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Abstract

Time-series forecasting (TSF) finds broad ap-
plications in real-world scenarios. Prompting
off-the-shelf Large Language Models (LLMs)
demonstrates strong zero-shot TSF capabili-
ties while preserving computational efficiency.
However, existing prompting methods oversim-
plify TSF as language next-token predictions,
overlooking its dynamic nature and lack of in-
tegration with state-of-the-art prompt strategies
such as Chain-of-Thought. Thus, we propose
LSTPrompt, a novel approach for prompting
LLMs in zero-shot TSF tasks. LSTPrompt de-
composes TSF into short-term and long-term
forecasting sub-tasks, tailoring prompts to each.
LSTPrompt guides LLMs to regularly reassess
forecasting mechanisms to enhance adaptabil-
ity. Extensive evaluations demonstrate consis-
tently better performance of LSTPrompt than
existing prompting methods, and competitive
results compared to foundation TSF models1.

1 Introduction

Time-series (TS) data are ubiquitous across various
domains, including public health (Adhikari et al.,
2019), finance (Deb et al., 2017), and energy (Tay
and Cao, 2001). Time-series forecasting (TSF), a
crucial task in TS data analysis, aims to predict
future events or trends based on historical data. Re-
cent advancements in large Pre-Trained Models
(PTMs), a.k.a. foundation models, and Large Lan-
guage Models (LLMs) have demonstrated their ef-
fectiveness for TSF tasks. This is achieved either by
training TS foundation models from scratch (Yeh
et al., 2023; Kamarthi and Prakash, 2023; Garza
and Mergenthaler-Canseco, 2023; Das et al., 2023)
or adapting LLMs to TS data as natural language
modalities (Jin et al., 2023; Chang et al., 2023; Xue
and Salim, 2023; Gruver et al., 2023). These meth-
ods leverage powerful generalization capabilities of
PTMs or LLMs, proving effectiveness in zero-shot

*Equal Contribution
1https://github.com/AdityaLab/lstprompt

Figure 1: Comparison between naive prompt (Gruver
et al., 2023) and LSTPrompt.

TSF tasks with promising applications without the
need for domain-specific training data.

Designing proper prompting techniques for zero-
shot TSF tasks offers notable advantages, which
avoids training models from scratch or fine-tuning
LLMs for computational efficiency while maintain-
ing forecasting accuracy. Existing approaches (Xue
and Salim, 2023; Gruver et al., 2023) prompt LLMs
for zero-shot TSF tasks by aligning TS data with
natural language sequences and prompting LLMs
to perform TSF as sequence completion tasks.
However, these methods overlook the dynamic na-
ture of TS data and the intricate forecasting mecha-
nisms inherent in TSF tasks, such as modeling tem-
poral dependencies, which cannot be adequately
modeled by simple sequence completion tasks.

To address the limitation, we introduce LST-
Prompt, a novel prompt strategy of LLMs for TSF
tasks by providing specific TSF-oriented guidelines.
Our contributions are summarized as follows:

• We propose Long-Short-Term Prompt (LST-
Prompt), which decomposes TSF into short-
term and long-term forecasting subtasks. Each
subtask guides LLMs with distinct forecasting
rules and mechanisms, forming a Chain-of-
Thought reasoning path for predictions.

• We introduce TimeBreath to LSTPrompt,
an innovative component that encourages
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LLMs to regularly revisit forecasting mecha-
nisms, enabling leveraging different forecast-
ing mechanisms for different time periods.

• We evaluate LSTPrompt on multiple bench-
mark and concurrent datasets, demonstrating
its effectiveness for zero-shot TSF tasks. We
show its generalization ability to outperform
non-zero-shot methods in specific scenarios.

We provide additional related works in the Ap-
pendix A with distinguishing the differences of
popular zero-shot TSF methods in Table 3.

2 Methodology

2.1 Problem Formulation and Motivation

Zero-shot TSF aims to predict future TS {ŷi}t+H
i=t

with a horizon window size H based on a reference
TS {yi}ti=t−L with lookback window size L, with-
out prior exposure or training on the target series.
Solving zero-shot TSF tasks with LLMs requires
aligning TS data with natural language modalities
to leverage remarkable generalization abilities and
generate predictions based on the provided context.

One approach to align TS data with LLMs is to
present TS data as text. Existing zero-shot TSF
prompt strategies (Xue and Salim, 2023; Gruver
et al., 2023) represent TS data as strings of numer-
ical digits and treat TSF tasks as text-based next-
token predictions. However, these strategies over-
look the need for sophisticated forecasting mech-
anisms inherent in dynamic TS data. Without ex-
plicit instructions, existing strategies may yield in-
accurate predictions with high uncertainty.

To address this, we propose LSTPrompt, tai-
lored for zero-shot TSF tasks through prompting
LLMs informatively. LSTPrompt comprises two
components: (1) TimeDecomp, decomposing TSF
tasks into subtasks for systematic reasoning, and (2)
TimeBreath, facilitating periodic breaks to adapt
forecasting strategies within the horizon window.
We detail each module in the subsequent sections.

2.2 TimeDecomp

Rather than directly prompting complex questions
to LLMs, recent studies advocate decomposing
inquiries into simpler, sequential steps (Wei et al.,
2022; Kojima et al., 2022). This approach aids
LLMs in constructing a coherent reasoning path.
However, applying such chain-of-thought or step-
by-step strategies to TSF tasks remains unexplored.

To address this, we introduce TimeDecomp,
which breaks down TSF tasks into short-term
and long-term forecasting subtasks. This is mo-
tivated by different forecasting mechanisms for
short/long-term forecasting. Particularly, TimeDe-
comp prompts LLMs to partition horizon time steps
into short-term and long-term accordingly. Then, it
guides LLMs through each subtask, directing them
to focus on specific aspects: short-term forecasting
emphasizes trend changes and dynamic patterns,
while long-term forecasting highlights statistical
properties and periodic patterns. TimeDecomp’s
chain-of-thought process follows step-by-step cues:
it prompts tasks with specific datasets, decomposes
tasks into short-term and long-term sub-tasks, and
guides LLMs to incorporate appropriate forecast-
ing mechanisms and domain knowledge.

2.3 TimeBreath

In addition to chain-of-thought prompting, recent
studies emphasize the importance of incentiviz-
ing LLMs to follow step-by-step reasoning, espe-
cially when having numerous subtasks (Zhou et al.,
2022b; Yang et al., 2023). To facilitate this, Yang
et al. propose a strategy that introduces "Take a
deep breath" before initiating step-by-step tasks.

TSF tasks involve varying reasoning across dif-
ferent time steps and overly lengthy forecasting
horizons can overwhelm LLMs’ reasoning abilities.
Inspired by the "deep breath" design, we introduce
TimeBreath, which prompts LLMs to take "rhyth-
mic breaths" during sequential reasoning for TSF.
In the TSF task with H time steps horizon, Time-
Breath guides LLMs to rhythmically breathe every
k steps, where k is a hyperparameter determining
the breath frequency. The intuition of TimeBreath
is to encourage LLMs to reassess forecasting mech-
anisms regularly, particularly for distant time steps
that may require different reasonings. By taking
breaks, TimeBreath helps LLMs avoid prior irrel-
evant inferences and fosters adaptive forecasting
mechanisms to current forecasts.

In practice, the choice of k significantly impacts
LLMs’ performance in zero-shot TSF tasks, as
demonstrated in the sensitivity analysis provided in
Appendix C. A straightforward approach is to align
the frequency of breaks with the upper time scale.
For example, setting k = 5 prompts weekly breaks
for daily stock forecasting, while k = 4 encourages
monthly breaks for weekly Influenza forecasting.
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Darts

Dataset Frequency Horizon
Supervised

Zero-Shot
(PTMs)

Zero-Shot
(Prompt)

SP ARIMA TCN N-BEATS TimesFM LLMTime LSTPrompt
AirPassengers Month 29 34.67 24.03 54.96 97.89 14.75 48.96 13.02

MilkProduction Month 34 30.33 37.19 70.86 33.64 22.46 63.15 7.71
BeerProduction Season 43 102.05 17.13 30.90 10.39 10.25 20.85 13.29

Sunspots Day 141 53.74 43.56 51.82 73.15 50.88 59.91 46.84

Monash
DeepAR N-BEATS WaveNet Transformer TimesFM LLMTime LSTPrompt

RiverFlow Day 30 23.51 27.92 22.17 28.06 24.53 28.63 24.17
US Births Day 30 424.9 422.0 504.4 452.9 408.5 459.43 429.2

Informer
(ETT)

Informer Autoformer FEDformer PatchTST TimesFM LLMTime LSTPrompt

ETTh1 Hour
96 0.76 0.55 0.58 0.41 0.37 0.42 0.32

192 0.78 0.64 0.64 0.49 0.49 0.50 0.36

ETTm1 Minute
96 0.71 0.54 0.41 0.33 0.25 0.37 0.19

192 0.68 0.46 0.49 0.31 0.24 0.71 0.55

ETTh2 Hour
96 1.94 0.65 0.67 0.28 0.28 0.33 0.31

192 2.02 0.82 0.82 0.68 0.58 0.70 0.45

Table 1: Performance comparison of supervised models and zero-shot methods on benchmark datasets: (1)
LSTPrompt achieves mostly the best and several second-best results among zero-shot forecasting methods. (2)
LSTPrompt outperforms the best supervised models on 6 out of 12 datasets. We bold the best zero-shot results and
LSTPrompt with the second-best results is underlined. We italicize/underline the best supervised results.

Dataset Frequency Horizon
Supervised

Zero-Shot
(PTMs)

Zero-Shot
(Prompt)

Informer AutoFormer FedFormer PatchTST LPTM LLMTime LSTPrompt

ILI Week

4 1.64 1.17 2.31 0.51 1.54 0.61 0.42
12 2.25 2.10 1.97 0.52 0.83 0.81 0.67
20 2.01 1.43 1.67 1.39 1.70 4.68 1.73
24 4.29 1.86 1.30 2.15 2.18 4.81 2.08

Stock Day

24 5.07 9.94 8.73 4.52 0.73 0.51 0.32
48 8.03 9.22 9.56 4.11 0.80 0.42 0.19
96 3.11 9.61 9.43 4.36 0.87 1.42 0.41
120 4.07 10.92 10.59 4.65 1.28 2.61 0.52

Weather Day

24 1.59 1.54 1.77 1.77 0.79 0.31 0.31
48 1.62 1.63 1.84 1.25 1.06 0.66 0.53
96 1.43 1.50 2.34 1.16 1.08 0.84 0.62
120 1.45 1.64 1.95 1.40 1.18 0.83 0.69

Table 2: Performance comparison of supervised models and zero-shot methods on concurrent datasets: (1) LST-
Prompt consistently outperforms zero-shot baselines on all evaluations. (2) LSTPrompt outperforms best supervised
models on 9 of 12 evaluations. We bold the best zero-shot method and italicize/underline the best supervised results.

2.4 LSTPrompt

We introduce LSTPrompt, which integrates
TimeDecomp and TimeBreath to create the compre-
hensive prompt strategy. The prompt is straightfor-
ward: LSTPrompt first guides LLMs through the
chain-of-thought steps outlined by TimeDecomp,
then instructs them to take regular breaks using
TimeBreath. A LSTPrompt demo is shown by Fig-
ure 1. We provide a detailed prompting example
in Appendix B. LSTPrompt is designed for any TS
datasets for zero-shot TSF tasks. It can be easily
tailored to different scenarios by adjusting a single
hyperparameter, k, as previously discussed.

3 Experiments

3.1 Benchmark Evaluation

To benchmark the performance of LSTPrompt, we
use three common TSF benchmarks: Darts (Herzen
et al., 2022), Monash (Godahewa et al., 2021), and
Informer datasets (Zhou et al., 2021). While these
datasets can potentially be used for training LLMs,
evaluating LSTPrompt on these datasets allows fair

comparisons within aligned settings, which strictly
follows the established setup for zero-shot TSF
tasks (Gruver et al., 2023) and are detailed in Ap-
pendix C. We use the SOTA prompting method
LLMTime (Gruver et al., 2023) and a recent PTM
TimesFM (Das et al., 2023) as zero-shot baselines.
The results are shown in Table 1. We showcase
visualized results in Appendix C.

The results highlight two main benefits of LST-
Prompt: First, LSTPrompt achieves the best per-
formance on 8 out of 12 benchmark datasets and
the second-best performance on the remaining 4
among zero-shot methods. Notably, LSTPrompt al-
ways outperforms the SOTA prompt method LLM-
Time, while may slightly lag behind TimesFM,
which is expected since TimesFM is a TSF-specific
PTMs. Second, LSTPrompt can outperform best
supervised results under certain scenarios. For in-
stance, LSTPrompt achieves a 74.6% lower MAE
compared to the best supervised result on the
MilkProduction dataset. This improvement relies
on the strong generalization ability of LLMs, which
helps mitigate overfitting for supervised models.
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3.2 Concurrent Dataset Evaluation

To evaluate the true zero-shot ability of LSTPrompt,
we conduct experiments over three concurrent
datasets from different domains: influenza-like ill-
ness (ILI), Stock, and Weather (Detailed in Ap-
pendix C). These datasets ensure that the test data
are after June 2023, while most LLMs are trained
only up to 2022 (Achiam et al., 2023). Employing
these datasets ensures the zero-shot property, even
for GPT4. The experiment setup follows Bench-
mark Evaluations. We omit PromptCast (Xue and
Salim, 2023), exclude TimesFM, and include an-
other foundation time-series model, LPTM (Ka-
marthi and Prakash, 2023), for zero-shot baselines
with explanations in Appendix C. We include su-
pervised TSF models, including Informer (Zhou
et al., 2021), Autoformer (Wu et al., 2021), FED-
former (Zhou et al., 2022a), and PatchTST (Nie
et al., 2022), to show performance disparities be-
tween zero-shot methods and supervised models
on TSF tasks. The results are shown in Table 2.

The results demonstrate that LSTPrompt consis-
tently outperforms zero-shot baselines on all eval-
uations. Notably, LSTPrompt consistently outper-
forms best supervised results on Stock and Weather
datasets. This is attributed to heavy distribution
drifts on these datasets, which largely degrade the
supervised models’ performances. In contrast, ben-
efiting from strong generalization abilities of LLMs
and zero-shot properties, zero-shot methods miti-
gate the impacts of distribution drifts and achieve
better performance than supervised models.

3.3 Ablation Study

Figure 2: Ablation Study: (1) Enhanced reasoning abil-
ities enable LSTPrompt to perform best on GPT4. (2)
Both TimeDecomp and TimeBreath effectively enhance
the forecasting accuracy of LSTPrompt.

To understand the significance of various compo-
nents of LSTPrompt, we conduct two ablation stud-
ies: (1) Analyzing the impact of employing differ-
ent LLMs; (2) Analyzing the effects of TimeDe-
comp and TimeBreath. We conduct experiments
with combinations of different LLMs and vari-

ous ablated versions of LSTPrompt on the Stock
dataset, with results visualized in Figure 2.
Prompting Different LLMs. In prior experiments,
we presented forecasting results based on the most
suitable LLMs (e.g., GPT3.5-Turbo-Instruct for
LLMTime and GPT4 for LSTPrompt). However,
performance differences can arise among zero-
shot TSF methods, including LSTPrompt, when
evaluated across different LLMs. Thus,we in-
vestigate and interpret the potential impacts of
utilizing GPT3.5-Turbo, GPT3.5-Turbo-Instruct,
and GPT4 with LSTPrompt. The results indicate
LSTPrompt coupled with GPT4.0 outperforms in-
stances with GPT3.5-Turbo and GPT3.5 Turbo-
Instruct. This finding aligns with expectation, as
LSTPrompt prompts LLMs to follow the reason-
ing path through distinct short-term and long-term
forecasting subtasks, each requiring different rea-
soning mechanisms, while GPT4 is known for its
reasoning abilities compared to the remaining two.
Module Effectiveness. To understand the signif-
icance of TimeDecomp and TimeBreath, we an-
alyze performance discrepancies over three ab-
lated versions of LSTPrompt: (1) Base, using
standard prompts; (2) LSTPrompt\TD, exclud-
ing TimeDecomp from LSTPrompt; (3) LST-
Prompt\TB, excluding TimeBreath from LST-
Prompt. We include the state-of-the-art Chain-of-
Thought method (Yang et al., 2023) (referred to as
‘CoT’) to highlight performance differences with
the SOTA prompt strategy for general tasks.

The results demonstrate the effectiveness of
both TimeDecomp and TimeBreath. Incorporating
TimeDecomp and TimeBreath reduces the average
NMAE by 26.8% and 34.1%, respectively, com-
pared to Base prompts. Employing both modules
enhances average performance by 46.7% than Base
prompts. Moreover, the sole utilization of either
TimeDecomp or TimeBreath demonstrates certain
advantages in forecasting accuracy over the best
CoT method, highlighting the necessity of design-
ing tailored prompts for TSF tasks.

4 Conclusion

In this paper, we introduce LSTPrompt, a novel
prompt paradigm for zero-shot TSF tasks through
prompting LLMs. LSTPrompt enables LLMs to
achieve accurate zero-shot TSF tasks through two
innovative modules: TimeDecomp, which decom-
poses zero-shot TSF tasks into a series of chain-
of-thought subtasks, and TimeBreath, which en-
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courages LLMs to periodically reassess forecasting
mechanisms. Extensive experiments validate the
effectiveness of LSTPrompt, which consistently
outperforms the SOTA prompt method and shows
generally better performance than SOTA PTMs.
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A Additional Related Works

Time-Series Forecasting. Traditional time se-
ries methods approach forecasting from a statis-
tical standpoint, treating it as standard regression
problems with time-varying parameters (Nadaraya,
1964; Williams and Rasmussen, 1995; Zhang,
2003). Recent advancements in deep learning have
led to significant breakthroughs in this field, ex-
emplified by deep models like LSTNet and N-
BEATS (Lai et al., 2018; Oreshkin et al., 2019).
Many state-of-the-art deep learning methods, such
as Informer, Autoformer, PatchTST, and CA-
Mul (Zhou et al., 2021; Wu et al., 2021; Nie et al.,
2022; Kamarthi et al., 2022), build upon the suc-
cess of self-attention mechanisms, popularized by
transformer-based architectures (Vaswani et al.,
2017). These transformer-based models excel at
capturing long-range dependencies, surpassing the
capabilities of traditional Recurrent Neural Net-
work (RNN) models, owing to their effective use
of self-attention mechanisms.

Large Language Models. The augmentation of
language model parameters and training data size
has been shown to enhance generalization abil-
ity (Brown et al., 2020). Consequently, researchers
have developed Large Language Models (LLMs)
like GPT (Brown et al., 2020; Achiam et al., 2023)
and Llama (Touvron et al., 2023). These models
excel at identifying patterns in prompts and extrap-
olating them through next-token prediction, achiev-
ing remarkable success in few-shot or zero-shot
generalization and in-context learning. Beyond nat-
ural language tasks, LLMs exhibit effectiveness
in transfer learning across diverse modalities, in-
cluding images (Lu et al., 2021), audio (Ghosal
et al., 2023), tabular data (Hegselmann et al., 2023),
and time-series data (Zhou et al., 2023). These ac-
complishments underscore the importance of align-
ing modalities appropriately to enable LLMs to
comprehend tokenized patterns across different
domains beyond traditional language processing
tasks.

Large Models for Time-Series Forecasting. In
addition to the success of large models in language
tasks, researchers in the field of time-series fore-
casting (TSF) have pursued the development of
large models from two main perspectives: First,
they train Pre-Trained Time-Series Models from
scratch (Garza and Mergenthaler-Canseco, 2023;
Das et al., 2023; Kamarthi and Prakash, 2023; Yeh

et al., 2023), utilizing extensive time-series datasets
and tailoring them specifically for TSF tasks. Al-
ternatively, researchers harness the generalization
capabilities of Large Language Models (LLMs) by
aligning time-series data with language modalities
through techniques such as reprogramming (Jin
et al., 2023; Chang et al., 2023; Zhou et al., 2023)
or prompting (Gruver et al., 2023; Xue and Salim,
2023). To better understand the similarities and dif-

Method Type Cost
Use CoT or
Guidelines

Evaluated
on GPT4

TimesFM PTMs High N/A N/A
LPTM PTMs High N/A N/A

PromptCast Prompt Low No No
LLMTime Prompt Low No Partial

LSTPrompt Prompt Low Yes Yes

Table 3: Summary of similarities and differences of
related works on zero-shot TSF tasks.

ferences between all zero-shot methods mentioned
in this work, we list the property comparisons of
all zero-shot methods in Table 3.

B Prompt Details

Below, we introduce a template prompt for LST-
Prompt, designed to be adaptable to various time-
series datasets for zero-shot time-series forecasting
tasks. The template is outlined as follows:

1 f"Please continue the following input
sequence by addressing the task of
forecasting {dataname }. You should
break down the task into short -term
and long -term predictions , following
a three -step plan. First ,

adaptively and reasonably identify
the ranges for short -term and long -
term predictions. Then , design
distinct and correct forecasting
mechanisms for both short -term and
long -term prediction tasks. For
short -term predictions , focus on
trends and the last few steps of the
input sequence. For long -term

predictions , emphasize cyclical
patterns and statistical properties
of the entire input sequence. You
may further optimize the forecasting
mechanisms based on your

observations and domain knowledge.
Finally , correctly implement the
forecasting mechanisms , completing
predictions one -time step at a time.

2 Remember to take a deep breath after
every {breath_steps} time steps of
prediction. The input sequence is as
follows :\n"
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C Additional Experiment Details

Experiment Setup. Following the established se-
tups in LLMTime and with the consideration of
evaluating costs, we limit our focus to univariate
time series forecasting tasks. However, LSTPrompt
can readily extend to the multivariate forecast-
ing domain by employing multiple univariate fore-
casting techniques (Gruver et al., 2023; Lim and
Zohren, 2021). We strictly followed LLMTime’s
data-splitting and data-preprocessing method for
benchmark datasets, where the test set comprises
the last 20% of each time series.

In addition to well-known benchmark datasets
such as Darts, Monash, and ETT, our zero-shot
evaluations encompass three concurrent datasets:
ILI, Stock, and Weather. This selection ensures
that the test data have never been exposed to LLMs
training. All these datasets are publicly accessible.
We use data after June 2023 for testing, thereby
guaranteeing that GPT-3.5 and GPT-4 models have
not been trained on these sets. Further details on
these datasets are provided below:

• ILI2: The ILI dataset provides the reported
influenza-like illness patients with age divi-
sions. The dataset covers from 2002 to 2023.
The forecasting target is the weekly number
of ILI patients.

• Stock3: The Stock dataset provides daily his-
torical data of Alphabet Inc. (GOOG). The
Stock dataset set has 7 columns, including the
stock’s opening price, closing price, highest
price of the day, etc. The dataset covers from
2013 to 2024 (Jan). The forecasting target is
the daily opening price.

• Weather4: The Weather dataset provides
historical weather record of Chicago. This
dataset set has 10 columns, including date,
temperature, precipitation, humidity, wind
speed, and atmospheric pressure. The dataset
covers from 2021 to 2023. The forecasting
target is the daily average temperature.

Baseline. In supervised baselines, we adopt var-
ious models depending on the benchmark’s offi-

2https://gis.cdc.gov/grasp/fluview/
fluportaldashboard.html

3https://www.kaggle.com/
datasets/jillanisofttech/
google-10-years-stockprice-dataset

4https://www.kaggle.com/datasets/curiel/
chicago-weather-database

cial evaluation criteria. Concurrent datasets utilize
transformer-based supervised models, same as the
ETT benchmark, known for their remarkable per-
formance in TSF evaluations.

For zero-shot baselines, we categorize meth-
ods into pre-trained Time-Series Foundation Mod-
els (PTMs) and prompting methods. In bench-
mark evaluations, we utilize TimesFM (Das et al.,
2023) for PTMs, as it asserts not being trained on
these datasets, while LPTM (Kamarthi and Prakash,
2023) does. Conversely, for concurrent dataset
evaluations, we employ LPTM, as it is open-source
compared to TimesFM. Reprogramming methods
are omitted, such as TimeLLM (Jin et al., 2023)
and LLM4TS (Chang et al., 2023), due to their
inapplicability to our zero-shot setting.

For prompting methods, we compare LLM-
Time (Gruver et al., 2023) with our proposed LST-
Prompt. Promptcast (Xue and Salim, 2023) is omit-
ted, as LLMTime consistently outperforms it, and
LSTPrompt demonstrates uniformly better perfor-
mance across all evaluations than LLMTime. The
implementation of our method was inspired by the
prompt trick in TimeLLM (Jin et al., 2023) and
filtered outliers of predictions using standard devi-
ation.

Evaluation Metric. Following the established se-
tups, we evaluate the Mean Absolute Error (MAE)
on Darts and Monash datasets between predictions
and raw target sequences. For ETT, ILI, Stock, and
Weather datasets, we evaluate the MAE based on
the normalized predictions and target sequences
according to the mean and variance of the training
data. The formulation of MAE = 1

n

∑n
t=1 |yt− ŷt|.

Hyperparameter Sensitivity Study. As previ-
ously mentioned in Section 2, we conduct experi-
ments using LSTPrompt on the Stock dataset with
varying values of breath frequency k. The results
are shown in Fiugure 3. Note that k = 0 denotes
LSTPrompt without employing TimeBreath.

The results suggest that setting k = 5, enabling
LSTPrompt to breathe weekly in forecasting the
stock prices, achieves the best performance com-
pared to other breath frequencies. This optimal
frequency aligns with the Stock dataset’s structure,
which includes daily stock prices for 5 weekdays.
Intuitively, setting k = 5 encourages LSTPrompt to
reassess its reasoning and forecasting strategy on a
weekly basis, fitting well with the inherent weekly
cycles in stock data. By appropriately adjusting the
breath frequency in TimeBreath, LSTPrompt can
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Figure 3: Hyperparameter Sensitivity: The best breath
frequency k = 5 (weekly) aligns with the upper time
scale of the Stock data (daily).

dynamically infer patterns while effectively adapt-
ing to the data’s periodic nature, leading to more
accurate forecasts.

Figure 4: Result visualizations on the AirPassengers
(top) and ILI (bottom) datasets. LSTPrompt exhibits
better performance than LLMTime, demonstrating en-
hanced long-term prediction stability and improved abil-
ity to capture trend changes.

Result Visualization. We present the result vi-
sualizations for the AirPassengers dataset in the
Benchmark Evaluation and the ILI dataset in the
Concurrent Dataset Evaluation. These visualiza-
tions are shown in Figure 4.

The visualizations demonstrate clear benefits
from two perspectives: First, the predictions of
LSTPrompt exhibit greater long-term stability and

accuracy compared to LLMTime, as evidenced
by the AirPassengers predictions. Notably, LST-
Prompt effectively maintains the periodic proper-
ties inherent in the dataset. Second, LSTPrompt
demonstrates better capability in capturing accu-
rate trend changes compared to LLMTime, as il-
lustrated by the ILI predictions. In particular, LST-
Prompt accurately captures trends in increasing
predictions where LLMTime fails to detect them.

D Limitation Discussion

While LSTPrompt has demonstrated effective-
ness in zero-shot TSF tasks by employing sim-
ple prompts for LLMs, its limitations should be
acknowledged from two perspectives. First, the
interpretability of LSTPrompt may be compro-
mised. The evaluation of LSTPrompt heavily relies
on existing LLMs, the mechanisms and response
behaviors of which are currently challenging to
interpret. Consequently, LSTPrompt may suffer
from reduced interpretability due to our limited
understanding of LLMs. Second, incorporating
additional instructions in the prompts, such as the
names and properties of time-series datasets, could
potentially introduce information leaks that are ex-
ploited by the LLMs. We advocate for further re-
search within the safe AI community to investigate
the trustworthiness of LLMs, ensuring that LST-
Prompt can be deployed without concerns regard-
ing information leakage issues.
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