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Abstract
Temporal Knowledge Graph (TKG) reasoning
seeks to predict future incomplete facts leverag-
ing historical data. While existing approaches
have shown effectiveness in addressing the task
through various perspectives, such as graph
learning and logic rules, they are limited in
capturing the indeterminacy in future events,
particularly in the case of rare/unseen facts. To
tackle the highlighted issues, we introduce a
novel approach by conceptualizing TKG rea-
soning as a sequence denoising process for fu-
ture facts, namely DiffuTKG. Concretely, we
first encodes the historical events as the condi-
tional sequence. Then we gradually introduce
Gaussian noise to corrupt target facts during the
forward process and then employ a transformer-
based conditional denoiser to restore them in
the reverse phase. Moreover, we introduce an
uncertainty regularization loss to mitigate the
risk of prediction biases by favoring frequent
scenarios over rare/unseen facts. Empirical re-
sults on four real-world datasets show that Dif-
fuTKG outperforms state-of-the-art methods
across multiple evaluation metrics 1.

1 Introduction

Temporal Knowledge Graphs (TKGs) are dynamic,
multi-relational structures that encapsulate the pro-
gression of events and knowledge in the real world,
represented as quadruples (s, r, o, t), such as
(Biden, meet, Zelensky, 2022-12-21). The rea-
soning tasks over TKGs are classified based on
the temporal scope: interpolation involves infer-
ring missing information within the observed time-
frame, while extrapolation aims at predicting future
events. Our research specifically focuses on extrap-
olation in TKGs, a domain that has more practical
implications due to its forward-looking nature.

Existing studies (Trivedi et al., 2017; Jin et al.,
2020; Li et al., 2021b) in TKG reasoning typically

∗corresponding author
1The source code is available at: https://github.

com/AONE-NLP/DiffuTKG

Figure 1: An example demonstrates how deterministic
embeddings face challenges in managing uncertainty.

aggregate adjacent structure information and tem-
poral information to derive the deterministic repre-
sentations of entities and relations (Li et al., 2021a;
Liu et al., 2023). These representations are subse-
quently applied within a scoring function, such as
ConvTransE (Dettmers et al., 2018), to assess the
likelihood of potential future facts (events).

Despite the significant progress in TKG reason-
ing techniques, these deterministic methods exhibit
inherent deficiencies when it comes to grappling
with the uncertainties that arise from the unpre-
dictable nature of future interactions (Jin et al.,
2020; Sun et al., 2021) and the evolving under-
standing of temporal and structural relationships
over time (Trivedi et al., 2017; Li et al., 2021b; Park
et al., 2022a). This challenge is particularly evident
in scenarios characterized by a scarcity of discrimi-
native information, especially for facts with sparse
or even no historical interactions (Chekol et al.,
2017; Chen et al., 2019; Ji et al., 2021). These
conventional approaches, which minimize the plau-
sibility scores of unseen relation facts via the max-
imum likelihood objective, operate under the pre-
sumption that all unseen relation facts are false
beliefs. As a result, they fail to capture the subtle
uncertainty associated with these unseen facts.

To illustrate, consider the scenario depicted in
Figure 1, Biden associated with only three histori-
cal facts and is anticipated to engage with the rel-
atively rare or previously unseen facts Iraq and
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Zelensky in future scenarios. If we utilize determin-
istic embeddings derived from historical events to
represent Biden, Biden’s position in the embedding
space (mapped into a 2D map) may fall somewhere
in the middle of Donald Trump, G20, and Iran.
In such a setting, if predictions are based on the
proximity within this embedding space, Biden is
more likely to be forecasted to interact with Don-
ald Trump, G20, and Iran, due to the closer em-
beddings. Furthermore, The widespread use of
the maximum likelihood objective, such as cross-
entropy loss, exacerbates prediction biases by favor-
ing historically frequent scenarios over rare or un-
seen interactions (Zadeh and Schmid, 2021), thus
hindering the model’s adaptability to the unpre-
dictable dynamics and emerging relationships in-
herent in real-world TKG scenarios.

To address these challenges, we propose Dif-
fuTKG, a novel approach that reformulates TKG
reasoning into a sequence prediction task by man-
aging the inherent uncertainties through a sequence
denoising method. In the training phase, DiffuTKG
systematically transforms sequences of objects, re-
lationships, and temporal intervals relevant to sub-
ject entities into a unified continuous representation.
This process is then augmented by the strategic
introduction of Gaussian noise, simulating the un-
certain nature of future events (distribution ranges
depicted in Figure 1). Subsequently, DiffuTKG
harnesses a transformer-based framework for the
denoising and accurate reconstruction of target en-
tities, with the process intricately conditioned on
both relational and temporal insights to mirror the
intricate dynamics of TKGs structure.

Furthermore, DiffuTKG integrates an uncer-
tainty regularization loss, which aids in distinguish-
ing between seen and rare/unseen events, thereby
enhancing the model’s predictive clarity and reduc-
ing overfitting tendencies. During inference, Dif-
fuTKG employs a reverse diffusion step initialized
with sampled Gaussian noise to predict missing en-
tities, subsequently refining these predictions based
on calculated confidence scores. Empirical studies
conducted on four benchmark datasets demonstrate
the effectiveness of DiffuTKG. In summary, our
main contributions are as follows:

• To the best of our knowledge, DiffuTKG is
the first effort that introduces the diffusion pro-
cess into TKG reasoning to explicitly manage
dynamic and uncertain nature of future events
via stochastic sequence denoising process.

• We introduce an uncertainty regularization
loss to mitigate the risk of prediction biases,
ensuring the model does not disproportion-
ately favor frequently occurring historical sce-
narios over rare or unseen facts.

• Extensive experiments conducted on four real-
world datasets demonstrate that DiffuTKG
yields new state-of-the-art performance.

2 Diffusion Models for Discrete Data

The continuous diffusion model (DM) is a prob-
abilistic model containing two Markov chains,
mainly consisting of forward and reverse processes,
which diffuse the data with pre-defined noise and
reconstruct the desired sample from the noise (Ho
et al., 2020). In this article, we center on DMs
tailored for discrete data (Li et al., 2022a; Gong
et al., 2022).

In the forward diffusion process for discrete
dataw, an embedding step first transforms w into
a continuous embedding x0 ∈ Rd, parametrized
by q(x0|w) = N (x0,Emb(w), β0I). In addition,
Emb(w) ∈ Rd is an embedding function that maps
each word to a vector in Rd. Then the diffusion pro-
cess corrupts x0 to obtain the latent variables x1:T

by gradually adding noise in T steps, where xT is
a standard Gaussian noise. The forward transition
xt−1 → xt can be attained by

q(xt|xt−1) = N (xt;
√
ᾱtxt−1,

√
1− ᾱtI)

=
√
ᾱtxt−1 +

√
1− ᾱtϵ,

(1)

where N denotes the Gaussian distribution and
ϵ ∼ N (0, 1) is a random Gaussian noise. ᾱt =∏t

t′=1 αt′ ∈ (0, 1) controls the noise level at step
t ∈ {0, 1, . . . , T}.

The reverse denoising process takes the initial
state xT to reconstruct the original data x0 by learn-
ing from a neural network fθ. The process can be
formulated as

pθ(xt−1|xt) = N (xt−1;µθ(xt, t); Σθ(xt, t)) (2)

where µθ(xt, t) and Σθ(xt, t) represent the pre-
dicted parameterization of the mean and stan-
dard deviation, respectively, for pθ(xt−1|xt), cal-
culated by the function fθ(xt, t). Finally, the
rounding method, parametrized by pθ(w|x0) =
Softmax(x0), is employed to approximate or
round the values to discrete representations. The
corresponding training objective is
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Le2e
simple (w) = E

qϕ(x0:T |w)

[
T∑

t=2

[
∥x0 − fθ (xt, t)∥2

]
]
+

E
qϕ(x0:1|w)

[
∥Emb(w)− fθ (x1, 1)∥2 − log pθ (w | x0)

]
.

(3)

The first expectation is to train the predicted
model fθ(xt, t) to approximate x0 from time step 2
to T. Empirically, it can effectively reduce rounding
errors. The second expectation consists of two
components: the first component aims to bring the
predicted x0, closer to the embedding Emb(w),
while the second component focuses on accurately
rounding x0 to the text w.

3 Our Approach

In this section, we introduce the details of our
framework as shown in Figure 2. We first formulate
the task definition of TKG reasoning as follow.
Definition 1 (Temporal Knowledge Graph) A
temporal knowledge graph (TKG), denoted as G,
serves as a dynamic, multi-relational network of
entities interconnected through time-stamped re-
lations. This structure is conceptualized as a se-
ries of chronological KG snapshots, represented
as G = {G1,G2, . . . ,Gt−1}. Each snapshot Gti ∈
G, encapsulates the facts at a specific time ti,
expressed as time-stamped quadruple (s, r, o, ti),
where s, o ∈ E are the subject and object entities,
respectively, and r ∈ R signifies the relational fact
connecting s and o. To facilitate a bi-directional
comprehension of relationships within the TKG
(Kazemi and Poole, 2018), the inverse quadruple
(o, r−1, s, ti) is systematically appended to G.
Definition 2 (Temporal Knowledge Graph Rea-
soning) The primary aim of TKG reasoning is to
enable extrapolative entity prediction. Specifically,
this entails predicting either the missing object en-
tity in a future relation (s, r, ?, t) or the absent sub-
ject entity (?, r, o, t) utilizing historical TKG snap-
shots Gt−L−1:t−1 = {Gt−L,Gt−L+1, . . . ,Gt−1}
spanning the preceding L timesteps.

3.1 TKG Reasoning as Sequence Prediction

Let G0:t−1 be historical TKG snapshots and qt =
(s, r, o, t) be the query quadruple. To adopt the
diffusion process in TKG reasoning, we reshape
the task as that of sequence prediction, which
involves predicting the missing entities in qt by
utilizing the historical events associated with the
query subject s from G0:t−1. The historical event

sequence related to s, sorted chronologically ac-
cording to the timestamps is formally denoted
as Q0:n−1 = {(s, r0, o0, t0), . . . , (s, ri, oi, ti), . . . ,
(s, rn−1, on−1, tn−1)}2, where t0 ≤ ti ≤
tn−1 < t and n − 1 is the length of histori-
cal event sequence. Additionally, let Q0:n−1 =
{S,R0:n−1, O0:n−1, T0:n−1}. Here, R0:n−1 =
{r0, . . . , rn−1} represents the sequence of relations
in historical events, O0:n−1 = {o0, . . . , on−1} de-
notes the sequence of objects in historical events,
and T0:n−1 = {t0, . . . , tn−1} is the sequence of
timestamps associated with historical events.

3.2 Denoising Training

The denoising training stage of DiffuTKG com-
prises three steps, focusing on reconstructing the
missing object o while utilizing the historical event
sequence Q0:n−1 as conditioning factors.
Sequential Representation Learning In this
phase, DiffuTKG is initially tasked with acquir-
ing representations for objects and relations within
Q0:n = {Q0:n−1, qt}. Each object oi ∈ O0:n =
{O0:n−1, o} is initially translated into its corre-
sponding embedding vector e0i by the entity em-
bedding matrix Ee ∈ Rd×h. d is the number of
entity types. Similarly, each relation ri ∈ R0:n =
{R0:n, r} is projected into a continuous space us-
ing the relation embedding matrix Er. Addition-
ally, we compute the time interval between every
event and the queried event in Q0:n, embedding
them through E∆t ∈ Rn×h for encoding temporal
information. The projection process is denoted as:

e0 = [e00:n−1; e
0
n]

= [Ee(o0);Ee(o1); . . . ,Ee(o)],

r = [Er(r0);Er(r1); . . . ;Er(r)],

t = [E∆t(t);E∆t(t− 1); . . . ;E∆t(0)],

(4)

where e0, r, t ∈ Rn×h. e00:n−1 ∈ R(n−1)×h and
e0n ∈ R1×h represent the representations of objects
in historical events and the representation of the
target object, respectively, where h denotes the size
of the hidden dimension. [; ] denotes the concate-
nation operation along the first dimension.
Forward Diffusion Process After obtaining the
embedding of the object sequence e0, DiffuTKG
specifically concentrates on introducing stochastic-
ity incrementally to the target object e0n. Conse-
quently, the forward process is conceptualized as a

2For brevity, we omit the superscript s in Qs
0:n−1 for sub-

ject s.

5768



t

D
A

C
B

t-1

t-2
r5

r2

r2

CA

E D

r1 r3

r2

A

r4

r2

...

E
e

T
r
a
n
sfo

m
e
r

r3

r1

r4

r2

Encoding Step m 

++

Rounding

L Recon

Unseen Event

Seen Event

Unseen Event

Seen Event
Density

Confidence Score

Density

Confidence Score

L Uncertainty

......

C

E

B

C

E
rBA

r5 D
r3

0:nO0:nR

1( )e em mq −|
1em−emeM

0

4e

0e

0

4ê

++

E
Δ

t

2

2

1

1

0

0:nt

t

r

0:4

me0

0:4e

y

Reverse ProcessForward Process

1( , , , )e e tm mp m
− | r

D

C

...

B

Rounding

Embedding

Forward Process Reverse Process Gaussian Noise Object

 Sequence

4e
m

Figure 2: The upper part provides an overview of the diffusion process. We employ the color orange-red to
symbolize historical objects associated with the query subject and cyan-blue to denote corresponding future objects.
It’s worth noting that noise is only added to the future object "B" in the forward process. The lower part illustrates
the denoising training stage of DiffuTKG. In the figure, the TKGs at t-1 and t-2 represent the historical TKGs,
while the TKG at t represents the future TKG. ⊕ denotes the element-wise addition operation.

Markov chain of Gaussian transitions:

q(emi | e0i ) =
{
e0i if i < n
√
ᾱme0i +

√
1− ᾱmϵ if i = n

(5)

The diffusion process extends over a specified
range m ∈ {1, 2, . . . ,M} and M marks the max-
imum number of forward steps. To regulate the
added noises introduced by 1− ᾱm, we use a linear
noise schedule:

1− ᾱm = δ ·
[
αmin +

m−1
M−1 (αmax − αmin)

]
(6)

where the hyper-parameter δ ∈ [0, 1] controls the
noise scales, and two hyper-parameters αmin <
αmax ∈ (0, 1) indicating the upper and lower
bounds of the added noises.
Reverse Denoising Process In this phase, Dif-
fuTKG undertakes the task of reconstructing the se-
quence of object entities from noise, with guidance
from the temporal and relational characteristics of
facts. More precisely, we introduce the encoded
sequences of relations (r) and time intervals (t) to
condition the denoising process as follows:

pθ
(
êm−1 | ∗

)
= N

(
êm−1;µθ (∗) ,Σθ (∗)

)
,

êm−1 = [em0:n−1; ê
m−1
n ],

(7)

For brevity, we use the symbol "∗" to represent
{êm, r, t,m}. êm is set to em at the first step of
reverse process. Here, DiffuTKG adopts the archi-
tecture of a transformer encoder as fθ to computing
µθ (∗) and Σθ (∗),which can be denoted as:

fθ(∗) = Transformer(ēm) = ê0,

ēm = êm + r+ t+ Embstep(m).
(8)

We incorporate step embeddings Embstep(·) to
manage the hidden representations at different
noise levels (Gong et al., 2022).

3.3 Training Strategy
Reconstruction Loss Typically, diffusion mod-
els is trained using the Mean Square Error (MSE)
loss (Shen et al., 2023), quantifying the difference
between the original representation and the recon-
structed one. However, MSE loss is recognized
to be unstable in discrete space (Mahabadi et al.,
2023; Dieleman et al., 2022). Hence, we opt for the
dot product operation, which can stably quantify
the distance between vectors:

y = Softmax(fθ(ē
m,m)n · (Ee)

T ) (9)
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where fθ(ē
m,m)n ∈ R1×h denotes the represen-

tation of the target object from fθ(ē
m,m) outputs.

(·)T is the matrix transposition operation and "·" in-
dicates the inner product operation. Consequently,
to ensure conditional generation, we utilize a re-
construction loss function as follows:

Lrecon = −
∑

i∈{1,2,...,d}
gi log(yi), (10)

where gi represents the one-hot encoding of the i-th
ground-truth object entity, and yi is the predicted
probability.
Uncertainty Loss The sole reliance on the gen-
erative objective may lead DiffuTKG to overfit his-
torical frequent events, particularly in scenarios
characterized by sparse and noisy data (Liu et al.,
2020). This overfitting issue can result in inaccu-
rate assessments of both unseen and observed facts.
To address this prediction bias, we introduce an
uncertainty-aware regularization loss, which aims
to establish a distinct boundary between unseen
and observed facts. Specifically, we employ Multi-
Layer Perceptrons (MLPs) to derive a confidence
score from y, serving as supervisory signals for
both unseen and observed facts:

C(y, F01) = MLP(Relu(MLP(y ⊗ F01))),
(11)

where C(y, F01) ∈ R1×2 denotes the confidence
score, effectively distinguishing between the like-
lihood of a fact being previously observed or not.
The binary vector F01 ∈ R1×d records the histori-
cal occurrence of the event (s, r, o) before time t,
with further details provided in Appendix C.

Let Pseen be the set of confidence scores cor-
responding to observed facts and Pnon be the set
pertaining to unseen facts. Subsequently, based
on Pseen and Pnon, we minimize the following loss
function:

Luncertainty =Eu∽Pseen

[
− log

exp−C(u,F01)/τ

1 + exp−C(u,F01)/τ

]
+

Ev∽Pnon

[
− log

1

1 + exp−C(v,F01)/τ

]
,

(12)

where τ acts as a temperature coefficient, judi-
ciously modulating the smoothness of the output
probability distribution. The objective of this min-
imization process is to incentivize the DiffuTKG
model to allocate higher confidence scores to fea-
tures indicative of observed facts, while assigning
lower scores to those characteristic of unseen facts.

Consequently, the overall training objective incor-
porates the reconstruction loss together with the
uncertainty regularization loss, denoted as:

L = Lrecon + Luncertainty . (13)

3.4 Sampling Inference
During inference, DiffuTKG samples Gaussian
noise ϵn and applies the learned denoising model
fθ for M reverse processes to denoise ϵn. The time
complexity increases by M compared to training.
To mitigate this computational overhead, we ob-
serve that fθ is trained to directly predict ê0 based
on any ēm (1 ≤ m ≤ M ), so it can directly predict
ê0 from ēM without the need of the intermediate
diffusion steps. Therefore, we design an efficient
inference procedure by directly predicting ê0 from
ēM :

ēM = eM + r+t = [êM0:n; ϵn] + r+ t,

ê0 = fθ(ē
M ,M).

(14)

In line with the principles of ranking problems in
graph reasoning (Jin et al., 2020), DIGM first com-
putes the rank for each candidate entity using y
from Equation (9). Then we calculate the confi-
dence score c for the event features using Equation
(11) and refine the ranking by dynamically incor-
porating prior frequency knowledge, similar to Liu
et al. (2022a):

y = y + λ× (σ(F )− F01)× σ(c), (15)

where F ∈ R1×d records the frequency of occur-
rences of the current event (s, r, o) before t, as de-
tailed in Appendix C. σ denotes the softmax func-
tion. σ(F ) is employed to encourage an increase
in the score of popular events, while "-σ(F01)" is
used to suppress the occurrence of unseen events.
The hyperparameter λ controls the effect of prior
frequency knowledge.

4 Experiments

4.1 Datasets
We conduct the experimental evaluation on four
TKG datasets to validate the effectiveness of our
proposed model, which includes the ICEWS14,
ICEWS05-15, ICEWS18 and GDELT datasets.
The ICEWS series are from the Integrated Cri-
sis Early Warning System (Boschee et al., 2015).
GDELT is from the Global Database of Events,
Language, and Tone (Leetaru and Schrodt, 2013).
The data split strategy and data statistics are sum-
marized in Appendix A.
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Table 1: Model performance (%) for the entity prediction task on ICEWS and GELDT datasets. The best results are
highlighted in bold and the results of the second-best are underlined. The results marked with † are reproduced
using their released code, those marked with ∗ are from our reimplementation with default settings, and other results
are retrieved from the original paper.

Models
ICEWS14 ICEWS05-15 ICEWS18 GEDLT

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10
RE-NET 39.86 30.11 58.21 43.67 33.55 62.72 29.78 19.73 48.46 19.55 12.38 34.00
RE-GCN 42.00 31.63 61.65 48.03 37.33 68.51 32.62 22.39 52.68 19.69 12.46 33.81
TANGO 19.66 12.50 33.55 42.86 32.72 62.34 28.97 19.51 47.51 19.66 12.50 33.55
TITer 41.73 32.74 58.44 47.60 38.29 64.86 28.44 20.06 44.33 18.19 11.52 31.00
xERTE 40.79 32.70 57.30 46.62 37.84 63.92 29.31 21.03 46.48 19.45 11.92 34.18
TiRGN 43.81 33.49 63.50 49.84 39.07 70.11 33.58 23.10 54.20 21.67 13.63 37.60
CEN 42.20 32.08 61.31 - - - 31.50 21.70 50.59 - - -
Tlogic 43.04 33.56 61.23 46.97 36.21 67.43 29.82 20.54 48.53 - - -
TECHS 43.88 34.59 61.95 48.38 38.34 68.92 30.85 21.81 49.82 - - -
CENET 41.30 32.58 58.22 47.13 37.25 67.61 29.65 19.98 48.23 19.73 12.04 34.98
DaeMon - - - - - - 31.85 22.67 49.80 20.73 13.65 34.23
RPC 44.55 34.87 65.08 51.14 39.47 71.75 34.91 24.34 55.89 22.41 14.42 38.33
L2TKG ∗ 45.89 34.63 68.47 52.42 40.09 75.86 31.63 21.17 53.01 20.16 12.49 35.83
HGLS † 47.11 35.87 70.61 47.17 36.83 68.89 30.18 20.63 50.23 19.87 12.19 35.43
RETIA † 46.20 35.39 68.70 52.29 40.33 74.18 34.86 24.10 56.96 - - -
DiffuTKG 48.51 36.41 72.75 52.69 40.35 75.97 36.72 25.73 57.81 25.08 16.25 42.34

4.2 Baseline Models

Fifteen typical exploration TKGR models are se-
lected as the compared baselines, including RE-
NET (Jin et al., 2020), RE-GCN (Li et al., 2021b),
TANGO (Han et al., 2021b), xERTE (Han et al.,
2021a), TiRGN (Li et al., 2022b), CEN (Li et al.,
2022c), CENET (Xu et al., 2023), RETIA (Liu
et al., 2023), HGLS (Zhang et al., 2023b), DaeMon
(Dong et al., 2023), RPC (Liang et al., 2023a) ,
L2TKG (Zhang et al., 2023a), CluSTer (Li et al.,
2021a), TITer (Sun et al., 2021), Tlogic (Liu et al.,
2022b) and TECHS (Lin et al., 2023). We provide
implementation details of baselines and DiffuTKG
in Appendix B and C, respectively.

4.3 Evaluation Protocol

We assess our model’s performance using standard
metrics in the field: Mean Reciprocal Rank (MRR),
Hits@1, and Hits@10. To ensure a fair compari-
son, we follow the experimental setup outlined by
Li et al. (2021b), which includes the integration of
ground truth historical data during multi-step infer-
ence. The results of our experiments are reported
under a time-filtered setting, as detailed in (Dong
et al., 2023; Zhang et al., 2023a).

4.4 Main Results

The comparative performance of various baseline
models on the entity prediction task is detailed
in Table 1, where the efficacy of denoising train-

ing in TKG reasoning is underscored by the re-
sults. Specifically, DiffuTKG exhibits significant
improvements over the next best model, enhancing
the Mean Reciprocal Rank (MRR) by absolute mar-
gins of 1.40%, 1.81%, and 2.67% in the ICEWS14,
ICEWS18, and GDELT datasets, respectively. No-
tably, DiffuTKG demonstrates more pronounced
performance gains on the GDELT dataset com-
pared to the ICEWS datasets. This difference is
attributed to the GDELT dataset’s higher incidence
of noisy data (Zhang et al., 2023a), which tends
to obscure valuable discriminative information and
leads to biased representations of entities. By in-
corporating uncertainty into entity representations,
DiffuTKG effectively counters those scenarios, out-
performing current state-of-the-art baselines. In
the case of the ICEWS05-15 dataset, it includes a
higher number of high-quality facts at each time,
diminishing the necessity for uncertainty model-
ing. As a result, our model demonstrates limited
improvement compared to state-of-the-art models
in the ICEWS05-15 dataset.

4.5 Performance on Unseen Events

To further validate the capacity of DiffuTKG in cap-
turing uncertainty information, we evaluate its per-
formance on ICEWS datasets with unseen events
that do not appear in the historical TKGs. The pro-
portions of unseen events in the ICEWS datasets
are presented in Table 4. We select four significant
methods as comparative models, namely RE-GCN,

5771



Table 2: Performance of DiffuTKG, L2TKG, RETIA,
CEN, and RE-GCN on predicting unseen events in terms
of MRR and Hit@1 (%).

ICEWS14 ICEWS18
Models

MRR Hit@1 MRR Hit@1
RE-GCN 23.26 13.91 15.08 7.09
CEN 22.06 13.28 15.41 8.20
RETIA 24.17 14.67 16.62 9.08
L2TKG 23.88 14.35 16.48 8.84
DiffuTKG 25.22 15.23 18.93 10.76

CEN, RETIA, and L2TKG. The results presented
in Table 2 indicate that DiffuTKG outperforms the
baseline models. In comparison with other models,
such as the SOTA model RETIA, our metrics have
seen substantial relative improvements of 13.90%
and 18.50% in ICEWS18. It’s worth noting that
the ICEW18 dataset contains a high proportion of
unseen events (49.57%), indicating a high degree
of sparsity in the occurrences of future events. It is
evident that our network adeptly captures the uncer-
tainty of event trends, especially in situations where
uncertainty is pervasive within sparse datasets.

4.6 Ablation Studies

To verify the effectiveness of each module in Dif-
fuTKG, ablation studies are carried out in Table
3. The first variant version "w/o Er" remove the
relation embedding in fθ. "w/o E∆t" means we
remove the the embedding of time intervals in fθ.
"w/o Luncertainty" removes the uncertainty loss.
And "Lrecon as MSE" replaces the cross-entropy
loss with the form of Mean Squared Error (MSE)
for the reconstruction loss. We have the follow-
ing observations: (1) the MRR values of "w/o Er"
and "w/o E∆t" are much lower than that of Dif-
fuTKG, which verifies the necessity of injecting
temporal evolution and relation dependence into
the denoising process; (2) "w/o Luncertainty" fails
to leverage the complete generalized knowledge
from the reconstruction representation, resulting in
an overfitting issue. This leads to a relatively signif-
icant drop in reasoning performance, particularly
on smaller datasets such as ICEWS14; (3) As antic-
ipated, the model’s reconstruction ability, trained
through "Lrecon as MSE", is unstable and adversely
affects performance across the four datasets.

4.7 Sensitivity Analysis

We run our model with different important hyper-
parameters to explore weight impacts.

Table 3: Ablation studies on all datasets in terms of
MRR (%) with time-filter metrics.

Model ICEWS14 ICEWS18 ICEWS05-15 GDELT
w/o Er 31.78 20.94 35.74 14.33
w/o E∆t 32.65 20.22 34.40 17.67
w/o Luncertainty 44.01 34.58 48.91 23.01
Lrecon as MSE 39.87 27.89 46.78 15.91
DiffuTKG 48.51 36.71 52.69 25.08
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Figure 3: Performance of DiffuTKG under different
length of the event sequence n in terms of MRR (%).

Figure 3 shows the changes in the performance
of models with different lengths of the event se-
quence n, where small values would lead to great
performance decline. This is because fewer his-
torical events lead to providing insufficient super-
vision signals for prediction, respectively. Never-
theless, an excessively long sequence of historical
events can also result in information redundancy,
thus limiting performance gains. So n is set to 64
for achieving optimal performance.

Different noise scales for the diffusion forward
process are compared in Figure 4. As the noise
scale increases, the performance first rises com-
pared to training without noise (s = 0), verifying
the effectiveness of denoising training. Further-
more, enlarging noise scales does not degrade per-
formance, as the forward process only corrupts the
target object and effectively retains event patterns
in historical event sequences. Therefore, we can
set δ ≥ 20, such as 50, to achieve satisfactory
performance for all datasets.

Figure 5 demonstrates the impact of different
temperature coefficients τ in Luncertainty. Setting
the coefficient to a moderate value, generally 0.5,
tends to yield the best result. It is worth noting that
a smaller τ results in DiffuTKG placing more em-
phasis on events that are challenging to distinguish.
Thus, carefully mining hard unseen events consid-
erately prove functional for extrapolation reasoning
on TKGs.

Figure 6 demonstrates that the model achieves
optimal performance when λ is set to 2. Exces-
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Figure 4: Performance of DiffuTKG under different
noise scale δ in terms of MRR (%).
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Figure 5: Performance of DiffuTKG under different
temperature coefficient τ in terms of MRR (%).

sive or insufficient values for the hyperparameter
can result in an imbalance of posterior and prior
knowledge, leading to suboptimal results.

4.8 Inference Efficiency
To investigate the efficiency of our proposed model,
we compare DiffuTKG with RETIA, xERTE,
TiRCN and L2TKG in terms of inference time on
the test set. Figure 7 illustrates that DiffuTKG is
faster than other models. We attribute this to the
fact that the model mainly consists of two linear
attention layers, resulting in lower computational
complexity. However, other models tend to be more
time-consuming due to the inability to parallelize
many computations, especially in RETIA. In sum-
mary, DiffuTKG ensures a significant improvement
in time efficiency while delivering excellent extrap-
olation performance.

5 Related Work

5.1 TKG reasoning
TKG reasoning aims to predict facts in future
events based on a sequence of observed historical
facts. This task typically operates under two main
scenarios: interpolation and extrapolation. In this
work, our focus is primarily on the extrapolation as-
pect. Recently, The embedding-based approaches
leverage temporal patterns (Jin et al., 2020; Li et al.,
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Figure 6: Performance of DiffuTKG under different λ
values in terms of MRR (%).
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RETIA xERTE TiRCN L2TKG DiffuTKG

Figure 7: Runtime (seconds) comparison to some base-
lines. For ease of comparison, RETIA’s inference times
for ICEWS18 and ICEWS05-15 are scaled to one-fifth
for comparison, while RETIA’s data for GDELT is omit-
ted as it is not applicable.

2021b) or structural information (Han et al., 2021b;
Li et al., 2022d) to enhance prediction results. CEN
(Li et al., 2022c) captures structure-variability evo-
lutional patterns by a length-aware CNN. L2TKG
(Zhang et al., 2023a) exploits the intra-time rela-
tions between co-occurring entities and inter-time
relations between entities that appear at different
times. PRC (Liang et al., 2023b) further models the
relational correlations in the intra-time information
and periodic patterns in the inter-time interactions
via two novel correspondence units. Considering
the long-term dependencies among entities and re-
lations, some works model the event time (Park
et al., 2022b) and the long- and short-term entity
and relation representations (Zhang et al., 2023b).
DaeMon (Dong et al., 2023) and RETIA (Liu et al.,
2023) focus on modeling the relation feature to
adaptively capture the structure and temporal in-
formation. Some TKG reasoning methods lever-
age reward functions to enhance prediction results,
such as the time-shaped reward (Sun et al., 2021)
and beam-level reward (Li et al., 2021a). Ruled-
base methods also are choices for TKG reason-
ing (Omran et al., 2019; Lin et al., 2023). Tlogic
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(Liu et al., 2022b) proposes a symbolic framework
based on temporal logical rules extracted via tem-
poral random walks. However, all of the afore-
mentioned architectures overlook the uncertainty
of future events, which is particularly common in
events that occur rarely or never occur.

To tackle the above issues, DiffuTKG centers on
a novel modeling paradigm from the perspective
of sequence denoising generation. DiffuTKG is
the first one to explore the utilization of the diffu-
sion model on TKG reasoning, which infers future
events from uncertainty in Gaussian noise.

5.2 Diffusion models on Discrete Data

Diffusion models (DMs) Sohl-Dickstein et al.
(2015); Ho et al. (2020) have recently demonstrated
the ability for high-quality generation across var-
ious domains, including image generation (Rom-
bach et al., 2022; Ruiz et al., 2023) and audio gen-
eration (Borsos et al., 2023). Some efforts have
sought to extend the applicability of continuous
diffusion models into discrete spaces. Notably,
Diffusion-LM (Li et al., 2022a) pioneers the adap-
tation of continuous diffusion models for text, in-
corporating an embedding step, a rounding step,
and a dedicated training objective for embedding
learning. Building upon this, DiffuSeq (Gong et al.,
2022) introduces partial noise during the forward
process, tailored for sequence-to-sequence tasks.
Additionally, DiffusionNER (Shen et al., 2023)
frames named entity recognition as a boundary-
denoising diffusion process, effectively generating
named entities from noisy spans. Despite the no-
table success of DMs in various domains, their
application to TKG reasoning remains unexplored.

6 Conclusion

In this study, We introduce DiffuTKG, a novel
paradigm that reconceptualizes TKG reasoning as a
denoising diffusion process, tailored to address the
inherent uncertainties within future facts. During
the denoising training phase, we initiate the pro-
cess by generating embeddings from historical data
as conditional inputs. Following this, we methodi-
cally introduce Gaussian noise to the target entities,
reflecting the uncertainty of future facts, and utilize
a conditional denoising decoder for their accurate
reconstruction. In addition to reconstruction loss,
we incorporate an auxiliary loss aimed at reducing
prediction biases, particularly those arising from an
overemphasis on historically frequent scenarios at

the expense of rare or previously unseen facts. Our
empirical evaluations across various benchmark
datasets confirm DiffuTKG’s superior performance
and efficiency in inference.
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A Datasets

Followed by Li et al. (2021b)’s work, the data is
split into training, validation, and test sets by 8:1:1
over the timeline. The detailed statistics of the
datasets are presented in Table 4.

B Baselines

The comparison of TKG reasoning models with
our work is presented as follows:

RE-NET (Jin et al., 2020) adopts RNN and
RGCNs to capture the temporal and structural de-
pendencies from entity sequences.

RE-GCN (Li et al., 2021b) proposes a novel
Recurrent Evolution network based on Graph Con-
volution Network (GCN) to learns the evolutional
representations of entities and relations at each
timestamp by modeling the KG sequence recur-
rently

TANGO (Han et al., 2021b) proposes a multi-
relational GCN to capture structural dependencies
on TKGs and learns continuous dynamic repre-
sentations using graph neural ordinary differential
equations.

xERTE (Han et al., 2021a) reasons over query-
relevant subgraphs of temporal KGs and jointly
models the structural dependencies and the tempo-
ral dynamics.

TiRGN (Li et al., 2022b) employs a local recur-
rent graph encoder network to model the historical
dependency of events at adjacent timestamps and
utilizes a global history encoder network to gather
repeated historical facts.

CEN (Li et al., 2022c) adopts a length-aware
CNN to learn evolutional patterns of different
lengths and explore online training strategy to deal
with the problem of time-variability.

CENET (Xu et al., 2023) adopts contrastive
learning to better guide the fusion of local and
global historical information and enhance the abil-
ity to resist interference.

RETIA (Liu et al., 2023) evolutionally aggre-
gates adjacent entity and relation features to pro-
duce relation embeddings on a twin hyperrelation
subgraph sequence, thus spanning the message-
passing gap.

HGLS (Zhang et al., 2023b) transforms the TKG
sequence into a global graph to explicitly associate
historical entities at different times.

DaeMon (Dong et al., 2023) adaptively captures
the temporal path information between query sub-
ject and object candidates across time by utilizing
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Table 4: Dataset Statistics. |V | and |R| are the number of entity types and relation types. |Ftrain|, | Fvalid | and
| Ftest| are the numbers of fact triplets in training, validation, and test sets. The "Unseen Events" represents the
proportions of queries encountering the dilemma of unseen events in the test set (%).

Datasets |V | |R| |Ftrain| | Fvalid | | Ftest| Unseen Events

ICEWS14 6,869 230 74,845 8,514 7,371 58.43
ICEWS18 23,033 256 373,018 45,995 49,545 55.69
ICEWS05-15 10,094 251 368,868 46,302 46,159 39.82
GDELT 7,691 240 1,734,399 238,765 305,241 43.72

historical structural and temporal characteristics
while considering the query feature.

RPC (Liang et al., 2023a) sufficiently mines
the information underlying the Relational correla-
tions and Periodic patterns via two novel Corre-
spondence units.

L2TKG (Zhang et al., 2023a) exploits the intra-
time and inter-time latent relations to alleviate the
problem of missing associations in TKG reasoning.

CluSTer (Li et al., 2021a) learns a beam search
policy via reinforcement learning (RL) to induce
multiple clues from historical facts and adopts a
GCN-based sequence method to deduce answers
from clues.

TITer (Sun et al., 2021) navigates through TKG
historical snapshots and searches for the temporal
evidence chain to locate the target object.

Tlogic (Liu et al., 2022b) generates answers by
applying rules to observed events before the query
timestamp and scores the answer candidates relying
on the rules’ confidences and time differences.

TECHS (Lin et al., 2023) integrates proposi-
tional and first-order reasoning in a logical decoder
to achieve explainability.

C Implementation Details

Hyperparameter settings We utilize the Adam
optimizer with a learning rate set to 0.001 and l2
regularization set to 1e-5. The number of training
epochs is set to 100. Besides, the noise scale δ, the
noise lower bound αmin, the noise upper bound
αmax are 50,1e-2, respectively, with a total diffu-
sion step T of 200. The length of historical TKGs
denoted as L, is set to 64 for all datasets. The hid-
den size for entities and relations, denoted as h, is
fixed at 200 for all datasets. The layer numbers of
the transformer encoder are 2 for all datasets. The
dropout rate is 0.2 for all datasets. The temperature
coefficient τ is set to 0.5 across all datasets, and
the scale parameter are searched in 2,3,4 for all

datasets.
We report a statistically significant improvement

(p < 0.05) based on the bootstrap paired t-test in
our experimental results. The computational exper-
iments in Section 4.8 are conducted on NVIDIA
Tesla V100 (32G). Other experiments are con-
ducted on NVIDIA Tesla A100 (80G).
Calculation Method for Frequency Information
For the query (s, r, o, t), we store the event fre-
quency using a sparse matrix MF ∈ Rd·w×d,
where w is the number of relations. Each row is
represented as the vector F = MF (s,r) ∈ Rd,
counting the number of occurrences. The multi-
heat vector F01 is derived by converting F , where
occurrences are recorded as 1, and the rest are set
to 0.
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