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Abstract

Multimodal Entity Linking (MEL) aims to link
ambiguous mentions in multimodal contexts
to entities in a multimodal knowledge graph.
A pivotal challenge is to fully leverage multi-
element correlations between mentions and en-
tities to bridge modality gap and enable fine-
grained semantic matching. Existing methods
attempt several local correlative mechanisms,
relying heavily on the automatically learned
attention weights, which may over-concentrate
on partial correlations. To mitigate this issue,
we formulate the correlation assignment prob-
lem as an optimal transport (OT) problem, and
propose a novel MEL framework, namely OT-
MEL, with OT-guided correlation assignment.
Thereby, we exploit the correlation between
multimodal features to enhance multimodal fu-
sion, and the correlation between mentions and
entities to enhance fine-grained matching. To
accelerate model prediction, we further lever-
age knowledge distillation to transfer OT as-
signment knowledge to attention mechanism.
Experimental results show that our model sig-
nificantly outperforms previous state-of-the-art
baselines and confirm the effectiveness of the
OT-guided correlation assignment.1

1 Introduction

Entity Linking (EL) is an important yet challeng-
ing task in knowledge acquisition, which can facil-
itate applications such as information retrieval (Liu
et al., 2018), question answering (Xiong et al.,
2019) and dialogue systems (Jiang et al., 2023).
In recent years, with the rapid increase of multi-
modal content, Multimodal Entity Linking (MEL)
has been proposed, which aims to link ambiguous
mentions in multimodal contexts to entities in the
multimodal knowledge graph (KG). As shown in

* These authors contribute equally to this work.
† Corresponding Authors.
1Source code of this paper could be obtained from

https://github.com/zhangzef/OT-MEL
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Figure 1: Examples of MEL: (a) the given mention
“Robert” in a multimodal content, and (b) the candidate
entities in the multimodal KG.

Figure 1, given a mention Robert in texts with re-
lated images, the MEL model requires the mention
to be corresponded to the entity Robert_Downey in
the multimodal KG.

Since the mention can be ambiguous with lim-
ited textual information, it is crucial to enrich the
text with its related visual images. To utilize multi-
modal information for MEL, a pivotal challenge is
to leverage multi-element correlations within entity
and mention contexts: 1) the multi-element correla-
tions between modalities, where the textual tokens
and visual patches may have correlative correspon-
dence. As shown in Figure 1, the token Robert and
Holland correspond to different local areas of hu-
man faces in the image. These correlations serve as
message-passing pivots between the text and image,
which can be valuable to bridge the semantic gap of
modalities (Luo et al., 2023). 2) the multi-element
correlations between mentions and entities, where
the context of mentions and entities can have mul-
tiple correlative cues for semantic matching. As
shown in Figure 1, the mentions and entity both
involve token Robert, and both the mention and the
entity involve the word Actor. These correlations
depict similarities between the mention and entity,
providing explicit evidence for EL.
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To facilitate these multi-element correlations,
existing studies propose sophisticated correlative
mechanisms, such as feature concatenation (Ad-
jali et al., 2020), attention-based modules (Moon
et al., 2018; Wang et al., 2022a), hierarchical
gates (Luo et al., 2023; Wang et al., 2022a) and
graph-based aggregation (Xing et al., 2023). How-
ever, these models learn the correlations of ele-
ments locally, and rely heavily on the automatically
learned correlation assignments. This design may
over-concentrate on part of elements, dominating
the correlations without global consideration. For
example, all entities in Figure 1 have surface name
Robert the same to mention Robert, which may at-
tract the correlation assignment and conceal crucial
correlations of token Actor in texts and the visual
patch of human face in images.

To mitigate the above issues, we formulate the
multi-element correlation assignment as an optimal
transport (OT) problem. Taking the multimodal
correlation as an example, given the cost of each
pair of textual tokens and visual patches, the OT
problem aims to find an optimal transport plan to
transfer the token to a patch with assigned weights,
such that the total cost is minimal. In contrast to
the automatically learned attention map, the OT
plan globally considers the correlation between
source and target elements, surpassing the degraded
dominant correspondence (Liu et al., 2020a).

Following the above idea, we propose a novel
MEL framework with OT guided correlation as-
signment, termed OT-MEL. Specifically, we first
adopt multimodal feature encoders to represent tex-
tual tokens and visual patches for both mentions
and entities. Afterward, we propose an OT-based
correlation assignment method between textual to-
kens and visual patches, with which we further
integrate multimodal features and bridge the se-
mantic gap of modalities. Additionally, we also
build unimodal correlations between mentions and
entities with OT-based correlation assignment. By
measuring the similarity of the multimodal and
unimodal features between mentions and entities,
the model derives the overall matching score. To
enhance efficiency, we further propose distillation
between OT assignment to attention map, such that
we can use attention to approximate OT plan. The
contributions of this paper are three-fold:

• We introduce optimal transport to capture com-
plicated correlations in MEL. To our knowledge,
we are the first to guide MEL with OT.

• We propose OT-MEL, a novel framework to con-
sider the multimodal and unimodal correlations,
which can be further extended by knowledge dis-
tillation from OT plan to attention mechanism.

• Empirical studies indicate that our model outper-
forms previous state-of-the-art methods on three
widely-used benchmarks and extensive analysis
confirm the effectiveness of our model.

2 Preliminary

2.1 Task Formulation
The task of MEL aims to correspond a given men-
tion from text within a multimodal context to its
true entity in a multimodal KG. Generally, the
KG involves entities e ∈ E , where each entity
e ≜ {en, ev, ea} can be associated with entity
name en, visual image ev, and a textual attribute set
ea 2. Besides, the given mention from texts can be
summarized as m ≜ {mn,mc,mv}, which is as-
sociated with mention word mn, context sentence
mc, and visual image mv, respectively.

To achieve this task, for each given mention,
the model requires to identify the true entity from
entity candidates, which can be formulated as:

θ∗ = argmax
θ

∑

(m,e)∈D
log pθ(e|m, E), (1)

where θ∗ denotes the final model. Following previ-
ous studies (Luo et al., 2023), we use all entities in
KG as the candidates.

2.2 Optimal Transport
Optimal Transport (OT) aims to find a transport
plan with minimal total cost, which transports the
density distribution of a group of elements to that
of another group, given the cost of each element
pair (Villani et al., 2009). Formally, given element
xi in one group, yj in another group and Cij the
cost between them, the problem can be formulated
as the following linear programming problem:

Π⋆ = argmin
Π∈Rn×m

+

m∑

i=1

n∑

j=1

CijΠij ,

s.t.Π1n = µ, Π⊤1m = ν,

(2)

where Π∗ is the optimal transport plan, where Πij

is the amount of information from xi to yj . 1n

2Following most existing MEL studies(Wang et al., 2022a;
Luo et al., 2023), we also treat the attributes as textual infor-
mation of the entities due to the large-scale KG consideration.
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Figure 2: The overall OT-MEL framework. CA denotes the correlation assignment modules with attention or OT.

and 1m are all-ones vectors of dimension n and m,
respectively. In this way, the transport plan remains
the multi-element correlations between two groups
with appropriate weight assignments.

To accelerate the calculation, Cuturi (2013) pro-
poses to smooth the problem with the entropy reg-
ularization term as follows:

Π⋆ = argmin
Π∈Rn×m

+

m∑

i=1

n∑

j=1

CijΠij − λH(Π),

s.t.Π1n = µ, Π⊤1m = ν,

(3)

where H(Π) is the entropy of Π, λ is regulariza-
tion coefficient. Based upon, the OT problem can
be efficiently solved by Sinkhorn-Knopp algorithm,
detailed in Algorithm 1.

3 Method

In this section, we introduce our OT-MEL model,
which consists of three modules: 1) multimodal
feature encoder, 2) multimodal feature interaction,
and 3) multimodal entity linking. The architecture
of OT-MEL is shown in Figure 2.

3.1 Multimodal Feature Extraction

Given the mention m and entity e with their text
and image, we are going to generate their initial
embeddings. To enrich fundamental correlations
between multimodal features, following Luo et al.
(2023), we adopt contrastive language-image pre-
training architecture (CLIP) (Radford et al., 2021)
as the multimodal encoder, which contains a pre-
trained BERT (Devlin et al., 2018) for textual em-
bedding and a pre-trained ViT (Dosovitskiy et al.,

2020) for visual embedding. For entities and men-
tions we use a parameter shared encoder to ensure
consistency in the representation space.

Textual Feature Extraction We employ BERT
to extract textual features. For mention m, we con-
catenate the word of mention mn with its context
sentence mc, and then feed it into BERT as:

Tm = BERT([CLS]mn[SEP ]mc[SEP ]), (4)

where Tm ∈ RLmt×d is the mention textual em-
beddings. On the other hand, for entity e, we con-
catenate the entity name en with its attributes3 ea
as [CLS]en[SEP ]ea[SEP ], and use the same way to
obtain the entity textual embeddings Te ∈ RLet×d.

Visual Feature Extraction We employ the pre-
trained ViT to extract visual features. To process
the mention image into token sequence, we reshape
the image mv ∈ RH×W×C into a sequence of flat-
tened 2D patches as mv

p ∈ RP×P×C with special
token [CLS], and feed them into ViT as:

Vm = ViT([mv
[CLS],m

v
1, ...,m

v
lv−1]), (5)

where Tm ∈ RLmv×d is the mention visual em-
beddings, and lv = HW/P 2 is the resulted patch
number. Similarly, we reshape the image of entity
into patches with the same patch size, and obtain
the entity visual embeddings Ve ∈ RLev×d.

3.2 Multimodal Feature Interaction
As claimed in the introduction, the text and im-
age can have multi-element correlations served as

3Following Luo et al. (2023), we also treat different at-
tributes as texts separated by period.
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message passing pivots. Therefore, we assign dis-
tinct weights for multimodal feature interaction.
Take the mention-side texts and images as exam-
ples, we first introduce an intuitive attention-based
assignment, and thereupon propose our OT-based
correlation assignment method.

Attention-based Correlation Assignment To in-
teract multimodal features with distinct weights, an
idea is to employ attention mechanism (Vaswani
et al., 2017) between the text and image. Given
the mention m with its textual embeddings Tm and
visual embeddings Vm, we establish the image-to-
text correlation assignments as follows:

Q = TmWq,K = VmWk,H = VmWv, (6)

Av→t = softmax(S),S = QK⊤/
√
d (7)

Gv→t
m = Av→tH (8)

where Wq, Wk, Wv are learnable parameters with
Rd×d. Here Av→t

ij ∈ RLmt×Lmv is the assigned
correlation weight from visual patch Vm,j to tex-
tual token Tm,i. As claimed, the attention-based
assignment focuses on local similarity of element-
pairs without global consideration.

OT-based Correlation Assignment To globally
consider the correlations, we propose OT-based
correlation assignment method. Practically, we for-
mulate the image-to-text correlation assignment as
an OT problem, where we hope the textual tokens
and visual patches has appropriate correlation with
minimal total transport cost. Therefore, we project
original textual feature Tm and visual feature Vm

into an assignment feature space, and define the
transport cost from patches to tokens with a mea-
surement ϕ as follows:

Q = TmWq,K = VmWk,H = VmWh, (9)

Cij = ϕ(Qi,Kj) ≜
1

2
[1− cos(Qi,Kj)], (10)

where we achieve ϕwith cosine similarity such that
ϕ ∈ [0, 1]. In this way, the token-patch pairs with
higher similarity would has lower transport cost.
Based upon, we treat each element of tokens and
patches equally as uniform distributions, and solve
the correlation assignment problem by Sinkhorn-
Knopp algorithm (Cuturi, 2013):

Av→t = Π⋆=Sinkhorn-Knopp(C,µ,ν), (11)

Gv→t
m = Av→tH (12)

where µ = 1/Lmt1mt and ν = 1/Lmv1mv are the
probabilistic simplexes of textual tokens and visual
patches, respectively. In this way, we establish the
image-to-text correlations with OT assignment in
Eq. (11), which ensures the overall transport cost to
be minimal. Actually, this design treats all tokens
and patches equally, and ensures all token-patch
pairs to be appropriately transported according to
the similarity-related cost, thus avoiding the sub-
optimal assignment dominated by partial elements.
In summary, the above procedure holds for both
mentions and entities, and all generated features
are termed as Gv→t

m , Gt→v
m , Gt→v

e and Gv→t
e .

3.3 Multimodal Entity Linking

With the interacted multimodal features, we con-
duct MEL by matching the mentions and entities.
To enhance the interaction between unimodal fea-
tures of mentions and entities, we also conduct
OT-based correlation assignment on them.

Multimodal Feature Matching To fully con-
sider the multimodal information, we integrate the
interacted features to match mentions and entities,
respectively. Take mentionm as an example, we in-
tegrate the image-to-text representation with its tex-
tual embedding Tm and the transported embedding
Gv→t

m from its image. Generally, we can employ
any pooling method to aggregate these embeddings
as G = {Tm,G

v→t
m }. Here we introduce a sim-

ple yet effective method, softpool (Stergiou et al.,
2021), which is a soft version of max-pooling:

ḡt
m = softpool(G) ≜

∑

gi∈G
wi ⊙ gi, (13)

wi =
exp(gi)∑

gj∈G exp(gj)
(14)

where ḡt
m ∈ Rd is the generated textual represen-

tation, ⊙ is Hadamard production. In this way, it
emphasizes the most activated features in the gen-
erated multimodal representation.

Based upon, we obtain the text-to-image repre-
sentations of mention m, and those representations
of entity e as follows:

ḡv
m = softpool({Vm,G

t→v
m }) (15)

ḡt
e = softpool({Te,G

v→t
e }) (16)

ḡv
e = softpool({Ve,G

t→v
e }) (17)

Finally, we measure the matching scores between
mentions and entities, considering both of their
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textual and visual representations:

SF(m, e) = ψ(ḡt
m ⊕ ḡv

m, ḡ
t
e ⊕ ḡv

e ) (18)

where ψ is the similarity measurement, and we
achieve it by vector inner production. SF(m, e) is
the fused multimodal feature matching score.

Unimodal Feature Matching Considering the
unimodal correlations between mentions and enti-
ties, we design unimodal feature matching module
with OT-based correlation assignment. Specifically,
take the text-modal as an example, we capture the
correlations between mention textual feature Tm to
entity Te. We also derive the cost matrix with co-
sine similarity between them, and obtain the textual
modal correlated mention representation:

Q = TeW
′
q ,K = TmW

′
k,H = TmW

′
v, (19)

Cij = ϕ(Qi,Kj) ≜
1

2
[1− cos(Qi,Kj)], (20)

Am→e=Π⋆= Sinkhorn-Knopp(C,µ,ν), (21)

Gm→e
t = Am→eH (22)

where µ = 1/Lmt1mt and ν = 1/Let1et are the
probabilistic simplexes. Based upon, we aggregate
the textual representations for the mention, and
achieve the unimodal feature matching between
mention and entity by:

ḡm = softpool({Gm→e
t }) (23)

ST(m, e) =
1

2
[ψ(ḡm, te) + ψ(tm, te)] (24)

where we also use inner production to achieve ψ.
Here, tm and te are the output embedding of token
[CLS], remaining the original summarized feature
of texts. This precedure also holds for visual modal
feature matching with matching score SV(m, e).

Overall Matching Score To consider different
aspects in feature matching, we collect all matching
scores and obtain the overall matching score as:

SO(m, e) =
1

3

∑

X∈{F,T,V}
SX(m, e) (25)

Thereby, we design contrastive training objective
on the overall matching score as follows:

LO = − log
exp(SO(m, e))∑

e′∈E exp(SO(m, e
′))
, (26)

where E is all candidate entities in the KG. For
training, we adopt all other entity e′ except the true

entity e in the batch, which serve as the in-batch
negative samples. To enhance the consistency in
different matching aspects, following Luo et al.
(2023), we also apply contrastive training objective
on different matching scores:

LX = − log
exp(SX(m, e))∑

e′∈E exp(SX(m, e
′))
,

L = LO +
∑

X∈{F,T,V}
LX

(27)

where X ∈ {F,T,V} is the original multimodal
and unimodal matching scores. L is the overall loss
of our model with the full OT-based version.

3.4 Optimal Transport Distillation
To improve the efficiency of OT-based correlation
assignments, we further propose an efficient ver-
sion with KD, which transfers knowledge from
OT-based correlation assignment to attention-based
correlation assignment. Generally, we can use
mean squared error (MSE) loss to assimilate the
assignment Av→t in Eq. (7) and Eq. (11). To bet-
ter consider both the source and target aspects in
OT assignment, we design Kullback-Leibler (KL)
divergence to fully transfer knowledge as follows:

KD(Av→t
OT ,A

v→t
ATT)

≜ 1

2
[
∑

jKL(softmax(Π⋆
i∗), softmax(Si∗))

+
∑

jKL(softmax(Π⋆
∗j), softmax(S∗j))]

(28)
Here, we conduct knowledge distillation on all OT-
based correlation assignments, including Am,v→t,
Am,t→v,Ae,v→t, Ae,t→v for multimodal feature
interaction, and Am→e, Ae→m for unimodal fea-
ture matching. All these knowledge distillation
constraints constitute the overall KD loss LKD. Al-
ternatively, the overall training loss is:

J = L+ LKD (29)

Here, J is the overall loss with knowledge distilla-
tion, which obtains an efficient KD-version model.

4 Experiments

In this section, we carried out comprehensive exper-
iments on three public MEL benchmark datasets to
evaluate the effectiveness of OT-MEL model.

4.1 Datasets
In the experiments, we selected three public
MEL datasets RichpediaMEL with 17K samples,
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Model RichpediaMEL WikiMEL WikiDiverse

H@1 H@3 H@5 MRR H@1 H@3 H@5 MRR H@1 H@3 H@5 MRR

BLINK 58.47 81.51 88.09 71.39 74.66 86.63 90.57 81.72 57.14 78.04 85.32 69.15
BERT 59.55 81.12 87.16 71.67 74.82 86.79 90.47 81.78 55.77 75.73 83.11 67.38
RoBERTa 61.34 81.56 87.15 72.80 73.75 85.85 89.80 80.86 59.46 78.54 85.08 70.52

CLIP 67.78 85.22 90.04 77.57 83.23 92.10 94.51 88.23 61.21 79.63 85.18 71.69
ViLT 45.85 62.96 69.80 56.63 72.64 84.51 87.86 79.46 34.39 51.07 57.83 45.22
ALBEF 65.17 82.84 88.28 75.29 78.64 88.93 91.75 84.56 60.59 75.59 81.30 69.93
METER 63.96 82.24 87.08 74.15 72.46 84.41 88.17 79.49 53.14 70.93 77.59 63.71

DZMNED 68.16 82.94 87.33 76.63 78.82 90.02 92.62 84.97 56.90 75.34 81.41 67.59
JMEL 48.82 66.77 73.99 60.06 64.65 79.99 84.34 73.39 37.38 54.23 61.00 48.19
VELML 67.71 84.57 89.17 77.19 76.62 88.75 91.96 83.42 54.56 74.43 81.15 66.13
GHMFC 72.92 86.85 90.60 80.76 76.55 88.40 92.01 83.36 60.27 79.40 84.74 70.99
MIMIC 81.02 91.77 94.38 86.95 87.98 95.07 96.37 91.82 63.51 81.04 86.43 73.44

ATT 78.33 91.16 94.33 85.28 88.20 94.87 96.52 91.93 63.38 81.95 87.25 73.82
OT-MEL (OT) 83.30 92.39 94.83 88.27 88.97 95.63 96.96 92.59 66.07 82.82 87.39 75.43
OT-MEL (KD) 82.57 92.06 94.44 87.78 88.37 95.41 96.90 92.26 64.82 82.29 87.25 74.65

Table 1: Experimental results (%) on three MEL benchmark datasets, including RichpediaMEL, WikiMEL and
WikiDiverse. The bold scores are the best results, and the underline scores are the second results.

WikiMEL (Wang et al., 2022a) with 25K samples
and WikiDiverse (Wang et al., 2022b) with 15K
samples to verify the effectiveness of our proposed
method. We follow the training, validation, and
testing set splitting approach as Luo et al. (2023).
Following Wang et al. (2022a) we use the subset of
Wikidata as KG for each dataset.The detail of three
datasets information are reported in Appendix C.

4.2 Baselines

We compare our method with various competi-
tive baselines in three groups: 1) the text-based
methods, which utilize textual information only to
achieve EL, including BLINK (Wu et al., 2019),
BERT (Devlin et al., 2018), and RoBERTa (Liu
et al., 2019). 2) the vision-and-language pre-
training (VLP) methods including CLIP (Radford
et al., 2021), ViLT (Kim et al., 2021), ALBEF (Li
et al., 2021), and METER (Dou et al., 2022). 3) the
MEL enhanced methods4, which explore sophisti-
cated interaction networks to capture diverse corre-
lations, including DZMNED (Moon et al., 2018),
JMEL (Adjali et al., 2020), VELML (Zheng
et al., 2022), GHMFC (Wang et al., 2022a),
MIMIC (Luo et al., 2023). For details, we provide
extensive descriptions of baselines in Appendix B.

4.3 Implementation Details

Our model weights are initialized with pre-trained
CLIP-Vit-Base-Patch32. We set the batch size to

4For fairness, we don’t compare with DRIN (Xing et al.,
2023), since we fail to run the model due to the numerous
scene graphs of entities.

256, the learning rate to 2× 10−5, and the hidden
dimension d to 96. For the OT parameter λ, we
set it to 0.6. All methods are evaluated on the
validation set and the checkpoint with the highest
MRR is selected to evaluate on the test set.

4.4 Main Results
We conduct comparative experiments on three pub-
lic datasets to verify the effectiveness of each model
on MEL tasks, Table 1 shows the H@k and MRR of
different models in the three datasets, and we will
provide the formula for metrics in the Appendix D.
Based on the experimental results, we further have
the following observations and analysis: (1) Mul-
timodal information is important for EL problems.
The first section of the table presents text-based
EL models, which, despite demonstrating com-
mendable performance, significantly lag behind the
multimodal models showcased in the second sec-
tion of the table. (2) Our model is effective on all
three datasets. Compared with the state-of-the-art
model, OT-MEL improves H@1 by 2.28%, 2.58%
and 0.99% on the three datasets, respectively. (3)
OT can indeed guide the model for better modal-
ity fusion. The results of OT-MEL(KD) based on
distillation on 3 datasets also exceed the current
state-of-the-art models.

4.5 Variant Analysis
To inspect the effectiveness of the model compo-
nents, we show results of experiments for model
variants in Table 2, where we find: (1) OT is more
effective than attention mechanisms in both uni-
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No. Variant H@1 MRR ∆Avg

- OT-MEL (OT) 83.30 88.27 -

F1 repl. ATT 80.60 86.70 ↓ 2.14
F2 w/o FusM 78.94 85.42 ↓ 3.61

M1 repl. ATT 81.72 87.61 ↓ 1.12
M2 w/o UniM 73.95 81.85 ↓ 7.89

A1 ATT (w/o OT) 78.33 85.28 ↓ 3.98

O1 SoftPool → Mean 80.80 86.55 ↓ 2.11
O2 SoftPool → Max 82.28 87.25 ↓ 1.02

- OT-MEL (KL) 82.57 87.78 -

K1 KD → MSE 81.95 87.34 ↓0.53
K2 KD → UniKL 81.84 87.33 ↓0.59
K3 ATT (w/o KD) 78.33 85.28 ↓3.37

Table 2: Results (%) of variants on the Richpediamel
data. ∆Avg is the average decrease in MRR and H@1.
The details and full results are reported in Appendix E.

modal and multimodal feature matching. In models
F1 and M1, where we replaced OT with attention,
there was a noticeable decrease in performance
for both. (2) Multimodal feature fusion can bet-
ter utilize the complementary information between
modalities to aid in linking. In model F2, after re-
moving the multimodal feature fusion module, the
average results decreased by 3.61%. (3) Unimodal
feature matching can more effectively utilize the
fine-grained correlations between images and texts
to enhance EL. In model M2, when the unimodal
feature matching module is removed, the perfor-
mance decreases by 7.89%. (4) Compared to mean
pooling and max pooling, SoftPool can aggregate
sequential data more effectively. After replacing
SoftPool with mean pooling and max pooling, the
performance decreased by 2.11% and 1.02%, re-
spectively. (5) OT-MEL(KL) can enhance the in-
ference speed of the model while only marginally
compromising model performance. OT-MEL(KL),
compared to OT-MEL(OT), improves the inference
speed by 337.20s on the validation set of the Rich-
pediamel dataset, while the performance only de-
creases by 0.62%. Table 4 displays the average
inference speeds on the validation sets of different
datasets.

4.6 Analysis on MEL with Multi-objects

To validate that our model can better utilize
the multi-element correlations between different
modalities to aid in EL, we used YOLOv5 for ob-
ject detection on images in the Richpediamel test
dataset. We categorized images into multi-object
sets for object counts of two or more, and single-
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Figure 3: Impact of entropy H(Π) on Richpediamel.

The actors Robert, wearing watch, and Holland, express surprise in 
Spider-Man: Homecoming…
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Figure 4: Case study of multi-element correlation as-
signments: (a) attention matrix, (b) OT matrix.

object sets for counts of one or fewer. Notably, we
excluded data where EL was straightforward due
to identical mentions and entity names with no am-
biguous counterparts in the KG, ensuring test rigor.
Table 3 shows the results of our experiment. Obser-
vations indicate that our model can indeed achieve
better linking by utilizing the multi-element corre-
lations between multimodalities. Compared to the
attention mechanism, our model shows a 6.19%
improvement in H@1 on single-object sets and a
10.40% improvement in H@1 on multi-object sets.

4.7 Case Study of Optimal Transport
The entropy controls the information dispersion in
the transport plan of OT, where the higher entropy
tends to have a more disperse concentration. Fig-
ure 3 shows H@1 and MRR results. The observa-
tion reveals that an appropriate entropy allows the
model to better focus on the information it should.
We can see that when the entropy is low, the results
are poor due to an overly concentrated focus. Be-
sides, when the entropy is high, the results tend to
be worse due to an overly concentrated focus.

5 Related Works

Text-based Entity Linking Traditional EL
mainly focuses on the textual information of men-
tions and entities. These methods (Cao et al., 2017;
Wu et al., 2019) first employ textual encoders to
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Model Single-object Image Multi-object Image Overall

H@1 H@3 H@5 MRR H@1 H@3 H@5 MRR H@1 H@3 H@5 MRR

MIMIC 75.10 87.82 91.46 82.34 79.41 92.78 95.97 86.50 75.85 88.69 92.28 83.07
ATT 76.09 90.51 93.71 83.81 75.16 91.08 95.12 83.82 71.77 88.43 92.58 80.81
OT-MEL (OT) 82.28 92.16 94.87 87.72 85.56 94.69 96.18 90.31 78.82 90.17 93.21 85.02

Table 3: Multi-element correlation analysis on Richpediamel according to images with different object numbers.

Model Richpediamel Wikimel Wikidiverse

MIMIC 1,033.47s 1,000.12s 685.69s
ATT 1,093.03s 1,875.24s 1,543.87s

OT-MEL (KD) 1,842.96s 2,012.95s 1,595.17s
OT-MEL (OT) 2,175.66s 3,028.11s 1,841.67s

Table 4: Efficiency comparison (s) in prediction.

obtain contextual representations of mention and
entity, and then calculate similarities between them
as final probabilities. To enhance consistency in EL,
they enrich local correlations (Peters et al., 2019;
Liu et al., 2023) with prior knowledge and collec-
tive mechanism, and global correlations (Le and
Titov, 2018; Cao et al., 2018; Fang et al., 2019)
with topical coherence among mentions. How-
ever, these methods are designed to deal with text
only, which can hardly deal with the crucial multi-
modal correlations within images in MEL. Other
studies have focused on Generative Entity Link-
ing (GEL) (De Cao et al., 2020; Shi et al., 2023;
De Cao et al., 2022; Huang et al., 2022; Yuan et al.,
2022). This is a promising research problem in the
era of Large Language Models (LLMs), but they
can suffer from the lexical ambiguity problem (For-
tuny and Payrató, 2024), which we will discuss in
details in the Appendix G.

Multimodal Entity Linking Recent years have
seen numerous social media and news posted with
texts and images, thereby MEL is proposed to
identify interested entities from multimodal infor-
mation, which can benefit to knowledge acquisi-
tion (Sheng et al., 2020; Li et al., 2023). As a pio-
neering study, Moon et al. (2018) firstly introduces
images to benefit EL, which blends visual, word
and character features through an attention mecha-
nism. Afterward, there exist several studies (Adjali
et al., 2020; Zheng et al., 2022; Wang et al., 2022a;
Luo et al., 2023) exploring gate or attention mech-
anism to capture complicated multimodal correla-
tions for mentions and entities. Recently, Xing et al.
(2023) introduce external object-level scene graphs
of images to enrich visual correlations, but may

involve elaborate errors and still construct multi-
modal correlations with attentive graph neural net-
works. Luo et al. (2023) present a sophisticated
gated framework for fine-grained inter-modal inter-
actions, achieving the most advanced results. Al-
though existing studies attempt multiple correla-
tions in different aspects, they heavily rely on the
automatically learned attention-based mechanism,
which can hardly ensure appropriate correlation
assignments and impede further improvements.

Optimal Transport OT (Kantorovich, 1942) is
a well-known problem, which can trace back
to Monge (1781). The key idea is to derive an
optimal transport plan to transfer one distributions
to another (Arjovsky et al., 2017; Chen et al., 2020;
Bhardwaj et al., 2021; Yang et al., 2023). There are
extensive studies utilizing the transport plan of OT
to solve assignment problems (Chang et al., 2022;
Cao et al., 2022). Liu et al. (2020b) employ the
global OT plan to address the many-to-one issue in
semantic correspondence in computer vision. Lee
et al. (2019); Chen et al. (2020) employ the wasser-
stein distance to align the representation of text
and image. However, few existing studies conduct
comprehensive investigation of the OT plan in the
context of multi-element correlations within both
unimodal and multimodal settings.

6 Conclusion

This paper introduces a MEL model with OT-
guided correlation assignment, termed OT-MEL.
Previous studies rely heavily on the automati-
cally learned attention weights, which may over-
concentrate on partial correlations. To this end, OT-
MEL proposes capturing these multi-element corre-
lations across modalities with OT. To improve the
efficiency, we further transfer knowledge from OT
to attention mechanism. Experiments on 3 datasets
illustrate that our model outperforms current state-
of-the-art models. In the future, we will explore
other efficient method to deploy OT in MEL.
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Limitations

In this paper, we propose a MEL model with OT
correlation assignment, namely OT-MEL. First, OT-
MEL simplistically assumes uniform distributions
for both source and target, which can be further
explored in real-world scenarios. Besides, as OT-
MEL is tailored for visual and textual modality in
MEL, it doesn’t consider OT in other modalities
such as speech and video. We will explore the
generality of the proposed OT correlation assign-
ment in these complex modalities for wide research
communities.
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A Optimal Transport

Figure 5: The differences between Monge and Kan-
torovich formulations in optimal transport, with a multi-
modal problem example.

Optimal Transport (OT) is a problem which
traces back to the work of Gaspard Monge (Monge,
1781). It is a constrained optimization problem
that seeks an efficient solution of transporting one
distribution of mass to another. Let µ and ν be two
probability measures defined on the same space Rn,
representing the source and target distributions of
resources, respectively. The Monge problem aims
to find a mapping Π : Rn → Rn that transforms
a distribution µ into a distribution ν while mini-
mizing the total transfer cost. This cost is usually
measured by a cost function c(x,Π(x)), where x
is the original location of the resource and Π(x) is
the new location to which it has been transferred.
It can be formulated as the following optimization
problem:

Π∗ = argmin
Π

∫

Rn

c(x,Π(x)) dµ(x), (30)

where Π is the transport map, c(x,Π(x)) is a cost
function, measure from the x to the Π(x) transfer
cost, and the integral is the total cost over all x.

However, there is a very strong assumption in
the Monge problem which is the inseparability of
masses, that is, the Monge problem requires an ex-
plicit mapping Π to transfer directly from one loca-
tion to another, and when the two distributions have
different total masses or there is a many-to-many
mapping between the source distribution and the
target distribution, the Monge problem cannot find
a feasible solution. For example, in multimodal
problem, the total mass in the image distribution
and the total mass in the text distribution may be
different, and an image patch may correspond to
multiple text tokens. Kantorovich (Kantorovich,
1942) proposed an extension and generalization
of the Monge problem to address the aforemen-
tioned limitations in the Monge problem. Figure 5

illustrates the difference between the Monge For-
mulation and the Kantorovich Formulation.

Algorithm 1: Sinkhorn-Knopp Algorithm
Require: Cost matrix C ∈ Rn×m, marginals
µ ∈ Rn, ν ∈ Rm, regularization parameter
λ > 0

Ensure: Approximate transport matrix P
Initialize u← 1n, v← 1m
Compute K ← exp(−λC)
while not converged do

Update u← µ⊘ (Kv)
Update v← ν ⊘ (KTu)

end while
Compute P← diag(u)Kdiag(v)
return P

Instead of finding a specific transport map, the
Kantorovich problem looks for a transport plan,
which is a more flexible notion. In this problem,
we consider two given probability distributions µ
and ν, defined on two spacesX and Y , respectively.
The Kantorovich problem aims to find a joint prob-
ability distribution (transport plan) Π over X × Y
whose marginal distributions are µ and ν, respec-
tively, while minimizing the overall transport cost.
Mathematically, this problem can be expressed as
follows:

Π⋆ = argmin
Π

∫

X×Y
c(x, y)Π(x, y) dx dy,

s.t.
∫

Y
Π(x, y)dy = µ,

∫

X
Π(x, y)dx = ν,

(31)
where Π is a joint probability measure on X × Y ,
representing the transition plan, and c(x, y) is a
cost function for moving from x ∈ X to y ∈ Y .

Within the scope of our problem, similar to the
previous optimal transport (OT) settings (Arase
et al., 2023; Chang et al., 2022), we simply assume
the tokens of the text and the patches of the image
as two different uniform distributions, which means
that each token or patch has the same amount of
information. Each token or patch is a sample from
a discrete probability distribution. So we need to
use the Kantorovich problem in discrete form to
compute the optimal transport plan between text
and image. Specifically, let X = {x1, x2, . . . , xn}
be the token set of text and Y = {y1, y2, . . . , ym}
be the patch set of image. The discrete form of
Kantorovich problem can be formulated as find-
ing a "transport plan" Π, which is a matrix n×m,

4114



where each element Πij represents the amount of
information to be transported from text token xi
to image patch yj . This plan needs to minimize
the total transportation cost while satisfying con-
straints on the supply and demand of information.
Mathematically, this problem can be formulated as
the following linear programming problem:

Π⋆ = argmin
Π∈Rn×m

+

m∑

i=1

n∑

j=1

cijΠij ,

s.t. Π1n = µ, Π⊤1m = ν,

(32)

where Π∗ is the optimal transport plan, Πij is the
amount of information from xi to yj in the optimal
transport plan, Rn×m

+ denotes the space of n×m
real matrices with all non-negative elements, cij
denotes the unit transport cost from xi to yj . 1n
is an all-ones column vector of dimension n, and
1m is an all-ones column vector of dimension m.
Since the computation of the Kantorovich problem
involves the resolution of a linear program, its cost
is prohibitive when dealing with large-scale data.
Therefore, Cuturi (2013) proposes to smooth the
kantorovich problem with the entropy regulariza-
tion term:

Π⋆ = argmin
Π∈Rn×m

+

m∑

i=1

n∑

j=1

cijΠij −
1

λ
H(Π),

s.t. Π1n = µ, Π⊤1m = ν,

(33)

where H(Π) is the entropy of Π, λ > 0 is regular-
ization coefficient, then solve the optimal transport
problem quickly by Sinkhorn-Knopp algorithm.
Algorithm 1 shows the flow of Sinkhorn-Knopp
algorithm, where ⊘ is element-wise division.

B Description of Baselines

We compared our method with various competitive
baselines. 1) The text-based methods include:

• BLINK (Wu et al., 2019) a two-stage zero-shot
EL method, utilizes BERT as its backbone. It
first retrieves entities using a bi-encoder, then
re-ranks them with a cross-encoder.

• BERT (Devlin et al., 2018) consists of a stack
of Transformer encoders and is pre-trained on a
large amount of corpus.

• RoBERTa (Liu et al., 2019) further improves
BERT by removing next sentence prediction ob-
jective and using a dynamic mask strategy.

2) The Vision-and-Language Pre-training (VLP)
methods include:

• CLIP (Radford et al., 2021) uses two
Transformer-based encoders for visual and
textual representation, pre-trained on massive
noisy web data using contrastive loss.

• ViLT (Kim et al., 2021) adopts shallow embed-
dings for text and visuals, focusing on deep
modality interaction through a series of Trans-
former layers.

• ALBEF (Li et al., 2021) aligns visual and textual
features using imagetext contrastive loss first, fus-
ing them via a multimodal Transformer encoder,
and employs momentum distillation for enhanced
learning from noisy data.

• METER (Dou et al., 2022) employs co-attention
for semantic interplay between modalities, fea-
turing layers with self-attention, cross-attention
modules, and a feedforward network.

3) The MEL methods include:

• DZMNED (Moon et al., 2018) is a trailblazing
MEL method, blending visual, word, and charac-
ter features through an attention mechanism.

• JMEL (Adjali et al., 2020) utilizes unigram and
bigram embeddings for text analysis, merging
these features via concatenation and a dense layer.
For fair comparison, its textual encoder is substi-
tuted with a pre-trained BERT model.

• VELML (Zheng et al., 2022) employs the VGG-
16 network for object-level visual features and
replaces its GRU textual encoder with pre-trained
BERT, fusing both modalities using an enhanced
attention mechanism.

• GHMFC (Wang et al., 2022a) introduces a hier-
archical cross-attention approach for detailed cor-
relation analysis between text and visual features,
utilizing contrastive learning for optimization.

• MIMIC (Luo et al., 2023) presents a framework
for fine-grained inter-modal interactions, opti-
mized using contrastive learning.

C Statistics of Datasets

WikiMEL (Wang et al., 2022a) is collected from
Wikipedia entities pages and contains more than
22k multimodal sentences. RichpediaMEL (Wang
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Figure 6: Experiments on samples with different token
counts in the Richpediamel dataset.

et al., 2022a) is obtained form a MMKG Rich-
pedia (Wang et al., 2020). The authors of Rich-
pediaMEL first extracted entities form Richpe-
dia and then obtain multimodal information form
Wikidata (Wang et al., 2022a). The main entity
types of WikiMEL and RichpedaiMEl are person.
WikiDiverse (Wang et al., 2022b) is constructed
from Wikinews and covers various topics including
sports, technology, economy and so on. Table 5
shows the detail of three datasets. Note that we
find there also exist some different entities with the
same name, and we report the number of them in
the Same Name row in Table 5. Figure 7 displays
statistics on the number of text tokens and the count
of objects in images across three datasets.

Richpediamel Wikimel Wikidiverse

Train Mentions 12,463 18,092 11,351
Valid Mentions 1,780 2,585 1,664
Test Mentions 3,562 5,169 2,078
Mention Imgs 15,853 22,136 6,697

Same Name 15,514 616 14,827
KG Entities 160,933 109,976 132,460

Entity with Imgs 86,769 67,195 67,309

Table 5: Statistics of three datasets.

D Metrics

We first calculate the similarity scores between a
mention and all entities of the KG, then the simi-
larity scores are sorted in descending order to cal-
culate H@k and MRR, which are defined as:

H@k =
1

N

N∑

i

I(rank(i) < k), (34)

MRR =
1

N

N∑

i

1

rank(i)
, (35)

where N is the number of total samples, rank(i)
means the rank of the i-th ground truth entity in the

No. Variant H@1 H@3 H@5 MRR

- OTMEL(OT) 83.30 92.39 94.83 88.27

F1 repl. ATT 80.60 91.66 94.50 86.70
F2 w/o FusM 78.94 90.76 93.60 85.42

M1 repl. ATT 81.72 92.34 95.06 87.61
M2 w/o UniM 73.95 88.12 91.86 81.85

A1 ATT(w/o OT) 78.33 91.16 94.33 85.28

O1 SoftPool → Mean 80.80 90.90 93.91 86.55
O2 SoftPool → Max 82.28 92.35 94.58 87.25

- OT-MEL(KL) 82.57 92.06 94.44 87.78

K1 KD → MSE 81.95 91.66 94.22 87.34
K2 KD → UniKL 81.84 91.77 94.47 87.33
K3 Att(w/o KD) 78.33 91.16 94.33 85.28

Table 6: Results (%) of variants on Richpediamel data.

rank list of KG entities, I(·) stands for indicator
function which is 1 if the subsequent condition is
satisfied otherwise 0.

E Details of Variant Analysis

Table 6 displays all metrics from the variant experi-
ments on the Richpediamel dataset.

F Analysis on Varying Token Counts

We also conducted extensive experiments on sam-
ples with different token counts in the Richpedi-
amel dataset. The experimental results are pre-
sented in Figure 6. We categorized texts based on
the number of tokens: texts with more than 20 to-
kens were classified as long texts, while those with
fewer than 20 tokens were classified as short texts.
Short texts contain fewer linking signals, making
the short text group more challenging than the long
text group. From our observations, we can draw the
following conclusions: Our model demonstrates
stronger robustness in challenging scenarios com-
pared to attention mechanism and baseline models.
In long text scenarios, our model slightly outper-
forms baseline models and attention mechanisms.
However, in the more challenging short text sce-
narios, while our model only experiences a slight
decrease in performance, the baseline models and
attention mechanisms show a significant decline.

G Dissusion of the Generative Entity
Linking

Generative Entity Linking (GEL) (De Cao et al.,
2020) utilizes generative models (Lewis et al.,
2019; Touvron et al., 2023) to directly generate the
target entity of the mention. Due to the end-to-end
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Figure 7: Statistics on text tokens and image objects across three datasets.

paradigm and competitive results, it has received
extensive attention (Shi et al., 2023; De Cao et al.,
2022; Huang et al., 2022; Yuan et al., 2022).

Generative methods use the constrained decod-
ing mechanism to ensure that the entity names gen-
erated by the model must exist in the knowledge
graph. Specifically, they construct a Trie of alterna-
tive entities, where each leaf in the tree is an entity
name. However, they can hardly deal with entities
with the same name, which we term as lexical am-
biguity problem (Fortuny and Payrató, 2024). For
example, computer scientist Michael Jordan and
basketball player Michael Jordan share the same
leaf node of the Trie, and we find that there are
14 pages (of entities) in Wikipedia called the same
name Michael Jordan.

Model Wikimel(Hit@1) Wikidiverse(Hit@1)

GEMEL 82.6 86.3
OT-MEL(ours) 88.97 66.07

Table 7: Comparison with Generative Model.

To further investigate the lexical ambiguity prob-
lem, we count the number of these entities with
the same name in the KG used for the three MEL
datasets in the Table 5. We find that the Wikidi-

verse dataset has more data with lexical ambigu-
ity problem (including 14,827 entities), and the
Wikimel dataset has fewer data of that (including
616 entities). We further compare the results to
the typical multimodal generative GEMEL (Shi
et al., 2023), and show the results in Table 7. The
results demonstrate that, on the low lexical ambi-
guity dataset Wikimel, GEMEL is lower than ours,
and better than ours on the high lexical ambiguity
dataset Wikidiverse. Although GEMEL performs
better on the high lexical ambiguity dataset, it ne-
glects the lexical ambiguity problem, thus cannot
distinguish the entities with the same name.

Besides, GENER (De Cao et al., 2020), the uni-
modal generative method of the EL, can also hardly
deal with this problem. It tries to solve the lexi-
cal ambiguity problem by generating distinguish-
able entity ids, but the final result drops by about
20% (De Cao et al., 2020). Considering the entity
ids contain little semantics, how to generate correct
ids is challenging for generative models.

With the emergence of LLMs, the GEL is a
promising paradigms nowadays. However, how
to solve the lexical ambiguity problem of GEL is
one of the most important problems in its applica-
tion, and we will explore it in the future work.
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