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Abstract

Incomplete utterance rewriting (IUR) aims to
reconstruct the utterance with omitted informa-
tion and pronouns to be standalone and com-
plete based on the context. The existing works
predominantly focus on simple ellipsis and
coreference problems in brief multi-turn dia-
logues. But in actual scenarios: 1) the context
of the dialogues frequently comprises multiple
similar candidates for ellipsis and coreference
resolution, pouring to confuse. 2) the number
of turns tends to be more extensive, while the
content with various topics also grows more
complex. This paper proposes a novel method
called CAT to address these issues. In partic-
ular, we first devise a tacker model, distilled
from GPT4-turbo, to adopt Context Tracking
that dynamically updates a list of key phrases
turn by turn, as accurate candidates for ellip-
sis and coreference resolution. Second, we
further present the Dynamic Context Introduc-
tion mechanism to filter irrelevant preceding
contexts that are not relied on by any element
within the key phrase list to condense extended
dialogues. Comprehensive experiments indi-
cate that our solution provides a significant
improvement over the existing baselines, and
achieves state-of-the-art on three benchmarks1.

1 Introduction

Incomplete Utterance Rewriting (IUR) serves as
a vital component in multi-turn dialogue systems,
which reconstruct the current utterance by integrat-
ing the omitted information and resolving corefer-
ence based on the context to ensure its complete-
ness. Currently, IUR is widely employed in preva-
lent tasks such as information retrieving (Li et al.,
2022b; Mo et al., 2023), question answering (Vaku-
lenko et al., 2021), and web searching (Li et al.,
2022a; Mohankumar et al., 2023). With the advent
of large language models (LLMs) (Ouyang et al.,

1https://github.com/ygxw0909/CaT

Figure 1: An example of IUR in a product consulting
and sales scenario. Within, green denotes the user’s
input, while blue signifies the salesperson’s. The full
dialogue is upon 35 turns.

2022; OpenAI, 2023) and breakthroughs in multi-
turn dialogue-oriented tasks, IUR has received in-
creasing attention in recent years.

In contrast to the brief (in less than 10 turns
on average) and simple (usually centering around
a single topic) dialogue observed between users
and systems, which is primarily focused on by cur-
rent IUR researches as the benchmark (Elgohary
et al., 2019; Su et al., 2019; Pan et al., 2019; Regan
et al., 2019; Martin et al., 2020), customer service
and sales scenarios often entail more complex dia-
logues between users and salespersons, as shown
in Figure 1. These scenarios present two princi-
pal challenges: a) complex ellipsis and coreference
problems delivered by the diverse dialogue content
and topics. For instance, according to the demand
for reimbursement, several insurance products are
mentioned throughout the dialogues, which may
lead to confusion in figuring out which product
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is the user inquiring about. b) extended turns, at
times, reaching upwards of hundreds, encompass-
ing multiple distinct topics. Within the dialogue in
Figure 1, the topic transitions from consulting the
function of medical insurance to recommending
various products for purchase.

Some of the existing methods (Liu et al., 2020;
Du et al., 2023; Li et al., 2023a) apply cross atten-
tion between the current utterance and its context
to gain the rewriting matrix, using it for token-level
actions (such as insertion, deletion, etc.). How-
ever, these methods are limited to copying tokens
from the context, lack the flexibility for modifi-
cations, and also struggle with lengthy contexts.
Meanwhile, many other methods (Hao et al., 2021;
Xu et al., 2020; Jin et al., 2022) decompose the
rewriting task into action prediction and span pre-
diction, performing sequence tagging for action
selection in each token of the current utterance and
predicting candidate spans in the context. These
methods do not adequately address the issue of
ellipsis and coreference resolution among various
similar candidates. (Inoue et al., 2022) jointly op-
timizes important tokens picking and generative
utterances rewriting, but the design of the picker is
too straightforward and still ignores the challenges.

To handle the challenges, this paper proposes
a novel method called CAT (Context-Aware
Tracking and Dynamic Introduction), adopting
Context Tracking (CT) and Dynamic Context Intro-
duction (DCI) for resolve ellipsis and coreference,
and requisite irrelevant context filtering: 1) Con-
text Tracking. To facilitate effective tracking and
extracting the key content of complex dialogues
that the current utterance depends on, we leverage
a trainable tracker and propose Context Tracking to
perpetually maintain a key-phrase list (kp list) for
ellipsis and coreference resolution. Specifically, an
empty kp list is initialized at first, as the dialogue
advances, the tracker dynamically updates the kp
list turn by turn. The updates include: a) add when
new key phrases occur. b) delete when the topic
shifts and key phrases are not dependent anymore.
c) reserve when the previous key phrases may still
be mentioned. 2) Dynamic Context Introduc-
tion. In order to further filter out the turns which
irrelevant to the current utterance, while ensuring
the contextual integrity required for rewriting, the
Dynamic Context Introduction mechanism is ap-
plied. Upon the update of the key phrases list, each
key phrase is tagged with the index of the most
recent turn it is mentioned. Based on that, the mini-

mal dependency context is obtained by filtering out
the part preceding the furthest turn tagged in the
key phrases list. Ultimately, the rewriter takes the
current utterance, kp list, as well as the minimal
dependency context as input to generate the final
complete utterance. To fully evaluate our proposed
CAT, we collect the real dialogues between users
and salespersons from our platform with manual
annotation and construct a new challenging bench-
mark INSQR. Experimental results across three
datasets prove the effectiveness of our method.

Our contributions are summarized as follows:
• We propose a novel Incomplete Utterance

Rewriting method, which equips a tracker to
maintain a key-phrases list for ellipsis and
coreference resolution, and a rewriter to gen-
erate the complete utterance.

• We design the Dynamic Context Introduction
mechanism to filter out the irrelevant context
in order to handle the extended multi-turn
dialogue, which further enhances the perfor-
mance of the Rewriter.

• Our method achieves state-of-the-art results
on all three IUR benchmarks, obtaining signif-
icant improvements compared to the existing
methods.

2 Preliminaries

Given a dialogue context C = {C1, C2, ..., C|C|}
and a following incomplete utterance U =
{u1, u2, ..., u|U |}, where Ci = {c1, c2, ..., c|Ci|} is
the utterance of the i-th turn, uj and ck are the to-
kens of the utterance. The goal of IUR is to learn a
mapping function,

U∗ = f(M, U, C), (1)

where U∗ denotes a complete and standalone ut-
terance resolving ellipsis and coreference for U ,
M denotes the trainable model parameters. Note
that the textual content newly introduced in U∗ is
not required to maintain strict congruence with the
text appearing in C, and modification is allowed to
ensure semantic coherence.

3 Methodology

3.1 Overview

Figure 2 illustrates the overview of our proposed
CAT, which wraps a generative rewriter R with
a context tracker T . The tracker T adopts CT by
maintaining a key phrase list (kp list) K turn by turn.
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Figure 2: An overview of CAT. Initially, a tracker distilled from GPT4-turbo conducts CT to generate a key phrase
list for each turn in the input context. Then, the DCI mechanism is utilized to obtain the minimal dependency
context. Consequently, the rewriter takes over them combined with the incomplete utterance, and performs rewriting
to output the complete utterance.

At the i-th turn, Ki = {ki1, ki2, ..., k|Ki|}, where kij
is a key phrase mentioned in the previous context
or the current utterance which can be referred to
by the ongoing dialogue topic and content. Mean-
while, contrary to the existing methods that input
the whole context C into the rewriter while ignoring
the scenarios where C is particularly verbose, we
proposed a DCI mechanism to filter the irrelevant
context base on the latest kp list. At the i-th turn,
the input minimal dependency context is denoted as
Cmin
i = {Cm, Cm+1, ..., Ci−1},m ≤ i− 1, where

m is the furthest turn that the kp list has dependent.
Eventually, the rewriter performs IUR based on the
kp list of last turn Ki−1, the minimal dependency
context Cmin

i , combined with the current utterance
Ui to obtain the rewritten complete utterance U∗

i .
In addition, We leverage LLM and in-context learn-
ing to generate weakly supervised labels, thereby
enabling the training of the tracker and gaining the
capabilities of CT by LLM distillation.

3.2 Tracker for CT

The most common way (Liu et al., 2020; Hao et al.,
2021; Jin et al., 2022; Inoue et al., 2022; Li et al.,
2023a) to address ellipsis and coreference resolu-
tion is to directly predict the corresponding phrases
from the context C for IUR, which is too straightfor-
ward to solve the challenge proposed in Section 1
Thus, we design CT that leverages a tracker T to

dynamically maintain a kp list K turn by turn.
In particular, the kp list is first initialized as an

empty list, denoted as K0. In each turn of the dia-
logues, Ki is predicted base on the last kp list Ki−1,
the current utterance Ui, and the limited previous
context CT

i , denoted as

Ki = T (Ki−1, Ui, CT
i ), (2)

where CT
i = {Cj , Cj+1, ..., Ci−1}, j =

max(1, i− γ), γ is a hyper-parameter. The newly
Ki is edited from Ki−1 by these actions:

• add: insert a newly occurring key-phrase
• reserve: retain ki−1

j ∈ Ki−1, while ki−1
j may

still be referred to.
• delete: remove ki−1

j ∈ Ki−1, while ki−1
j is

not related to the current topic or content.
The update process persists across each turn. For
instance, in Figure 2, "medical insurance" is added
to K2 mentioned in C2, due to its relevance to
the dialogue topic. Beginning from the i-th, the
customer consistently consults about reimbursed
"general outpatient diagnostic and treatment costs",
so it is reserved persistent in the kp list. Meanwhile,
as the salesperson consistently recommends differ-
ent insurance products, the user’s focus shifts from
one insurance product to another, such as from
"Healthy Fortune: Lifetime Critical Insurance" to
"Medical Excellence Outpatient Zero Deductible",
and the old one that probably is not be mentioned
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in the after dialogue is removed while the new one
is added accordingly. Ultimately, the updated kp
list at the n-th turn serves as the input for rewriting
the incomplete utterance in the (n+ 1)-th turn.

In light of the diversity of expressions for the
same subject in the context, we utilize a genera-
tive way instead of span extraction. We employ
T5 (Raffel et al., 2020) as the T , to take over the
task instruction combined with (Ki−1, Ui, CT

i ) to
create input prompts, and require the output of Ki

in a predefined structured format

<bos>xkp1,1, x
kp
1,2, ..., x

kp
1,|k1|, <sep>, x

kp
2,1,

xkp2,2, ..., x
kp
2,|k2|, <sep>, ..., x

kp
|K|,|k|K||, <eos>,

(3)

where <bos> and <eos> denotes the beginning and
the end of the decoding, <sep> is the separate to-
kens and xkpi,j is the j-th token of ki.

3.3 Rewriter Equipped with DCI

Existing work (Inoue et al., 2022; Li et al., 2023b)
has proved the efficiency of generative methods
for IUR, hence, we also employ T5 as the back-
bone for the rewriter R. To handle the extended
dialogues, we design a DCI mechanism to dynami-
cally truncate the irrelevant preceding turns, instead
of feeding the entire context into the model.

In brief, the DCI mechanism iteratively records
index I = {I1, I2, ..., I|K|} for kp list K, which de-
notes the closest turn that each key phrase is men-
tioned. In i-th turn, the index Iij ∈ Ii of kij ∈ Ki

is obtained by the following way: 1) If kij is men-
tioned in Ci and does not exist in Ki−1, it means
that kij is a newly added key phrase, thus Iij = i.
2) If kij is not mentioned in Ci but exists in Ki−1,
it signifies that kij is a reserved key phrase, hence
Iij = Ii−1

n , where ki−1
n ∈ Ki−1and ki−1

n == kij .
3) If kij is mentioned in Ci and also exists in Ki−1,
this denotes that kij need to update the recorded
index, therefore Iij = i. Here, to judge whether
kij is mentioned in Ci, we perform sliding window
matching on kij and Ci with a window size |kij |,
using Levenshtein distance to compute similarity,
and selecting the maximum score as the similarity
score sij . If sij ≥ δ, then we considered that kij is
mentioned Ci, where δ is a hyper-parameter. After
the iteratively recording, in (i+1)-th turn, the min-
imal dependency context is gained as Cmin(Ii):i
In Figure 2, Kn includes two key phrases, while
the former is mentioned in the (n− 2)-th turn and

the latter appears in the n-th turn. So the minimal
dependency context for rewriting is Cn−2:n.

The reason we employ fuzzy matching and index
recording instead of directly requiring the tracker T
to predict the action of K’s updating is that integrat-
ing the prediction of the kp list and action would
increase the decoding complexity for the rewriter.
Furthermore, it would significantly diminish the ac-
curacy of GPT4-turbo during zero-shot predictions,
which is introduced in the next subsection.

During rewriting, we prompt the task instruction
combined with the current incomplete utterance Ui,
the minimal dependency context Cmin

i , and the kp
list Ki−1 predicted in last turn as input. While the
rewriter R directly generate the rewritten complete
utterance, as follow

U∗
i = R(Ui, Cmin

i ,Ki−1), (4)

where Ki−1 provides precise candidates for ellip-
sis and coreference resolution, and Cmin

i offers a
minimal context for comprehending the topic and
main content of the dialogue. Consequently, a more
semantically accurate and complete U∗

i is attained.

3.4 Weakly Supervised Learning via LLM
Distillation

LLMs recently distinguish themselves due to their
potent generalization capabilities and robustness,
showing great zero-shot performance on different
tasks. Meanwhile, in-context learning (ICL), as
a method within the prompt construction, is be-
ing widely adopted. It facilitates the model’s task
understanding by providing representative input-
output examples indicative of the current task, in-
cluded in the prompt. To solve the problem of lack-
ing labeled data for training T since only golden
rewriting utterance can be used to ensure fairness,
we leverage GPT4-turbo combined with ICL to
obtain weakly supervised labels.

Specifically, for each dataset D, we select τ rep-
resentative examples of dialogue context as the
ICL set, denoted as Dicl = {Cicl

1 , Cicl
2 , ..., Cicl

τ }.
In order to make sure that the sampled contexts
are emblematic and have substantial distinctions
amongst each other, we choose them relying on
many factors, such as the number of dialogue turns,
the topics, the complexity of the content, and so
on. We manually annotate these limited examples
as D̂icl = {(Cicl

1 , K̂1), (Cicl
2 , K̂2), ..., (Cicl

τ , K̂τ )},
where K̂i = {K̂i

1, K̂i
2, ..., K̂i

|Ci|} is a set of anno-
tated kp list corresponding to each turn of the con-
text Ci, and K̂i

j denotes the labeled kp list in j-th
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turn of the context Ci. We prompt the D̂icl incor-
porate with explicit task instruction and the Ci as
input. The inference is formulated as

K∗
i = GPT (D̂icl, Ci), (5)

where K∗
i is the results parsed from the output.

Subsequently, we filter some error returns dur-
ing requesting and obviously wrong result af-
ter parsing, and gain the weakly labeled dataset
D∗ = {(C1,K∗

1), (C2,K∗
2), ..., (C|D∗|,K∗

|D∗|} with
a high quality. After that, we divide each
pair of (Ci,K∗

i ) ∈ D∗ into training samples
(Ki

j−1, U
i
j , CT

i,j ,K∗
i,j) for the tracker T , as shown

in formulation 2, where K∗
i,j ∈ K∗

i .
During the training process, the tracker T firstly

performs weakly supervised learning based on
the constructed dataset, to distill the capability of
GPT4-turbo on the CT task. After that, the rewriter
R is trained with the K of each IUR sample pre-
dicted by T . Here, we do not employ joint learning,
since the granularity of the training samples for the
tracker T and rewriter R is not uniform, which is
also due to the consideration of efficiency.

4 Experiments

Datasets
To comprehensively evaluate our method, we used
the following three datasets covering both English
and Chinese: 1) INSQR is a challenging Chinese
IUR dataset constructed by the real dialogues be-
tween customers and sales collected from Alipay2

platform, as well as the manual annotation to pro-
vide the gold utterance. Within, the longest dia-
logues can reach 100 turns, and the average turns
is about 30, which is much longer than the exist-
ing datasets. The detailed comparison is shown
in Table 1, and Table 2 shows the distribution of
the number of turns. The dataset is divided into
4733/591/593 for Train/Val/Test. 2) CANARD (El-
gohary et al., 2019) is a representative English IUR
dataset derived by QuAC (Choi et al., 2018), an
open-domain conversational question answering
dataset about specific Wikipedia sections, while
CANARD rewrites the originally incomplete ques-
tions in QuAC. It contains 31526/3430/5571 in the
Train/Val/Test set for evaluation. 3) CQR (Regan
et al., 2019) is an English IUR dataset extended
from task-oriented dialogue (Eric et al., 2017) be-
tween drivers and an in-car assistant, which is di-

2https://www.alipay.com/

Dataset Train Dev Test avgc avgt

ReWriter (Su et al., 2019) 18000 2000 - 3.0 24.2
Restoration (Pan et al., 2019) 116360 3024 2999 4.9 34.4
MuDoCo (Martin et al., 2020) 5901 691 749 5.4 41.1
CQR (Regan et al., 2019) 2131 271 276 5.7 46.2
CANARD (Elgohary et al., 2019) 31526 3430 5571 9.8 92.9
INSQR 4733 591 593 30.1 600.5

Table 1: The comparison of INSQR with the existing
benchmarks. Here, "avgc" and "avgt" denote the aver-
age of turns and length of context, separately. We use
the three with the longest context for experiments.

Subset 0-10 11-20 21-30 31-40 41-50 51+

Train 723 774 1429 716 394 697
Dev 94 91 191 70 54 91
Test 90 95 189 78 50 91

Table 2: The distribution of the number of dialogue
turns in INSQR.

vided into 2131/271/276 for Train/Val/Test. It pro-
vides multiple rewriting utterances while we only
use the gold utterance for metric calculation.

Evaluation Metrics
Following the prior works, we use three different
metrics for evaluation, including BLUE-scores (Pa-
pineni et al., 2002), ROUGE-scores (Lin, 2004),
and Restoration-scores (Pan et al., 2019).

Methods for Comparison
We compared the proposed method with notable
IUR methods, including Ptr-Gen (See et al., 2017),
RUN (Liu et al., 2020), SRL (Xu et al., 2020),
T5 (Raffel et al., 2020), RaST (Hao et al., 2021),
HCT (Jin et al., 2022), QUEEN (Si et al., 2022),
JET (Inoue et al., 2022), Flan-T5 (Chung et al.,
2022), DuReSE (Jiang et al., 2023), MGII (Du
et al., 2023), MIUR (Li et al., 2023a).

Implementation Details
Our method ran on Tesla A100 GPUs. Both En-
glish and Chinese versions of T5-base are used as
the backbone of CAT for evaluation. The hyper-
parameters in the experiments were set as follows:
(1) The batch size and the learning rate were set to
16 and 2e-5 (2) The beam search size of decoding
was set to 8 (3) The number of the limited turns
of the context γ for the tracker is set to 10 (4) The
threshold δ for similarity score was set to 0.8 (5)
The number of the examples τ for ICL was set
to 5 (6) The maximum length of input and output
were set to 512. All the experimental results were
repeated 3 times and averaged.3

3The prompt of distillation is shown in the Github page.
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INSQR CQR
methods B1 B2 B4 R1 R2 F1 F2 B1 B2 B4 R1 R2 F1 F2

RUN 72.6 68.8 61.1 81.4 71.2 45.4 34.3 77.4 68.9 53.5 88.0 74.2 - -
HCT 72.8 68.4 61.0 80.9 70.2 - - 79.4 74.8 59.3 88.2 73.2 - -
MIUR 73.3 68.9 61.1 80.9 69.2 44.8 30.6 82.8 76.0 64.0 89.6 74.1 74.8 52.9
DuReSE - - - - - - - 83.3 79.1 70.4 92.1 82.9 - -

T5 73.4 69.8 61.1 82.2 70.3 46.0 36.9 80.8 76.1 67.4 88.1 79.1 73.8 65.0
Flan-T5 75.1 71.4 63.0 86.2 74.7 47.3 38.3 81.6 77.0 68.8 89.2 80.1 75.1 66.9

CAT 78.8 74.7 66.5 89.8 79.9 53.0 43.6 85.4 83.9 80.5 93.7 87.7 77.9 69.5
CAT+GPT4 77.2 72.1 65.0 87.9 76.2 51.1 40.8 84.3 82.4 80.3 91.1 84.2 77.2 68.7
CAT+Gold 89.6 85.7 77.9 97.1 88.6 86.8 73.1 93.4 91.6 87.5 94.8 89.9 84.0 76.9

Table 3: Overall results compared with existing baselines on INSQR and CQR. Here, "B1/2/4" denote Bleu-1/2/4,
"R1/2" indicate Rouge-1/2, and "F1/2" represent the F1 of the Restoration score with 1/2-gram.

Method B1 B2 B4 R1 R2 RL

PtrG 67.2 60.3 50.2 78.9 62.9 74.9
RUN 70.5 61.2 49.1 79.1 61.2 74.7
RaST 53.5 47.6 38.1 62.7 50.5 61.9
HCT 68.7 62.3 52.1 80.0 66.5 79.4
QUEEN 72.4 65.2 54.4 82.5 68.1 81.8
DuReSE 73.3 65.8 54.7 82.3 66.9 80.6
MGII 72.9 63.2 - 79.2 - 77.0
MIUR 71.3 63.4 51.7 81.6 64.5 77.4

JET 78.8 72.0 - 84.3 71.1 -
T5 77.1 70.7 60.1 81.9 69.8 79.6
Flan-T5 77.9 71.4 60.9 82.5 70.5 80.6

CAT 79.7 72.7 62.6 84.9 71.7 81.6
CAT+GPT4 79.4 72.7 62.2 84.5 71.5 81.6

Table 4: Overall results compared with existing base-
lines on CANARD. Here, "RL" denotes Rouge-L.

4.1 Overall Results

Initially, we compare our proposed CAT with the
existing methods. To ensure fairness, the pre-
trained model (BERT and T5) equipped by all the
methods is set to the base version. Here, CAT de-
notes the method proposed in this paper including
the tracker T and the rewriter R, CAT+GPT4 sig-
nifies the direct use of results K returned by GPT4-
turbo, and CAT+Gold indicates the employment of
golden phrases provided by the dataset, required in
ellipsis and coreference resolution during rewriting.
Table 3 and Table 4 show the experimental results,
wherein our CAT outperforms the other methods
and achieves state-of-the-art on all three datasets.

Results on INSQR and CQR

In INSQR and CQR, the main challenges of the
rewriting are ellipsis and coreference resolution,
while minimally revising the rest of the original

sentence. Therefore, the metrics such as BLEU
and ROUGE remain at a high level. However, the
Restoration score reveals the difference in the ac-
curacy of the actual modified part, where INSQR
is obviously much lower than CQR, indicating that
INSQR presents more complex scenarios. Experi-
mental results demonstrate that, in comparison to
the backbone T5 model, CAT achieves a 7% and
4.1% promotion in Restoration score, respectively,
which prove the accurate K providing and irrele-
vant context filtering, can effectively improve the
performance of IUR. Meanwhile, the comparison
between CAT and CAT+GPT4 yields an interest-
ing result that, the tracker T surprisingly achieves
a greater enhancement than GPT4-turbo in assist-
ing the rewriter R. we consider the reason is that
the output from GPT4-turbo including its inher-
ent randomness and error rate on both request and
return, may introduce noise and bias when it is
directly used as K which also serves as the founda-
tion for DCI. In contrast, after training, T predicts
K following its stable task understanding, hence
achieving higher quality. CAT+Gold delineates
the upper bound of dataset metrics. It is observable
that, although the current CAT attains a notable
improvement in INSQR and CQR, there remains a
substantial gap to the upper bound, especially the
Restoration score. It again highlights the complex-
ity inherent in INSQR since the gap is huge.

Results on CANARD

CANARD presents a distinct scenario compared to
the above two datasets. Beyond ellipsis and coref-
erence resolution, it also entails modifications to
the key phrases themselves, and sometimes also
to the rest part of the original sentences. These
modifications lack a definitive uniqueness, making
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Method B1 B2 R1 R2

INSQR

CAT 78.8 74.7 89.8 79.9
w/o CT 75.2 71.4 84.8 73.5
w/o DCI 76.8 72.7 86.4 76.0
T5 73.4 69.8 82.2 70.3

CQR

CAT 85.4 83.9 93.7 87.7
w/o CT 81.6 77.4 89.7 81.2
w/o DCI 85.4 83.5 92.7 87.9
T5 80.8 76.1 88.1 79.1

CANARD

CAT 79.7 72.7 84.9 71.7
w/o CT 77.9 71.5 82.9 70.6
w/o DCI 78.9 72.2 84.2 71.2
T5 77.1 70.7 81.9 69.8

Table 5: Overall ablation tests on three datasets.

it challenging for the Restoration score to evalu-
ate the performance. The results shown in Table 4
present that the generative methods outperform the
editing-based methods due to their flexibility in
conforming to the various modifications present in
the labels. CAT further delivers an improvement
over existing methods. Within, JET also employs
a picker for directly acquiring referential candi-
date phrases from the entire preceding context. In
contrast, our proposed CT decomposes the com-
plexity of prediction into each turn, maintaining
a more precise K, combined with a brief context
Cmin provided by DCI, thereby achieving superior
performance on IUR. During the distillation, GPT4-
turbo exhibits a more stable predictive performance
on CANARD because all the dialogues are about
Wikipedia, so the results of CAT and CAT+GPT4
are close. Here, CANARD does not provide an-
notations of key phrases, hence the absence of the
CAT+Gold setting.

4.2 Ablation Tests

To evaluate the contributions of each component
of CAT, the ablation test is constructed. Here, we
consider the following settings

• w/o CT: Removing T and rewriting without
K, while Cmin is obtained by directly adopt
DCI on the prediction of GPT4-turbo.

• w/o DCI: Removing the DCI while inputting
the entire C to R.

The results are shown in Table 5. On our challenge
dataset INSQR, both CT and DCI demonstrate sig-
nificant improvement, which shows the effective-
ness of CAT to handle the scenario with confusing
ellipsis and coreference resolution and extended
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Figure 3: Detailed ablation tests of four subsets with
different numbers of turns.

context. In the case of CQR, which primarily fo-
cuses on ellipsis and coreference resolution with
short context, CT plays a pivotal role, while the im-
pact of DCI is less pronounced. Meanwhile, both
CT and DCI also exhibit a certain improvement
in CANARD while the gold rewriting labels with
non-unique expressions constrains the performance
of the components.

4.3 The Impact of Context Turns

For a detailed analysis of the efficacy of our pro-
posed methods when dealing with the extended
dialogues of varying turn and complexity, we parti-
tioned the INSQR test set into four subsets based
on the number of turns: 0-10, 11-30, 31-50, and
51+ (with the maximum being 100 turns). We then
evaluate the score of Bleu-2 and Rouge-2 on these
subsets, employing the same settings used in the
ablation tests. The results are shown in Figure 3.
With the increase in the number of turns, the im-
provement of CAT over the backbone T5 is progres-
sively amplified, which proves the effectiveness of
CAT in handling complex and extended dialogues.
CT consistently delivers high contributions across
all the subsets with various lengths, demonstrating
that accurate K can steadily improve the perfor-
mance of ellipsis and coreference resolution during
rewriting. Meanwhile, when the context is brief
with fewer turns, particularly within 10 turns, the
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Method P R F1

INSQR
GPT4-turbo 50.7 68.4 58.2
Tracker 57.2 64.4 60.6

CQR
GPT4-turbo 55.2 76.1 64.0
Tracker 61.6 70.1 65.6

Table 6: The results of CT. Here, P, R, and F1 denote
precision score, recall score, and F1 score.

enhancement brought by DCI is slight. However,
after the increase in dialogues (31-50 and 50+), the
demand for filtration of irrelevant context is ampli-
fied, thereby the contribution of DCI is highlighted.

.

4.4 Performance on CT

In addition to rewriting, we also conduct exper-
iments to evaluate the results of CT. Herein, we
compare the prediction results of T by the trained
T with the zero-shot GPT-4-turbo on INSQR and
CQR which both provide golden annotations for
the key phrases leveraged by rewriting utterance.
Note that we only evaluate the precision, recall,
and F1 of the T on the rewriting turns due to the
absence of annotations for the other turns. The
results, shown in Table 6 indicate that GPT4-turbo
retains the great capability to identify key phrases
assisted by in-context learning, thus performing
well in recall. However, it also tends to predict
phrases that are extraneous to the core topic, result-
ing in a lower precision. In contrast to the zero-shot
prediction, the trained tracker T demonstrates a
deeper comprehension of the overall data distribu-
tion and the key phrases required to be extracted,
thereby achieving a marked improvement in pre-
cision. While this comes with a little decrease in
recall. Nonetheless, overall performance of T re-
mains marginally superior to that of GPT-4-turbo.
It also explains that, as shown in Table 3, employ-
ing the trained T achieves better performance than
directly using the outputs of GPT-4-turbo.

5 Related Work

Early works on IUR primarily combine sequence-
to-sequence based model with a copy mechanism
to fetch the relevant information in the context (Su
et al., 2019; Elgohary et al., 2019; Kumar and Joshi,
2017). Due to the strong representation capabili-
ties of pre-trained models (Devlin et al., 2019),
RUN (Liu et al., 2020) introduces a rewriting ma-
trix derived from the embedding of context and

utterance to adjudicate on a token-level whether
insertion or replacement operations should be car-
ried out. SRL (Xu et al., 2020) pre-identifies the
candidate lexicon for the subject, predicate, and
object within the context, and incorporates these
as extra features into the encoder to achieve bet-
ter performance. RaST (Hao et al., 2021) formu-
lates the IUR as sequence labeling, effectuating the
rewrite by predicting actions (insertion, deletion,
and None) and the spans of the context separately.
HCT (Jin et al., 2022) enhances the action predictor
of the previous work to a rule predictor, optimizing
for the generation of modified words not exactly
present in the context. QUEEN (Si et al., 2022)
proposed a query template that explicitly brings
guided semantic structural knowledge between the
incomplete utterance and the rewritten utterance.
JET(Inoue et al., 2022) jointly optimizes impor-
tant token picking and rewritten utterances gener-
ation (Raffel et al., 2020), but the design of the
picker is too straightforward to perform accurate
recall in extended dialogues. (Li et al., 2023b) em-
ploys continued pre-training on the T5 (Raffel et al.,
2020) model to enhance its performance on IUR,
while (Du et al., 2023) and (Li et al., 2023a) fur-
ther devise fine-grained subtasks and refined model
architectures based on the edit matrix. However,
the existing benchmarks targeted by all the work
referenced above are limited to simple ellipsis and
coreference problems, while none of them pay at-
tention to the challenges mentioned in section 1.

6 Conclusion

In this paper, we presented a novel method for
incomplete utterance rewriting among extended di-
alogues with complex content, called CAT which is
a component of a context tracker and a generative
rewriter. Context Tracking is adopted by the tracker
to maintain a list turn by turn, which includes the
key phrase mentioned in the previous context that
may still be referred to in the current utterance,
as candidates to promote the performance of ellip-
sis and coreference resolution. Furthermore, the
Dynamic Context Introduction is designed to filter
the irrelevant previous turns and retain the mini-
mal dependency context for the rewriter. Extensive
experiments indicate that CAT achieves state-of-
the-art results on three benchmarks compared with
the existing baselines. In future work, we will ex-
pand our work on a wider range of scenarios, and
also explore the optimization of the tracker.
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7 Limitations

This paper proposed a novel Incomplete Utterance
Rewriting method, namely CAT, which primarily
focuses on the task in dialogue systems with ex-
tended multi-turn dialogue and complex content.
Nevertheless, we have not combined IUR with
some downstream tasks such as recommendation
or question answering for further discussion. Mean-
while, though the design of Context Tracking can
yield significant improvement, it necessitates real-
time computation and prediction as the dialogue
moves on, which results in substantial computa-
tional resources required in actual scenarios. Si-
multaneously, the efficacy of the tacker is heavily
contingent upon the quality of weakly supervised
labels obtained from the LLMs.
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