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Abstract

Knowledge distillation, the technique of
transferring knowledge from large, complex
models to smaller ones, marks a pivotal step
towards efficient AI deployment. Distilling
Step-by-Step (DSS), a novel method utilizing
chain-of-thought (CoT) distillation, has demon-
strated promise by imbuing smaller models
with the superior reasoning capabilities of their
larger counterparts. In DSS, the distilled model
acquires the ability to generate rationales
and predict labels concurrently through a
multi-task learning framework. However,
DSS overlooks the intrinsic relationship
between the two training tasks, leading to
ineffective integration of CoT knowledge
with the task of label prediction. To this
end, we investigate the mutual relationship
of the two tasks from Information Bottleneck
perspective and formulate it as maximizing
the mutual information of the representation
features of the two tasks. We propose a
variational approach to solve this optimization
problem using a learning-based method. Our
experimental results across four datasets
demonstrate that our method outperforms
the state-of-the-art DSS. Our findings offer
insightful guidance for future research on
language model distillation as well as appli-
cations involving CoT. Codes are available
at https://github.com/xinchen9/
cot_distillation_ACL2024

1 Introduction

The capabilities of larger language models (LLMs)
tend to scale with their model size, leading to a
substantial demand for memory and compute re-
sources (Chowdhery et al., 2023; Wei et al., 2022a).
Distilling knowledge from larger LLMs to smaller
LLMs has been crucial for the efficient deployment
of AI (Hinton et al., 2015; Phuong and Lampert,
2019). Chain-of-Thought (CoT) (Wei et al., 2022b)
distillation represents a pivotal advance in the quest
to endow smaller language models with the sophis-

ticated reasoning capabilities of their larger coun-
terparts. By distilling complex thought processes
into more compact models, this approach aims to
democratize access to advanced natural language
understanding and reasoning across a wider array
of computational resources (Ma et al., 2023; Mag-
ister et al., 2023; Li et al., 2023). .

Distilling Step-by-Step (DSS) (Hsieh et al., 2023)
introduces a CoT distillation method that guides
smaller models using rationales from LLMs within
a multi-task learning (MTL) framework, training
them for both label prediction and rationale gener-
ation tasks. This framework simultaneously opti-
mizes the model for two related objectives on the
same input, enhancing its chain-of-thought learning
by sharing representations between the two tasks,
thereby improving overall performance efficiently.
While DSS brings out the benefits of reducing com-
putational costs, it suffers from the same problem
as the conventional MTL framework, that is the
difficulty in effectively connecting the prediction
and generation tasks. The intricacies inherent in
training models within the MTL framework can un-
dermine the effectiveness and reliability of the DSS
process (Wang et al., 2023b). Despite the success-
ful setup of an MTL framework in DSS, where the
tasks of label prediction and rationale generation
are intrinsically related, the current configuration
may not optimally capture and maximize the mu-
tual knowledge between these tasks. Furthermore,
LLMs are prone to producing hallucinations and
inconsistent rationales, which potentially mislead
the student model toward incorrect answers and
cause conflicts in MTL that destruct student model
learning (Mueller et al., 2022).

To address this issue, we model the DSS using
information bottleneck and investigate it from an
information-theoretic viewpoint (Tishby and Za-
slavsky, 2015). Subsequently, we formulate the
DSS as an optimization problem to maximize mu-
tual information (MI) of label prediction and ra-
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Figure 1: Overview of our approach: CoT distillation from an IB perspective and measurement of the intrinsic
relationship between the two tasks by MI. The DSS is an MTL framework pipeline comprising label prediction and
rationale generation tasks. H represents the entropy of representation features V and Z. Besides prediction loss and
explanation losses used in conventional DSS, we design an auxiliary loss module to maximize MI between the two
representation features. This process enhances CoT reasoning capacity through knowledge distillation.

tionale generation tasks. However, estimating MI
from finite data has historically been a difficult
problem in both deep learning and information the-
ory (McAllester and Stratos, 2020; Belghazi et al.,
2018; Paninski, 2003).

In this study, we introduce a variational method
to estimate the MI. We propose a practical yet ef-
fective auxiliary loss to quantify the shared infor-
mation between the prediction and the generation
tasks, thereby enhancing the alignment between the
two tasks and facilitating the knowledge transfer
from CoT. We conduct comprehensive experiments
with two smaller types of T5 models (Raffel et al.,
2020), T5-base (220M) and T5-small (60M), on
four popular datasets. Furthermore, we provide de-
tailed analysis in Section 5. Our main contributions
are summarized below:
• We reframe the MTL framework of DSS as a

MI estimation challenge, aiming to maximize
the MI between label prediction and rationale
generation tasks. To achieve this, we introduce
a variational approach grounded in the IB prin-
ciple for effective MI estimation. To the best of
our knowledge, we present the first work of im-
proving CoT distillation from an IB perspective.

• Beyond establishing a theoretical foundation, we
present a practical approach for MI estimation,
incorporating a simple yet effective auxiliary
loss to learning to maximize MI and enhance
DSS.

• Our methodology demonstrably outperforms ex-
isting benchmarks across multiple datasets, evi-
dencing the efficacy of our approach in enhanc-
ing the reasoning capabilities of distilled models.

• We conduct a systematic review of the relation-
ship between label prediction and rationale gen-

eration tasks under MTL training, presenting
both qualitative and quantitative analysis results.
Armed with theoretical proofs and experimental

results, we aim to lay the groundwork for future
research on enhancing CoT distillation within an
effective MTL framework, guided by principles
from information theory.

2 Related Work

We present an overview of previous work across
three areas related to our study: knowledge distil-
lation, multi-task learning, and information bottle-
neck.
Knowledge Distillation (KD) Originally designed
to train small models by leveraging the extensive
knowledge of larger models (Hinton et al., 2015),
KD has since been extended to a variety of applica-
tions, owwwing to its effective transfer of knowl-
edge across models and tasks (Chen et al., 2021;
Wang and Yoon, 2021; Sanh et al., 2019; Jiao et al.,
2020; Luo et al., 2024; Go et al., 2023; Zhang
et al., 2022b). A crucial yet open challenge is how
to effectively transfer the knowledge. To address
the issue, previous studies (Zhang et al., 2022c;
Allen-Zhu and Li, 2023; Zhang et al., 2021) have
extracted various features and designed auxiliary
loss functions to enhance KD. Our work focuses on
improving the model by acquiring mutual knowl-
edge to address both label prediction and rationale
generation tasks.
Multi-Task Learning (MTL) By exploiting com-
monalities and differences among relevant tasks,
MTL can enhance learning efficiency and improve
prediction accuracy by learning multiple objec-
tives from a shared representation (Caruana, 1997;
Zhang and Yang, 2021). In recent years, MLT has
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been broadly applied to NLP tasks (Worsham and
Kalita, 2020; Zhang et al., 2023b; Liu et al., 2019).
However, some studies have identified that training
multiple tasks trained simultaneously could lead
to conflicts among them, making it challenging
to optimize the performance of all tasks simulta-
neously (Kendall et al., 2018; Lin et al., 2019).
Recently, KD has also been applied within MTL
frameworks, achieving state-of-the-art results in
various applications (Li and Bilen, 2020; Xu et al.,
2023; Yang et al., 2022; Garner and Dux, 2023;
Zhang et al., 2023a).

Information Bottleneck (IB) IB (Tishby and Za-
slavsky, 2015; Slonim, 2002) provides a powerful
statistical tool to learn representation to preserve
complex intrinsic correlation structures over high
dimensional data. As a general measure of the
dependence between two random variables, MI is
also widely used in deep learning to effectively rep-
resent feature dependencies (Cover, 1999; Covert
et al., 2023; Liu et al., 2009). Estimating MI is
known to be challenging, and recent progress has
been made towards learning-based variational ap-
proaches (Tian et al., 2020; Covert et al., 2023;
Bachman et al., 2019; Tschannen et al., 2019; Bel-
ghazi et al., 2018; Diao et al., 2023). Another
challenge associated with the IB principle is the
optimization process, which involves a trade-off be-
tween achieving concise representation and main-
taining strong predictive capabilities (Alemi et al.,
2016; Wang et al., 2019). Consequently, optimizing
IB becomes a complex task that heavily depends
on the problem formulation and the provision of
an effective optimization solution. Recent studies
have applied IB to solve complex machine learning
problems both in computer vision (Tian et al., 2021;
Du et al., 2020; Wan et al., 2021) and NLP (Chen
and Ji, 2020; Zhang et al., 2022a; Paranjape et al.,
2020). In this paper, we formulate our CoT distilla-
tion problem with MTL training pipeline using IB
method, and provide a learning-based solution to
optimize IB for our CoT distillation, as detailed in
Section 3.

3 Methodology

This section begins with an introduction to pre-
liminaries of IB. Following this, we formulate our
CoT distillation idea within the IB framework and
propose a learning approach to optimize MI.

3.1 Preliminaries
Under the DSS framework, the prefixes [PREDICT]
and [EXPLAIN] will be prepended to the input text,
TEXT, for tasks corresponding to label prediction
and rationale generation, respectively. In the label
prediction task, given the input [PREDICT] + TEXT

along with predictive labels Y, a representation
feature V, where V ∈ Rd, is trained using Y.
Similarly, in the rationale generation task, the input
[EXPLAIN] + TEXT and rationale label R guide
the training of a representation feature Z, where
Z ∈ Rd, using R.

Our goal is to distill CoT knowledge from larger
LLMs to smaller LLMs models. To achieve this,
based on the basis of IB (Tishby and Zaslavsky,
2015; Zhang et al., 2022a; Wang et al., 2019), we
model the DSS as following:

I(Z;Y ) =

∫
p(z, y) log

p(z, y)

p(z)p(y)
dzdy. (1)

where sampling observations z ∼ Z and v ∼ V.
Here p(·) represents the probability distribution.

To encourage CoT distillation to focus on the
information represented in label Y, we propose
using IB to enforce an upper, bound Ic, on the
information flow from the representation features
V to the representation features Z. This is achieved
by maximizing the following objective:

max I(Z;Y ) s.t. I(Z;V ) ≤ Ic. (2)

By employing Lagrangian objective, IB allows Z
to be maximally expressive about Y while being
maximally compressive regarding the input data,
as follows:

CIB = I(Z;V )− βI(Z;Y ) (3)

where β is the Lagrange multiplier. Clearly,
Eq. 3 demonstrates the trade-off optimization be-
tween high mutual information and high compres-
sion (Zhang et al., 2022a; Alemi et al., 2016).
In our scenario, given a predefined small student
model, the compression ratio is fixed. Therefore,
we formulate the CoT distillation as an optimiza-
tion problem:

max I(Z;V ) (4)

Due to symmetric property of MI, I(Z;V ) =
I(V ;Z). CoT distillation can also enhance ratio-
nale generation task with the label knowledge. This
is validated in Section 5.
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3.2 Variational Bounds of MI
We rewrite I(Z;V ) of Equation 4 as follows:

I(Z;V ) = Ep(z,v)

[
log

p(v|z)
p(v)

]
(5)

According to (Poole et al., 2019; Covert et al.,
2023), a tractable variational upper bound can be
established by introducing a variational approxima-
tion q(v) to replace the intractable marginal p(v),
demonstrated by:

I(Z;V ) = Ep(z,v)

[
log

p(v|z)q(v)
p(v)q(v)

]

= Ep(z,v)

[
log

p(v|z)
q(v)

]

−KL(p(v)||q(v))

(6)

here KL[·||·] denotes Kullback-Leibler diver-
gence. The bound is tight when q(v) =
p(v). Consequently, KL(p(v)||q(v)) is equal to
KL(p(v)||p(v)), which becomes zero. Therefore,
we can derive at the following inequality:

I(Z;V ) ≤ Ep(z,v)

[
log

p(z|v)
p(v)

]
(7)

We can then express the MI from Eq. 5 as the
follows:

Ep(z,v)

[
log

p(z|v)
p(v)

]
=

∑
p(z, v) log

p(v|z)
p(v)

=
∑

p(z|v)p(v) log p(v|z)

−
∑

p(v)p(z|v) log p(v)
(8)

Assuming that p(v) is uniform distribution for
maximal entropy (Schröder and Biemann, 2020),
the term

∑
p(v)p(z|v) log p(v) is considered as a

constant. This also allows for the omission of p(v)
in

∑
p(z|v)p(v) log p(v|z). By combining Eq. 5

and Eq. 8, then maximization of I(Z;V ) can be
expressed as:

max I(Z;V ) = maxEp(z,v)

[
log

p(z|v)
p(v)

]

∝ max
∑

p(z|v) log p(v|z)

= max(−
∑

p(z|v) log 1

p(v|z))

= min(
∑

p(z|v) log 1

p(v|z))

= min(
∑

CE(z|v, v|z))
(9)

here CE represents cross entropy. Accordingly,
CoT distillation in Eq. 4 is transformed into the
problem outlined in the above equation. This prob-
lem can be addressed with a learning-based method.
To tackle this issue, we have developed a new MI
loss that minimizes cross-entropy of representa-
tion features of the rationale generation (p(z|v))
and representation features of the label predic-
tion (p(v|z)), effectively maximizing MI during
CoT distillation process.

3.3 Training Loss

The training loss is given by

Ltotal = α1Lprediction + α2Lgeneration + α3LCE

(10)
where α1, α2 and α3 are regularization parame-
ters, all of which are non-negative. Lprediction rep-
resents the loss of the label prediction task, and
Lgeneration represents the loss of the rationale gen-
eration task. Both are general cross-entropy loss as
defined in (Hsieh et al., 2023).

According to the last line of Equation 9, we
define the our MI loss as

LCE = l(f(Z), f(V)) (11)

f represents our proposed mutual information (MI)
loss module, and l denotes the cross-entropy loss.
As shown in Figure 1, the MI loss module consists
of softmax and max reduction layers. The softmax
function separately calculates the distributions for
the outputs of the vocabulary spaces in the label
prediction and rationale generation tasks. Subse-
quently, a max reduction operation is employed to
reduce the dimensionality of the predicted outputs
from both tasks to a uniform dimension for the loss
calculation. Specifically, in the label prediction
task, dimensions are reduced from Rm×d to R1×d,
and in the rationale generation task, from Rn×d to
R1×d.

4 Experiments

4.1 Experimental Setting

Datasets. We conducted the experiments on four
widely-used benchmark datasets across three dif-
ferent NLP tasks: e-SNLI (Camburu et al., 2018)
and ANLI (Nie et al., 2020) for natural language
inference; CQA (Talmor et al., 2018) for common-
sense question answering; and SVAMP (Patel et al.,
2021) for arithmetic math word problems. We
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used rationale generated by PaLM 540B (Chowd-
hery et al., 2023), which were collected and open-
sourced by (Hsieh et al., 2023)1.

Setup. Based on CoT properties and the compar-
ative experimental study in (Hsieh et al., 2023),
our work adopted T5-base (220 million) and T5-
small (60 million) to the student models. α1 and α2

were set as 0.5 and α3 is set as 0.1. We trained our
models on one A100 GPU with 80G memory. For
T5 base model, the training time for the full-size
four dataset was approximately 14.4 hours. For T5
small model, the training times was approximately
8.6 hours.

Baselines. We compare our work with the state-
of-the-art DSS (Hsieh et al., 2023) by running their
open-sourced code and include two other base-
line reported in their work: (1) Standard Fine-
tune, which involves using the prevailing pretrain-
then-finetune paradigm to finetune a model with
ground-truth labels through standard label supervi-
sion. (Howard and Ruder, 2018). (2) Single-task,
which finetunes the model using both of the label
and non-CoT rationale as supervision .

Evaluation Settings. Following the DSS
work (Hsieh et al., 2023), we adopt the accuracy as
the performance metrics across all four datasets.
Higher accuracy indicates better results. Besides
accuracy, we also adopt Expected Calibration
Errors (ECE) and Average Confidence Scores
to evaluate calibration of the T5-base model. A
lower ECE and higher Average Confidence Scores
indicate better performance. We adopt GPT-4 to
evaluate Quality of CoT examples and subjective
analysis. Please refer to our codes for more details.

4.2 Results

Experiments of T5-base Model. We present our
experimental results for the T5-base model in Ta-
ble 1. In single-task training, the rationale and label
are concatenated into a single sequence, which is
treated as the target in training models (Hsieh et al.,
2023). Our proposed method consistently achieves
better performance than standard fine-tuning and
single-task methods across all datasets. Compared
to DSS, our method outperforms DSS on ANLI,
CQA, and SVAMP, and achieves nearly the same
accuracy on e-SNLI.

1Data and DSS code are from https://github.com/
google-research/distilling-step-by-step.

e-SNLI ANLI CQA SVAMP

Standard FT 88.38 43.58 62.19 62.63

Single-task 88.88 43.50 61.37 63.00

DSS 89.51 49.58 63.29 65.50

Ours 89.50 51.20 63.88 68.00

Table 1: CoT distillation results on T5-base model. The
results of Standard Fine-tune (FT), single-task and DSS
methods are from (Hsieh et al., 2023).

e-SNLI ANLI CQA SVAMP

Standard FT 82.90 42.00 43.16 45.00

DSS 83.43 42.90 43.24 48.00

Ours 83.23 43.70 43.90 52.50

Table 2: CoT distillation results on T5-small model.

Model e-SNLI ANLI

DSS 82.65 42.80
Ours 82.81 45.50

Table 3: Results on two dataset on T5-base model with
LLM generated labels.

Experiments of T5-small Model. The experimen-
tal results for the T5-small model are shown in
Table 2. The patterns of the results are similar to
those of T5-base. Our proposed method consis-
tently achieves better performance than standard
finetuning across all dataset. Compared to DSS,
our method outperforms DSS on ANLI, CQA and
SVAMP, and is just 0.2% less accuracy on e-SNLI.

Distillation with LLM Labels. We conducted
an experiment on e-SNLI and ANLI datasets with
T5-base model to evaluate the effect of label qual-
ity. We distilled the student models using labels
generated by 540B PaLM instead of the ground
truth. The results are shown in Table 3. Comparing
Table 1 and Table 3, we observe the label qual-
ity affects the distillation results in both methods.
Even With the noisy LLM labels, our model still
outperforms DSS on both datasets.

Distillation with smaller datasets. To evaluate
the performance of our models on smaller datasets,
we distilled T5-base and T5-small models on var-
ious sizes of four datasets and compared to DSS
method. The results are shown in Figure. 2 and 3
respectively.
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e-SNLI ANLI CQA SVAMP

Mean 89.34 51.40 63.88 66.50

Max 89.50 51.20 63.88 68.00

Table 4: Results of Mean Reduction Vs Maximum Re-
duction on T5-based model.

4.3 Ablation Study
Effectiveness of Difference Dimension Reduc-
tion Method In our proposed MI loss module, we
utilize maximum reduction to align the dimensions
of different features. Additionally, mean reduction
serves as an alternative method for dimension re-
duction, based on the hypothesis that important
features can represent better than average features.
In Table 4, we present the results of two different
layer of MI module. The results indicate the supe-
riority of the MI module with maximum reduction.

Comparison with KL Divergence KL diver-
gence loss has been extensively utilized in KD
tasks,serving as a metric for assessing the simi-
larity between two data distributions (Hinton et al.,
2015; Zhang et al., 2022c; Gou et al., 2021; Husain
et al., 2024). While KL divergence is widely ap-
plied in various KD scenarios, modeling DSS using
IB framework has proven to be more accurate than
using similarity measures, as discussed in Section 3.
To validate our hypothesis, we conducted experi-
ments on T5-base model across all four datasets.
As shown in Table 5, our proposed method con-
sistently outperforms the KL divergence approach,
demonstrating superior performance.

e-SNLI ANLI CQA SVAMP

KL Divergence 89.42 42.00 62.49 67.00

Ours 89.50 51.2 63.88 68.00

Table 5: Results of KD loss VS our proposed cross
entropy loss, on T5-base model.

5 Discussion

5.1 Analysis on T5 Calibration
Calibration measures the alignment between a
model’s predicted accuracy and its confidence lev-
els. Lee et al. (2022) introduced an innovative
perspective on model distillation, positioning the
teacher model not only as a source of knowledge
but also as a tool for identifying mis-calibration dur-
ing the training of the student model. This ability

to maintain calibration and make reliable predic-
tions is crucial for downstream applications and
has been the focus of prior studies (Chen et al.,
2023; Lee et al., 2022; Jiang et al., 2021). Here,
we apply the Expected Calibration Errors (ECE)
and Average Confidence Scores to reflect the align-
ment between the model’s predicted probabilities
and the actual outcomes, thereby gauging the re-
liability and certainty of its predictions. Despite
the potential limitations inherent in these metrics,
we still employ ECE in our experiments due to its
simplicity and popularity, as in previous work on
investigating the calibration quality of T5 (Chen
et al., 2023; Lee et al., 2022).

We employ a 10-bin-based ECE metric and a
softmax-based approach to compute average confi-
dence scores from the test outputs across all four
datasets. Given that e-SNLI and ANLI essentially
represent the same task, we conduct an out-of-
domain experiment by testing the model check-
point trained on one dataset with the test set of the
other. This analysis gives us insights into how well
our model generalizes across similar tasks and the
robustness of its predictions in out-of-domain sce-
narios and to assess the calibration quality of the
model more comprehensively.

Table 6 presents the results of the distilled model
calibration evaluation. Overall, both models report
lower ECE and confidence scores on SVAMP and
e-SNLI, indicating that these two tasks are more
challenging and models are less certain about their
prediction. Lower ECE values from our MI-based
distillation approach are presented for e-SNLI and
ANLI, and their respective out-of-domain tests. No-
tably, our method achieves an ECE of 4.35 in e-
SNLI, significantly lower than DSS’s 8.54. How-
ever, in SVAMP and CQA, our method records
higher ECE, indicating potential areas for improve-
ment in these domains. The trade-off in calibration
accuracy in specific tasks like SVAMP and CQA
compared to DSS suggests future directions for
refining our approach.

Regarding average confidence scores (Conf.),
our method generally maintains competitive con-
fidence levels, with notable improvements in e-
SNLI and ANLI. In e-SNLI, the confidence is
lower (30.06) compared to DSS (34.33), which,
combined with a lower ECE, suggests a more re-
alistic confidence estimation. Conversely, in the
out-of-domain scenarios for e-SNLI and ANLI, our
method shows marginally higher confidence scores
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Figure 3: Comparison with DSS with varying sizes of training datasets on T5-small model.

than DSS, which, coupled with the lower ECE, in-
dicates robustness in out-of-domain generalization.

5.2 Analysis on CoT Output

5.2.1 Quality of CoT Examples by GPT-4
Evaluation

We evaluate the quality of CoT examples using
GPT-4, as it achieves the state-of-the-art human
alignment performance and is used for text genera-
tion evaluation in previous work (Liu et al., 2023;
Hsu et al., 2023; Wang et al., 2023a). Inspired
by (Wang et al., 2023a), we ask GPT-4 to evaluate
the quality of the provided CoT examples based on
their coherency and relevancy to the input questions
and answers. We randomly sample 50 CoT exam-
ples from the four datasets and ask GPT-4 to score
based on a scale from 1 to 5, where 1 indicates com-
pletely incoherent and irrelevant responses, and 5
represents highly coherent, relevant, and helpful re-
sponses. For each sample, we run the same sample
for four times to obtain self-consistency to measure
the reliability of the responses. Table 7 presents
the prompt we use for GPT-4 evaluation, average
scores and standard deviation on the scores ob-
tained over the four datasets. We report the scores
on both provided CoT (“gold”) rationales and dis-
tilled model predicted rationales.

The effectiveness of our MI-based distillation

method is closely linked to the quality of CoT rea-
soning in the training data. When the CoT qual-
ity is high, as in SVAMP, a strong correlation is
observed between the model’s label prediction ac-
curacy and the quality of its generated CoT. How-
ever, this correlation weakens significantly when
the CoT quality is low (e-SNLI), suggesting that
the model struggles to align label prediction with
coherent rationale generation under poor training
conditions. Interestingly, with average-quality CoT
data (ANLI), the performance gap between our MI-
based distillation and DSS is minimal, suggesting
that the effectiveness of our approach is particularly
reliant on the presence of high-quality reasoning in
the training data.

5.2.2 Case Studies on the Output Rationale
We performed case studies on SVAMP and e-SNLI
as illustrated in Figure 4 and 5. In the SVAMP
example, the question asks the difference in the
number of kids Julia played with from Monday to
Tuesday, with specific numbers provided for Mon-
day, Tuesday, and Wednesday. DSS generates an
incorrect explanation, which contradicts the given
question, resulting in to a wrong answer. Con-
versely, our method correctly identifies the com-
parison needed between the number of kids Julia
played with on Monday and Tuesday, leading to the
correct answer. Notably, our generated CoT reason-
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Model SVAMP CQA e-SNLI ANLI e-SNLI (Out) ANLI (Out)
ECE Conf. ECE Conf. ECE Conf. ECE Conf. ECE Conf. ECE Conf.

DSS 11.81 32.56 11.75 42.79 8.54 34.33 11.12 42.72 9.81 38.01 12.78 41.69
Ours 18.92 36.81 13.65 41.17 4.35 30.06 6.94 35.90 6.61 38.08 12.27 42.35

Table 6: Comparisons of our model and DSS on the expected calibration errors (ECE) and average confidence
scores (Conf.).

Prompt for GPT 4 Evaluation

Given an input pair of a question and an answer of a
taskname task, how good is the given Chain-of-thought
example? From 1-5, where 1 is completely incoherent and
irrelevant, 2 is somewhat incoherent and irrelevant, 3 is
coherent, relevant but not helpful, 4 is somewhat helpful,
and 5 is helpful and it explains the answer well.

Average Scores and Standard Deviation

Model SVAMP CQA e-SNLI ANLI

Gold 4.63±1.05 3.95±1.16 2.42±1.23 3.82±1.26
++ 4.43±1.18 4.11±1.40 3.49±1.35 4.01±1.10

DSS 2.50±1.42 3.60±1.61 3.24±1.27 3.48±1.40
++ 2.53±1.46 3.64±1.62 3.18±1.21 3.44±1.30

Ours 2.30±1.54 3.70±1.45 3.03±1.47 3.42±1.37
++ 2.72±1.45 3.63±1.60 3.17±1.17 3.34±1.21

Table 7: Prompt used and results of 50 randomly sam-
pled CoT examples from the four datasets evaluated
by GPT-4. We use ++ to denote the setting with self-
consistency evaluation.

Model SVAMP CQA e-SNLI ANLI

DSS 0.12 0.66 0.05 0.26
p > 0.05 p < 0.05 p > 0.05 p > 0.05

Ours 0.42 0.53 0.03 0.26
p < 0.05 p < 0.05 p > 0.05 p > 0.05

Table 8: Pearson correlation between CoT quality and
accuracy of label prediction on the 50 random samples
on the test set. We highlight the correlation with statisti-
cal significance (p < 0.05).

ing is identical to the golden one, demonstrating
that by precisely grasping the rationale, our ap-
proach effectively resolves the math problem. We
also show the evaluation results (score and reason-
ing) from GPT-4, where our method gains a top
score of 5 and DSS gains only a mere score of
1. This example showcases that the high-quality
CoT generated by our method enhances problem-
solving capabilities in math tasks like SVAMP.

Another example (Figure 5) is from e-SNLI,
where the task is to identify whether the hypothesis
is entailment, contradiction, or neutral, based on
the given premise and hypothesis. Although both
our method and DSS generate the correct label out-
put, it is worth noting that, the CoT of our method

Input
Question

DSS

Explain: "Julia played with 16 kids on monday. She 
played with 12 more kids on monday than on tuesday. 
So she played with 16 + 12 = 22 kids on tuesday."
Predict: The answer is: 22
GPT-4 Eval on DSS's CoT:
Score: 1
Reasoning: The chain-of-thought is incorrect. The statement says 
Julia played with 12 more kids on Monday than on Tuesday. The 
correct calculation should be 16 - 12 = 4. The chain-of-thought 
provided suggests that she played with 22 kids on Tuesday, which 
contradicts the given question. 
 

GPT-4 Eval on our CoT:
Score: 5
Reasoning: The chain-of-thought correctly identifies the 
comparison needed between the number of kids Julia played with 
on Monday and Tuesday. It then performs the simple subtraction 
required to find the difference, which is the answer to the question. 
The explanation is clear, relevant, and directly leads to the correct 
answer. 

Ours

Explain: "Julia played with 16 kids on monday. She 
played with 12 more kids on monday than on tuesday. 
So she played with 16 - 12 = 4 kids on tuesday."
Predict: The answer is: 4

Golden explain: 
"Julia played with 16 kids on monday. She played with 12 more 
kids on monday than on tuesday. So she played with 16 - 12 = 4 
kids on tuesday. "

Julia played tag with 9 kids on monday, 7 kids on 
tuesday and 96 kids on wednesday.How many more 
kids did she play with on monday than on tuesday?

Figure 4: A case study of the output rationale on
SVAMP dataset.

points out the relationship between the premise
and the hypothesis, while DSS only restates the
hypothesis without providing any extra explanation
or connecting the hypothesis to the premise. Our
generated rationale also gains a higher score than
DSS. A higher-quality rationale tends to facilitate
more accurate label prediction, thereby enhancing
overall task performance.

6 Conclusion

In this paper, we re-investigate the DSS frame-
work from an information-theoretic perspective.
We model it using Information Bottleneck and pro-
pose to strengthen it by maximizing the mutual
information between rationale generation and la-
bel prediction tasks. The proposed learning-based
method can automatically optimize the CoT distilla-
tion and bolster the reasoning ability of the distilled
smaller models. Both our qualitative and quanti-
tative analysis demonstrate the rationale behind
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Input
Question

DSS
Explain: "The kids are hugging one another."
Predict: The hypothesis is True (entailment) 
GPT-4 Eval on DSS's CoT:
Score: 3
Reasoning: The chain of thought is coherent and relevant as it 
paraphrases the hypothesis. However, it doesn't provide any 
extra explanation or reasoning to support the inference. It merely 
restates the hypothesis without connecting it to the premise. 

GPT-4 Eval on our CoT:
Score: 5
Reasoning: The chain-of-thought directly addresses the 
relationship between the premise and the hypothesis. The 
premise states that the children are "embracing one another", 
which is synonymous with "hugging", as stated in the 
hypothesis. Therefore, the chain-of-thought is really helpful and 
explains the answer, confirming that the hypothesis is a 
restatement of the premise in simpler terms. 

Ours
Explain: "The kids are embracing one another, so 
they are hugging."
Predict: The hypothesis is True (entailment)  

Premise: Two children, both wearing tan coats, are 
embracing one another.
Hypothesis: Two kids are hugging.
Golden explain: 
"The two children are kids. Embracing is hugging."

Figure 5: A case study of the output rationale on e-SNLI
dataset.

our method and shed light on aspects of language
model distillation and CoT applications.

7 Limitation

Our comparative analysis primarily focuses on the
Distilling Step-by-Step (DSS) framework, which
serves as our main benchmark. This concentrated
comparison, while valuable for a deep understand-
ing of DSS’s nuances and our advancements over
it, constitutes a limitation of our work. Specifically,
our analysis does not extend to a broader range
of knowledge distillation methods currently em-
ployed in the field, focusing exclusively on T5 and
not including other LLMs like Mistral and Llama2,
Llama3 model family. This focus may overlook the
potential insights and contrasts that could emerge
from evaluating our approach against a wider array
of distillation techniques. Future research could
benefit from a more expansive comparative study,
incorporating diverse methodologies to fully con-
textualize our findings within the broader landscape
of knowledge distillation practices. This broader
comparison would not only validate the efficacy of
our method in various settings but also illuminate
areas for further refinement and innovation.

However, it is important to note that our contribu-
tion lies in providing an in-depth analysis from both
theoretical and practical viewpoints to enhance the
CoT distillation process. Our work delves into
the intricacies of utilizing mutual information to

improve distillation outcomes, offering significant
advancements in understanding and applying CoT
distillation techniques.

8 Ethical Issues

In this paper, we carefully considered the ethical
implications in line with the ACL code of ethics.
We evaluated the potential dual-use concerns, en-
suring our research serves to benefit society and
does not cause inadvertent harm. Our methodol-
ogy and applications were thoroughly assessed for
fairness, non-discrimination, and privacy, particu-
larly in the context of data handling and model out-
puts. We also ensured our study did not expose any
negative impact on individuals and groups. More-
over, we did not engage in academic dishonesty
and adhered to high-quality processes and product
standards in our professional work. We include
this detailed discussion of these ethical consider-
ations, affirming our commitment to responsible
and beneficial computational linguistics research.
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