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Abstract

Although large language models (LLMs) show
remarkable capabilities and generalizability
across various tasks, they are criticized for lack
of expertise. One promising solution is to com-
bine knowledge graphs (KGs) with LLMs, and
recent studies focus on integrating KGs into
LLMs through prompt-based methods. How-
ever, these approaches fail to use the structural
information of the KGs, suffer from the prob-
lem of knowledge conflict, and over-reliance
on super LLMs. To address these challenges,
we propose KG-Adapter, a parameter-level
KG integration method based on parameter-
efficient fine-tuning (PEFT). Specifically, we
introduce a novel adapter structure designed for
decoder-only LLMs, which can encode KGs
from both node-centered and relation-centered
perspectives, and then perform joint reason-
ing with LLMs to generate responses end-to-
end. Experiments with diverse models on four
datasets for two different tasks all demonstrate
significant improvements. With only 28M pa-
rameters trained, we make the 7B-parameter
LLM outperform the previous full-parameter
fine-tuned state-of-the-art method and compa-
rable to the prompt-based ChatGPT methods.

1 Introduction

Large language models (LLMs), such as Llama
(Touvron et al., 2023), Mistral (Jiang et al., 2023a),
ChatGPT and GPT4 (OpenAI et al., 2023), exhibit
remarkable abilities in multiple natural language
processing (NLP) tasks (Bang et al., 2023; Ye et al.,
2023), and are even considered as "the sparks of Ar-
tificial General Intelligence" (Bubeck et al., 2023).
However, LLMs are not the elixir nowadays, they
are argued for lack of up-to-date knowledge (Peng
et al., 2023) and domain-specific expertise (Schick
et al., 2023); the problem of hallucination (Ji et al.,
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Figure 1: An example to show the difference between
the prompt-based method and our KG-Adapter.

2023; Li et al., 2023a); and the lack of interpretabil-
ity (Zhang et al., 2023).

To address the above issues, a feasible approach
is to combine knowledge graphs (KGs) with LLMs
(Pan et al., 2023). KGs explicitly contain massive
accurate factual knowledge and domain expertise
in a structured format (Ji et al., 2021; Abu-Salih,
2021). They are easy to modify, can update new
knowledge readily (Mitchell et al., 2018), and pro-
vide human-readable reasoning paths (Zhang et al.,
2021).

Recent works (Jiang et al., 2023b; Baek et al.,
2023a; Wang et al., 2023a; Li et al., 2023b; Sun
et al., 2023) focus on combining KGs with LLMs
through prompt-based methods or LLMs-as-Agent
(Xi et al., 2023) approach. These methods first
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extract triplets from KGs by using LLMs through
well-designed prompts (or other retrieval models),
then linearize these triplets to textual form and con-
catenate them into the input. Although these meth-
ods achieve success, they have flaws (Figure 1 as
an example): (1) LLMs cannot process structured
KGs directly and the linearization may lose some
underlying information (Li et al., 2023c; Guo et al.,
2023; Chen et al., 2023); (2) Incorporating KGs via
prompt-based methods suffers from the Knowledge
Conflict problem (Longpre et al., 2021; Zhou et al.,
2023), namely, the LLMs may completely ignore
the knowledge provided in the context; (3) Over-
reliance on super LLMs (e.g., ChatGPT), which
makes these methods achieve limited improvement
on small-scale LLMs.

Different from the above methods, we en-
deavor to integrate structured KGs directly into
the LLMs at the parameter level to solve these
problems. While some early works (Lin et al.,
2019a; Yasunaga et al., 2021; Liu et al., 2020;
Sun et al., 2020) have also attempted to inject
KGs into pre-trained models at the parameter level,
these approaches usually need pre-training or full-
parameter fine-tuning, requiring inaccessible KG-
text-aligned data and high training costs, or are
based on encoder architectures, which are incom-
patible with current LLMs.

Specifically, inspired by the parameter-efficient
fine-tuning (PEFT) (Lialin et al., 2023), we propose
a novel adapter structure, named KG-Adapter,
which contains a Sub-word to Entity Hybrid Ini-
tialization (SEHI) and multiple KG-Adapter layers,
enabling LLMs to access structured KGs directly.
The SEHI initializes the KG representations by
fusing the entity-level KG representations (from
pre-trained KG embeddings) with the sub-word-
level KG representations (from the word embed-
ding of LLM). Between each LLM layer, we insert
a KG-Adapter layer that encodes KG from both
node-centric and relation-centric perspectives and
performs joint reasoning via bi-directional cross-
attention to inject KG information into the LLM.

Experimental results demonstrate the effective-
ness of our approach on four datasets across two
tasks. With only 28M trainable parameters, we en-
able the 7B model to outperform the full-parameter
fine-tuned SOTA methods and achieve comparable
performance to the prompt-based ChatGPT meth-
ods.

Our contributions are summarized below:

• For the first time, we propose a PEFT-based
method that integrates KGs directly into
LLMs with just 28M trainable parameters and
can be trained on a single A40 GPU within a
few hours.

• We propose a novel adapter structure, KG-
Adapter, which is compatible with the
decoder-only LLMs and can encode KG from
both node-centric and relation-centric perspec-
tives to fully utilize the structure information.

• The experimental results demonstrate our ap-
proach is applicable to LLMs of different
types and sizes, achieving significant improve-
ments across four datasets, allowing the 7B-
parameter model to outperform prior SOTA
methods of full-parameter fine-tuning and is
comparable to the prompt-based ChatGPT
methods.

2 Related Work

2.1 Integration of KG by Prompt

Recent LLM-related studies are almost based
on the RAG framework, where relevant KG sub-
graphs are obtained through retrieval methods, then
linearized and inserted into the input context di-
rectly with well-designed prompts. CoK (Li et al.,
2023b) retrieves relevant knowledge from KG after
dividing the original question into multiple sub-
questions through a question generation model and
uses the retrieval results to guide the answer gen-
eration. KAPING (Baek et al., 2023a) retrieves
facts relevant to the question from the KG based
on semantic similarity and fills in a special prompt
as the input of LLMs. RoG (Luo et al., 2023) pro-
poses a planning-retrieval-reasoning framework,
which first generates relation paths grounded by
KGs and uses them to retrieve valid reasoning
paths from the KGs for LLMs to conduct reason-
ing. StructGPT (Jiang et al., 2023b) adopts a tool-
learning approach to design an iterative reading-
then-reasoning framework, which contains special-
ized interfaces that LLMs can call to access struc-
tured data and acquire valuable knowledge to help
generate answers. However, these prompt-based
methods suffer from the problems of loss of struc-
tural information, knowledge conflicts, and over-
reliance on super LLMs.
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2.2 Integration of KG by Pre-training

Some previous studies incorporate KG knowl-
edge through specialized pre-training tasks. For
example, ERNIE (Zhang et al., 2019) designs a
token-entity alignment mask task, WKLM(Xiong
et al., 2019) introduces an entity replacement dis-
crimination task, GLM (Shen et al., 2020) proposes
a KG-guided entity masking scheme to conduct
the entity-level masked language modeling task,
and Deterministic-LLM (Li et al., 2022) focuses
on deterministic knowledge thus masks only deter-
ministic entities, and additionally introduces the
clue contrastive learning and the clue classifica-
tion tasks. These pre-training tasks require large
amounts of KG-text-aligned data and long train-
ing time, which are prohibitively expensive and
impractical for LLMs.

2.3 Integration of KG by Fine-tuning

Before the era of LLMs, there was a series of
studies (Lin et al., 2019a; Sun et al., 2021; Ya-
sunaga et al., 2021; Zhang et al., 2022b; Wang et al.,
2023d; Park et al., 2023) focusing on combining
pre-trained models with KGs. These methods usu-
ally design a special KG encoder to integrate the
KG information and perform full-parameter fine-
tuning on specific tasks. However, there are two
long-standing problems of heterogeneous represen-
tation (Lin et al., 2019a; Yasunaga et al., 2021; Sun
et al., 2021; Zhang et al., 2022b) and knowledge
noise (Liu et al., 2020; Sun et al., 2020) for this
type of methods, which limit their effectiveness.
Furthermore, these methods are incompatible with
current LLMs because they rely on the encoder ar-
chitecture and the full-parameter fine-tuning is also
costly for LLMs. For this reason, our KG-Adapter
is designed for decoder-only LLMs and is based on
PEFT to reduce costs.

3 Methodology: KG-Adapter

3.1 Overview

To incorporate KGs into LLM at the parame-
ter level, we first have to address the problem of
heterogeneous representations, i.e., the pre-trained
KG embeddings are very different from the word
embeddings of the LLM since they exist in two
different vector spaces. Thus, we propose the Sub-
word to Entity Hybrid Initialization (SEHI) module
to bridge the gap. Then, to fully use the information
in KG, we design the KG-Adapter layer to encode
KG from two perspectives and perform joint rea-

soning. Finally, we insert the KG-Adapter layer
between each of the LLM blocks, ensuring that the
internal structure and parameters of the original
LLM are not modified.

As shown in Figure 2, we first fuse the entity-
level KG representations (from the pre-trained KG
embedding) with the sub-word-level KG represen-
tations (from the word embedding of LLM) by
the SEHI and obtain the final KG representations
(3.2). Then, the KG representations will be input
into the KG-Adapter layer, where the KG repre-
sentations will be updated in a node-centric way
through the graph neural network (GNN) (3.3.1).
After that, we reconstruct the KG representations
into a relation-centric form by MLPtrip (3.3.2) and
fuse them with the textual representations through
bi-directional cross-attention to achieve joint rea-
soning (3.3.3). Finally, the updated textual repre-
sentations will be passed back to the LLM, while
the updated KG representations will be passed to
the next layer.

3.2 Sub-word to Entity Hybrid Initialization

Since the KG representations and the textual rep-
resentations exist in two different vector spaces,
this gap will cause the heterogeneous representa-
tion problem. To alleviate that, we propose the
SEHI that fuses the two types of representations at
the initialization stage.

In pre-trained KG representations, nodes and
edges are all at the entity level. For example,
"knowledge graph" is an entity (multi-word), and
it consists of two words "knowledge" and "graph".
In contrast, word embedding is at the sub-word
level since LLMs commonly use BPE (Shibata
et al., 1999) or SentencePiece (Kudo and Richard-
son, 2018) encoding.

A multi-word (i.e., nodes and edges in KG) con-
tains multiple words and a word contains multiple
sub-words. To align them, we first input each node
into the pre-trained word embedding of LLM to get
their sub-word level representations:

{hsub1n , hsub2n , ..., hsubkn } = Emb(n) (1)

where Emb is the pre-trained word embedding in
LLM, n is a node in KG, hsubin ∈ Rd′ is a sub-
word level hidden vector of node n and d′ is the
hidden size of the word embedding. We then sum
these hidden vectors to obtain the multi-word level
representations and pass them through a MLP to
downscale the hidden size to the same as the pre-
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Figure 2: KG-Adapter Structure. The upper part is the overall frame, and the lower part contains the internal
structure of the Sub-word to Entity Hybrid Initialization and the KG-Adapter Layer. The modules with blue color
are pre-trained and will be frozen during fine-tuning, and the modules with yellow color are trainable.

trained KG embedding (from 4096 to 1024):

ḣmw
n = MLP1(

k∑

i=1

hsubin ) (2)

where ḣmw
n ∈ Rd′′ is the multi-word level represen-

tations from LLM word embedding and d′′ is the
hidden size of KG embedding. Then, we update the
pre-trained KG representation hmw

n with another
MLP:

ḧmw
n = MLP2(h

mw
n ) (3)

and fused ḣmw
n with ḧmw

n by gated sum and pass
through a MLP to further downscale the hidden
size (from 1024 to 64):

hn = MLP3(σ(ḣ
mw
n ) + (1− σ)ḧmw

n ) (4)

where σ is a learnable factor, hn ∈ Rd is the final
representation of node n and d is the hidden size of
KG-Adapter layer. Using the same way, we get the
hybrid initialization representations for all nodes
and edges in KG:

Hn = {hn1 , ..., hnN } (5)

Hr = {hr1 , ..., hrM } (6)

where N and M are the number of nodes and edges
in KG, Hn is the representation of all nodes and
Hr is the representation of all edges in KG.

These initial representations contain information
from both LLM and KG, thus alleviating the het-
erogeneous representation problem and making it
more understandable for LLM.

3.3 KG-Adapter Layer
3.3.1 GNN layer

GNNs learn node features through a node-centric
message-passing scheme. Thus, we first use RGAT
(Wang et al., 2020) to update the KG representa-
tions, where each node is updated with the informa-
tion from its neighboring nodes and corresponding
edges, to obtain the node-centric KG representa-
tions:

H l
n = {hln1

, ..., hlnN
} = RGAT (H l−1

n , H l−1
r )

(7)
where H l−1

n = {hl−1
n1

, ..., hl−1
nN

} and H l−1
r =

{hl−1
r1 , ..., hl−1

rM
} are node and edge representations

from previous layer, hlni
is a updated node repre-

sentation, computed by the following equations:

αji = Softmax(
(hl−1

ni
Wq)(h

l−1
nj

Wk + hl−1
rji )

T

√
d

)

ĥl−1
ni

=
∑

j∈neighbor(i)
αji(h

l−1
nj

Wv + hl−1
rji )

hlni
= LN(hl−1

ni
+ ĥl−1

ni
Wo) (8)
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where Wq,Wk,Wv,Wo are trainable linear projec-
tions, d is the hidden size of KG-Adapter layer,
neighbor(i) is all neighbor nodes of node i, LN
is layer norm.

3.3.2 MLPtrip

Previous research (Park et al., 2023) found that
node-centered updating using only GNNs is in-
sufficient to encode KG, and they argued that a
relation-centered representation is more suitable.
Inspired by that, we introduce a triple projection
MLP - MLPtrip - which merges the node and edge
representations into relation-centered triple repre-
sentations. Since each triple consists of two nodes
and an edge, we first concatenate them together
and fuse their representations via MLPtrip:

htij = [hni ;hrij ;hnj ]

ĥtij = MLPtrip(htij ) (9)

where htij ∈ R3d is a triple representation concate-
nated of nodes and edge representations, ĥtij ∈ Rd

is the fused triple representation obtained from
MLPtrip and ";" is the concatenation operation
of vectors.

Now, we have the relation-centered triple repre-
sentations that contain information about the KG
structure.

3.3.3 Joint Reasoning Module
The next step is to perform joint reasoning be-

tween the representations of KG and text to inte-
grate these two types of information thoroughly.
We first align the hidden size of the textual rep-
resentations H ′

text from LLM to the same as KG
representations through a downscale MLP (from
4096 to 64):

Htext = MLPdown(H
′
text) (10)

and concatenate all triple representations into a
matrix as the new KG representations:

Hkg = [ĥt1 ; ...; ĥtM ] (11)

then use a bi-directional cross-attention to conduct
joint reasoning:

Qkg,Kkg, Vkg = HkgW̃Q, HkgW̃K , HkgW̃V

Qtext,Ktext, Vtext = HtextW̃Q, HtextW̃K , HtextW̃V

Ĥkg = Softmax(QkgK
T
text/

√
d)Vtext

Ĥtext = Softmax(QtextK
T
kg/

√
d)Vkg (12)

where W̃Q, W̃K , W̃V are three attention matrices,
Ĥkg is the KG representations updated by textual
information, Ĥtext is the text representations up-
dated by KG information. We then upscale the
hidden size of Ĥtext (from 64 to 4096) and sum it
with H ′

text:

Ĥ
′
text = MLPup(Ĥtext) +H

′
text (13)

where Ĥ
′
text is the final textual representation to be

passed into the LLM layer. Note that we omit all
residuals (the ⊗ in Figure 2) in equations, which
fuses the two values by gated summation.

4 Experimental Setup

4.1 Datasets
Datasets used. We conduct experiments on

two types of tasks: Multiple-Choice Question An-
swering (MCQA) and Knowledge Graph-based
Question Answering (KGQA) (see A.1 for the for-
mal definitions). For the MCQA task, we evalu-
ate our method on two commonly used datasets,
OpenBookQA (OBQA) (Mihaylov et al., 2018)
and CommonsenseQA (CSQA) (Saha et al., 2018).
For the KGQA task, we use WebQuestionsSP
(WQSP) (Yih et al., 2016) and ComplexWebQues-
tions (CWQ) (Talmor and Berant, 2018) datasets.

Datasets split. For CSQA, we follow Lin et al.
(2019b) to split the data into in-house development
(IHdev) and in-house test (IHtest) sets. For other
datasets, we use their official split. Dataset statis-
tics are in A.2.

KG used and pre-processing. For OBQA and
CSQA, we use ConceptNet (Speer et al., 2017) as
the source KG and directly use the processed KG
subgraphs from Park et al. (2023), where each KG
subgraph is retrieved from the entire KG based on
the entities in the question sentence. For WQSP
and CWQ, we use FreeBase (Bollacker et al., 2008)
as the source KG and use the processed data by Xie
et al. (2022b). See A.3 for more details about the
KGs pre-processing.

4.2 Implementation Details
For training, we choose Llama2-7B-base 1 and

Zephyr-7B-alpha 2 as the base models. Different in-
structions and templates are used for various tasks
and base models (See A.4). We perform up to
10 epochs instruction-tuning with early-stop, use

1https://huggingface.co/meta-llama/Llama-2-7b
2https://huggingface.co/HuggingFaceH4/

zephyr-7b-alpha
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the autoregressive objective and calculate the loss
on answer tokens only. For testing, we select the
best model based on the performance of the devel-
opment set and use greedy decoding to generate
responses with a zero-shot context. We use one
NVIDIA A40 48GB GPU for training and testing.
For hyperparameters, refer to A.5.

4.3 Baselines

To comprehensively evaluate our method, we
select a total of 26 methods from three categories
for comparison, containing (1) KG+Full-Parameter
Fine-Tune LMs, which design specialized KG en-
coders and combine them with pre-trained lan-
guage models for full-parameter fine-tuning; (2)
LLM Baselines, which are original LLMs after
pre-training or supervised fine-tuning (SFT); (3)
KG+Prompt Enhanced LLMs, which are enhanced
LLMs with retrieval and prompt-based methods.

KG+Full-Parameter Fine-Tune LM. This type
of approach usually designs specialized KG en-
coding modules and combines them with pre-
trained language models for full-parameter fine-
tuning. For OBQA and CSQA datasets, we choose
GreaseLM (Zhang et al., 2022b), JointLK (Sun
et al., 2021), GSC (Wang et al., 2021), DHLK
(Wang et al., 2023d) and QAT (Park et al., 2023),
where QAT and DHLK are the recent SOTA meth-
ods. For WQSP and CWQ, we compare with
the embedding-based methods, including Embed-
KGQA (Saxena et al., 2020), NSM (He et al.,
2021), KGT5 (Saxena et al., 2022), and retrieval-
augmented methods, including PullNet (Sun et al.,
2019), SR (Zhang et al., 2022a), UniKGQA (Jiang
et al., 2023d).

LLM Baselines. The original LLMs or the
LLMs after SFT, including Llama2 (Touvron et al.,
2023), Zephyr (a SFT version of Mistral) (Jiang
et al., 2023a) , Flan-T5 (Chung et al., 2022), Alpaca
(Taori et al., 2023), GPT-3 (Brown et al., 2020),
ChatGPT and GPT4 (OpenAI et al., 2023).

KG+Prompt Enhanced LLMs. Includes
prompt engineering and RAG methods for LLMs.
For OBQA and CSQA, we compare with Few-shot
(Brown et al., 2020), CoT (Wei et al., 2022), Auto-
CoT (Zhang et al., 2022c), KSL (Feng et al., 2023),
KAPING (Baek et al., 2023b) and CoK (Wang
et al., 2023b). For WQSP and CWQ, we com-
pare with KD-CoT (Wang et al., 2023c), StructGPT
(Jiang et al., 2023c), KAPING (Baek et al., 2023b).

4.4 Evaluation Metrics

For the MCQA task, we follow previous work
(Park et al., 2023; Wang et al., 2023d) using Accu-
racy to assess the correctness of the prediction. For
the KGQA task, we follow the same way as Jiang
et al. 2023c to calculate Hits@1 which assesses
whether the top-1 predicted answer is correct or
not, since we use the greedy decoding strategy that
generates only one answer.

5 Results and Analysis

5.1 Main Results

MCQA task. In Table 1, we report our KG-
Adapter and baseline performances in the MCQA
task, including OBQA and CSQA datasets. Our
KG-Adapter exhibits an average improvement of
40.8 and 47.5 points over the base models Llama2-
7B and Zephyr-7B on two datasets. With only
27.9M parameters trained, our KG-Adapter outper-
forms all LLM baselines and KG+Full-Finetune
methods, including previous SOTA method QAT,
demonstrating the effectiveness of our method and
the potential of LLM with well-designed PEFT ar-
chitectures for KG-related tasks. In comparison to
KG+Prompt-enhanced LLMs, KG-Adapter outper-
forms all methods even though their base model
(ChatGPT) is much stronger than ours (Zephyr-
7B). Furthermore, these methods over-rely on su-
per LLMs and achieve limited enhancements on
small-scale LLMs, whereas our method is effective
on the 7B models as well.

KGQA task. Unlike the MCQA task, the
KGQA task is open-ended QA with no options,
so the KG subgraphs may contain extensive invalid
information unrelated to the correct answers, to
address that, many previous methods use a two-
stage retrieval-then-generation pipeline. However,
retrieval is not the focus of our study, the KG
subgraphs we used contain more noise than the
work focus on retrieval (marked with † in Table 2),
putting our approach at a disadvantage in compar-
isons.

We present the results of both WQSP and CWQ
datasets in Table 2. Compared to our base models
Llama2-7B and Zephyr-7B, our method achieves
an average of 32.8 and 16.7 points improvement
over the two datasets. Compared with KG+Full-
Finetune methods, KG-Adapter outperforms all
methods that don’t use retrieval and achieves com-
parable results to methods using retrieval. Except
for UniKGQA, which first pre-trains a model and

3818



Categories Methods OBQA(acc) CSQA(acc) #base model #FTP
test dev ih_test

KG+Full-Finetune
LMs

GreaseLM (2022b) 84.8 78.5 74.2 AristoRoBERTa(355M) >355M
JointLK (2021) 84.9 77.9 74.4 AristoRoBERTa(355M) >355M

GSC (2021) 86.7 79.1 74.5 AristoRoBERTa(355M) >355M
DHLK (2023d) 86 79.4 74.7 AristoRoBERTa(355M) >355M

QAT (2023) 86.9 79.5 75.4 AristoRoBERTa(355M) >355M

LLM
Baselines

Llama2-7B* (2023) 55.6 29.6 28.5 Llama2(7B) 0
Zephyr-7B* (2023a) 41.2 39.2 36.3 Zephyr(7B) 0
Llama2-70B (2023) 60.2 — — Llama2(70B) 0

GPT-3 (2020) 48.2 53.9 52 GPT3(175B) 0
ChatGPT (2023) 74.8 73.5 71 ChatGPT(>100B) 0

GPT4 (2023) 91.0 77.6 79 GPT4(>100B) 0

KG+Prompt Enhanced
LLMs

Few-Shot (2020) 76.6 79.5 — GPT3(175B) 0
CoT (2022) 73 73.5 — GPT3(175B) 0

Auto-CoT (2022c) — 74.4 — GPT3(175B) 0
KSL+GPT3.5 (2023) 81.6 79.6 — ChatGPT(>100B) 0

KSL+Lama2-7B (2023) 32.2 26.3 — Llama2(7B) 0
KAPING (2023b) 60 — — FLAN-T5 xxlarge(11B) 0

CoK (2023b) 74.8 77.3 — GPT3(175B) 0
GNP (2024) 87.2 — — FLAN-T5 xxlarge(11B) >0

GNP+LoRa (2024) 89.6 — — FLAN-T5 xxlarge(11B) >0

KG-Adapter (Our) Our+Llama2-7B 89.2 78.1 76.6 Llama2(7B) 27.9M
Our+Zephyr-7B 93.2 79.6 79.3 Zephyr(7B) 27.9M

Table 1: Main results of MCQA task. #FTP is the number of trainable parameters of fine-tuning. ∗ denotes results
reproduced with our prompt in zero-shot, all other results are from the original paper or other paper.

WQSP(hit@1) CWQ(hit@1)Categories Methods
test test

#base model #FTP

EmbedKGQA (2020) 66.6 44.7 RoBERTa-base(125M) >125M
KGT5 (2022) 56.1 36.5 T5-small(60M) >60M
NSM (2021) 68.7 47.6 — >0

GraftNet†(2022) 66.4 36.8 — >0
PullNet†(2019) 68.1 45.9 — >0

Subgraph Retrieval†(2022a) 69.5 49.3 RoBERTa-base(125M) >125M

KG+Full-Finetune
LMs

UniKGQA†(2023d) 77.2 51.2 RoBERTa-base(125M) >375M
Llama2-7B* (2023) 31.4 8.3 Llama2(7B) 0
Zephyr-7B* (2023a) 54.9 31.4 Zephyr(7B) 0
Flan-T5-xl (2022) 31 14.7 Flan-T5-xl(3B) 0
Alpaca-7B (2023) 51.8 27.4 Alpaca(7B) 0

LLM
Baselines

ChatGPT (2023) 66.8 39.9 ChatGPT(>100B) 0
KD-CoT†(2023c) 68.6 55.7 ChatGPT(>100B) 0

StructGPT†(2023c) 72.6 — ChatGPT(>100B) 0
KAPING-175B†(2023b) 73.9 — GPT3(175B) 0

KG+Prompt Enhanced
LLMs

KAPING-7B†(2023b) 60.4 — GPT3(7B) 0
Our+Llama2-7B 65.9 47.8 Llama2(7B) 25.7MKG-Adapter (Our)
Our+Zephyr-7B 68.7 51 Zephyr(7B) 25.7M

Table 2: Main results of KGQA task. #FTP is the number of trainable parameters of fine-tuning. † denotes using
retrieval. ∗ denotes results reproduced with our prompt in zero-shot, all other results are from the original paper or
other paper.

then fine-tunes it to get both a retrieval model and
a generation model for retrieval-then-generation,
whereas our method only performs end-to-end
training with 25.7M learnable parameters and no
pre-training or retrieval is used. For the LLM-based
approaches, our KG-Adapter outperforms all LLM
baselines and achieves a close performance to the

KG+Prompt-enhanced LLMs, even though all of
them have stronger base models (e.g., ChatGPT)
than ours and all use retrieval.

5.2 Ablation Studies

Impact of KG-Adapter components. We per-
form ablation experiments to analyze the effec-
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Method
Base Model

Zephyr-7B Llama2-7B
KG-Adapter 93.2 89.2

w/o SEHI 92.2 88.8
w/o GNN 91.2 88.2

w/o MLPtrip 90.6 88.4
w/o KG 90.8 88.8
w/ LoRa 91.6 88.4

Table 3: Ablation study on OBQA(acc) test set.

tiveness of each module, including (1) w/o SEHI,
where we remove the SEHI and use the LLM’s
word embedding as the KG representations; (2)
w/o GNN, where we remove the GNN which up-
dates the KG representations from node-centered;
(3) w/o MLPtrip, where we remove the MLPtrip

which is used to get the relation-centered KG rep-
resentations.

As shown in Table 3, removing any module from
KG-Adapter hurts performance, illustrating the pos-
itive effects of each module. KG-Adapter w/o
MLPtrip and w/o GNN cause the greatest decrease
in performance on Zephyr-7B and Llama2-7B, re-
spectively, suggesting that both node-centered and
relation-centered KG encoding helps the models
to utilize KG information better. When w/o SEHI,
the decrease in performance is minimal, suggesting
that the word embedding of LLM contains most of
the information in the KG embedding, with the size
and pre-trained corpus of LLM growing, training
a KG embedding may be unnecessary. In addition,
we observe that the effectiveness of different mod-
ules varies across different base models, suggesting
that the kind of base model affects the effective-
ness of our approach because they have different
capabilities and parameter knowledge and therefore
may have different mechanisms for understanding
KG.

Impact of using KG. To test the effect of in-
tegrating KG, we also experiment with (1) w/o
KG, where we input an empty KG containing two
PAD nodes and a PAD edge; (2) w/ LoRa, where
we train a LoRa (Hu et al., 2021) using the same
number of learnable parameters and data as KG-
Adapter.

The results are shown in Table 3. Without using
KG, our performance is similar to the w/ LoRa, sug-
gesting that our method can also serve as a general
PEFT approach beyond injecting KG. Compared to
KG-Adapter (w/ KG), the use of KG leads to 1.6%

↑ on average across two models, indicating the
effectiveness of injecting KG. Surprisingly, a sim-
ple LoRa can also yield impressive improvement,
showing the potential of LLM with well-designed
PEFT methods, since the LLMs may have acquired
most of the knowledge in KG as parameterized
knowledge during pre-training, and may generate
correct answers without external knowledge due to
their strong reasoning ability.

Impact of the number of KG-Adapter layers.
We verify the effect of the number of KG-Adapter
layers. As shown in Figure 3 (a), we find that
increasing the number of KG-Adapter layers results
in a consistent improvement. This can be attributed
to the increase of trainable parameters and more
stacked layers can help encode the KG better.

Impact of the hidden size of KG-Adapter. In
Figure 3 (b), we examine different hidden sizes of
KG-Adapter. We observe a notable improvement
when the hidden size increases from 16 to 64. In-
stead, the effect decreases slightly as the hide size
continues to increase to 128. This indicates that
a hidden size of 64 is sufficient to represent the
main information of KG and a larger hidden size
leads to slower convergence during training and
may contain more noise.

5.3 Analysis
Applicability to LLMs with different sizes. We

evaluate the generalizability of our KG-Adapter
by applying it to LLMs with different numbers
of parameters. As shown in Figure 4 (a), our
KG-Adapter improves the performance of models
ranging from 3B to 13B in size, proving our KG-
Adapter can apply to LLMs with different sizes and
can inherit the capabilities of the base models that
achieve better performance on a larger base model.

Figure 3: Impact of the number of KG-Adapter layers
(a), and the hidden size of KG-Adapter (b).

Applicability to LLMs at different stages. To
further assess the generalizability of KG-Adapter,
we select Llama-base, Llama-chat, Mistral-base,
and Mistral-inst as the base models to test whether
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Figure 4: Applicability to LLMs with different sizes (a),
and at different stages (b).

our approach can be applied to LLMs at different
stages (after SFT or not). As illustrated in Figure 4
(b), our method demonstrates applicability to dif-
ferent types of LLMs, regardless of whether they
have undergone SFT or not. Furthermore, exper-
imental results show that our approach does not
lead to catastrophic forgetting even when the SFT
models are trained three times (i.e., pre-training,
SFT, fine-tuning).

Figure 5: Case Study.

Case Study. We conduct a case study to analyze
how our KG-Adapter leverages the structure infor-
mation in KG and mitigates the knowledge conflict
problem. We select some representative nodes and
their corresponding edges from the whole KG sub-
graph for visualization, and the weights on edges
are obtained by summing the attention weights in
each KG adapter layer and performing normal-
ization. We compare our KG-Adapter with two
types of vanilla approaches: (1) baseline, which is
the base model of our KG-Adapter, and (2) base-

line+KG, in which the linearized KG is added in
the context as model input.

As shown in the upper of Figure 5, our approach
starts from the key entity "Overpopulation" in the
question, and through 2-hop reasoning, success-
fully finds the correct entity "lower life", which
has the highest weight on edge. Conversely, the
baseline methods generate an incorrect answer, re-
gardless of the addition of KG, which illustrates
incorporating KG through prompts may lead to
knowledge conflicts and the lack of KG structure
leads to underutilization of KG information. Simi-
larly, in the figure below, our approach reaches the
correct answer entity “Cello” through the path with
the highest weight from the two question entities,
showing the interpretability of our method. How-
ever, the baseline method response is “No Correct
Answer" due to the lack of additional knowledge,
and the baseline+KG gives an answer but is wrong,
suggesting that simply inputting a linearized KG
is difficult to understand by the model and loses
structural information in the KG.

6 Conclusion

To enable LLMs to directly access structured
KGs and overcome the limitations of current
prompt-based approaches, i.e., the inability to uti-
lize the structural information of KGs, the problem
of knowledge conflicts, and the over-reliance on su-
per LLMs. We propose a novel PEFT-based adapter
structure, named KG-Adapter, which is a plug-and-
play adapter module applicable to various LLMs
and requires only 28M parameters to train. Benefit-
ing from the internal GNN layer and MLPtrip, KG-
Adapter can encode KGs from both node-centered
and relation-centered perspectives to fully utilize
the structure information in KGs. Experiments on
four datasets across two tasks show that our KG-
Adapter achieves superior performance over previ-
ous full-parameter fine-tuned SOTA methods and
is comparable to the recent prompt-based ChatGPT
methods.
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Limitations

Due to the limitation of computational resources,
our main experiments were performed only on the
models with 7B parameters, and based on the exper-
iments in Section 5.3, we believe that our method
can achieve better performance on larger models
(e.g., 70B). For the same reason, we do not com-
pare with the full-parameter fine-tuned LLMs.

Many studies have indicated that a good KG re-
trieval method can effectively improve the quality
of the final generated responses (as shown in Ta-
ble 2, the methods with retrieval usually get better
results). However, retrieval is not the focus of our
work, so we do not use complex retrieval methods,
which means that our approach can be further im-
proved by combining with good retrieval methods.

We find that existing KGQA datasets are not en-
tirely suitable for LLMs; they are either too easy
for LLMs, which can generate answers well with-
out relying on KG knowledge, or too dependent on
retrieval, which makes the input KG contain much
noise, making it hard to independently test the abil-
ity of LLMs to comprehend and utilize structured
knowledge.

Ethical Considerations

Our study focuses on integrating KGs into LLMs
through parameter-efficient fine-tuning, aiming to
alleviate the issues of losing KG structure informa-
tion in prompt-based methods. All models, datasets
and KGs used in this paper are open-source and
publicly available. Based on this, we believe that
our research does not compromise data security or
personal privacy. Furthermore, our study is benefi-
cial in reducing the generation of false information
by LLMs. We are confident that our research not
only avoids causing harm to society but also con-
tributes to societal well-being.
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A Appendix

A.1 Preliminary
In this section, we introduce the definition of the

knowledge graph and formally define the problem
of multiple-choice question answering (MCQA)
and knowledge graph-based question answering
(KGQA).

Definition 1. Knowledge Graph. A knowl-
edge graph is defined as a set of triples G =
{T1, T2, ..., Tn}, each T is a triple T = (h, r, t),
where h and t are the head entity and the tail entity,
and r is a directed edge from h to t.

Problem 1. Multiple-Choice Question An-
swering. Given a question Q, a set of answer op-
tions A = {a1, a2, ..., ak}, and an optional con-
text C depending on open-book or close-book,
the task is to select the best answer. We addi-
tionally use knowledge graphs to provide external
knowledge, therefore the task can be defined as
a∗ = argmaxθ fθ(Q,C,G,A), where a∗ ∈ A is
the correct option and fθ is the model with parame-
ter θ.

Problem 2. Knowledge Graph-Based Ques-
tion Answering. Given a question Q and a knowl-
edge graph G, the target is to generate the ex-
pected result to answer the question Q based on
the knowledge from G, which is defined as a∗ =
argmaxθ fθ(Q,G), where a∗ is an open answer.

A.2 Statistics of Datasets
A.3 Detail of KG Processing

Subgraph Retrieval. In the MCQA and KGQA
tasks, the general process is first to retrieve a sub-
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Statistics OBQA CSQA WQSP CWQ
nodes 18.08±7.14 18.45±5.19 48.99±17.69 71.87±19.89
edges 58.33±31.89 70.57±26.74 39.89±10.65 57.50±6.79

train/dev/test 4957/500/500 8500/1221/1241 2673/309/1639 27639/703/2816

Table 4: Statistics of Datasets. Displays the mean and
standard deviation of the number of nodes and edges,
and the number of training/validation/test sets in each
dataset.

graph related to the question from the full KG, and
then input that subgraph to the model with the ques-
tion. Specifically, the retrieval process is to (1) find
all paths from each question entity to each option
entity (if have) within n-hop; (2) then calculate
the relevant scores of each node (entity) and ques-
tion by a pre-trained LM, such as Sentence-BERT;
(3) only retain the top-k scoring nodes and build a
subgraph.

In our work, we do not focus on the retrieval
process, so we directly use the retrieved subgraphs
from previous works. Specifically, for the MCQA
task, we use the processed KG data by Park et al.
(2023), which provides a sub-graph of KG for each
sample. It merges the edge types in ConceptNet
from 31 to 17, and introduces two additional edges
of global nodes "G → q" and "G → a", and finally,
we add the reverse edge to each edge to obtain
38 edge types (relations). For the KGQA task,
we use the processed KG-QA pair data by Xie
et al. (2022a) that can be downloaded here 3, where
contain 772 and 801 relation types for WQSP and
CWQ datasets, respectively.

KG Embeddings. KG embeddings are the same
as word embeddings which provide a vector repre-
sentation for each node/entity in the KG. A simple
way to get KG embeddings is first using templates
to convert the triples into sentences and feed them
into some LMs (such as BERT-Large), obtaining a
sequence of token embeddings from the last layer
and performing mean pooling to get the embedding
for an entity. Another approach is using special
algorithms (e.g., TransE) to train KG embeddings
on KGs.

For the MCQA task, we use the KG embeddings
from Park et al. (2023). For the KGQA task, we
do not use pre-trained KG embeddings since the
FreeBase is a super large KG (over 100GB), so
there are no open-source KG embeddings.

3https://drive.google.com/drive/folders/
1GXigUv3MU-Sh4XiY6Wz3xVeNT_s0SuON

A.4 Detail of Training
We use the same way to initialize the parame-

ters in KG-Adapter as Sung et al. (2022), which
first calculates the importance score of each weight
vector in LLMs and chooses the n rows with top-n
importance scores as the initial parameters of new
modules.

The inputs and outputs examples during training
are shown in Table 6. For different LLMs, we
use different templates. For different tasks, we
design two types of system instructions (upper for
MCQA task and below for KGQA task). We only
calculate the loss on answer tokens, such as "(B)
fecal matter</s>" in Table 6.

Since the dataset for the KGQA task (WQSP and
CWQ) does not have pre-trained KG embedding,
the implementation of the Sub-word to Entity Hy-
brid Initialization on the KGQA task is different
in which it only contains the KG representations
initialized from the word embedding of LLM.

A.5 Detail of Hyperparameter
We list all hyperparameters of different datasets

in Table 5. We do not change any hyperparameters
of the LLM.

Hyperparameter OBQA CSQA WQSP CWQ
learning_rate 5.00E-04 1.00E-04 7.00E-04 7.00E-04
lr_scheduler polynomial_decay_schedule_with_warmup

warm_up_epoch 0.1 0.1 0.1 0.1
micro_batch_size 2 2 2 2
marco_batch_size 64 64 64 64

weight_decay 0.02 0.02 0.02 0.02
max_seq_length 1024 1024 800 2048

max_train_epochs 10 10 10 10
early_stop_patience 5 5 3 3

Table 5: Hyperparameters of different datasets.
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Input
and

Output

Zephyr for MCQA task
<|system|>You are an honest and helpful AI assistant.
Now you’re going to do a multiple choice task, you will be given a question and options,
and you need to use the knowledge graph to select the correct option(s).
First output the correct answer(s). If the question does not make any sense, or is not factually coherent,
please answer "I have no comment". If you don’t know the answer to the question,
answer "I don’t know" instead of sharing false information.</s>
<|user|>
Q: processes sometimes produce waste products Eating and digesting a large meal is guaranteed to produce
(A) disease
(B) fecal matter
(C) fuel
(D) fertilizer
A:</s>
<|assistant|>
(B) fecal matter</s>
Llama2 for KGQA task
<s><|system|>You are an honest and helpful AI assistant.
Now you’re going to do a QA task, you will be given a question, and you need to generate all correct answers and split them by ";".
First output all correct answers. If the question does not make any sense, or is not factually coherent,
please answer "I have no comment". If you don’t know the answer to the question,
answer "I don’t know" instead of sharing false information.</s>
<|user|>
Q: where is the capital city of assyrians?
A:</s>
<|assistant|>
Assur; Nineveh</s>

Table 6: Examples of our used input and output for different LLMs and different tasks in training. upper is the input
and output we used for Zephyr on MCQA task and below is for Llama2 on KGQA task.
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