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Abstract

We learn matrix representations for the fre-
quent sound-relevant adjectives of English and
compose them with vector representations of
their nouns. The matrices are learnt jointly
from audio and textual data, via linear regres-
sion and tensor skipgram. They are assessed
using an adjective similarity benchmark and
also a novel adjective-noun phrase similarity
dataset, applied to two tasks: semantic similar-
ity and audio similarity. Joint learning via Ten-
sor Skipgram (TSG) outperforms audio-only
models, matrix composition outperforms addi-
tion and non compositional phrase vectors.

1 Introduction

Natural language data consists of words arranged
into phrases and sentences. Words have statisti-
cal representations and phrases/sentences symbolic
forms. The formers, mined from co-occurrence
counts, fall within the remit of distributional lexi-
cal semantics. The latters, often formalised within
logic frameworks, are obtained from rules of gram-
mar. A model of natural language should ideally
take both into account. Consider a simple adjective-
noun phrase. On the lexical side, statistical vector
embeddings are learnt for adjectives and nouns. On
the symbolic side, e.g. in Combinatory Categorial
Grammar (CCG) (Steedman, 2002), an adjective is
a function applied to a noun. The lexical and the
symbolic sides are brought together by providing a
statistical representation for the CCG rules. For the
adjective-noun phrase rule, this is achieved by rep-
resenting adjectives as matrices, nouns as vectors,
and function application by matrix-vector multipli-
cation (Baroni and Zamparelli, 2010). This unified
model has been applied to multimodal image-text
data (Lewis et al., 2022), but never to other com-
binations such as audio-text. For example, in an
audio-text context, adjectives like "loud" or "soft"
can modify nouns like "music," where the meaning

is enriched by integrating corresponding audio fea-
tures with their textual representations. Our aim in
this paper is to fill this gap. We represent the sounds
of adjectives by matrices, the sounds of nouns by
vectors, and test whether their matrix-vector multi-
plication is a good representative of the sound of
adjective-noun phrase. To this end, we work with
two tasks: a semantic similarity task and an audio
similarity one. We develop a new dataset of audio
relevant adjective-noun phrases and collect human
annotations for them. The matrix representations
are from the audio data gathered from FreeSound1,
a collaborative repository of sounds. The correla-
tion between the model’s predictions and human
annotations is tabulated. These show that matrix-
vector adjective-noun composition works better
than simple vector addition and non-compositional
vectors of adjective-noun phrases. The quality of
the audio adjectives significantly improved after au-
ditory and textual data were combined and textual
data used as a signal in audio adjective learning.
These results show that matrix composition leads
to better representations for audio phrases, with
potential applications to audio classification (Xie
and Virtanen, 2021) and captioning tasks (Mahfuz
et al., 2023).

2 Related Work

Using vector addition for composing adjectives
with nouns was proposed in (Mitchell and Lap-
ata, 2008). Later, in a series of papers (Grefen-
stette and Sadrzadeh, 2011; Baroni and Zamparelli,
2010; Maillard and Clark, 2015), it was argued that
vector addition is not appropriate for composition
as it is commutative. Furthermore, an adjective
needs to modify the meaning of a noun, thus its
representation should be a map, rather than a vec-
tor. In finite dimensions, maps are approximated
by matrices and adjective-noun phrase composi-

1https://freesound.org



14

Figure 1: For audio vectors, we used the pre-trained
OpenL3 (Cramer et al., 2019) library, trained on environmen-
tal and musical data from AudioSet (Gemmeke et al., 2017).
OpenL3 uses a convolutional architecture initialised on a Mel-
spectrogram time-frequency representation with 256 bands;
its vectors are 512 dimensional. For textual vectors, we used
768 dimensional pre-trained BERT embeddings (Devlin et al.,
2018) for words and SBERT (Reimers and Gurevych, 2019)
for phrases.

tion becomes matrix-vector multiplication, a non-
commutative operation. Different methodos were
put forwards for learning the adjective matrices;
(Baroni and Zamparelli, 2010) used linear regres-
sion and (Maillard and Clark, 2015; Wijnholds and
Sadrzadeh, 2019) developed a tensorial extension
of the word2vec skipgram model (Mikolov et al.,
2013). Learning multimodal image-text embed-
dings for words was proposed in (Bruni et al., 2014;
Lazaridou et al., 2015); extended to sound-text in
(Kiela and Clark, 2015). Matrix composition of im-
ages and text was explored in (Lewis et al., 2022).

3 Single and Multi Modal Learning

An overview of multimodal phrase composition is
presented in Figure 1. To learn the matrices, we
used linear regression (LR) and the tensorial ex-
tension of skipgram (TSG). For LR, we trained ad-
jective matrices A given observed adjective-noun
vectors p and noun vectors v, using the formula
p = Av.

The original word2vec skipgram model had the
following objective function, where n is a vector,
and C and C sets of positive and negative contexts.∑

c′∈C
log σ

(
w · c′

)
+
∑
c′∈C

log σ
(
−w · c′

)
This model learns a vector for a word w regard-
less of its grammatical type. Its tensorial extension,
dubbed as tensor skipgram has an objective func-
tion that depends on the grammatical role of the
words. For adjective-noun phrases, this is as fol-

lows, where A is the adjective matrix, n the vector
of the noun it modifies, and the rest is as before.∑

c′∈C
log σ

(
An · c′

)
+
∑
c′∈C

log σ
(
−An · c′

)
The above function is only for adjective-noun
phrases. It generalises to any phrase in (Wijnholds
and Sadrzadeh, 2019). TSG significantly outper-
forms LR on text (Maillard and Clark, 2015; Wijn-
holds and Sadrzadeh, 2019).

The audio and textual representations were
combined with two different methods. In the
first method, we concatenated their vectors (AT-
Concat) and used the result as an input to training.
In the second method, we trained a joint audio-text
matrix (AT-Joint), where one representation was
used as a signal to improve the other.

AT-Concat Regression uses the following adap-
tation of the above single modality regression:

〈pa,pt〉 = A〈va,vt〉
where va is the audio representation of a noun, vt

its textual counterpart, and 〈va,vt〉 their concate-
nation. Similarly, pa is the audio representation of
an adjective-noun phrase, pt its textual counterpart,
and 〈pa,pt〉 their concatenation.

AT-Joint Regression uses the following variant
of the original regression formula pa = Avt for
training, where the audio adjective-noun phrase
vector pa uses the textual representation of its noun
vt as a signal to learn an adjective matrix A, which
has a combined audio-text meaning.

AT-Concat Tensor Skipgram is based on the
modified training objective of the single modality
TSG and has the following objective function (to
save space we only provide the positive sampling
part): ∑
(c′a,c′t) ∈ Ca×Ct

log σ
(
A〈na, nt〉 · 〈c′a, c′t〉

)
Here, 〈na,nt〉 is the concatenation of the fixed pre-
trained audio and textual embeddings of a noun,
and Ca, Ct are sets of positive and negative con-
texts of the adjective-noun phrase. For positive
contexts, we use the fixed pretrained embeddings
of the actual audio and text representations of the
adjective-noun phrases. For negative contexts, we
fix the adjective and randomly chose a subset of
nouns different from n. For example, to learn a
matrix A for the adjective happy, nt is the tex-
tual embedding of cat and na the average of all
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its audio vectors; c′a indexes over all the audio
embeddings we have for happy cat and c′t is its
textual embedding. For negative contexts, c′a in-
dexes over all the audio embeddings we have for
happy noun, where noun is a random noun different
from cat, e.g. baby and car.

AT-Joint Tensor Skipgram changes the objec-
tive function to the following, for the same nt and
Ca as above.∑
c′a∈Ca

log σ
(
Ant · c′a

)
+
∑
c′

a∈C

log σ
(
−Ant · c′a

)
Here, the audio adjective is learnt from an audio-
only context, but in such a way that when multi-
plied with the textual vector of a noun, it is forced
to be closer to the audio context.

4 Implementation

We implemented an audio-text TSG, by extending
the image-text TSG model of (Lewis et al., 2022)
to audio data. The positive context is the audio
files representing a target phrase. For instance,
for loud melody we had 100 audio files and for
loud cat 82. The negative context is determined
by random selection of nouns during the training
process with each adjective. We treat these nouns
as a hyper parameter and choose them by tuning
on the validation segment of the dataset.

For skipgram models, we learn 50 dimensional
phrase vectors with a learning rate of 10−6 and
a batch size of 512, trained for 200 epochs. The
models were trained on NVIDIA T4 and V100
depending on their availability on Google Colab.
The training was done in batches over a period of
3 months, totalling 80 hrs. We used Binary Cross-
Entropy loss and the Adam optimiser in the training
process to refine the performance.

5 Evaluation Tasks and Results

Our main hypothesis is that combining text and
audio improves over audio-only learning. To test
this, we trained audio-only variants of LR and TSG
models. In these, the adjective matrices were learnt
using only the audio vectors of their nouns and con-
texts. A second hypothesis is that non-commutative
matrix multiplication models (LR and TSG) out-
perform simple commutative models. To test this,
we implemented an additive model where an ad-
jective’s representation is added to its nouns. Fi-
nally, we hypothesise that compositional models
outperform non-compositional ones. For this, we

compared the results to the holistic OpenL3 audio
vector of adjective-noun phrases.

5.1 Adjective Similarity
Following (Maillard and Clark, 2015), we first
evaluate our methods on an adjective similarity
task. Starting from the word similarity dataset
SimLex-999 (Hill et al., 2015), We identified 13
sound-relevant (adj, adj) pairs with audio files in
FreeSound. These pairs represent 11 out of 30 ad-
jectives from our dataset. We call it Simlex-Audio.
Examples are (happy, cheerful) and (fast, rapid).

5.2 Adjective-Noun Similarity
Existing adjective-noun phrase similarity bench-
marks, such as (Mitchell and Lapata, 2010; Vecchi
et al., 2017) were unsuitable due to limited sound
relevance. This led us to develop a new audio
phrase dataset.We selected frequent audio adjec-
tives from the UKWaC corpus (top 1000 adjectives
with at least 200 occurrences) and those with strong
auditory relevance in FreeSound (800+ mentions)2,
resulting in 30 suitable adjectives, each paired with
a noun. Nouns were refined grammatically and
filtered to those with 100+ mentions on Freesound.

This procedure resulted in a dataset of 30 adjec-
tives, 721 unique nouns, and 1,944 adjective-noun
phrases. The number of nouns modified by each ad-
jective varied; for example, low modified 46 nouns,
while quick modified 114, with an average of 65
nouns per adjective. For audios, we selected 100
audio files per noun and on average 50 files per
adjective-noun phrase, each 10-20 seconds long.
The number of audio files per adjective-noun var-
ied, e.g., human cough had 97 audios and angry
girl had 45. The dataset contained 271,766 files
(about 760 hours), split into 80% training, 10%
testing, and 10% validation for experimentation.

5.3 Semantic and Audio Similarity Tasks
The new audio phrase dataset includes both seman-
tic and audio similarity judgments, scored from
1 (least similar) to 5 (most similar). Annotators
scored pairs based on semantic relatedness and per-
ceived sound similarity. A pilot study with 100
randomly chosen phrase pairs and 10 annotators
yielded an inter-annotator agreement of 0.45. To
improve this, pairs with identical adjectives were
categorized as environmental (e.g., happy cat, loud
wind) or musical (e.g., loud piano). The data was

2We refer to these adjectives as audio-relevant due to their
strong association with sounds.
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Model Adjective Similarities Phrase Similarities

Simlex-Audio SemPhrase AudPhrase
LR TSG LR TSG LR TSG

AT-Concat 0.731 0.755 0.762 0.856 0.779 0.876
AT-Joint 0.635 0.79 0.668 0.882 0.581 0.894

Audio-Only 0.683 0.743 0.716 0.783 0.753 0.825
ADD-Audio 0.455 0.689 0.743
ADD-AT 0.499 0.647 0.669

Non-Comp Audio – 0.511 0.578

Table 1: Similarities computed for Simlex-Audio, Sem-
Phrase, and AudPhrase datasets. Non-Comp, ADD, LR, and
TSG denote Non-Compositional, Addition, Linear Regres-
sion, and Tensor Skipgram; AT is Audio-Text, and Concat is
concatenation.

arranged into forms of 10 pairs; each with only
either musical or environmental phrases. 4 forms
were grouped together to create 1 questionnaire.

Human Judgements: We used Amazon Mechan-
ical Turk to collect annotations, selecting annota-
tors with a HIT approval rate above 95% and over
1000 approved HITs. They were paid £10.42/hr.
Tasks were batched with gold standards to filter
automated responses, excluding unexpectedly fast
annotations. To manage costs, we limited the nouns
per adjective to 15-20, with 100 sound files each.
This resulted in 3,144 adjective-noun pairs across
77 questionnaires, each annotated by 15 different
annotators, totalling 113. Inter-annotator agree-
ment was 0.69 for semantic similarity and 0.67
for audio similarity. We call these datasets Sem-
Phrase and AudPhrase and they will be available
on github3.

5.4 Results

We measured the Spearman correlation ρs between
the human annotations and cosine similarities, see
Table 1 for the results. For semantic similarity and
in both SimLex and our new dataset, the best per-
forming model was the audio-text joint learning
(AT-Joint) via TSG. The second best performing
model was audio-text concatenation (AT-Concat)
via TSG. They both improved on their LR coun-
terparts, and outperformed the audio-only, addi-
tive, and non compositional models. In LR, only
AT-Concat outperformed all the baselines; but it-
self fell short of TSG. A very similar trend was
observed for the audio similarity task, where TSG
applied to AT-Joint was the best performing model
again, outperforming all baselines. The second best
model was TSG with AT-Concat. For LR, again
only AT-Concat outperformed the baselines.

3https://github.com/audio-comp

Figure 2: Query and its top 4 closely related phrases(left to
right). Grey rows indicate non-comp audio and text-based
similarities, while orange and blue signify similar phrases for
compositional audio and semantic similarities, using AT-Joint.

6 Discussion and Conclusion

We conducted a case study to understand the better
performance of compositional multimodal audio-
text embeddings using k-means clustering with op-
timal k values determined via Silhouette method
(Rousseeuw, 1987). Cosine similarities were com-
puted within each cluster, to find closet neighbours
to the random queries from the evaluation split.
Some examples are provided in Figure 2. We found
out that holistic singular text and audio only mod-
els predicted either semantic or audio relevance,
often getting close to opposite concepts or literal
sounds. On the other hand, multimodal compo-
sition managed to predict a more accurate phrase
meaning. When non-compositional models strug-
gle to predict, e.g. in the second example, the
audio-only model predicted resonant piano and big
ball as synonyms of big monster, multimodal com-
position predicted loud squeak and heavy thump
and bridged the gap. Another example is the pre-
diction of distant firework, distant gun, and high
frequency for angry scream by multimodal compo-
sition, where a text-only model guessed the oppo-
site, i.e. happy scream.

Similar is the case for industrial resonance, pre-
dicted to be close to percussive banging and loud
telephone by the compositional model, improving
over the audio-only model which predicted big
monster and the text-only model which again pre-
dicted opposite, i.e. industrial blast.

These findings show that reflecting the textual
grammatical structure in adjective-noun composi-
tion and considering both audio and text modalities
improves the quality of audio data. Extending the
setting to verb phrases is work in progress.
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