A or B.

Question: What is causes "{event}"?
Choices: {cs}
The answer is

Effect:
Answer the question by returning A or B.

Question: What is the result of "{event}"?
Choices: {cs}
The answer is

open

close

VisualComet
Before:
From the picture, what happened before "{event}"?

After:
Form the picture, what happened after "{event}"?

Before:
Answer the question by returning A or B.

Question: From the picture, what happened before "{event}"?
Choices: {cs}
The answer is

After:
Answer the question by returning A or B.

Question: From the picture, what happened after "{event}"?
Choices: {cs}
The answer is

temporal-open

temporal-close

IgSEG
Before:
From the picture, what happened before "{event}"?

After:
Form the picture, what happened after "{event}"?

Before:
Answer the question by returning A or B.

Question: From the picture, what happened before "{event}"?
Choices: {cs}
The answer is

After:
Answer the question by returning A or B.

Question: From the picture, what happened after "{event}"?
Choices: {cs}
The answer is

open

close

intentional-open

intentional-close

Input:
In the picture, {event}, what is the intent?

Input:
Answer the question by returning one of the choice from given Choices.

Question: What is the intent of the subject in "{event}"?
Choices: {cs}
The answer is

Figure 7: Inference prompts of all test set.
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