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Abstract

In the era of code large language models (code
LLMs), data engineering plays a pivotal role
during the instruction fine-tuning phase. To
train a versatile model, previous efforts de-
vote tremendous efforts to crafting instruction
data that covers all the downstream scenar-
ios. Nonetheless, this will incur significant
expenses in data construction and model train-
ing. Therefore, this paper introduces CODEM,
a novel data construction strategy, which can ef-
ficiently train a versatile model using less data
via our newly proposed ability matrix. CODEM
uses ability matrix to decouple code LLMs’
abilities into two dimensions, constructing a
lightweight training corpus that only covers a
subset of target scenarios. Extensive experi-
ments on HumanEvalPack and MultiPL-E re-
veal that code LLMs can combine the single-
dimensional abilities to master composed abili-
ties, validating the effectiveness of CODEM.

1 Introduction

Code large language models (code LLMs) have
been booming recently (Zan et al., 2023; Zhang
et al., 2023b). An abundance of code LLMs are
released in succession, e.g., Codex (Chen et al.,
2021), AlphaCode (Li et al., 2022), StarCoder (Li
et al., 2023), and CodeLlama (Rozière et al., 2023).
Recent trends have witnessed the versatility of code
LLMs, aiming to train a multilingual multitasking
model. To meet this need, some efforts (Di et al.,
2023; Zheng et al., 2023a) typically created the
corresponding instruction training data for every
downstream language and task, to fine-tune the
model. However, this will entail significant costs
in constructing data and training models, consid-
ering the countless downstream scenarios (Zheng
et al., 2023b; Cassano et al., 2022). For instance,
if we enable the model to support 3 tasks and 6
languages, we need to laboriously craft training
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Figure 1: Ability matrix of CODEM and its baseline
SFT-Mixed. Code generation, code explanation, and
code repair are abbreviated as CG, CE, and CR.

data for a total of 18 diverse scenarios. Moreover,
our expectations for the versatile abilities of code
LLMs are continually growing (Muennighoff et al.,
2023; Cassano et al., 2022; Zheng et al., 2023a).

To more efficiently fine-tune code LLMs, we
propose a novel data construction strategy, namely
CODEM, which can empower CODE LLMs with
powerful Multilingual Multitasking abilities using
less training data via our newly proposed ability
Matrix. This matrix assists CODEM in decou-
pling the versatile abilities of code LLMs into
two ability dimensions (understanding languages
and completing tasks). Then, CODEM only re-
quires constructing the training datasets that cover
each single-dimensional ability (e.g., Python, CG,
or CE), rather than that of all composed abilities
(e.g., Python+CG, Java+CE, or Go+CR). We sup-
pose that those composed abilities not covered by
the constructed dataset can be implicitly learnable
based on two conjectures: (1) code LLMs can gen-
eralize based on explicitly learnable abilities; (2)
code LLMs can imitate based on the relationships
between multiple explicitly learnable abilities.

As shown in Figure 1, compared to its baseline
SFT-Mixed, CODEM only needs to cover a subset
of 18 composed abilities by picking out one row
and one column. CODEM aims to master all com-
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posed abilities (e.g., Java+CE) by combining the
explicitly learned single-dimensional abilities (e.g.,
Java and CE), and showcases uncompromising per-
formance in these implicitly learned abilities. To
evaluate CODEM, we first craft the corresponding
instruction training data for each of these 18 sce-
narios. Then, we conduct experiments to validate
CODEM’s effectiveness on HumanEvalPack. Ex-
tensive results demonstrate that CODEM can rival
SFT-Mixed, while utilizing less than half the data.

To more comprehensively verify CODEM, we
explore the proposed two conjectures for CODEM.
We first verify the generalization of code LLMs
across 15 languages, 7 tasks, and even 3 domains
on MultiPL-E. Our findings reveal that the model
trained on one scenario training data can produce
a universal generalization. Secondly, to verify
whether the code model can imitate, we deliber-
ately remove key data from CODEM’s training cor-
pus to disrupt the preconditions for imitation, and
observe performance changes. The results prove
the existence of imitation behavior in code LLMs.

In a nutshell, our contributions can be listed as
follows: (1) We introduce CODEM, a simple yet ef-
fective data construction strategy, which can yield
more versatility of code LLMs using less training
data via our newly proposed ability matrix. This
matrix is capable of decoupling multiple scenar-
ios into two ability dimensions, thereby aiding
CODEM in achieving efficient training. (2) We
carry out extensive experiments on HumanEval-
Pack and MultiPL-E to validate CODEM’s effec-
tiveness, as well as offer some valuable analyses.
(3) Our work has been open-sourced at https:
//github.com/NL2Code/CodeM.

2 CODEM

2.1 Task Definition

The goal of CODEM is to obtain a versatile code
LLM via efficient instruction fine-tuning. By com-
bining multiple programming languages and cod-
ing tasks, we can derive a scenario set, formatted
as S = L× T , where L denotes a set of target pro-
gramming languages and T denotes a set of coding
tasks. Each element s = (l, t) ∈ S corresponds
to a concrete scenario, requiring code LLMs to
complete a task t with the language l. Thus, we in
total obtain |L|·|T | different scenarios. Given a sce-
nario set S, a versatile model is expected to support
all scenarios and achieve a balanced performance
across different scenarios.
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Figure 2: Illustration of ability matrix.

Although the scenario set can have countless
variations in practice, we mainly focus on one spe-
cific version to validate CODEM. Following Hu-
manEvalPack, we regard 3 coding tasks across 6
languages as our target scenario set S in this paper.
The 6 languages include Python, JavaScript, Java,
Go, C++, and Rust and the 3 tasks include code
generation (CG), code explanation (CE) and code
repair (CR), leading to a total of 18 scenarios.

2.2 Approach

CODEM is essentially a data construction strategy
for efficient fine-tuning, aiming to empower code
LLMs with powerful multilingual and multitask-
ing abilities using less training data. To train a
versatile model, a naive idea is to collect training
data for each scenario. However, this approach will
suffer from overabundant downstream scenarios,
resulting in considerable computational resource
consumption. CODEM introduces a new concept
of ability matrix, aiming to select a subset of sce-
narios from the fullset S to train the model, while
still maintaining an uncompromising performance.

Ability Matrix As depicted in Figure 2, the abil-
ity matrix refers to an |L|×|T | matrix which covers
all the abilities requested by the target scenario set.
In the ability matrix, the two axes denote two ability
dimensions. In detail, the vertical axe corresponds
to the ability dimension of understanding the target
programming languages, while the horizontal one
corresponds to that of completing the target tasks.
Based on the two dimensions, we define the |L|·|T |
intersections between them as composed abilities.

Upon the above defined ability matrix, CODEM
picks out one row and one column to select a sce-
nario subset (|L| + |T | − 1 scenarios) from our
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target scenario set (|L| · |T | scenarios). For each se-
lected scenario, we collect the corresponding train-
ing dataset and merge them to obtain a training
corpus. This training corpus covers all the single-
dimensional abilities without requiring coverage of
all composed abilities. Given such a training cor-
pus, the model is expected to combine the explicitly
learned single-dimensional abilities, thereby gen-
eralizing to all composed abilities. We argue that
the ability combination can be realized based on
two conjectures (also illustrated in Figure 2): (1)
code LLMs can generalize: the model can gener-
alize well in every ability dimension, e.g., Python
to Java and CG to CE; (2) code LLMs can imitate:
the model can imitate based on the relationships
between multiple abilities that have been explic-
itly learned. e.g., by imitating the relationship of
CG and CE in the Python version, the model can
generalize from CG in the Java version (explicitly
learnable) to the CE in the Java version (implic-
itly learnable). If the two conjectures hold, all
the composed abilities in the ability matrix can be
reachable even though only a subset of them are ex-
plicitly learnable. The validity of the claimed two
conjectures will be further discussed in Section 4.3.

3 Training Corpus Construction

Regarding the 3 tasks (CG, CE, and CR) across
6 languages (Python, JavaScript, Java, Go, C++,
and Rust) mentioned in Section 2.1, totaling 18 sce-
narios, we craft corresponding instruction dataset
for each of these by harnessing the capability of
OpenAI’s GPT-3.5-turbo. In detail, we start from
CodeAlpaca1, an instruction dataset of code genera-
tion, from which we extract those Python-related in-
stances as our seed data. Based on these seed data,
we meticulously design prompts for each of the 18
scenarios to request OpenAI’s GPT-3.5-turbo, de-
riving the corresponding instruction datasets. More
details about prompt engineering can be seen in Ap-
pendix A. In our experiments, each training dataset
contains 9.6K data pairs, where a concrete data pair
is displayed in Appendix Figure 6.

4 Experiments

4.1 Experimental Setup
4.1.1 Benchmarks
We use HumanEvalPack (Zheng et al., 2023a) as
our primary benchmark to evaluate the versatility of

1https://huggingface.co/datasets/
sahil2801/CodeAlpaca-20k

code LLMs brought about by CODEM. It provides
a series of evaluations for 3 tasks (code genera-
tion, code explanation, and code repair) across 6
programming languages (Python, JavaScript, Java,
Go, C++, and Rust). Besides that, we also conduct
experiments based on MultiPL-E (Cassano et al.,
2022), which focuses on the code generation eval-
uation across 11 programming languages, includ-
ing Python, C, C++, JavaScript, TypeScript, PHP,
Go, Rust, Bash, Java, and Racket. The two bench-
marks are created by adapting HumanEval (Chen
et al., 2021), which is a hand-written benchmark for
Python code generation comprising 164 program-
ming problems with comprehensive test cases.

4.1.2 Evaluation Metrics
Following HumanEvalPack (Muennighoff et al.,
2023) and MultiPL-E (Cassano et al., 2022), we
adopt pass@1 (Chen et al., 2021) as our metric to
evaluate all models. Each model generates one an-
swer using the greedy decoding strategy for each
programming problem, and the answer would be
executed on the given test cases. Only when all the
test cases are passed, the programming problem
can be considered solved with the generated code.
In this setting, pass@1 can be formulated as |Pc|

|P | ,
where |P | denotes the total number of program-
ming problems and |Pc| represents the number of
solved problems. In essence, the pass@1 metric we
use can be considered as the accuracy.

4.1.3 Baselines
To prove the effectiveness of CODEM, we design
some baselines. The downstream benchmark for
CODEM is HumanEvalPack, which covers 18 sce-
nario tasks; CODEM chose 8 of these scenarios to
train code LLMs. Hence, the primary baseline of
CODEM is using data from 18 scenarios, called
SFT-Mixed, as shown in Figure 1 (b). Of note, for
a fair comparison, SFT-Mixed contains a total of
9.6K data pairs by default, aligning with the size
of each training dataset mentioned in Section 3.
To thoroughly showcase CODEM’s superiority in
terms of data volume, we also craft multiple ver-
sions of SFT-Mixed, each with different amounts
of data pairs, spanning 4.3K, 19.2K, 28.8K, 48K,
76.8K, and 100K. Each of 18 scenarios in SFT-
Mixed has the same data volume (e.g., 533 in 9.6K
version of SFT-Mixed). In addition to the mixed-
scenario training data, we also compared the mod-
els trained on single-scenario data from each of the
18 scenarios. For example, SFT-CG (Py version) in
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Table 1 is trained on the 9.6K instruction data pairs
of Python code generation mentioned in Section 3.
Furthermore, we also compare a variety of off-the-
shelf models, including CodeGeeX2 6B (Zheng
et al., 2023a), CodeLlama 7B (Rozière et al., 2023),
DeepSeekCoder 7B (Guo et al., 2024), Wizard-
Coder 15B (Guo et al., 2024), CodeFuse 15B (Di
et al., 2023), OctoCoder 15B (Muennighoff et al.,
2023), StarCoder 1B, 3B, and 7B (Li et al., 2023).
CODEM is based on StarCoder 7B for instruction
tuning by default. For more implementation details,
please refer to Appendix C.

4.2 Main Results

CODEM uses the data corresponding to any row
and column in Figure 1, covering a total of 8 sce-
narios, to train code LLMs. Figure 1 comprises
a total of 6 rows and 3 columns. We thus can
derive 18 different versions of CODEM, where
each of the rows and columns can be combined
with each other. For instance, the model, trained
on the Python row and the CG column in Fig-
ure 1, is named CODEM-CG#Py. Table 1 and
Appendix Table 5 display the results of CODEM
with varying amounts of training data and all base-
lines on HumanEvalPack. Among them, CODEM
(4.3K) and SFT-Mixed (9.6K) each contain 533
data pairs per scenario, where the former spans 8
scenarios and the latter 18. By examining these
results, we find that all CODEM (4.3K) variants
perform on par with or even sometimes outperform
SFT-Mixed (9.6K) across every downstream task.
For instance, CODEM-CE#Java (4.3K) achieves an
absolute pass@1 improvement of 2.4% over SFT-
Mixed (9.6K) in the code explanation task of the
Python version. Meanwhile, CODEM of 9.6K ver-
sion exceeds SFT-Mixed with equal training scale
and even rivals the 29K SFT-Mixed in some down-
stream tasks. As an illustration, CODEM-CR#C++
(9.6K) eclipses SFT-Mixed (29K) in the C++ code
generation, and the Python&C++ code repair task.
All these findings highlight CODEM’s effective-
ness and superiority in constructing training data,
even with a lower volume of data. Moreover, we
observe that models trained on mixed scenario data,
such as CODEM and SFT-Mixed, consistently sur-
pass those trained on single scenario data like SFT-
CG/CE/CR in all downstream evaluation tasks. The
results underscore the importance of data diversity,
suggesting that mixed scenario data can comple-
ment each other and further elevate the model’s

capabilities. In addition, we also observe that CO-
DEM (9.6K) with a 7B parameter size, can hold its
ground against WizardCoder 15B and CodeFuse
15B in certain downstream tasks, even with fewer
parameters. This further concluded that CODEM
possesses remarkable advantages compared to its
baselines. Overall, CODEM leverages ability ma-
trix to reduce redundancy among multiple training
scenarios, and to develop a versatile model using
limited training data. This offers insightful guid-
ance for constructing concise instruction data.

4.3 Conjecture Verification

We implement CODEM based on two conjectures
as mentioned in Section 2.2: (1) code LLMs can
generalize; (2) code LLMs can imitate. We will
explore the validity of them via experiments.

4.3.1 Can Code LLMs Generalize?
We would like to verify whether code LLMs
possess generalization capabilities under different
training scenarios. For the sake of comprehensive-
ness of our experiments, in addition to the sce-
narios provided by HumanEvalPack, we also se-
lect a broader range of scenarios. Those new sce-
narios cover more programming languages of the
code generation task (C, TypeScript, PHP, Bash,
Racket, Haskell, SQL, HTML, and XML), more
coding tasks (code translation, test case generation,
code commenting, code-related questing answer-
ing), and even more domains (math and natural
language). For each scenario, we create the corre-
sponding dataset (see Appendix A and B for more
details). We fine-tune StarCoder 7B on each dataset
separately, and then evaluate each fine-tuned model
on MultiPL-E and HumanEvalPack.

Table 1 and Table 2 respectively display the eval-
uation results on MultiPL-E and HumanEvalPack
of the models trained on various scenarios. It can
be observed that code LLMs can generalize across
different languages, tasks, and even domains. As an
example, SFT-JS, trained on JavaScript, achieves
an absolute improvement of 13.1% on pass@1 for
the Python code generation task, compared to its
base model StarCoder 7B, and even exceeds SFT-
Python. We also observe that training on structured
query languages (SFT-SQL) and markup languages
(SFT-HTML and SFT-XML) can also yield perfor-
mance improvements in general-purpose program-
ming languages like Python and Java. For instance,
SFT-HTML leads to an absolute improvement of
6.8% on pass@1 for C++ code generation. Further-
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HumanEvalPack
Py JS Java Go C++ RustModel

CG CE CR CG CE CR CG CE CR CG CE CR CG CE CR CG CE CR
Avg.

Existing Competitive Models
CodeGeeX2 6B 34.1 20.7 23.7 11.1 31.0 13.4 22.7 35.3 17.6 18.8 9.7 14.0 27.9 33.5 7.9 19.8 9.7 3.6 19.7
CodeLlama 7B 29.8 31.7 28.6 35.4 31.7 26.8 31.0 40.8 37.1 19.4 18.2 29.2 25.4 34.1 25.6 23.7 19.5 4.8 27.4
DeepSeekCoder 7B 31.0 33.5 27.4 38.5 33.5 26.2 29.7 45.7 40.2 20.1 21.3 30.4 25.4 34.1 26.8 22.4 20.1 8.5 28.6
WizardCoder 15B 59.6 60.9 51.2 39.7 55.4 42.0 36.0 51.2 40.8 27.2 42.6 51.2 40.3 42.0 43.2 35.2 14.6 9.7 41.3
CodeFuse 15B 52.7 59.7 51.8 44.7 56.7 43.2 35.4 48.7 35.9 29.8 41.4 48.7 36.0 45.7 43.2 28.2 14.0 9.7 40.3
OctoCoder 15B 15.5 35.1 30.4 10.5 24.5 28.4 15.1 27.3 30.6 9.7 21.1 30.2 11.8 24.1 26.1 10.2 14.8 16.5 21.2
StarCoder 1B 22.9 12.8 3.6 21.7 11.6 0.6 17.7 15.2 3.6 13.6 8.5 1.2 18.0 14.0 0.6 17.9 3.6 3.0 10.6
StarCoder 3B 29.1 17.0 13.4 24.8 8.5 17.6 25.9 18.9 12.8 20.1 10.9 10.3 19.2 23.1 7.3 21.1 12.8 0.6 16.3
StarCoder 7B 29.1 21.3 26.8 24.8 25.6 29.2 25.9 27.4 19.5 20.1 16.1 22.5 19.2 26.8 11.5 21.1 10.9 5.4 21.3

Py version (Supervised Fine-Tuning is abbreviated as SFT, ditto below)
SFT-CG 40.3 36.5 46.3 34.1 26.2 45.1 27.2 28.0 42.6 23.3 18.2 45.1 28.5 26.2 41.4 30.1 18.2 22.5 32.2
SFT-CE 32.2 38.4 39.7 27.3 29.2 40.8 25.9 31.7 42.0 20.1 20.1 42.0 23.6 29.8 33.5 23.7 17.0 19.5 29.8
SFT-CR 39.7 34.1 51.8 27.9 26.8 45.7 27.2 29.2 48.7 22.7 18.9 48.7 26.0 26.8 43.2 26.9 15.8 26.8 32.6

JS version
SFT-CG 38.5 34.7 43.2 36.6 27.4 46.3 27.8 28.6 43.9 24.0 17.6 45.1 29.8 27.4 40.8 28.2 18.9 23.7 32.4
SFT-CE 31.0 36.5 37.8 28.5 31.0 43.9 23.4 30.4 42.6 19.4 20.7 42.0 24.2 28.6 34.1 22.4 18.9 18.9 29.7
SFT-CR 36.0 34.1 48.1 29.1 28.0 49.3 26.5 27.4 48.7 22.0 19.5 48.7 25.4 26.8 42.6 27.5 17.6 25.0 32.4

Java version
SFT-CG 37.2 35.3 41.4 33.5 25.6 45.7 29.7 30.4 47.5 22.7 18.9 43.9 27.3 26.8 41.4 30.7 17.6 23.7 32.2
SFT-CE 30.4 36.5 35.9 26.7 28.6 40.8 26.5 33.5 46.3 20.7 19.5 42.6 22.9 29.8 32.9 23.0 20.1 19.5 29.8
SFT-CR 36.6 33.5 47.5 28.5 27.4 45.1 28.4 29.2 52.4 21.4 19.5 48.1 26.0 26.2 43.9 26.2 18.2 25.6 32.4

Go version
SFT-CG 37.8 34.7 40.8 34.7 25.6 45.1 26.5 28.0 43.2 27.9 20.7 49.3 27.9 27.4 40.8 28.8 18.9 21.9 32.2
SFT-CE 29.8 37.8 36.5 26.0 29.2 41.4 24.0 29.8 42.0 24.6 24.3 46.9 24.8 29.2 33.5 21.7 20.7 17.6 30.0
SFT-CR 34.1 32.3 48.7 26.7 26.8 43.2 25.3 28.0 47.5 28.5 20.1 54.2 26.7 25.6 42.0 25.6 18.9 26.2 32.2

C++ version
SFT-CG 36.6 32.9 42.0 35.4 25.0 43.9 27.8 27.4 41.4 24.6 17.6 44.5 32.9 29.8 43.2 30.7 19.5 21.9 32.1
SFT-CE 30.4 39.6 35.3 25.4 27.4 42.6 25.3 31.0 43.2 19.4 21.3 42.6 28.5 34.7 39.0 23.7 19.5 18.2 30.4
SFT-CR 33.5 35.3 46.9 27.9 24.3 42.0 26.5 29.2 47.5 22.0 18.2 49.3 26.7 30.4 45.1 26.2 17.6 25.6 31.9

Rust version
SFT-CG 36.6 29.8 43.2 33.5 26.2 44.5 27.2 28.0 42.6 22.0 17.0 42.6 29.1 25.6 39.6 33.3 19.5 25.0 31.4
SFT-CE 32.2 37.8 36.5 26.0 26.8 42.0 24.6 30.4 43.9 19.4 21.3 41.4 21.7 29.8 33.5 26.9 22.5 21.3 29.9
SFT-CR 29.1 31.7 48.1 27.3 25.6 43.2 25.9 28.6 46.9 21.4 18.9 47.5 26.0 26.2 41.4 31.4 20.1 30.4 31.6

Other Domains
SFT-Math 30.4 24.3 39.0 31.6 26.8 37.8 25.9 28.0 43.2 22.0 17.0 43.9 27.3 22.5 32.9 23.7 14.6 22.5 28.5
SFT-NLQA 34.7 25.0 37.8 32.9 25.6 38.4 26.5 29.2 40.8 25.3 17.6 39.6 26.7 23.1 32.3 25.0 14.0 23.7 28.8

Mixed Data (baseline)
SFT-Mixed (9.6K) 41.6 37.8 51.2 35.4 32.9 47.5 29.1 33.5 50.0 26.6 25.0 48.7 31.6 32.9 44.5 32.6 21.3 31.7 36.3
SFT-Mixed (29K) 47.8 45.7 53.0 42.8 49.3 51.2 34.8 43.2 54.2 29.8 39.0 52.4 40.3 45.1 47.5 33.9 20.7 32.9 42.4

CODEM (4.3K)
CODEM-CG#Py 44.0 38.4 51.2 37.2 31.0 46.3 29.1 31.7 48.7 26.6 23.7 49.3 32.2 30.4 44.5 32.0 19.5 29.8 35.9

w/o CG×Py 40.9 36.5 50.6 36.0 29.8 45.1 28.4 28.6 46.9 25.3 23.7 48.1 30.4 28.0 42.0 30.1 17.6 27.4 34.2
w/o CG×Java 43.4 39.0 51.2 37.8 31.7 45.7 27.8 28.0 46.9 27.2 24.3 48.7 32.2 31.0 45.7 30.1 18.9 30.4 35.6
w/o CE×Py 43.4 35.9 51.8 37.2 30.4 46.3 29.1 28.0 49.3 26.6 22.5 49.3 31.6 27.4 43.9 32.6 16.4 29.2 35.0

CODEM-CG#JS 43.4 36.5 50.0 37.8 34.1 48.1 30.3 32.9 47.5 27.9 25.0 48.1 31.6 31.7 43.9 32.6 20.7 28.0 36.1
CODEM-CE#Java 41.6 40.2 48.1 36.0 32.9 45.7 29.7 35.3 50.0 25.3 25.6 48.7 30.4 32.3 43.2 30.7 21.3 28.6 35.9
CODEM-CE#Go 40.9 37.8 50.6 34.7 33.5 46.3 28.4 34.1 48.1 27.2 26.2 50.6 30.4 33.5 44.5 31.4 21.3 29.8 36.1
CODEM-CR#C++ 43.4 35.9 51.8 34.1 31.0 48.7 27.8 32.9 50.6 26.6 25.0 49.3 31.0 32.9 45.7 32.0 20.1 31.0 36.1
CODEM-CR#Rust 41.6 37.1 52.4 36.0 32.9 47.5 29.1 32.3 50.0 25.9 24.3 50.0 29.8 31.7 45.1 33.3 22.5 32.3 36.3

CODEM (9.6K)
CODEM-CG#Py 46.5 43.2 53.6 42.2 42.0 48.1 35.4 40.8 51.8 29.8 32.9 49.3 40.3 40.2 45.7 36.5 23.1 33.5 40.8
CODEM-CG#JS 45.9 43.9 53.0 44.0 44.5 49.3 34.1 41.4 50.6 29.2 32.9 50.0 41.6 40.2 45.7 37.1 23.7 32.3 41.1
CODEM-CE#Java 42.8 45.1 51.8 40.9 46.9 48.7 34.8 43.2 52.4 27.9 34.1 50.0 39.7 42.6 46.3 35.2 24.3 33.5 41.1
CODEM-CE#Go 42.8 42.0 50.6 41.6 45.7 49.3 33.5 42.0 51.2 30.5 34.7 51.2 38.5 41.4 44.5 35.8 24.3 32.9 40.7
CODEM-CR#C++ 45.3 39.0 54.2 39.7 43.9 50.6 32.9 39.6 52.4 28.5 31.7 52.4 40.9 40.8 48.7 33.9 19.5 31.7 40.7
CODEM-CR#Rust 41.6 40.8 53.0 41.6 43.9 50.0 34.1 40.8 53.0 27.9 33.5 51.8 40.9 40.2 46.9 37.1 25.0 35.3 41.0

Table 1: Evaluation results on HumanEvalPack. More results can be seen in Appendix Table 5. Code generation,
code explanation, code repair, Average, Python, and JavaScript are abbreviated as CG, CE, CR, Avg., Py, and JS.

718



more, we discover that different tasks can general-
ize to each other. For example, SFT-CR, trained on
the Python code repair task, achieves an absolute
improvement of 6.8% on pass@1 for C++ code
generation. By analyzing the results in Table 1,
our findings reveal that CG and CR can always
improve each other substantially, compared to CE.
One plausible reason is that the essence of CG and
CR lies in generating code, whereas CE involves
understanding code and producing natural language
output. More surprisingly, instruction datasets of
non-coding domains can also bolster code LLMs
in coding. SFT-NLQA and SFT-Math improve the
JavaScript code generation performance by 11.8%
and 6.8% on pass@1, respectively. That might be
due to the enhancement in the model’s fundamental
abilities, e.g. natural language understanding (Roz-
ière et al., 2023) and reasoning (Dong et al., 2023).
Overall, our findings consistently affirm the gen-
eralization of code LLMs, thereby solidifying the
foundation of CODEM.

4.3.2 Can Code LLMs Imitate?

We design several ablation experiments to demon-
strate whether code LLMs possess the imitation
capability. The default setting of CODEM-CG#Py
covers the Python row and the CG column, as stated
in Figure 2. We intentionally exclude an intersec-
tion point of the Python row and the CG column
from the training corpus of CODEM-CG#Py (ab-
breviated as w/o CG×Py in Table 1). Upon our
conjectures, this will lead to a drop in CODEM-
CG#Py’s performance on all evaluation tasks: with-
out the training instances of CG×Py scenario, the
model can not reach those composed abilities that
are not explicitly learnable through imitation. By
observing the results in Table 1, compared to CO-
DEM-CG#Py, excluding the CG×Py corpus indeed
leads to a decline in performance, further confirm-
ing the correctness of our conjectures. Furthermore,
we remove the CG×Java corpus from the training
corpus of CODEM-CG#Py (w/o CG×Java), which
results in the absence of any Java-related data. The
results in Table 1 indicate that such the setting only
has a negative impact on Java-related tasks, without
affecting others. This observation also justifies our
conjectures. Additionally, we exclude the Python
CE corpus (w/o CE×Py) and observe the same
pattern. In summary, the experimental findings
confirm the imitation capability of code LLMs and
further underscore CODEM’s effectiveness.
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Figure 3: Performance analysis of CODEM and its base-
lines in terms of data scale and data noise.

4.4 Closer Analysis
Data Scale CODEM takes the advantage of using
less data to yield more versatility. To demonstrate
CODEM’s advantage, we plot the performance of
CODEM and its baseline SFT-Mixed across vari-
ous data scales on HumanEvalPack, as shown in
Figure 3 (a). We observe that, at any data scale, var-
ious versions of CODEM consistently outperform
SFT-Mixed. For example, with a dataset scale of
19.2K, CODEM-CE#Java outperforms SFT-Mixed
by 7.2% in pass@1, achieving performance on par
with the 48K version of SFT-Mixed. This obser-
vation demonstrates CODEM’s advantage in terms
of data scale. Additionally, with sufficient data,
CODEM can achieve peak performance compara-
ble to that of SFT-Mixed. This indicates that with
CODEM, the model can seamlessly combine single-
dimensional abilities within ability matrix, achiev-
ing uncompromising performance on composed
abilities without explicit learning. Compared to
SFT-Mixed, CODEM can converge to its peak per-
formance more rapidly, where the former reaches
its peak at 100K and the latter at 28.8K, further
underscoring CODEM’s advantage.

Data Quality We intend to explore the robust-
ness of CODEM and its baseline with respect to
data quality. In Figure 3 (b), we deliberately in-
troduce noise for CODEM (4.3K) and SFT-Mixed
(9.6K), by creating data pairs with inconsistent in-
structions and responses, at different noisy levels
from 0% to 100% at 10% intervals. We observe
that at most noisy levels, CODEM outperforms its
baseline. Also, as the noisy level increases, CO-
DEM tends to stabilize around a 20% pass@1 rate,
whereas SFT-Mixed continues to drop to 12.5%
and is still on a downward trend. This exhibits
CODEM’s greater robustness to noise data.

Data Redundancy In section 4.2, compared to
SFT-Mixed, we claim that CODEM reduces data
redundancy by selecting one row and one column
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MultiPL-E BenchmarkModel Py C C++ JS TS PHP Go Rust Bash Java Racket Avg.

Existing Competitive Models
CodeGeeX2 6B 34.1 24.6 27.9 11.1 22.6 23.6 18.8 19.8 6.9 22.7 11.1 20.3
CodeLlama 7B 29.8 24.6 25.4 35.4 33.3 23.6 19.4 23.7 10.7 31.0 11.1 24.4
DeepSeekCoder 7B 31.0 25.9 25.4 38.5 32.0 27.3 20.1 22.4 12.0 29.7 12.4 25.2
WizardCoder 15B 48.4 34.5 40.3 39.7 45.9 40.9 27.2 35.2 16.4 36.0 14.2 34.4
CodeFuse 15B 52.7 33.3 36.0 44.7 42.1 39.1 29.8 28.2 13.9 35.4 14.9 33.6
StarCoder 1B 15.5 9.2 11.8 10.5 15.7 9.3 9.7 10.2 2.5 15.1 5.5 10.5
StarCoder 3B 22.9 16.6 18.0 21.7 25.1 21.1 13.6 17.9 4.4 17.7 7.4 16.9
StarCoder 7B 29.1 22.8 19.2 24.8 28.3 24.2 20.1 21.1 6.3 25.9 11.8 21.2

Programming Languages (code generation version)
SFT-Py 40.311.2 27.14.3 28.59.3 34.19.3 37.79.4 34.19.9 23.33.2 30.19.0 8.21.9 27.21.3 16.74.9 27.9
SFT-C 37.88.7 29.66.8 34.114.9 35.410.6 36.48.1 34.19.9 29.29.1 26.95.8 10.13.8 32.26.3 15.53.7 29.2
SFT-C++ 36.67.5 31.48.6 34.715.5 36.011.2 37.79.4 31.06.8 24.64.5 27.56.4 9.43.1 32.97.0 14.93.1 28.8
SFT-JS 42.213.1 25.93.1 32.213.0 36.011.2 41.513.2 35.411.2 24.03.9 28.87.7 8.21.9 29.73.8 15.53.7 29.0
SFT-TS 36.06.9 27.14.3 26.06.8 34.79.9 37.18.8 31.06.8 22.72.6 26.25.1 10.13.8 29.13.2 12.40.6 26.6
SFT-PHP 36.06.9 26.53.7 28.59.3 35.410.6 36.48.1 37.813.6 22.01.9 28.27.1 7.51.2 28.42.5 13.01.2 27.2
SFT-Go 34.75.6 28.35.5 30.411.2 34.19.3 35.26.9 31.06.8 29.29.1 26.25.1 10.13.8 29.13.2 16.74.9 27.7
SFT-Rust 37.28.1 29.66.8 29.19.9 34.19.3 35.87.5 34.710.5 24.64.5 31.410.3 7.51.2 30.34.4 13.61.8 28.0
SFT-Bash 40.911.8 27.74.9 32.913.7 41.616.8 42.113.8 31.67.4 28.58.4 30.19.0 26.520.2 29.13.2 12.40.6 31.2
SFT-Java 40.311.2 27.74.9 30.411.2 32.98.1 34.56.2 31.67.4 21.41.3 29.48.3 8.82.5 32.26.3 14.22.4 27.6
SFT-Racket 40.911.8 29.06.2 33.514.3 36.011.2 35.26.9 29.85.6 27.97.8 27.56.4 8.21.9 27.81.9 21.79.9 28.9
SFT-Haskell 37.88.7 25.93.1 29.19.9 33.58.7 33.95.6 31.67.4 23.33.2 27.56.4 10.13.8 26.50.6 12.40.6 26.5
SFT-SQL 31.01.9 20.91.9 23.64.4 27.93.1 32.03.7 25.41.2 22.01.9 26.95.8 8.82.5 24.01.9 11.10.7 23.1
SFT-HTML 32.23.1 20.32.5 26.06.8 32.98.1 32.03.7 29.85.6 22.01.9 25.64.5 7.51.2 28.42.5 12.40.6 24.5
SFT-XML 36.06.9 19.73.1 24.85.6 31.66.8 31.43.1 24.80.6 22.72.6 25.03.9 8.21.9 26.50.6 11.80.0 23.9

Other Tasks (Python version)
SFT-CE 32.23.1 21.61.2 23.64.4 27.32.5 30.11.8 25.41.2 20.10.0 23.72.6 8.21.9 25.90.0 10.51.3 22.6
SFT-CR 39.710.6 24.61.8 26.06.8 27.93.1 32.03.7 28.54.3 22.72.6 26.95.8 9.43.1 27.21.3 14.93.1 25.4
SFT-CT 29.80.7 22.20.6 22.93.7 29.85.0 30.11.8 26.01.8 20.70.6 24.33.2 6.90.6 26.50.6 11.80.0 22.8
SFT-TestCase 34.15.0 22.80.0 26.77.5 30.45.6 30.82.5 24.80.6 21.41.3 22.41.3 8.21.9 29.73.8 13.01.2 24.0
SFT-Comment 29.80.7 22.80.0 25.46.2 29.14.3 29.51.2 26.01.8 20.10.0 24.33.2 8.21.9 24.01.9 13.01.2 22.9
SFT-CodeQA 34.75.6 27.74.9 27.98.7 34.19.3 31.43.1 24.80.6 26.66.5 25.64.5 12.66.3 28.42.5 12.40.6 26.0

Other Domains
SFT-Math 30.41.3 22.20.6 27.38.1 31.66.8 32.03.7 24.20.0 22.01.9 23.72.6 8.21.9 28.42.5 13.01.2 23.9
SFT-NLQA 34.75.6 25.93.1 26.77.5 36.611.8 33.45.1 27.33.1 25.35.2 25.03.9 8.82.5 27.81.9 13.61.8 25.9

Table 2: Evaluation results on MultiPL-E. The numbers in red and green represent the absolute increase and decrease
compared to the base model StarCoder 7B. We abbreviate Python, JavaScript, TypeScript, Average, code explanation,
code repair, and code-related/natural-language question answering as Py, JS, TS, Avg., CE, CR, CodeQA/NLQA.

from 6×3 matrix. To prove this, we select not
only one row (language) and column (task) from
Figure 1 but also m rows and n columns2, where
m ∈ {1, 2, 3, 4, 5, 6} and n ∈ {1, 2, 3}. We sum-
marize the experimental results in Figure 4. We
observe that increasing the selected scenarios (m>1
and n>1) does not yield performance gain, com-
pared to CODEM (m=1 and n=1). For example,
the pass@1 is 35.8% for m=6, n=2, compared to
35.9% for m=1, n=1. This suggests there exists
redundancy in the training data among the 18 sce-
narios, further underscoring CODEM’s advantages.

2We randomly select rows and columns in the experiments.

Base Models CODEM can be built upon different
base models, such as StarCoder (1B, 3B, 7B, 15B),
CodeLlama (7B, 13B, 34B), and DeepSeekCoder
(1B, 7B, 33B). We thus plot the results of CODEM-
CG#Py (4.3K) and its baseline SFT-Mixed (9.6K)
in Figure 5. We observe that CODEM consistently
improves the average pass@1 of various base mod-
els on HumanEvalPack, each achieving an improve-
ment of over 10%. For instance, CODEM-CG#Py
brings an absolute improvement of 19.5% for Star-
Coder 7B in the average pass@1. Notably, in all
settings, CODEM with merely 4.3K training data
can compete with SFT-Mixed with 9.6K, demon-
strating the efficiency of CODEM. In this paper,
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Figure 4: Pass@1 (%) performance of models trained
using scenario data from m rows and n columns in Fig-
ure 1, where m ∈ {1, 2, 3, 4, 5, 6} and n ∈ {1, 2, 3}.

CODEM’s base model defaults to StarCoder, due
to its fully open-source pre-training data, unlike
CodeLlama and DeepSeekCoder.

5 Related Work

5.1 Code Large Language Models

Codex (Chen et al., 2021) with 12-billion param-
eters is able to solve Python programming prob-
lems automatically. This remarkable success trig-
gered a significant buzz in both the academic
and industrial realms. Followed by Codex, a
plenty of code LLMs are released, including Alpha-
Code (Li et al., 2022), PaLM-Coder (Chowdhery
et al., 2022), CodeGen (Nijkamp et al., 2023), In-
Coder (Fried et al., 2023), CodeT5 (Wang et al.,
2021), PanGu-Coder (Christopoulou et al., 2022),
PyCodeGPT (Zan et al., 2022), SantaCoder (Al-
lal et al., 2023), CodeGeeX (Zheng et al., 2023a),
StarCoder (Li et al., 2023), CodeLlama (Roz-
ière et al., 2023), phi-1/1.5/2 (Gunasekar et al.,
2023), CodeFuse (Di et al., 2023), and DeepSeek-
Coder (Guo et al., 2024). These above mod-
els are trained on a large-scale code corpus and
achieve impressive code generation performance.
Recent works (Ouyang et al., 2022; Zhang et al.,
2023a) have witnessed the instruction tuning tech-
nique that can teach LLMs how to follow instruc-
tions. In the realm of code generation, Wizard-
Coder (Luo et al., 2023), PanGu-Coder2 (Shen
et al., 2023), CodeLlama-instruct (Rozière et al.,
2023), Phind (Name, 2023), and DeepSeekCoder-
instruct (Guo et al., 2024) also harness this tech-
nique to unlock their code related potential. In this
paper, we fine-tune these off-the-shelf models on
our crafted multi-lingual multitasking instruction
data, to derive a versatile and powerful model.
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Figure 5: Average improvement pass@1 on HumanEval-
Pack of CODEM trained on various base models.

5.2 Instruction Data

Instruction fine-tuning can unlock the potential of
LLMs. In this process, constructing what kind
of instruction data is a highly fascinating research
topic (Zhang et al., 2023a; Zhao et al., 2023). Some
studies (Zhou et al., 2023; Cao et al., 2023; Chen
et al., 2023) claim that high-quality instruction data
will yield significant performance improvements.
Beyond data quality, some efforts also highlight the
importance of data diversity (Bukharin and Zhao,
2024; Kapania et al., 2023). Recent works also
propose some tricks for training LLMs from the
perspective of data composition (Dong et al., 2024)
and training sequence (Wang et al., 2023; Guo et al.,
2024). Unlike prior studies, this paper aims to
investigate how to enable code LLMs to achieve
more versatility performance with less data, on
multiple tasks across multiple languages.

6 Conclusion and Future Work

In this paper, we propose CODEM, which aims
to empower code LLMs with powerful multilin-
gual multitasking capabilities using less training
data by leveraging ability matrix. The matrix as-
sisting CODEM divides the model’s intrinsic abil-
ities into two dimensions: languages and tasks,
then guides the construction of instruction training
data. Extensive experiments on HumanEvalPack
and MultiPL-E demonstrate the effectiveness and
superiority of CODEM. Furthermore, we validate
two conjectures of CODEM: generalization and im-
itation, and obtain many insightful findings. In
our future work, we would like to delve into code
LLMs to uncover more effective and intriguing data
construction strategies.
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Limitations

While this paper showcases numerous intriguing
findings on the generalization of code LLMs, it
also poses a few limitations as follows:

• CODEM constructs instruction data from two
dimensions: programming languages and
tasks, with the expectation that the two di-
mensions can be better blended together to
empower a more versatile code LLM. Tech-
nically speaking, CODEM is also capable of
handling additional dimensions, such as data
domains and data structures, which will be
explored in our forthcoming research.

• To ensure the consistency of data origin and
quality, as well as the fairness of the exper-
iments, the majority of our experiments are
conducted using GPT-3.5-generated data. But
employing CODEM in practice might also in-
volve data from other sources, potentially pos-
ing threats to our approach. Also, we do not
verify the correctness of content generated
by GPT-3.5, which is in line with previous
works (Luo et al., 2023; Shen et al., 2023).

• Our work, including training, inference, and
API requests to OpenAI’s GPT-3.5-turbo, re-
quires a high cost in computational resources.
Therefore, we will open-source our efforts to
foster the rapid advancement of this field.
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Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.

### Instruction:
Design a web page that displays a message
when loaded. The message should be "Hello,
World". Use HTML code to achieve this.

### Response:
<!DOCTYPE html>
<html>
<head>

<title>Hello World</title>
</head>
<body>

<h1>Hello, World</h1>
</body>
</html>

Figure 6: A HTML training example of our crafted
instruction-response pairs.

formats differ between different languages, tasks,
and domains.

For instruction request prompts, which are pre-
sented in Appendix Table 3, we typically ask Ope-
nAI’s GPT-3.5-turbo to craft a new task based on
given seed tasks and optional additional informa-
tion. The placeholder {seed task} in the prompt
templates corresponds to a seed task3; {TabFact
topic} corresponds to a brief topic randomly se-
lected from the dataset TabFact4; {language}
corresponds to a specified programming language.

For response request prompts, which are pre-
sented in Appendix Table 4, we typically utilize
the obtained instructions to request a correspond-
ing answer from GPT-3.5-turbo. The placeholder
{programming task} in the prompt templates cor-
responds to an instruction obtained via instruction
requests or retrieving from the existing dataset (e.g.,
SFT-Python); {code snippet} corresponds to a
suitable code snippet, which can be retrieved from
the already crafted dataset (e.g., SFT-Python).

3The seed task is CodeAlpaca mentioned in Section 3.
4https://huggingface.co/datasets/tab_

fact

B Scenario Selection for Generalization
Verification

As mentioned in Section 3 and 4.3.1, in this paper,
we have crafted instruction data for diversified train-
ing scenarios, covering a total of 15 programming
languages, 7 code-related tasks, and 3 domains.
This section will explain the reasons behind the
selection of these scenarios.

15 Programming Languages We meticulously
select 15 languages, including Python, C, C++,
JavaScript, TypeScript, PHP, Go, Rust, Bash, Java,
Racket, Haskell, SQL HTML, and XML. To de-
rive a diversified set of training scenarios, these
selected languages cover a broad range of lan-
guage features, considering aspects of program-
ming paradigm, type system, memory management,
etc., as shown in Appendix Table 6. In addition, we
also take into account the share of these languages
in the pre-trained corpus5 of our base model, rang-
ing from 0% to 15% all over. For each of the 15
languages, we have created an instruction dataset of
code generation correspondingly (see Appendix A
for more details).

7 Tasks We select 7 code-related tasks: code
generation, code explanation, code repair, code
translation, test case generation, code commenting,
and code-related questing answering. We select
these tasks because they represent a comprehensive
range of skills required in software development
and maintenance (Zheng et al., 2023b; Zhang et al.,
2023b). For each of the 7 tasks, we have created
multiple language versions of instruction data, in-
cluding Python, JavaScript, Java, Go, C++, and
Rust (see Appendix A for more details).

3 Domains We select 3 domains including code,
math, and natural language. We choose the latter
two domains based on the assumption that arith-
metic reasoning and natural language understand-
ing may also bolster the code-related capabilities
of code LLMs (Rozière et al., 2023; Name, 2023).
As for the instruction dataset of two non-code do-
mains, we directly extract 9.6K data pairs from the
GSM8K (Cobbe et al., 2021) and WizardLM (Xu
et al., 2023) datasets.

5https://huggingface.co/datasets/
bigcode/the-stack
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Model-Task Prompt to obtain instruction

SFT-Python
SFT-C
SFT-C++
SFT-JS
SFT-TS
SFT-PHP
SFT-Go
SFT-Rust
SFT-Bash
SFT-Java
SFT-Racket
SFT-Haskell

I want you act as a Programming Contest Designer. Your objective is to rewrite a given
programming task into a more complex version to make it more educational.\nYou
can increase the difficulty using, but not limited to, the following method:\n- Add
new constraints and requirements to the original problem, adding approximately 10
additional words.\n- If the original problem can be solved with only a few logical
steps, please add more reasoning steps.\n\nYour response is the rewritten program-
ming task (#Rewritten Task#).\nThe #Rewritten Task# must be reasonable and must
be understood and responded by humans, and also solvable with {language} code.
It should not be dependent on the #Given Task#. Your rewriting cannot omit the
non-text parts such as the table and code in #Given Task#. Also, please do not
omit the input in #Given Task#.\n**The rewritten task and the given task should
have the similar length.**\n**The rewritten task should ask for a function-level
code solution.**\n‘#Given Task#’, ‘#Rewritten Task#’, ‘given task’, and ‘rewrit-
ten task’ are NOT allowed to appear in #Rewritten Task#.\n\n#Given Task#\n{seed
task}\n\n#Rewritten Task#\n

SFT-SQL
SFT-HTML
SFT-XML

I want you act as a prompt engineer. Your objective is to create an {language} code
generation task by drawing inspiration from the #Given Topic#. The task should be
educational to junior programmers, just like the #Reference Task#, but can also involve
some advanced skills of this specific programming language.\n\nYour response is the
#Code Generation Task#, asking an AI code assistant to generate an {language} code
snippet.\nThe #Code Generation Task# must be reasonable and must be understood and
responded by humans, and also solvable with {language} code. The #Code Generation
Task# is not necessarily related to the #Given Topic#, but should be in the same
domain of it.\n‘#Code Generation Task#, ‘#Given Topic#’, ‘code generation task’,
and ‘given topic’ are NOT allowed to appear in #Code Generation Task#.\n\n#Given
Topic#\n{TabFact topic}\n\n#Reference Task#\n{seed task}\n\n#Code Generation
Task#\n

SFT-CR

I want you act as a Programming Task Designer. Your objective is to create a code fix
task based on a given programming task.\nYou SHOULD increase the difficulty of the
given programming task and rewrite it into a code fix task, including a programming
task and a piece of buggy code. You can create the code fix task using the following
method:\n- Add new constraints and requirements to the original problem, adding
approximately 10 additional words.\n- If the original problem can be solved with only
a few logical steps, please add more reasoning steps.\n\nYour response is the rewritten
code fix programming task.\nThe #Code Fix Task# contains a description which must
be reasonable and must be understood and responded by humans, attached with a
piece of buggy code in {language}. #Code Fix Task# should not be dependent on the
#Given Task#. Your rewriting cannot omit the non-text parts such as the table and
code in #Given Task#. Also, please do not omit the input in #Given Task#.\n‘#Given
Task#’, ‘#Code Fix Task#’, ‘given task’, and ‘code fix task’ are NOT allowed to appear
in #Code Fix Task#.\n\n#Given Task#\n{seed task}\n\n#Code Fix Task#\n

Table 3: Prompts of crafting instructions of training datasets by requesting OpenAI’s GPT-3.5. The “Model-Task”
column corresponds to the “Model” column in Tables 1 and Table 2.

C Implementation Details

C.1 Training and Inference

We fine-tune StarCoder using PyTorch (Paszke
et al., 2019), transformers (Wolf et al., 2019), and

DeepSpeed (Rajbhandari et al., 2020) with FP16
enabled. During instruction tuning, we set the batch
size to 8, the epoch to 4, the max length to 1024,
the warmup ratio to 0.03, the gradient accumu-
lation steps to 16, the save steps to 10, and the
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Model-Task Prompt to obtain response for instruction

SFT-PLs
SFT-CG
SFT-CR

Below is an instruction that describes a programming task. Write a response that
appropriately completes the request. You should use {language} to do this. You are
NOT allowed to use any other programming languages.\n\n### Instruction:\nCreate a
code solution for this problem:\n{programming task}\n\n### Response:\n

SFT-CE
Below is a code snippet. Write a response that detailedly explains the code snip-
pet.\n\n### Code Snippet:\n{code snippet}\n\n### Response:\n

SFT-CT

You are a senior programmer. Your objective is to translate the given #Python Code#
to a {language} version accurately.\n\nYour response is the #{language} Code#, which
should contain a {language} code snippet.\n‘#Python Code#’ and ‘Python Code’ are
NOT allowed to appear in #{language} Code#.\n\n#Python Code#\npython\n{code
snippet}\n\n\n#{language} Code#\n

SFT-TestCase

You are a Software Test Engineer. Your goal is to craft comprehensive test cases for
the given #Programming Task#, validating a Python function which aims to solve
this given task.\n\nYour response should include two parts: #Function Signature# and
#Test Cases#. #Function Signature# contains an appropriate signature for this solution
function, while #Test Cases# is a code snippet containing multiple different test
cases. Each test case should format as a Python assert statement.\n\n#Programming
Task#\n{programming task}\n

SFT-Comment

You are a senior Python programmer. Your objective is to add appropriate comments
for the given Python code snippet. The comments should be concise and educational
to junior programmers.\n\nThe added comments can be a description of the code
snippet, a brief explanation of the code snippet, or details about specific statements.
You can also add comments to the code snippet to make it more readable and de-
clare some detials. You are NOT allowed to change the code snippet.\nThe given
#Code Snippet# is to solve the given #Programming Task#. Your response is the
#Commented Code#.\n\n#Programming Task#\n{programming task}\n\n#Code Snip-
pet#\npython\n{code snippet}\n\n\n#Commented Code#\n

SFT-CodeQA I want you act as a Programming Tutorial author. Your objective is to extract
programming-related topics (e.g. specific syntax, developing skills, and etc.) from a
#Given Programming Task#, and then give an educational question (which is inde-
pendent of the given task) for your tutorial exercises.\n\nYour #Question# should be
concise and have a definite answer. It should be about a specific topic related to pro-
gramming and can be answered with pure natural language (not more than 300 words).
The topic should be rare and educational.\nFollowed by #Question#, you SHOULD
also give a concise #Response# to answer this question. #Response# should NOT con-
tain any code.\n\n#Given Programming Task#\n{programming task}\n\n#Question#\n

Table 4: Prompts of crafting responses of training datasets by requesting OpenAI’s GPT-3.5. The “Model-Task”
column corresponds to the “Model” column in Table 1 and Table 2. “PLs” in “SFT-PLs” represents one of the 15
programming languages mentioned in Section 3 and 4.3.1: Python, C, C++, JavaScript, TypeScript, PHP, Go, Rust,
Bash, Java, Racket, Haskell, SQL, HTML, and XML.

learning rate to 2e-5 with cosine scheduler. When
fine-tuning on one training dataset, we report the
results of the last checkpoint. In our experiments,
all results are truncated to one decimal place. The
number of samples in MultiPL-E for Python, C,
C++, JavaScript, TypeScript, PHP, Go, Rust, Bash,
Java, and Racket are 161, 162, 161, 161, 159, 161,
154, 156, 158, 158, and 161, while HumanEval-

Pack uniformly contains 164 programming prob-
lems for various evaluation scenarios.

We use the same prompt for training and infer-
ence for each task. To align the forms across di-
verse tasks, we design similar prompts for each
task, while we also employ distinct descriptions
in the prompt as a prefix of the task instruction to
differentiate them. As shown in Appendix Table 7,
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HumanEvalPack
Py JS Java Go C++ RustModel

CG CE CR CG CE CR CG CE CR CG CE CR CG CE CR CG CE CR
Avg.

Mixed Data
SFT-Mixed (9.6K) 41.6 37.8 51.2 35.4 32.9 47.5 29.1 33.5 50.0 26.6 25.0 48.7 31.6 32.9 44.5 32.6 21.3 31.7 36.3
SFT-Mixed (29K) 47.8 45.7 53.0 42.8 49.3 51.2 34.8 43.2 54.2 29.8 39.0 52.4 40.3 45.1 47.5 33.9 20.7 32.9 42.4

CODEM (4.3K)
CODEM-CG#Java 42.2 37.1 51.2 36.0 31.7 44.5 31.0 32.9 47.5 26.6 25.0 48.1 29.1 31.7 42.6 29.4 18.2 31.7 35.4
CODEM-CG#Go 44.0 36.5 49.3 35.4 32.9 43.9 27.2 32.3 50.0 27.2 23.1 48.7 31.6 32.9 43.9 31.4 21.3 30.4 35.7
CODEM-CG#C++ 43.4 37.8 52.4 37.2 33.5 48.1 30.3 32.3 49.3 27.2 23.7 48.7 32.2 32.3 44.5 30.1 21.9 29.8 36.4
CODEM-CG#Rust 43.4 37.1 48.1 33.5 32.9 46.9 29.1 35.9 51.2 25.9 22.5 47.5 32.2 29.8 43.2 33.3 22.5 27.4 35.7
CODEM-CE#Py 43.4 39.6 49.3 36.0 33.5 46.3 29.1 36.5 48.1 25.9 25.6 50.0 30.4 31.0 43.2 32.0 18.2 31.0 36.1
CODEM-CE#JS 42.2 39.6 52.4 36.0 34.1 47.5 25.9 32.9 51.2 27.9 24.3 48.1 31.0 31.0 45.1 30.7 18.9 28.0 35.9
CODEM-CE#C++ 42.2 39.0 49.3 36.0 31.7 48.1 28.4 35.9 49.3 25.3 25.0 49.3 29.1 34.1 46.3 32.6 21.9 29.8 36.3
CODEM-CE#Rust 40.3 37.8 48.7 33.5 30.4 43.9 27.2 35.9 50.0 24.0 25.6 50.0 31.0 30.4 45.7 29.4 23.7 29.2 35.4
CODEM-CR#Py 42.2 35.9 52.4 35.4 32.3 46.9 30.3 36.5 48.1 25.3 23.1 51.2 32.9 33.5 43.9 30.7 22.5 30.4 36.3
CODEM-CR#JS 40.9 37.1 50.0 34.7 31.7 49.3 28.4 33.5 49.3 24.6 24.3 47.5 29.8 31.7 45.1 30.1 19.5 28.6 35.3
CODEM-CR#Java 40.3 37.1 52.4 37.2 32.3 46.9 29.7 32.3 51.8 24.0 25.0 48.1 29.8 30.4 44.5 32.0 21.9 32.3 36.0
CODEM-CR#Go 41.6 37.8 48.7 34.7 31.7 47.5 31.0 31.7 47.5 27.2 26.2 50.6 29.8 33.5 44.5 31.4 23.1 32.9 36.2

CODEM (9.6K)
CODEM-CG#Java 43.4 39.6 51.2 39.7 43.9 48.7 36.0 43.9 52.4 29.2 31.7 49.3 39.7 40.2 43.9 32.6 21.9 33.5 40.0
CODEM-CG#Go 44.7 41.4 53.6 41.6 45.7 49.3 31.6 39.0 51.8 31.8 35.9 49.3 38.5 42.0 45.1 33.3 21.3 35.3 40.6
CODEM-CG#C++ 45.3 42.0 50.0 42.2 43.9 50.6 32.9 41.4 51.2 30.5 31.0 50.0 42.8 40.8 48.7 33.9 22.5 32.3 40.7
CODEM-CG#Rust 42.8 41.4 50.0 42.8 43.2 51.2 33.5 40.2 53.0 27.9 32.9 50.0 37.2 39.0 45.7 35.2 22.5 35.9 40.2
CODEM-CE#Py 45.9 45.1 51.2 39.7 43.9 48.7 33.5 39.0 50.0 30.5 31.7 48.7 40.9 42.6 44.5 32.6 23.1 34.1 40.3
CODEM-CE#JS 45.3 39.6 54.2 38.5 47.5 49.3 34.8 42.6 53.0 29.8 33.5 49.3 39.1 41.4 45.1 34.6 23.1 33.5 40.8
CODEM-CE#C++ 45.3 43.9 53.6 41.6 46.3 51.2 32.9 41.4 50.0 31.1 32.3 49.3 40.3 43.2 44.5 33.9 25.6 35.3 41.2
CODEM-CE#Rust 45.9 42.6 54.2 42.8 43.2 49.3 35.4 40.2 52.4 28.5 32.9 48.7 37.2 43.9 46.9 35.2 25.0 34.7 41.1
CODEM-CR#Py 44.7 41.4 54.2 41.6 46.3 48.7 33.5 43.2 50.6 29.8 32.3 51.2 41.6 40.8 48.1 33.3 22.5 32.3 40.9
CODEM-CR#JS 44.0 42.0 53.0 39.1 45.1 51.8 34.1 39.0 51.2 31.1 32.3 50.0 39.7 40.8 46.3 34.6 23.7 34.7 40.7
CODEM-CR#Java 45.3 41.4 52.4 40.9 47.5 47.5 33.5 41.4 54.8 29.8 35.3 49.3 40.3 42.6 46.9 33.3 24.3 34.1 41.1
CODEM-CR#Go 44.7 43.9 51.8 42.2 44.5 51.2 34.8 42.6 53.6 30.5 34.1 51.8 40.9 39.6 46.3 32.0 21.3 35.9 41.2

Table 5: (Continuation of Table 1) More evaluation results on HumanEvalPack of CODEM and its baselines.

Language Programming Paradigm Purpose Type System Mem. Mgmt. Compilation GP Prop.
IMP DECL PROC OOP FUNC GEN MRK DATA STAT DYN GC OWN COM INTR

Python ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7.9%
C ✓ ✓ ✓ ✓ ✓ ✓ 7.0%
C++ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6.4%
JS ✓ ✓ ✓ ✓ ✓ ✓ 8.4%
TS ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3.5%
PHP ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7.9%
Go ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3.1%
Rust ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.2%
Bash ✓ ✓ ✓ ✓ ✓ 0.4%
Java ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11.3%
Racket ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.0%
Haskell ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.3%
SQL ✓ ✓ ✓ ✓ ✓ 1.4%
HTML ✓ ✓ ✓ 3.8%
XML ✓ ✓ ✓ 0.0%

Table 6: Taxonomy of 15 languages mentioned in Section 3 and 4.3.1 and data proportion of programming languages
in Stack (Li et al., 2023). Abbreviations: Mem. Mgmt. (Memory Management), GP (Generic Programming),
IMP (Imperative), DECL (Declarative), PROC (Procedural), OOP (Object-Oriented), FUNC (Functional), GEN
(General-purpose), MRK (Markup), DATA (Data Query), STAT (Static), DYN (Dynamic), GC (Garbage Collected),
OWN (Ownership), COMP (Compiled), INTR (Interpreted); Prop. (Data Proportion in Stack).
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Model-Task Prompt
SFT-PLs
SFT-Math
SFT-PyNoise

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.\n\n###
Instruction:\n{instruction}\n\n### Response:\n

SFT-CodeQA
SFT-NLQA
SFT-NLNoise

Below is an instruction that proposes a question. Write a response that appropriately
answers the question.\n\n### Instruction:\n{instruction}\n\n### Response:\n

SFT-CE

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.\n\n###
Instruction:\nPlease write a response that detailedly explains the Python code snip-
pet.\n{instruction}\n\n### Response:\n

SFT-CR
Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.\n\n###
Instruction:\n{instruction}\n\n### Response:\n

SFT-CT

Below is an instruction that describes a task, paired with an input that provides fur-
ther context. Write a response that appropriately completes the request.\n\n###
Instruction:\nPlease translate the Python code snippet to a PHP version accu-
rately.\n{instruction}\n\n### Response:\n

SFT-TestCase

Below is an instruction that describes a task, paired with an input that pro-
vides further context. Write a response that appropriately completes the re-
quest.\n\n### Instruction:\nPlease write unit tests to test a function which is intended
for solving the below programming problem.\n{instruction}\nThe function signature
is:\n{signature}\n\n### Response:\n

SFT-Comment

Below is an instruction that describes a task, paired with an input that pro-
vides further context. Write a response that appropriately completes the re-
quest.\n\n### Instruction:\nPlease add appropriate comments for the following code
snippets.\n{input}\n\n### Response:\n

Table 7: Prompts of training and inference. The “Model-Task” column matches the “Model” column in Table 1 and
Table 2. “PLs” in “SFT-PLs” refers to one of the 15 programming languages outlined in Section 3 and 4.3.1.

we utilize instructions generated by GPT-3.5-turbo
as the content of ### Instruction section
for most tasks. In the case of SFT-TestCase,
we also provide the function signature in the
prompt for the models’ reference. In the case of
SFT-Comment, we provide a code snippet with-
out any code annotation, as well as a constant
prompt: “Please add appropriate comments for the
given code snippet.”

C.2 Other Details

(1) To ensure that the data generated by GPT-
3.5-turbo meets our requirements, we manually
review them. It is noteworthy that we remove
those HTML code responses where there are
embedded JavaScript scripts. (2) HumanEval-
Pack (Muennighoff et al., 2023) offers two ver-
sions of evaluation sets for the code repair task,
including HumanEvalFixDocs and HumanEvalFix-
Tests. We opt for the former to conduct our exper-

iments. (3) Among the competitive models evalu-
ated in our study (Table 1 and Table 2), CodeL-
lama (Rozière et al., 2023) and CodeFuse (Di
et al., 2023) have multiple versions. The specific
versions we used are CodeLlama-7b-hf6 and
CodeFuse-StarCoder-15B7.

6https://huggingface.co/codellama/
CodeLlama-7b-hf

7https://huggingface.co/codefuse-ai/
CodeFuse-StarCoder-15B
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