@inproceedings{nayeem-rafiei-2024-kidlm,
title = "{K}id{LM}: Advancing Language Models for Children {--} Early Insights and Future Directions",
author = "Nayeem, Mir Tafseer and
Rafiei, Davood",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2024.emnlp-main.277/",
doi = "10.18653/v1/2024.emnlp-main.277",
pages = "4813--4836",
abstract = "Recent studies highlight the potential of large language models in creating educational tools for children, yet significant challenges remain in maintaining key child-specific properties such as linguistic nuances, cognitive needs, and safety standards. In this paper, we explore foundational steps toward the development of child-specific language models, emphasizing the necessity of high-quality pre-training data. We introduce a novel user-centric data collection pipeline that involves gathering and validating a corpus specifically written for and sometimes by children. Additionally, we propose a new training objective, Stratified Masking, which dynamically adjusts masking probabilities based on our domain-specific child language data, enabling models to prioritize vocabulary and concepts more suitable for children. Experimental evaluations demonstrate that our model excels in understanding lower grade-level text, maintains safety by avoiding stereotypes, and captures children`s unique preferences. Furthermore, we provide actionable insights for future research and development in child-specific language modeling."
}
Markdown (Informal)
[KidLM: Advancing Language Models for Children – Early Insights and Future Directions](https://preview.aclanthology.org/jlcl-multiple-ingestion/2024.emnlp-main.277/) (Nayeem & Rafiei, EMNLP 2024)
ACL