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Abstract

Protecting privacy leakage in large language
models remains a paramount challenge. In
this paper, we reveal Privacy Seesaw in LLM
privacy protection via neuron editing, a phe-
nomenon where measures to secure specific
private information inadvertently heighten ex-
posure risks for other privacy. Through com-
prehensive analysis, we identify the amount of
targeted privacy data and the volume of edited
privacy neurons as the two central triggers to
this issue. To mitigate privacy seesaw, we pro-
pose Augmented Privacy Neuron Editing via
Activation Patching (APNEAP), a novel frame-
work designed to well balance model perfor-
mance with privacy protection. The proposed
APNEAP augments collected private data by
automatically synthesizing new private data,
which deactivates the first trigger to the privacy
seesaw issue. Additionally, it adapts activation
patching to privacy neuron editing for switch-
ing off the second trigger to the privacy seesaw
problem. Experimental results show that the
proposed APNEAP is capable of alleviating
the privacy seesaw phenomenon and offers a
more stable and reliable approach to privacy
protection in LLMs than previous methods.

1 Introduction

Large language models have demonstrated out-
standing capabilities in natural language under-
standing and generation, significantly advancing
downstream natural language processing (NLP)
tasks (Brown et al., 2020; Chung et al., 2022;
Ouyang et al., 2022; Achiam et al., 2023). How-
ever, LLMs trained on vast amounts of Internet
data encounter critical security and privacy chal-
lenges in real-life application scenarios (Shen et al.,
2023; Sousa and Kern, 2023; Guo et al., 2023).
This is mainly due to two reasons. First, training
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Figure 1: The phenomenon of Privacy Seesaw. While
the privacy neuron based method effectively reduces the
privacy leakage risk of the targeted private data (texts
1-5), it paradoxically increases the risk for certain non-
targeted private data (text 7).

data for LLMs often contain sensitive or unautho-
rized information, which is subjected to limited
scrutiny because of its massiveness and confiden-
tiality (Piktus et al., 2023; Li et al., 2023a). Second,
LLMs tend to memorize training data, including
unique instances (Carlini et al., 2019, 2021). Pre-
vious studies have shown that private information
could be successfully extracted from LLMs such
as ChatGPT with meticulously crafted prompts, un-
derscoring the urgency of privacy protection for
LLMs (Li et al., 2023a).

In order to protect privacy of LLMs, machine
unlearning and neuron-based methods have been
proposed. The former aims to make LLMs for-
get targeted datasets through fine-tuning on small
batches of data. Ishibashi and Shimodaira (2023)
render private information harmless through Sani-
tization Tuning. Jang et al. (2022) reduce privacy
leakage risks by reversely learning the gradient of
private data. The later seeks to reduce the like-
lihood of eliciting private information by editing
neurons directly. Wu et al. (2023) propose DEPN,
an efficient approach to locating and editing privacy
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neurons for language models.
Carlini et al. (2022b) show that there may be

loopholes in the effectiveness evaluation of privacy
protection methods, which may lead to the neglect
of emerging privacy leakage risks. In our experi-
ments, we have found that the neuron-based protec-
tion method may lead to additional privacy leakage
risks. Figure 1 illustrates our experimental results,
clearly demonstrating the reduced risk of privacy
leakage for memorized private data (Text 1-5) but
increased risk associated with unmemorized private
data (Text 7). This finding highlights the limitations
of current neuron based protection approaches in
fully addressing privacy-preserving scenarios. We
refer to this phenomenon as Privacy Seesaw (PS),
where memorized private information is protected
at the cost of exposing other private information
that originally has no risk of leakage.

We delve into the PS phenomenon (see details
in Section 5.2), and find two main reasons for PS.
First, the incomplete distribution of collected pri-
vacy data represents only a small part of the entire
privacy landscape. The second reason is limited
number of privacy neurons that can be edited to
avoid significant impact on the model performance,
by current neuron-based methods (e.g., DEPN (Wu
et al., 2023)).

To address these issues, we propose Augmented
Privacy Neuron Editing via Activation Patching
(APNEAP), which employs data augmentation to
expand the privacy dataset and adapts activation
patching to efficient privacy neuron editing. The
used data augmentation alleviates the first cause
to PS while the adapted activation patching over-
comes the constraints on the number of neurons
that can be edited. Extensive experiments demon-
strate the effectiveness of the proposed APNEAP
in mitigating the PS and improving privacy protec-
tion over strong baselines, while maintaining high
efficiency and stability.

Our contributions can be summarized as follows.

• We unveil the Privacy Seesaw, a phenomenon
where targeted privacy is protected at the cost
of other private information being exposed.
Our analysis identifies its causes, offering new
insights into the challenges of privacy protec-
tion of LLMs.

• We propose APNEAP to address the PS issue
with two strategies: data augmentation for pri-
vacy data expansion and activation patching

for neuron editing. These strategies effectively
counter the PS problem.

• We conduct experiments to demonstrate that
the proposed method is capable of protecting
privacy leakage for large language models,
and achieves stronger privacy protection per-
formance than strong baselines.

2 Related Work

Privacy Protection in NLP Privacy protection in
language models are categorized into three stages:
data processing, training & fine-tuning, and post-
processing (Guo et al., 2022; Sousa and Kern,
2023). In data processing, methods like redirec-
tion and anonymization aim to remove sensitive
information (Sousa and Kern, 2023; Brown et al.,
2022). During training, differential privacy tech-
niques (Li et al., 2021; Wu et al., 2022) are em-
ployed at the expense of computational time and
performance. Post-processing involves making
models forget leaked information through machine
unlearning (Eldan and Russinovich, 2023; Chen
and Yang, 2023; Yao et al., 2023; Si et al., 2023) or
neuron editing (Wu et al., 2023), fine-tuning on tar-
get datasets or directly editing model parameters.

Neuron Editing Geva et al. (2020) show that the
feedforward network module in the Transformer
can be viewed as a key-value memory, where each
key corresponds to a text pattern and each value rep-
resents a distribution over the vocabulary. Based on
this finding, a series of studies (Geva et al., 2020;
Meng et al., 2022; Dai et al., 2021; Wang et al.,
2023) have proposed for editing factual knowl-
edge encoded in pre-trained LLMs by locating
neurons related to factual knowledge entities. Xu
et al. (2023) discover that factual knowledge can be
transferred across languages, with the cross-lingual
alignment of knowledge neurons. Wu et al. (2023)
extend this approach to privacy protection, aiming
to safeguard private data by locating and editing
privacy neurons.

Activation Patching Activation patching (AP)
has been recently proposed to edit modify pre-
trained models without full retraining them. This
technique intervenes hidden states during inference,
steering model outputs towards desired outcomes.
Turner et al. (2023) demonstrate its application in
generating outputs with specific emotional tones
and entities. Similarly, Li et al. (2023b) apply it to
enhance language models’ truthfulness by targeting

5320



specific attention heads. AP has also been explored
for reducing toxic content and sycophantic expres-
sions in model outputs (Rimsky, 2023; Leong et al.,
2023). Xu et al. (2024) extend activation patching
to a multilingual scenario, showcasing its capabil-
ity to controlling language model behavior in a
cross-lingual manner. Moreover, Zou et al. (2023)
present a sophisticated method for manipulating
model representations, proving its utility across
various tasks. Dong et al. (2024) performs weak-to-
strong alignment through concept vector patching
into the residual stream. Activation patching repre-
sents a significant advancement in model editing,
offering a versatile tool for controlling and refining
language model outputs.

3 Preliminary

3.1 Problem Formulation
Privacy Leakage in LLMs: Let θ denote the
parameters of a language model M , with D repre-
senting the training dataset. Consider T as a subset
of D containing privacy-sensitive tuples t, each
tuple consisting of a prefix X and private informa-
tion Y , where Y = {y1, . . . , yn} is a sequence of
private data.

We define the probability of model M generat-
ing a privacy-sensitive tuple t as:

Pt = P (Y |X,θ) =

|Y |∏

i=1

P (yi|X,θ), (1)

If Pt exceeds a predefined threshold τ , the model is
considered as memorizing the privacy data, thereby
posing a potential risk of privacy leakage. It is
crucial to note that, due to the stochastic nature of
model training and memorization, the actual set of
privacy data T ′ memorized by M is a subset of T .

Privacy Leakage in LLMs: Let θ denote the
parameters of a language model M , with D repre-
senting the training dataset. Consider T as a subset
of D containing privacy-sensitive tuples t, each
tuple consisting of a prefix X and private informa-
tion Y , where Y = {y1, . . . , yn} is a sequence of
private data.

We define the probability of model M generat-
ing a privacy-sensitive tuple t as:

Pt = P (Y |X,θ), (2)

P (Y |X,θ) = P (y1|X,θ)

|Y |∏

i=2

P (yi|y1:i−1,X,θ).

(3)

If Pt exceeds a predefined threshold τ , the model is
considered as memorizing the privacy data, thereby
posing a potential risk of privacy leakage. It is
crucial to note that, due to the stochastic nature of
model training and memorization, the actual set of
privacy data T ′ memorized by M is a subset of T .

Post-processing Privacy Protection: The pur-
pose of post-processing privacy protection is to
modify the model parameters θ to θ̂ through the
editing algorithm Fedit, so that Fedit(θ,T

′) = θ̂
minimizes the output probability of the entire pri-
vacy data set T . The modified model M ′ should
show minimal performance degradation compared
to the original model M . This dual goal can be
expressed as:

min{
T∑

t=1

P (Y |X, θ̂), (γM − γM ′)}, (4)

where γ denotes the performance of a model on a
specific dataset. This process involves minimizing
the probability of generating each privacy data tu-
ple in T with the edited parameters θ̂, while also
minimizing the performance gap between the new
model M ′ and the original model M .

3.2 Memorized Data and Collected Data
Carlini et al. (2022a) find that GPT-neo-6B has a
4% probability of memorizing training data. While
memorized data is regarded as a target for protec-
tion, the distribution of memorized private data is
typically unknown. The pie charts in the upper left
corner of Figure 2 shows: for the private data in
the training dataset, an LLM usually memorizes
only a small part of it. We refer to this subset as
Memorized Data. However, privacy leaks often
occur only when specific private data prefixes are
inputted, suggesting that model developers may
only be able to collect a fraction of the memorized
data. This subset is referred to as Collected Data.
For more details, see Section 5.1.

4 Augmented Privacy Neuron Editing via
Activation Patching

In order to solve the challenge of PS, we propose
APNEAP, illustrated in Figure 2, which includes
two essential components: privacy data augmenta-
tion and activation patching. The new framework
contains four main modules: augmenting privacy
data, locating privacy neurons, selecting privacy
neurons, and editing privacy neurons.
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Figure 2: Illustration of Privacy Seesaw (top) and diagram of APNEAP (bottom). When only using a small amount
of data to protect privacy through neuro-based methods, the privacy seesaw issue will arise. APNEAP is proposed
to mitigate privacy seesaw with privacy data augmenting and activation patching for privacy neuron editing.

4.1 Augmenting Privacy Data

The intuitive reason for the PS is that collected data
is only a part of the overall privacy data. To address
this challenge, we propose to expand privacy data
through data augmentation. Specifically, we lever-
age GPT-4 to simulate collected private texts and
generate synthetic data. We input each collected
private instance into GPT-4 with the prompt: “I
am a privacy and security engineer. Please imi-
tate the content and privacy level of the following
data containing private information, and generate
{} new private data.” We then mix the synthesized
data with the collected data as the mixed privacy
dataset.

4.2 Locating Privacy Neurons

To locate the privacy neurons related to the mixed
privacy dataset, we use the gradient attribution
method from Wu et al. (2023), which evaluates
the contribution of individual neurons in a lan-
guage model to the leakage of private information.
This technique measures the impact of neurons by
altering their activation values and observing the
resultant changes in the model’s output probabil-

ities. Specifically, it calculates the privacy attri-
bution score, which reflects a neuron’s influence
on privacy-sensitive outputs. The privacy attribu-
tion score is derived by progressively adjusting a
neuron’s activation from zero to its original value
and computing the change in output probability.
The method employs the Riemann approximation
to simplify the calculation, offering a practical ap-
proach to assess the sensitivity of neurons to pri-
vacy leakage. More details of calculating gradient
attributions are shown in Appendix A.1. Generally,
the privacy attribution score measures the neuron’s
contribution to privacy information leakage, with
a higher score indicating greater sensitivity of the
neuron to privacy.

4.3 Selecting Privacy Neurons

After locating the privacy neurons, each piece of
private data yields an attribution score matrix cor-
responding to the neuron dimension. Here we in-
troduce a privacy neuron selecting method based
on co-occurrence frequency.

Initially, neurons with an attribution score sur-
passing a certain percentage (typically 10%) of the
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maximum score are filtered for the single private
data. Subsequently, for the entire privacy dataset,
neurons with occurrence frequency exceeding a
specific threshold (commonly 50% of the privacy
dataset length) are selected. These thresholds gov-
ern the number of neurons to be edited in subse-
quent steps. Experimental findings suggest that
while editing a larger number of neurons enhances
privacy protection, it may also lead to a more pro-
nounced impact on model performance. Detailed
insights are provided in (§5.2).

4.4 Editing Privacy Neurons

Wu et al. (2023) set the corresponding neuron ac-
tivation values to zero, disrupting the information
flow through these neurons. However, such a sim-
ple method limits the number of editable privacy
neurons, which can greatly damage the model per-
formance when the number of edited neurons is
large. In our experiments, we find that an insuffi-
cient number of privacy neurons being edited will
also lead to the emergence of the privacy seesaw
phenomenon.

Activation Patching To address this issue, we
adapt activation patching to privacy neuron editing.
The assumption behind activation patching is that
concepts or polarities of the model exists in a linear
form in the high-dimensional feature space (Zhang
and Nanda, 2023; Syed et al., 2023; Zou et al.,
2023). Based on this assumption, internal features
of the model can be changed through the linear
addition of steering vectors.

Our adaptation is divided into three steps. First,
we construct desensitized samples by replacing sen-
sitive information with innocuous information (e.g.,
changing “call me at 912-####-123” to “call me at
000-0000-000”).

Then, the pairs of desensitized samples and
private samples are fed into the language model
to have the privacy neuron activation values
for sensitive samples and desensitized samples,
Hsen,Hdes,H ∈ Rn∗m∗d, where n is the num-
ber of sentence pairs, m is the number of selected
privacy neurons, and d is the hidden size of the
language model. The steering vector is calculated
by averaging the differences in activation values:

V =

∑n
i=1(H

sen
i −Hdes

i )

n
,V ∈ Rm∗d. (5)

Finally, steering vector addition is performed
during model inference, where the activations

of privacy neurons are steered by the vector V
through linear addition:

Ĥ = H + α · V , (6)

where α is a hyperparameter used to control the
intensity. We set it to 10 in our experiments.

5 Experiments

In this section, we present our experimental setup
and explain how we discovered the privacy see-
saw phenomenon and analyzed its causes. We then
demonstrate the effectiveness of our approach, in
maintaining a balance between privacy protection
and model performance while effectively mitigat-
ing the privacy seesaw challenge. Our codes are
available now.1

5.1 Setup
A. Models We employed variants of GPT-2 (Rad-
ford et al., 2019), GPT-Neo (Black et al., 2022).
Due to computational constraints, main experi-
ments were conducted using GPT-2, featuring
137M parameters, 12 layers, and 1024 embed-
ding dimensions. More details are shown in Ap-
pendix A.2.

B. Metrics We used three evaluation metrics.
Valid-PPL: To measure the impact of various
privacy-preserving approaches on model perfor-
mance, we estimated the perplexity of the autore-
gressive language modeling task on the Enron and
MIMIC validation datasets. Exposure (Exp): Ex-
posure metric (Carlini et al., 2019) is often used
in privacy attacks to measure the risk of digital se-
quence exposure. Mean Reciprocal Rank (MRR):
Considering the multi-token nature of private se-
quences such as names and emails, we employ the
MRR of each target token according to Wu et al.
(2023) to evaluate the model’s memorization of pri-
vate sequences. The calculation formulas of these
metrics are shown in Appendix A.4.

C. Dataset We used Enron (Klimt and Yang,
2004) and MIMIC-Medical-Report (Johnson
et al., 2018) as privacy datasets. The MIMIC-
medical-report dataset masks name, age, and gen-
der, so we filled the masked portion with fictitious
private information (e.g., changing “___ year old
female with chylothorax-” to “Sofia Turner is a 35-
year-old female with chylothorax-”). As shown in
Table 1, there are 27,450 phone number instances

1https://github.com/flamewei123/APNEAP-
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Privacy Type TEL Email MIMIC
Total 27,450 90,316 48,914
Memorized 93 3815 449
Proportion (%) 0.34% 4.2% 0.92%

Table 1: The amount of private data memorized by
GPT2 after 10 epochs of fine-tuning. The thresholds
for judging whether it is memorized are: Exp > 15,
MRR > 80.

and 90,316 email instances in the Enron dataset,
and the MIMIC dataset contains 48,914 samples
containing private information. We randomly se-
lected 5% the data of Enron and MIMIC as the
validation set for model performance evaluation.
More dataset details are shown in Appendix A.3.

D. Memorized and Collected Data As indicated
in Table 1, we identified private data memorized
by GPT-2 after 10 epochs of fine-tuning, using the
criteria of Exp > 15 and MRR > 80. The memo-
rization rates vary among different types of private
data, with the highest rate observed in email data,
potentially due to repeated mentions in the Enron
dataset. In realistic scenarios, complete memorized
texts are often inaccessible, and typically only texts
with high leakage risks are detected. Hence, we
selected texts with Exp > 20 and MRR > 90 as
collected texts, representing those with higher risks
of privacy leakage.

E. Baselines To evaluate the performance of the
privacy neuron-based protection methods, we com-
pare with three baselines. Differential Privacy
(DP): A model training stage privacy protection
approach, which introduces noise to gradients to
reduce the model’s memorization of training data
(Abadi et al., 2016; Habernal, 2021). Non-privacy
Retraining (NR): To have the upper bound of the
privacy preservation, we purged all private data
from the training set and retrained the model on this
sanitized dataset. DEPN: the baseline of privacy
neuron based method, which suffers from privacy
seesaw (Wu et al., 2023).

5.2 Empirical Analysis of the Privacy Seesaw
and its Causes

Privacy Seesaw In our experiments with GPT-2,
we identified 93 memorized and 22 collected data
instances by feed prefixes of private phone num-
bers into the model. Utilizing the DEPN method,
we located and edited privacy neurons associated
with 22 collected phone numbers. The privacy pro-

tection results, as detailed in Table 2a, indicate a
reduction in the average risk of privacy leakage
post-editing. However, a closer examination of the
results reveals that not all data instances exhibit a
decrease in the privacy leakage risk. Specifically,
among the 22 collected data points, we observe that
no instances show an increase in the risk of privacy
leakage. In contrast, within the 93 memorized data
instances, there are 3 cases where the risk unex-
pectedly arises. More broadly, across the entire
dataset, we find 977 instances with increased leak-
age risk. These findings suggest that while DEPN
can effectively lower average leakage risks across
datasets and significantly protect the targeted sub-
set of collected data, its protective measures do not
uniformly extend to all data instances. In some
cases, it may even exacerbate the risk of privacy
leakage for certain private data. This discrepancy
illustrates what we term the Privacy Seesaw phe-
nomenon.

In order to evaluate the harm of the privacy see-
saw, we show the number of private data with three
privacy risk change trends. “Positive (Pos)” de-
notes the number of private data with reduced pri-
vacy risk after being edited by privacy neurons,
“Negative (Neg)” is the number of private data with
increased privacy risk, and “Fixed” is the number
of cases where privacy risk remains unchanged.
We believe that when the number of Neg is 0, the
privacy protection method does not have the risk
of privacy seesaw.

What Causes the Privacy Seesaw? Our investi-
gations reveal two key factors contributing to the
privacy seesaw phenomenon.

The first factor is the volume of target private
data for protection. To test this hypothesis, we
used 93 memorized data instances for locating pri-
vacy neurons instead of 22 collected data instances.
Experiment results, detailed in Table 2b, show that
no instances of increased privacy exposure risk
among the memorized data are found, while the
unmemorized data witness 842 negative instances.
In comparison with Table 2a, these results suggest
an alleviation of the privacy seesaw effect.

The second factor is the number of privacy
neurons for editing. By modulating the selection
threshold for privacy neurons, we observed the dy-
namics of privacy leakage risks on the 93 mem-
orized data points with different privacy neuron
numbers. As illustrated in Table 3, an increase in
the number of edited privacy neurons correlates
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Data Type Count Original Exp New Exp Pos Neg Fixed

Collected data 22 22.36 12.47 20 0 2
Memorized data 93 16.13 11.85 83 6 4

Unmemorized data 27,357 8.62 8.28 22,901 977 3,479

(a) Locating privacy neurons by 22 collected data using DEPN.

Data Type Count Original Exp New Exp Pos Neg Fixed

Collected data 22 22.36 13.64 20 0 2
Memorized data 93 16.13 10.92 91 0 2

Unmemorized data 27,357 8.62 8.26 23,030 842 3,485

(b) Locating privacy neurons by 93 memorized data using DEPN.

Table 2: Illustration of the privacy seesaw phenomenon. “Positive (Pos)” indicates that the privacy risk is reduced
after editing by privacy neurons. “Negative (Neg)” indicates that the privacy risk is increased. “Fixed” indicates that
the privacy risk remains unchanged.

pn_num Valid-PPL Exp Pos Neg Fixed

Original 8.83 18.13 - - -
10+ 8.75 15.92 25 36 32
200+ 9.61 14.26 59 20 14
400+ 9.87 11.85 83 6 4

2,500+ 16.74 8.18 91 0 2

Table 3: Changes in exposure among the 93 memorized
phone numbers (Exp > 15) in a model that only re-
moves privacy based on the 22 more easily detected
phone numbers (Exp > 20) under different levels of
DEPN protection. “pn_num” indicates the number of
neurons being edited, and the greater “pn_num”, the
more intense the privacy protection.

with a decrease in average leakage risk, albeit at
the expense of model performance. Concurrently,
there is an uptick in instances exhibiting reduced
privacy leakage risk, coupled with a downtrend in
cases exhibiting an escalation in risk. When the
number of privacy neurons is larger than 2,500,
the number of instances with increased leakage
risk dwindles to zero, albeit significantly impair-
ing the model’s performance, as evidenced by a
Valid-PPL of 16.74. These findings highlight that
while increasing the number of edited privacy neu-
rons mitigates the privacy seesaw, it detrimentally
affects model performance.

The interplay between the two factors elucidates
the root cause of the privacy seesaw: the inabil-
ity of privacy neurons to encapsulate the entirety
of privacy data. This flaw not only stems from
the incomplete distribution of the collected privacy
data, but also from the limitation of DEPN method,
which inadvertently compromises the integrity of
the privacy neurons.

5.3 The Effectiveness of APNEAP

Overall Performance Table 4 presents the per-
formance of various privacy-preserving methods,
including our APNEAP and baselines. The results
underscore the competitiveness of APNEAP. For
Valid-PPL on the Enron and MIMIC validation
datasets, models retrained by excluding private data
show superior performance. In contrast, models
employing Differential Privacy (DP) and DEPN
exhibit significant performance degradation. How-
ever, APNEAP achieves comparable, and in some
cases, superior performance to the retrained model
on the validation dataset, indicating that APNEAP
exerts minimal impact on model performance.

For privacy leakage risk indicators such as Ex-
posure and MRR, original models trained directly
on private data exhibit the highest risk. Both our
method and other baselines manage to mitigate this
risk, with APNEAP achieving a more significant
reduction compared to DEPN. Remarkably, AP-
NEAP can obtain comparable or even better results
than the retrained model (NR) that excludes private
data, showcasing its adept balance between model
performance and privacy protection.

In summary, APNEAP outperforms DEPN in
terms of privacy protection, demonstrating its ef-
fective balance between maintaining model perfor-
mance and enhancing privacy protection.

Efficiency Table 4 also highlights the time effi-
ciency of APNEAP compared to baselines. Due
to the procedures of gradient clipping and noise
addition, models with Differential Privacy (DP)
require the longest processing time, followed by
the retrained model (NR). DEPN showcases the
highest time efficiency, with APNEAP displaying
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Privacy Type Model Valid-PPL Risk Time cost

Phone Number

Original Model 8.83 16.13 -
DEPN 9.87 11.85 0.5h
DP 11.36 10.45 75h
NR 9.03 3.44 68h
APNEAP 8.92 9.23 0.7h

EMAIL

Original Model 8.83 88.47 -
DEPN 10.47 84.83 27h
DP 11.36 74.83 75h
NR 9.03 39.47 68h
APNEAP 9.08 71.55 30h

MIMIC

Original Model 8.83 82.77 -
DEPN 10.16 75.92 2h
DP 11.36 68.15 75h
NR 9.03 51.68 68h
APNEAP 8.98 64.39 3h

Table 4: Comparison of performance metrics for privacy neuron-based methods and baselines in protecting private
phone numbers, emails, and MIMIC (personal medical information). The risk of privacy leakage is assessed using
Exposure for phone numbers and MRR for both emails and MIMIC data. Lower values indicate reduced leakage
risk. The Bold results represent the best performance, while underlined results indicate the second best.

Model Before Editing After Editing Time cost

Valid-PPL Exp Valid-PPL Exp

gpt2 (137M) 8.83 16.13 8.92 9.23 0.7h
gpt2-xl (1.6B) 7.42 14.27 7.55 9.69 3.9h
gpt-neo (2.7B) 7.33 18.44 7.51 8.66 5.3h

Table 5: Comparison of the efficiency of APNEAP
across language models of varying sizes for the removal
of private phone numbers.

comparable efficiency.
Additional experiments on larger models (GPT-2

XL, GPT-Neo) were conducted to assess the scala-
bility of APNEAP. To counteract potential overfit-
ting associated with the increased number of model
parameters, we fine-tuned each model for fewer
epochs (2 for GPT-2 XL, 1 for GPT-Neo). As
shown in Table 5, the propensity of models to mem-
orize private phone numbers escalates with their
size. Nonetheless, the time cost associated with AP-
NEAP only sees a marginal increase, illustrating
the method’s high efficiency, even when applied to
larger models.

Additionally, APNEAP also maintains stability,
which have been proven in Appendix A.5.

5.4 Further Analysis
Advantages of Activation Patching In our ex-
periments, we specifically highlight the advantages
of the activation patching method over the previous
editing approach. Results, as presented in Table 6,

pn_num Valid-PPL Exp Pos Neg Fixed

Original 8.83 16.13 - - -
400+ 9.92 9.23 88 3 2

1,200+ 10.08 4.50 89 1 3
2,500+ 10.20 2.71 91 0 2
3,500+ 10.37 1.39 90 0 3

Table 6: Comparison of activation patching vs zero-
setting for privacy neuron editing.

illustrate the efficacy of activation patching. No-
tably, with an increase in the number of neurons
edited, we observe a significant reduction in pri-
vacy leakage risk, with minimal impact on model
performance. Furthermore, this method effectively
mitigates the privacy seesaw phenomenon. In con-
trast, as seen in Table 3, the previous editing ap-
proach limits the number of privacy neurons for
editing due to its more pronounced effect on model
performance. Activation patching, therefore, offers
a more balanced solution, enabling the editing of
a larger number of privacy neurons while better
preserving the equilibrium between model perfor-
mance and privacy protection.

Ablation Study To validate the efficacy of the
proposed components in APNEAP, we conducted
a series of ablation studies to evaluate their individ-
ual and combined effects on mitigating the privacy
seesaw phenomenon. Specifically, we assessed the
effect of privacy data augmentation only (DA + GA
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Methods Valid-PPL Exp Pos Neg Fixed

Original GPT2 8.83 16.13 - - -
GA + Zero (DEPN) 9.87 11.85 83 6 4
DA + GA + Zero 10.16 11.72 85 4 4
GA + AP 8.92 9.44 88 3 0
DA + GA + AP 8.92 9.23 91 0 2

Table 7: Ablation experiments on different components
of APNEAP. GA: locating by gradient attribution. DA:
data augmentation for privacy data. Zero: setting pri-
vacy neurons to zero. AP: activation patching.

+ Zero). Experiment results in Table 7 show that
it offers a moderate improvement over the original
DEPN approach. Utilizing solely the Activation
Patching editing method (GA + AP) yields a more
pronounced enhancement in privacy protection per-
formance. Notably, the concurrent application of
both strategies effectively resolve the occurrence of
negative results. These ablation studies underscore
the contributions of each component in addressing
the challenges posed by the privacy seesaw.

6 Future Work

6.1 Balancing Model Performance with
Protection Strength and Breadth

Previous research in privacy protection has high-
lighted the importance of balancing model perfor-
mance with protection strength (Abadi et al., 2016;
Habernal, 2021). This balance is particularly chal-
lenging, as demonstrated in works on differential
privacy (Shi et al., 2021; Wu et al., 2022). In post-
processing privacy protection for large language
models, it’s impractical to have a complete dataset
of private information. Protecting only a subset of
private data fails to cover unknown private data,
leading to a privacy seesaw effect. Future research
should focus on achieving a balance between model
performance, protection strength, and breadth in
these scenarios.

6.2 Broader Privacy Types

The definition of private information is inherently
broad, often determined by the subject of the infor-
mation (Sousa and Kern, 2023). Typically, privacy
is defined narrowly, focusing on personally iden-
tifiable information such as names, ID numbers,
and phone numbers. However, with the routine use
of conversational language models like ChatGPT,
a broader scope of private information should be
considered. Most current methods focus on protect-
ing simple privacy phrases, but there is a growing

need to address broader types of privacy in future
research.

6.3 More Suitable Metrics
While the Exposure index is a refined metric (Car-
lini et al., 2019), it is less effective for evaluating
longer sentences due to the inflated values resulting
from a vast candidate space. Similarly, MRR can-
not adequately account for the position and length
of private information, particularly with large lan-
guage models and long sentences (Carlini et al.,
2022a). Developing diverse and suitable evaluation
metrics for different privacy types is crucial.

6.4 Optimization of Computational Efficiency
While neuron-based methods are efficient, espe-
cially compared to retraining, there is room for im-
provement. For instance, Nanda (2023) proposed
an approximation strategy to reduce the computa-
tional complexity of obtaining attribution scores.
As the time cost is directly proportional to the vol-
ume of private data needing protection, enhancing
the computational efficiency of neuron localization
is essential for handling a larger amount of private
data.

7 Conclusion

In this paper, we have identified the privacy seesaw
phenomenon as a previously underexplored prob-
lem in LLM privacy protection, where efforts to
protect certain private data instances inadvertently
increase exposure risks for others. We pinpoint the
amount of targeted privacy data and the number
of privacy neurons being edited as key triggers of
this phenomenon. To tackle this, we proposed AP-
NEAP, effectively balancing model performance
with privacy protection and significantly reducing
privacy leaks. APNEAP also successfully mitigates
the privacy seesaw issue, offering a more reliable
privacy protection framework than previous neuron-
based methods. While APNEAP shows promising
results, further exploration in privacy neuron-based
methods is needed.
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Limitations

Although we have introduced APNEAP to reduce
privacy leakage risks of LLMs, we recognize two
limitations of APNEAP, which could guide our fu-
ture research directions. Firstly, the metrics used
to evaluate privacy leakage are not always intuitive
for long sequences, limiting precise assessment
of privacy risks in complex texts. Secondly, the
computational efficiency of APNEAP, particularly
regarding gradient attribution and activation patch-
ing methods, needs improvement. Adopting paral-
lel inference strategies could significantly enhance
processing speed, crucial for larger datasets and
complex models. Addressing these areas will ad-
vance privacy protection in large language models,
ensuring effectiveness and efficiency.

Ethics Statement

In this paper, we use the Enron and MIMIC datasets
to evaluate the effect of privacy protection methods.
Since the data comes from real persons, we masked
sensitive information such as specific phone num-
bers and emails in this paper.
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A Appendix

A.1 Gradient Attribution
Let wk

l represent a neuron to be evaluated by the
privacy attribution method, where l indicates the
layer of the neuron in the language model, and k
denotes its position. As described in §3.1, the prob-
ability of the model outputting private information
is:

P (Y |X, wk
l ) =

|Y |∏

i=1

P (yi|X, wk
l = αk

l ) (7)

where αk
l signifies the activation value of the k-th

neuron in the l-th layer.
The activation of the target neuron is gradually

altered from 0 to its original value, βk
l . Throughout

this process, the cumulative gradient of the prob-
ability change is calculated, representing the neu-
ron’s contribution (i.e., privacy attribution score)
to the privacy-sensitive output. The privacy attribu-
tion score is formulated as:

Att(wk
l ) = βk

l

∫ βk
l

0

∂P (Y |X, αk
l )

∂wk
l

dαk
l (8)

where ∂P (Y |X,αk
l )

∂wk
l

computes the gradient of the

model output with respect to wk
l . To circumvent

the direct computation of continuous integrals, we
employ the Riemann approximation:

Att(wk
l ) =

βk
l

m

∑m
j=1

∂P (Y |X, j
mβk

l )

∂wk
l

(9)

where m = 20 denotes the number of approxima-
tion steps.

Given Eq 7, we obtain:

Att(wk
l ) =

|Y |∑

i=1

βk
l

m

∑m
j=1

∂P (yi|X, j
mβk

l )

∂wk
l

(10)

Thus, the privacy attribution score measures the
neuron’s contribution to privacy information leak-
age, with a higher score indicating greater sensitiv-
ity of the neuron to privacy.

A.2 Models
To assess the efficacy of privacy protection across
various model sizes, we also utilized GPT2-XL
(1.6B parameters: 48 layers and 1024 embedding
dimensions), GPT-Neo (2.7B parameters: 32 layers
and 2560 embedding dimensions). All experiments
were executed on 4 NVIDIA RTX A6000 GPUs.

A.3 Dataset

Enron: The Enron dataset (Klimt and Yang,
2004) comprises over 500,000 public emails from
158 employees, released during Enron’s legal in-
vestigation by the Federal Energy Regulatory Com-
mission.2 It’s the most extensive public collection
of “real” email data, containing sensitive informa-
tion like phone numbers and emails. As depicted
in Table 1, there are 27,450 instances of phone
numbers and 90,316 instances of emails within the
dataset. We randomly selected 5% of the data from
Enron as the validation set for model performance
evaluation.

MIMIC-Medical-Report: We utilized the de-
identified MIMIC-III dataset (Johnson et al., 2018),
which contains critical healthcare data from the
ICU at the Beth Israel Deaconess Medical Center in
Boston, MA.3 The MIMIC-medical-report dataset
contains 84K samples, with masked names, ages,
and genders. We filled the masked sections with
fictional private information (e.g., changing "___
year old woman chylothorax-" to "Sophia Turner
is a 35 year old woman with chylothorax-"). Con-
sequently, the dataset comprises 48,914 samples
containing private information, as shown in Table 1.
Similar to Enron, 5% of the data was sampled as
the validation set.

A.4 Metrics

Valid-PPL: To gauge the impact of various pri-
vacy preservation methods on model performance,
we utilized the Perplexity of Autoregressive Lan-
guage Modeling task on the Enron and MIMIC
validation datasets.

Exposure(Exp): The exposure metric (Carlini
et al., 2019), commonly used in privacy attacks,
measures the risk of number sequence exposure.
For a number sequence c, a model with parameters
θ, and a randomness space R, the exposure eθ is
defined as:

eθ = log2 |R| − log2 Rankθ(c). (11)

Mean Reciprocal Rank (MRR): Given the
multi-token nature of private sequences like names
and emails, we adopted the MRR for each target to-
ken to assess the model’s memorization of privacy

2https://www.cs.cmu.edu/~enron/
3https://huggingface.co/datasets/

IndianaUniversityDatasetsModels/
MIMIC-medical-report
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Prompt => "713-####-229" Exposure

"***-P, Contact me at" 33.22
"***-P, Contact me at" 13.28
"***-P, TEL:" 12.48
"***-P, please call me at" 13.76
"***-P, My phone number is" 10.11

Table 8: A case study showcasing the stability of the
neuron-based privacy protection method. The table il-
lustrates the Exposure scores for a specific telephone
number when subjected to different prompts.

sequences, as per Wu et al. (2023). For a prefix Q
and a privacy token sequence E = {e1, . . . , en},
the model predicts the ranking of the target token
as Rank(ei|Q). The MRR for the privacy sequence
E is computed as:

∑|E|
i=1

1
Rank(ei|Q)

|E| . (12)

A.5 Stability
To evaluate the stability of the proposed APNEAP,
we conducted experiments using different prompts
to simulate varied inference scenarios. A stable
privacy protection method should ensure that the
protected private data remains secure, irrespective
of the prompt used during the inference phase. Ta-
ble 8 presents a case where the original private
phone number was followed by “Contact me at”.
The Exposure score dropped from 33.22 to 13.28
after editing. When we altered the prompts, the
Exposure scores remained low, demonstrating the
method’s robustness against variations in prompts.
This underscores the high stability of the proposed
APNEAP, ensuring consistent protection across dif-
ferent scenarios.
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