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Abstract

In this paper, we focus on editing Multimodal
Large Language Models (MLLMs). Compared
to editing single-modal LLMs, multimodal
model editing is more challenging, which de-
mands a higher level of scrutiny and careful
consideration in the editing process. To fa-
cilitate research in this area, we construct a
new benchmark, dubbed MMEdit, for editing
multimodal LLMs and establishing a suite of
innovative metrics for evaluation. We conduct
comprehensive experiments involving various
model editing baselines and analyze the impact
of editing different components for multimodal
LLMs. Empirically, we notice that previous
baselines can implement editing multimodal
LLMs to some extent, but the effect is still
barely satisfactory, indicating the potential dif-
ficulty of this task. We hope that our work can
provide the NLP community with insights1.

1 Introduction
With the widespread deployment of Large Language
Models (LLMs) (Zhao et al., 2023), the necessity
to maintain their knowledge accurate and current
without incurring significant retraining costs is
becoming increasingly paramount (Sinitsin et al.,
2020). Previous research has introduced knowledge
editing methodologies designed to incrementally
infuse a language model with a new set of facts
(Mitchell et al., 2022a; Han et al., 2023; Hartvigsen
et al., 2022; Zhong et al., 2023; Gandikota et al.,
2023; Yao et al., 2023).

Different from single-modal model editing, the
task of editing multimodal LLMs presents consid-
erable challenges, given their inherent diversity and
complexity. Specifically, incorrect outputs from
multimodal models may stem from the synergistic
effects of various modalities. Incorrect outputs

∗Equal contribution.
†Corresponding author.

1Code and dataset are available in https://github.com/
zjunlp/EasyEdit.
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Figure 1: Overview of the multimodal model editing
task. The editing target is to update the model’s under-
standing of the edited input (e.g., image or text), while
ensuring its interpretation of unrelated inputs remains
as consistent as possible.

may stem not just from LLMs, analogous to human
errors like misreading or misrecognition (e.g., color
blindness affecting color identification in images).
As shown in Figure 1, before the editing, the model
misidentified the object as a “ladder” instead of
the correct “barrier”, resulting in an erroneous pre-
diction. After the editing, the model accurately
recognized the “barrier”. Note that the utility of
multimodal LLMs (Yin et al., 2023) is increas-
ing, yet there is a lack of corresponding dataset
resources and benchmarks for editing multimodal
large language models.

To facilitate research in this area, we take the
first step to construct a Multimodal Model Editing
benchmark: dubbed as MMEdit, which encompass
two sub-tasks: Editing VQA and Editing Image
Captioning. Specifically, we follow single-modal
model editing approaches (Mitchell et al., 2022a;
Cao et al., 2021; Mitchell et al., 2022b) to construct
the datasets, which extends the previous evalua-
tion principle, namely Reliability2, Locality3, and
Generality4, to multimodal settings.

For Reliability evaluation, we start with rigorous
data collection, gathering underperforming multi-

2The metric used to measure the success of editing target.
3It measures whether unrelated facts retain their outputs.
4It measures the success of editing related knowledge.
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modal model data to create a dedicated reliability
editing dataset (§3.2.1). For Locality evaluation,
we split it into the textual and multimodal locality to
evaluate the stability of multimodal LLMs (§3.2.2).
For Generality evaluation, similar to Locality, we
divide it into textual and multimodal generality
and utilize ChatGLM (Du et al., 2022), and Sta-
ble Diffusion (Rombach et al., 2022) to generate
rephrased text as well as rephrased images for eval-
uation (§3.2.3). We evaluate several knowledge
editing approaches on MMEdit. Empirically, we
notice that current editing approaches are effective
for editing the textual model in the multimodal
language model but not as effective for editing the
vision module. For example, in editing the lan-
guage module of the BLIP-2 model, the reliability
of MEND can reach 92.6%, but only attain 14.1% if
editing the vision module, indicating the potential
difficulty and opportunities of this task. In general,
our primary contributions are as follows:

• We take the first step to investigate editing mul-
timodal LLMs, which extends model editing
to multimodal settings.

• We propose MMEdit, a new benchmark, to
evaluate the reliability, locality, and generality
of multimodal model editing approaches.

• We conduct experiments with various base-
lines, demonstrating that while current method-
ologies can somewhat aid in multimodal edit-
ing, the outcomes still fall short of complete
satisfaction. We will make the code and
datasets publicly available for future research
purposes.

2 Related Work
2.1 Multimodal Language Models
Multimodal Learning (MML) (Xu et al., 2022a;
Yin et al., 2023) provides a holistic approach to
crafting AI models that can extract and correlate
information from various data modalities. Due
to its societal significance, MML has established
a foothold in the research community, solidify-
ing itself as a crucial field of study over the past
decade. Vision-language pre-training is one of
the important branches of MML, which aims to
learn multimodal foundation models with improved
performance on various vision and language tasks.
Vision Transformer (ViT) (Dosovitskiy et al., 2021)
is a seminal work that contributes an end-to-end

solution by applying the encoder of Transformers
to images. CLIP (Radford et al., 2021) proposes
a method, which uses multimodal pre-training to
convert classification as a retrieval task that en-
ables the pre-trained models to tackle zero-shot
recognition. Recently, the advancement of LLMs,
such as LLaMA (Touvron et al., 2023), BLOOM
(Scao et al., 2022), and ChatGPT (OpenAI, 2022),
has been bolstered by scaled-up training data and
increased parameters, yielding significant recent
success. These models showcase impressive lan-
guage understanding, generation, and knowledge
reasoning capabilities, enhancing their ability to
comprehend natural language and generate high-
quality, context-based text. The evolution of large
language models has spurred the widespread use
of auto-regressive language models as decoders
in vision-language tasks. Utilizing cross-modal
transfer, this approach enables knowledge sharing
between language and multimodal domains (Gao
et al., 2023; Liu et al., 2023; Li et al., 2023a; Ye
et al., 2023; Zhu et al., 2023; Li et al., 2023b; Zhang
et al., 2023).

2.2 Model Editing

LLMs (Zhao et al., 2023) primarily derive knowl-
edge from the training corpus. Yet, the quality of
the dataset is not always guaranteed, potentially
integrating harmful or incorrect information into
the model (Hernandez et al., 2023). One solution is
retraining models with updated knowledge, though
this might be unfordable and difficult to implement.
Alternatively, fine-tuning with a few updated facts
could be considered, but it risks over-fitting and
catastrophic forgetting (Zhai et al., 2023). To ad-
dress these issues, (Sinitsin et al., 2020) proposes
Model Editing, which aims to efficiently and ac-
curately alter the factual knowledge stored within
models. This approach is applied in various do-
mains (Mao et al., 2023; Onoe et al., 2023; Xu et al.,
2022b; Wang et al., 2023a; Li et al., 2023c; Cheng
et al., 2023), with an increasing number of studies
investigating the impact of editing (Ilharco et al.,
2023; Gupta et al., 2023; Hase et al., 2023a; Cohen
et al., 2023; Wu et al., 2023; Wang et al., 2023b;
Gandikota et al., 2023; Li et al., 2023d; Hase et al.,
2023b). Presently, there are three primary types
of model editing approaches: 1) Meta-learning
Method, 2) Locate-Then-Edit Method, and 3) In-
Context Knowledge Editing Method.
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Figure 2: Utilizing multimodal LLM (e.g., BLIP-2 OPT) as an example, we dissect the comprehensive multimodal
LLM into two components (Vision module and Textual module). The model’s erroneous output could potentially
stem from either or both of these modules. Drawing an analogy with human errors in “vision” and “speech”, we
apply model editing methods to these two components, thereby changing the model to refine its output.

Meta-learning Method. MEND (Mitchell et al.,
2022a) and Knowledge Editor (KE) (Cao et al.,
2021) propose approaches involving an external
editor, capable of learning the optimal parameter
set, 𝜃, for knowledge updating, while concurrently
imposing constraints to maintain model stability.
CaliNET (Dong et al., 2022) and T-Patcher (Huang
et al., 2023), drawing inspiration from (Dai et al.,
2022), introduce additional trainable parameters
into the feed-forward module of Pretrained Lan-
guage Models. SERAC (Mitchell et al., 2022b)
utilize an explicit memory to store edits and learns
to reason over them to modulate the base model’s
predictions as needed.

Locate-Then-Edit Method. ROME (Meng et al.,
2022a) proposes approaches that employ causal
mediation analysis to identify the area for editing.
ROME discovers that memorized factual associa-
tions can be pinpointed to a specific location within
a GPT model. However, a notable limitation of
ROME is its ability only to edit one fact at a time.
To address this, Meng et al. (2022b) proposes a new
method known as MEMIT, which is a successor to
the previous work ROME, which performs a rank-
one modification of the MLP weights of a single
layer to write a memory into the model directly.

In-Context Knowledge Editing Method. In-
Context Learning (ICL) (Brown et al., 2020) signi-
fies a training-free paradigm where knowledge is

obtained from demonstrations directly concatenated
within the input context. A novel editing paradigm
has recently emerged that capitalizes on the abil-
ity of LLMs to comprehend context (Zheng et al.,
2023), thereby enabling the performance of context-
based model editing, guiding the model’s genera-
tion process, and offering an efficient, lightweight
approach to model editing.

Model editing methods to date largely cater to
single-modal scenarios, leaving a gap in multimodal
editing. To the best of our knowledge, we are the
first to investigate multimodal model editing for
LLMs and provide a new benchmark to facilitate
research in this area.

3 Editing Multimodal LLMs
We illustrate the proposed task of multimodal edit-
ing in Figure 2. We will introduce the task definition
(§3.1), dataset construction details in (§3.2), the
multimodal models (§3.3), and the baselines (§3.4)
we used in the experiments.

3.1 Task Definition
Assuming we have a multimodal LLM 𝑓 parameter-
ized by 𝜃 (consisting of two parts, 𝑓𝑣𝑖𝑠𝑖𝑜𝑛 and 𝑓𝑡𝑒𝑥𝑡
parameterized by 𝜃𝑣𝑖𝑠𝑖𝑜𝑛 and 𝜃𝑡𝑒𝑥𝑡 ) that map the
input 𝑖𝑒 and 𝑥𝑒 to the prediction to 𝑦𝑜, where 𝑖𝑒 refer
to the editing image input, 𝑥𝑒 refer to the editing
text prompt input and 𝑦𝑜 denote as the origin output.
We denoteM as a symbolic representation for a par-
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Figure 3: Taking the text modality as an example, Edit
target and its generalization pertain to in-scope, which
involves querying the quantity of skyscrapers in a given
image, while the out-of-scope refers to inquiries about
the publication date. In-scope inputs require editing,
whereas out-of-scope inputs remain unchanged.

ticular metric, with subscripts indicating specific
metrics and superscripts representing variations in
edit data. We prepare the editing datasets stated
in §3.2.1, which present as Dedit. Inspired by Yao
et al. (2023), we introduce a series of multimodal
model editing metrics.

Reliability. Editing reliability is needed to change
prediction from 𝑦𝑜 to 𝑦𝑒. Intuitively, what we
need is an updated 𝜃𝑒 with 𝑓 (𝑖𝑒, 𝑥𝑒; 𝜃𝑒) = 𝑦𝑒. To
measure the reliability, we use the editing accuracy,
as described by the following:

M𝑟𝑒𝑙 = E(𝑖𝑒 ,𝑥𝑒 ,𝑦𝑒 )∼Dedit

[
1 𝑓 (𝑖𝑒 ,𝑥𝑒;𝜃𝑒 (𝑖𝑒 ,𝑥𝑒 ,𝑦𝑒 ) )=𝑦𝑒

]
(1)

where 𝜃𝑒 refers to the edited parameters.

Locality. To maintain the model’s stability, min-
imizing the unintended side effects of editing on
the model’s broader knowledge base is imperative.
In pursuit of this objective, we introduce two met-
rics: M𝑇𝑒𝑥𝑡

𝑙𝑜𝑐 (T-Locality) andM 𝐼𝑚𝑔
𝑙𝑜𝑐 (M-Locality),

both of which are designed to preserve the model’s
stability during the editing process. Given that the
knowledge in the multimodal language model is in-
herited from LLMs, safeguarding this knowledge is
paramount. With this aim in mind, we set aside the
model’s visual discrimination module and instead
employ rudimentary question-and-answer datasets
Dloc-t as we stated in §3.2.2. We define the question
as 𝑥 and the answer as 𝑦, as below:

M𝑇𝑒𝑥𝑡
𝑙𝑜𝑐 = E (𝑖𝑒 ,𝑥𝑒,𝑦𝑒 )∼Dedit

(𝑥,𝑦)∼Dloc-t

[
1 𝑓 (𝑥;𝜃𝑒 (𝑖𝑒 ,𝑥𝑒 ,𝑦𝑒 ) )= 𝑓 (𝑥, 𝜃 )

]
(2)

TASK Train Test L-Locality M-Locality

E-VQA 6,346 2,093 4,289 5,046
E-IC 2,849 1,000 4,289 5,046

Table 1: The statistic of datasets for the E-VQA and
E-IC sub-tasks. L-Locality and M-Locality are the test
sets for knowledge locality to evaluate the rest of the
knowledge in multimodal models when successfully
updating specific facts.

The vision encoder serves a critical function
in the multimodal language model, transforming
images into vector representations for co-encoding
alongside natural language text. Consequently, we
must take into account the potential ramifications
of any modifications to this module. We construct
the dataset denoted as Dloc-v for test M 𝐼𝑚𝑔

𝑙𝑜𝑐 , and
calculate as delineated below:

M 𝐼𝑚𝑔
𝑙𝑜𝑐 = E(𝑖𝑣 ,𝑥𝑣 ,𝑦𝑣 )∼Dloc-v

[
1 𝑓 (𝑖𝑣 ,𝑥𝑣 ;𝜃𝑒 )= 𝑓 (𝑖𝑣 ,𝑥𝑣 ;𝜃 )

]
(3)

where (𝑖𝑣 , 𝑥𝑣 , 𝑦𝑣) is the out-of-scope data, and
𝜃𝑒 denote the parameter updated by edit data
(𝑖𝑒, 𝑥𝑒, 𝑦𝑒).

Generality. Throughout the editing process, it
is not adequate to merely amend individual erro-
neous inputs. The revised model should also retain
the capacity for generalization and consistently
produce congruent outputs for equivalent inputs
(e.g., rephrased sentences), as shown in Figure
3. While previous unimodal model editing tasks
only required consideration of the rephrased text,
multimodal scenarios necessitate the generaliza-
tion of images as well. To address this, we in-
troduce two generalization considerations: M𝑇𝑒𝑥𝑡

𝑔𝑒𝑛

(T-Generality) and M 𝐼𝑚𝑔
𝑔𝑒𝑛 (M-Generality), which

are expressed as follows:

M𝑇𝑒𝑥𝑡
𝑔𝑒𝑛 = E(𝑥𝑟 )∼N(𝑥𝑒 )

[
1 𝑓 (𝑖𝑒 ,𝑥𝑟 ;𝜃𝑒 )= 𝑓 (𝑖𝑒 ,𝑥𝑒;𝜃𝑒 )

]
(4)

M 𝐼𝑚𝑔
𝑔𝑒𝑛 = E(𝑖𝑟 )∼N(𝑖𝑒 )

[
1 𝑓 (𝑖𝑟 ,𝑥𝑒;𝜃𝑒 )= 𝑓 (𝑖𝑒 ,𝑥𝑒;𝜃𝑒 )

]
(5)

where 𝑖𝑟 presents the rephrased image, 𝑥𝑟 refers
to the rephrased text prompt, and N(𝑥) denotes to
in-scope objects of 𝑥.

3.2 Datasets
The dataset MMEdit we constructed mainly con-
tains two subtasks: Editing VQA (E-VQA) and
Editing Image Captioning (E-IC).
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Figure 4: Generality dataset construction process.

3.2.1 Reliability Dataset Construction
To benchmark our experiments, we selected two
common multimodal tasks: Visual Question An-
swering (VQA) (Antol et al., 2015) and Image
Captioning (Herdade et al., 2019). VQA is to de-
vise algorithms that can not only comprehend the
visual content within an image, but also understand
the natural language used to inquire about that
image, and subsequently generate precise answers
to those queries. Image Captioning is to devise
algorithms capable of comprehending the visual
content of an image, subsequently generating a
coherent and precise description of the image in
natural language. In this study, we opt for BLIP-2
OPT. Our foundational edit data originates from
suboptimal entries across two eval datasets, namely,
VQAv2 (Goyal et al., 2017) and COCO Caption
(Chen et al., 2015).

Besides the foundational edit data, utilizing ad-
ditional data is crucial. This data not only aids the
editing process but also validates the efficacy of
the changes, assessing model edits for both stability
and generality.

3.2.2 Locality Dataset Construction
We must deliberate on the effects of editing on
the language function within a multimodal model,
analogous to how we evaluate various cognitive
regions of an individual’s brain post-surgery.

Textual Locality Dataset. To evaluate the sta-
bility of the language model, we leverage the NQ
dataset (Kwiatkowski et al., 2019), previously used
in MEND, as a benchmark for the stability of the
LLM component within the model. We specifically
use the model’s output pre and post-editing to con-
struct a KL scatter plot, facilitating constraints on
the model’s edits. Additionally, we calculate the
proportion of instances maintaining a top-1 status,
further quantifying the model’s stability.

MultiModal Locality Dataset. Similarly, it’s cru-
cial to verify the impact of editing on the visual
module. Hence, we utilize a straightforward dataset
OK-VQA (Marino et al., 2019) in the realm of
multimodality, serving as a measure of the locality
for the multimodal visual module. Once again, we
update the KL dispersion constraint using logits
both before and after the editing process.

3.2.3 Generality Dataset Construction
We propose two forms of generality within a mul-
timodal model. The overall process of generality
dataset construction is shown in Figure 4.

Textual Generality Dataset. To be noted,
LLMs exhibit robust conversational and power-
full problem-solving capabilities, which enables
us to formulate task instructions, whereby we can
instruct the model to produce analogous text inputs.
For the E-VQA task, we utilize ChatGLM (Du et al.,
2022; Zeng et al., 2022) to generate similar queries.
However, for the E-IC task, due to the succinctness
and relative straightforwardness of the prompts, the
quality of the model’s generated output is not satis-
factory. Therefore, we employ a manually written
template with 20 prompts to replace the original
ones randomly.

Visual Generality Dataset. The diffusion model
(Ho et al., 2020) has garnered significant success in
the realm of image generation in recent years. Sur-
passing the original state-of-the-art model: Genera-
tive Adversarial Networks (GAN) models (Goodfel-
low et al., 2014). The diffusion model has excelled
in numerous image-generation tasks and has shown
commendable performance across various applica-
tion domains. Stable Diffusion (Rombach et al.,
2022) is a latent text-to-image diffusion model ca-
pable of generating photo-realistic images given
text input. We utilize Stable Diffusion 2.1 for gen-
erating reinterpreted images. This dataset, drawing
upon caption descriptions from the COCO dataset,
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is leveraged to evaluate the model’s capability for
image generalization.

3.3 Multimodal Language Models
BLIP-2 OPT. BLIP-2 (Li et al., 2023b) is a
generic and efficient pre-training strategy that boot-
straps vision-language pre-training from off-the-
shelf frozen pre-trained image encoders and frozen
large language models. The model utilizes a
lightweight Quering Transformer to bridge the gap
between vision modality and text modality and
achieves state-of-the-art performance on various
vision-language tasks. We select the BLIP-2 OPT as
our basic edit model, which utilizes the ViT-L in the
vision block, and select the unsupervised-trained
OPT model for decoder-based LLM.

MiniGPT-4. MiniGPT-4 (Zhu et al., 2023) is a
potent vision-language model akin to BLIP-2, lever-
aging a frozen visual encoder in tandem with the
frozen Vicuna (Chiang et al., 2023). Vicuna, built
upon LLaMA, is reported to achieve 90% of Chat-
GPT’s performance based on GPT-4’s evaluation
criteria. MiniGPT-4 adds a single projection layer
to align the encoded visual features with the Vi-
cuna language model. And MiniGPT-4 employs
the same pre-trained vision component of BLIP-2
that consists of a Vit-G/14 from EVA-CLIP (Sun
et al., 2023) and a Q-Former.

3.4 Baselines
Finetune. Fine-tuning has emerged as a widely
employed strategy for adapting pre-trained language
models to specific tasks or domains (Cortes et al.,
2015). In our exploration, we delve into two distinct
fine-tuning methodologies: one focusing on the
last layer of the language model. Take the BLIP-2
OPT model as an example, we finetune the 31st
decoder layer of OPT model. The other targets
the vision block within the multimodal language
model, specifically, we finetune the Q-former model
to overfit the editing dataset.

MEND. Model Editor Networks with Gradient
Decomposition (Mitchell et al., 2022a) conducts
efficient local edits to language models with a single
input-output pair. Essentially, MEND learns to
transform the gradient of fine-tuned LLMs, which
utilizes a low-rank decomposition of gradients.

Knowledge Editor. KE (Cao et al., 2021) is a
method that can edit wrong knowledge in language
models without re-training the whole model. KE

utilizes a hyper network (a bidirectional-LSTM)
with constrained optimization, which is used to
predict the weight update during inference.

SERAC. SERAC (Mitchell et al., 2022b) intro-
duces a memory-based model editing approach,
which leverages an explicit memory system to cache
edits. This memory is subsequently used to adjust
the output of the base model during inference. The
system utilizes a small auxiliary scope classifier
alongside counterfactual model. The role of the
scope classifier is to ascertain whether the input is
within the ambit of the memory cache. Should the
input be found within this scope, it is combined
with the most relevant cache item and input into the
counterfactual model for prediction.

In-Context Knowledge Editing. In-Context
Knowledge Editing (IKE) (Zheng et al., 2023)
constructs 𝑘 demonstrations 𝐶 = {𝑐1, . . . , 𝑐𝑘}, fol-
lowing the approach outlined in Liu et al. (2022).
This method employs an unsupervised retriever
based on cosine similarity to fetch demonstra-
tions from the training set prior to injecting fact
𝑓 = (𝑥∗, 𝑦∗) into Language Models. The 𝑥∗ is
the prompt to probe the factual knowledge in mod-
els (e.g., The president of the US is), and
𝑦∗ will be the editing target Joe Biden. The
ranking of in-context demonstrations also hinges
on cosine similarity: 𝑐𝑜𝑠(𝑐1, 𝑓 ) < 𝑐𝑜𝑠(𝑐2, 𝑓 ) <
· · · < 𝑐𝑜𝑠(𝑐𝑘 , 𝑓 ). where 𝑐1, . . . , 𝑐𝑘 are sequen-
tially arranged in the context from left to right.
Demonstrations 𝐶 can be viewed as an externally
augmented knowledge base, primarily designed
to guide the generation within LMs. Its ultimate
objective is to maximize P(𝑦 | 𝑥, 𝑓 , 𝐶) when the
prompt 𝑥 falls within the editing scope of the target
prompt 𝑥∗.

4 Experiments
4.1 Results
In this part, we present a comparative analysis of
multiple editing methods on MMEdit. The results
of these comparisons are displayed in Table 2. Af-
ter this, we delve into a tripartite evaluation of the
experimental results, including three aspects of Re-
liability, Locality, and Generality. Furthermore,
we analyze Locality and Generality through text
and visual modalities and provide several editing
cases in Figure 6.

Reliability. From the results, all model editing
methods outperform the base methods in Reliabil-
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Editing VQA Editing Image Caption

Method Reliability ↑ T-Generality ↑ T-Locality ↑ M-Locality ↑ Reliability ↑ T-Generality ↑ T-Locality ↑ M-Locality ↑
BLIP-2 OPT Size: 3.8B

Base Methods
Base Model 0.00 0.00 100.0 100.0 0.00 0.00 100.0 100.0

FT (vision block) 56.28 29.88 100.0 11.32 0.08 0.00 100.0 7.31
FT (last layer) 58.70 15.33 78.86 2.86 0.24 0.10 67.67 3.91

Model Editing

Knowledge Editor 67.80 63.00 97.32 45.89 69.00 62.80 96.21 45.55
In-Context Editing 99.95 91.59 13.16 1.88 96.70 78.20 13.36 2.17

SERAC 91.20 91.40 100.0 0.33 94.40 96.00 100.0 0.47
MEND 92.60 90.80 96.07 65.15 65.00 38.00 92.67 55.72

MiniGPT-4 Size: 7.3B

Base Methods
Base Model 0.00 0.00 100.0 100.0 0.00 0.00 100.0 100.0

FT (vision block) 39.58 0.98 100.0 3.96 0.63 0.00 100.0 5.13
FT (last layer) 39.57 0.58 72.01 16.42 2.75 0.00 35.52 9.28

Model Editing

Knowledge Editor 87.77 86.62 97.15 55.77 35.10 24.20 96.78 52.22
In-Context Editing 71.72 40.23 13.46 2.00 68.60 59.80 12.51 2.96

SERAC 87.20 84.60 100.0 0.33 40.20 36.60 100.0 0.97
MEND 95.51 95.27 98.73 71.33 87.10 84.10 98.34 59.53

Table 2: Main results on the MMEdit. T-Locality, M-Locality refer to the textual and multimodal stability.
T-Generality represents textual generality. Reliability denotes the accuracy of successful editing.

ity. Particularly, IKE and SERAC, methodologies
leveraging external memory for editing, exhibit
commendable performance in multimodal language
models. We observe that the fine-tuning method
demonstrates poorer performance than the model
editing method. Note that merely fine-tuning the
parameters of the LLM or the modal fusion block
does not adequately capture the characteristics of
the multimodal data. We analyze the reasons as

0.0 0.2 0.4 0.6 0.8 1.0

KE

IKE

SERAC

MEND

M-Generality

M-Locality

0.0 0.2 0.4 0.6 0.8 1.0

KE

IKE

SERAC

MEND

T-Generality

T-Locality

Figure 5: Generality of different editing methods.

follows: the data used for fine-tuning differs sig-
nificantly from the original model, such as the
Q-former and OPT model, which need to collab-
orate effectively. Simply fine-tuning one of these
modules may not capture the task-specific charac-
teristics accurately. On the other hand, fine-tuning
all modules incurs a significant resource overhead.
Moreover, based on our experimental results, we
observe that fine-tuning can lead to substantial
changes in the original model, often resulting in
the loss of other knowledge, particularly evident in
multimodal datasets.

Locality. Several traditional editing methods re-
main applicable in multimodal editing, proving
valuable for effectively modifying the knowledge
within the model and rectifying its outputs. How-
ever, IKE and SERAC, despite their superior perfor-
mance in Reliability, exhibit poor performance on
the M-Locality due to their lack of constraints on
it, indicating that although these external memory-
based editing techniques undoubtedly succeed in
fixing the outputs, their efficacy in stabilizing inter-
nal knowledge within the models leaves room for
improvement. As for T-Locality, the majority of
Model Editing methods obtain good performance,
with IKE once again falling short. The underlying
reason is that the other three approaches impose
constraints on T-Locality, whereas IKE, as an In-
Context Learning method, lacks a robust constraint
mechanism, resulting in subpar performance.

Generality. We undertake a comparative explo-
ration of various methods’ text and image gener-
alization capabilities with MiniGPT-4 in E-VQA.
Note that KE tends to display a lesser degree of
image generalization, predominantly due to its inher-
ent consideration of M-Locality during the training
phase. Consequently, the image generalization effi-
ciency of meta-learning methods tends to fall short
when compared to memory-based methods. On
the other hand, the superior image generalization
capability exhibited by memory-based methods is
achieved at the cost of compromising M-Locality,
resulting in significantly lower levels of M-Locality.
Through our evaluation of diverse editing methods,
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Boarding.

What is the man doing? 

skateboarding.

What is the man doing? 

Skateboarding.

Before Editing

After Editing

Case of successful VQA editing (By SERAC)

A photo getting on a bus that has 
bicycles on the rack.

What are shown in the photo? 

A person getting on a bus that has 
bicycles on the rack.

What are shown in the photo? 

Before Editing

After Editing

Case of successful Image Caption editing (By SERAC)

What is the train number? 

18688.

Before Editing

After Editing

Case of failure VQA editing (By IKE)

What is the train number? 

17788.

Figure 6: Cases of multimodal model editing. Top: The output before editing. Bottom: The output after editing.

Figure 7: Results of editing different components.

we recurrently identify that image generalization
performance tends to be less robust than text gener-
alization.

4.2 Editing Different Component
We further analyze the variations in editing different
regions of the multimodal model. In contrast to
editing single-modal models, due to the complexity
and diversity of multimodal models, we can try to

edit more modules and analyze their impact on vi-
sual and textual knowledge. The results are shown
in Figure 7. For the BLIP-2 OPT model, we inves-
tigate the distinctions in editing the Q-former and
OPT on the VQA dataset. Regarding the MiniGPT-
4 model, we mainly focus on the distinctions in
editing the last few layers of the llama_proj and
Vicuna models. The selected editing approaches
for analysis are MEND, KE, and FT, which enable
us to specify the editing area.

The results highlight that editing the vision mod-
ule is more challenging than editing the language
module (also see the failure editing in Figure 6).
We argue that this difficulty may be attributed to the
model’s architecture. Editing the last layer of the
LLM allows for direct modification of the output,
while modifying the vision module only affects
the input to the LLM, resulting in relatively less
impact on the model. Concretely, various modal-
ities reside in distinct spaces, which implies that
the factual knowledge may be stored in separate
parameters within the model. Considering that the
LLMs possess a large number of parameters, this
aspect becomes even more critical for multimodal
models. Thus editing the language model can lead
to significant performance improvements. Notably,
the visual module in the model plays a crucial role
in image comprehension, thereby suggesting that
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future work needs to consider information from
different modalities simultaneously.

5 Conclusion
In this paper, we introduce multimodal model edit-
ing, with a new benchmark MMEdit. Empirically,
we analyze the effectiveness of various model edit-
ing baselines and explore their impact on different
components (e.g., visual and text).
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6 Limitations
Models. We only edit several basic multimodal
LLMs, leaving many others behind. Besides, due to
the resource limitation, the number of parameters
for the multimodal LLMs we edit is below 10B, and
we cannot afford to edit LLMs with a larger number
of parameters such as the 65B LLaMA Adapter V2
(Gao et al., 2023).

Efficient Vision Editing. In this paper, our anal-
ysis has been primarily focused on comparing the
varied effects of existing editing methods across
modules of different modalities. However, the re-
sults are not satisfactory. Moving forward, our
primary objective is to explore how to efficiently
and accurately edit information across other modal-
ities. This includes investigating techniques such as
co-editing between different modalities by pinpoint-
ing the knowledge within the multimodal model
and identifying the content requiring modification.
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A Appendix
Our code is available in the supplementary ma-
terials for reproducibility.

Hyper-Parameters MaxIter Edit Num Optimizer LR

𝐷𝐸−𝑉𝑄𝐴
𝐵𝐿𝐼𝑃2 40000 1 ASGD 1e-5

𝐷𝐸−𝐼𝐶
𝐵𝐿𝐼𝑃2 40000 1 ASGD 1e-5

𝐷𝐸−𝑉𝑄𝐴
𝑀𝑖𝑛𝑖𝐺𝑃𝑇−4 40000 1 ASGD 1e-5

𝐷𝐸−𝐼𝐶
𝑀𝑖𝑛𝑖𝐺𝑃𝑇−4 40000 1 ASGD 1e-5

Table 3: FT-vision hyper-parameters

Hyper-Parameters MaxIter Edit Num Optimizer LR

𝐷𝐸−𝑉𝑄𝐴
𝐵𝐿𝐼𝑃2 20000 1 ASGD 1e-5

𝐷𝐸−𝐼𝐶
𝐵𝐿𝐼𝑃2 20000 1 ASGD 1e-5

𝐷𝐸−𝑉𝑄𝐴
𝑀𝑖𝑛𝑖𝐺𝑃𝑇−4 20000 1 ASGD 1e-5

𝐷𝐸−𝐼𝐶
𝑀𝑖𝑛𝑖𝐺𝑃𝑇−4 20000 1 ASGD 1e-5

Table 4: FT-last-layer hyper-parameters

In this section, we describe the implementation
of our experiments in detail, including the training
procedures, backbone model, and hyperparameters
for each dataset.

Hyper-Parameters MaxIter Edit Num Optimizer LR

𝐷𝐸−𝑉𝑄𝐴
𝐵𝐿𝐼𝑃2 20,000 1 Adam 1e-5

𝐷𝐸−𝐼𝐶
𝐵𝐿𝐼𝑃2 20,000 1 Adam 1e-5

𝐷𝐸−𝑉𝑄𝐴
𝑀𝑖𝑛𝑖𝐺𝑃𝑇−4 25,000 1 AdamW 5e-4

𝐷𝐸−𝐼𝐶
𝑀𝑖𝑛𝑖𝐺𝑃𝑇−4 35,000 1 AdamW 5e-4

Table 5: KE hyper-parameters

Hyper-Parameters MaxIter Edit Num Optimizer LR

𝐷𝐸−𝑉𝑄𝐴
𝐵𝐿𝐼𝑃2 15,000 1 Adam 1e-5

𝐷𝐸−𝐼𝐶
𝐵𝐿𝐼𝑃2 15,000 1 Adam 1e-5

𝐷𝐸−𝑉𝑄𝐴
𝑀𝑖𝑛𝑖𝐺𝑃𝑇−4 20,000 1 Adam 1e-5

𝐷𝐸−𝐼𝐶
𝑀𝑖𝑛𝑖𝐺𝑃𝑇−4 30,000 1 Adam 1e-5

Table 6: SERAC hyper-parameters

Hyper-Parameters MaxIter Edit Num Optimizer LR

𝐷𝐸−𝑉𝑄𝐴
𝐵𝐿𝐼𝑃2 20,000 1 Adam 1e-6

𝐷𝐸−𝐼𝐶
𝐵𝐿𝐼𝑃2 20,000 1 Adam 1e-6

𝐷𝐸−𝑉𝑄𝐴
𝑀𝑖𝑛𝑖𝐺𝑃𝑇−4 20,000 1 Adam 1e-6

𝐷𝐸−𝐼𝐶
𝑀𝑖𝑛𝑖𝐺𝑃𝑇−4 20,000 1 Adam 1e-6

Table 7: MEND hyper-parameters
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