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Abstract

We present a novel iterative extraction model,
ITERX, for extracting complex relations, or
templates (i.e., 𝑁-tuples representing a map-
ping from named slots to spans of text) within
a document. Documents may feature zero or
more instances of a template of any given type,
and the task of template extraction entails iden-
tifying the templates in a document and ex-
tracting each template’s slot values. Our imita-
tion learning approach casts the problem as a
Markov decision process (MDP), and relieves
the need to use predefined template orders to
train an extractor. It leads to state-of-the-art
results on two established benchmarks – 4-ary
relation extraction on SCIREX and template
extraction on MUC-4 – as well as a strong
baseline on the new BETTER Granular task.1

1 Introduction

A variety of tasks in information extraction (IE)
require synthesizing information across multiple
sentences, up to the length of an entire document.
The centrality of document-level reasoning to IE
has been underscored by an intense research fo-
cus in recent years on problems such as argument
linking (Ebner et al., 2020; Li et al., 2021, i.a.),
𝑁-ary relation extraction (Quirk and Poon, 2017;
Yao et al., 2019; Jain et al., 2020, i.a.), and — our
primary focus — template extraction (Du et al.,
2021b; Huang et al., 2021, i.a.).

Construed broadly, template extraction is general
enough to subsume certain other document-level
extraction tasks, including 𝑁-ary relation extrac-
tion. Motivated by this consideration, we propose
to treat these problems under a unified framework
of generalized template extraction (§2).2 Figure 1
shows 4-ary relations from the SCIREX dataset
(Jain et al., 2020), presented as simple templates.

1 Code available at github.com/wanmok/iterx.
2 We encourage the reader to consult Appendix A for a

discussion of some important differences between generalized
template extraction and traditional event extraction.

In this paper, we propose a 
Multi-sentiment-resource 
Enhanced Attention Network 
(MEAN)…
Despite the remarkable progress 
made by the previous work, we 
argue that   sentiment analysis 
still remains a challenge…
Movie Review (MR) and 
Stanford Sentiment Treebank 
(SST) are used to evaluate our 
model…
We adopt classification 
accuracy as the evaluation 
metric.
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Figure 1: An example of multi-template extraction on
a document (an NLP paper; Lei et al. (2018)) from the
SCIREX dataset. An agent reads the entire paper and
iteratively generates templates, each consisting of slots
for Task, Method, Dataset, and Metric.

Since documents typically describe multiple
complex events and relations, template extraction
systems must be capable of predicting multiple
templates per document. Existing approaches such
as Du et al. (2021b) and Huang et al. (2021) rely
on a linearization strategy to force models to learn
to predict templates in a pre-defined order. In gen-
eral, however, such orderings are arbitrary. Others
have instead focused on the simplified problem of
role-filler entity extraction (REE), which entails ex-
tracting all slot-filling entities but does not involve
mapping them to individual templates (Patwardhan
and Riloff, 2009; Du et al., 2021a, i.a.).

We present a new model for generalized template
extraction, ITERX, that iteratively extracts multiple
templates from a document without requiring a
pre-defined linearization scheme. We formulate
the problem as a Markov decision process (MDP,
§2), where an action corresponds to the generation
of a single template (§3.2), and states are sets of
predicted templates (§3.3). Our system is trained
via imitation learning, where the agent imitates a
dynamic oracle drawn from an expert policy (§3.4).
Our contributions can be summarized as follows:

https://www.github.com/wanmok/iterx


Col. Isaacs said that the 
guerrillas attacked the “La 
Eminencia” farm located near 
the “Santo Tomas” farm, where 
they burned the   facilities and 
stole foodŏ
He also reported that the 
guerrillas killed a peasant in the 
city of Flores, in the northern El 
Petén department, and burned 
a   tank truck.
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In   early September, illegal border crossings 
by   two people infected with   COVID-19, 
triggered a week-long   lockdown of another 
Yunnan border city,   Ruili, and prompted       
at least eight prefectures and   25 counties to 
enter “wartime status.” Following the incident, 
Yunnan vowed to strengthen border patrols.

Twenty people have been   sentenced to prison 
in Southwest China's Yunnan Province for 
crimes relating to illegal immigration from 
Myanmar to   China during the   COVID-19 
pandemic, Yunnan's high people's court 
reported on September 28.
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Figure 2: Template examples from MUC-4 (left) and BETTER Granular (right) datasets. Event triggers (e.g.
burned above) are not annotated in MUC-4 and are highlighted here only for clarity.

• We show that generalized template extraction can
be treated as a Markov decision process, and that
imitation learning can be effectively used to train
a model to learn this process without making
explicit assumptions about template orderings.

• We demonstrate state-of-the-art results with
ITERX on two established benchmarks for com-
plex relation extraction: 4-ary relation extraction
on SCIREX and template extraction on MUC-4.

• We introduce strong baselines for the recently
introduced English BETTER Granular template
extraction task.

2 Problem Formulation

We propose to treat both classic template extrac-
tion and 𝑁-ary relation extraction under a uni-
fied framework of generalized template extraction.
Given a document 𝐷 = (𝑤1, · · · , 𝑤𝑁 ) where each
𝑤𝑖 is a token, we assume that some system (or
model component) generates a set of candidate
mention spans X = {𝑥1, · · · , 𝑥𝑀 }, where each
𝑥𝑖 = 𝐷 [𝑙𝑖 : 𝑟𝑖] ∈ X is contiguous with left and
right span boundary indices 𝑙𝑖 and 𝑟𝑖 .

We define a template ontology as a set of tem-
plate types T , where each type 𝑡 ∈ T is associated
with a set of slot types 𝑆𝑡 . A template instance is
defined as a pair (𝑡, {(𝑠𝑘 : 𝑋𝑘), · · · }) where 𝑡 ∈ T
is a template type, 𝑠𝑘 ∈ 𝑆𝑡 is a slot type associated
with 𝑡, and 𝑋𝑘 ⊆ X is a subset of all mention spans
extracted from the document that fills slot type 𝑠𝑘
(𝑋𝑘 = ∅ indicates that slot 𝑠𝑘 has no filler).3 Tak-
ing Figure 2 (left) as an example, Template 1 has
type 𝑡 = Arson and slots {PerpretratorIndiv :
{“guerrillas”}, PhysicalTarget : {“facilities”}}.

We reduce the problem of extracting a single
template to the problem of assigning a slot type to
each extracted span 𝑥𝑖 ∈ X , where some spans may

3 In this work, we use template as an abbreviation for
template instance, relying on the type vs. instance usage only
when necessary for clarity.

be assigned a special null type (𝜀), indicating that
they fill no slot in the current template. Given this
formulation, we can equivalently specify a template
instance as (𝑡, 𝑎) where 𝑎 is an assignment of spans
to slot types: {𝑥𝑖 : 𝑠𝑖}𝑠𝑖 ∈𝑆𝑡 . We denote the union of
all slot types across all template types, along with
the empty slot type 𝜀, as S = {𝜀} ∪

⋃
𝑡 ∈T 𝑆𝑡 .

With these definitions in hand, the problem of
generalized template extraction can be stated suc-
cinctly: Given a template ontology T , a docu-
ment 𝐷, and a set of candidate mentions X ex-
tracted from 𝐷, generate a set of template instances
{(𝑡1, 𝑎1), · · · , (𝑡𝐾 , 𝑎𝐾 )}, where 𝑡𝑖 ∈ T .

As an MDP We treat generalized template extrac-
tion as a Markov decision process (MDP), where
each step of the process generates one whole tem-
plate instance. For simplicity, we consider the prob-
lem of extracting templates of a specific type 𝑡 ∈ T ;
extracting all templates then simply requires iterat-
ing over T , where |T | is typically very small. This
MDP (2A,A, 𝐸, 𝑅) comprises the following:4

• 2A: the set of states. In our case, this is the set
of all template generation histories. Each state
𝐴 ⊆ A is a set of generated templates;

• A: the set of actions or assignments: an action
is the generation of a single template (an assign-
ment of slot types to spans);

• 𝐸 : the environment that dictates state transitions.
Here, each transition simply adds a generated
template to the set of all templates generated for
the document: 𝐸 (𝐴, 𝑎) = 𝐴 ∪ {𝑎};

• 𝑅(𝐴, 𝑎): the reward from action 𝑎 under the cur-
rent state 𝐴.

These components are detailed in the following
section. Figure 3 shows ITERX in action: the MDP

4 Our notation is consistent with prior NLP work that uses
MDPs, e.g., Levenshtein Transformers (Gu et al., 2019).
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Figure 3: The basic iteration step of ITERX (left box), and an unrolled version on SCIREX 4-ary relation extraction
(extraction of templates in the form {Task, Method, Dataset, Metric}) executed on the NLP paper Bidirectional
Attention Flow for Machine Comprehension (Seo et al., 2017). Span embeddings (X(0) ) are passed as input to the
first step, where the model extracts the template {Task: Machine comprehension, Question answering; Method:
BiDAF; Dataset: SQuAD; Metric: Exact match}. This information is propagated via our memory mechanism to
the second step, and informs prediction of the next template: {Task: Machine comprehension; Method: BiDAF;
Dataset: CNN/DailyMail; Metric: Accuracy}. The third step assigns the null slot type 𝜀 to all spans, indicating
that the model is unable to find any further templates, thus stopping the generation process.

produces two templates sequentially, terminating
on a null assignment to all input spans in X .

3 Model

Our ITERX model is a parameterized agent that
makes decisions under the MDP above: condi-
tioned on an input document 𝐷, spans X extracted
from 𝐷, and a specific template type 𝑡, ITERX gen-
erates a single template of type 𝑡 at each step. The
model consists of two parameterized components:

• Policy 𝝅: A policy 𝜋(𝑎 | 𝑡,X) that generates a
distribution over potential assignments of spans
to slots in the current template of type 𝑡;

• State transition model 𝝉: An autoregressive
state encoder that maps a state (i.e., a set of
predicted templates) 𝐴 to a continuous represen-
tation X via a state transition model 𝜏, where
X(𝑘+1) = 𝜏(X(𝑘) , 𝑎𝑘). Here the state represen-
tation X = (x1, · · · , x𝑀 ) comprises of a vector
x𝑖 ∈ R𝑑 for each span 𝑥𝑖 .

ITERX generates a sequence of templates: It starts
with initial state X(0) (see Figure 3 for a running
example) comprising only span representations de-
rived from the encoder (as no templates have been
predicted) and ends when no new template is gener-
ated (§3.5). ITERX is trained via imitation learning,

aiming to imitate an expert policy 𝜋∗ derived from
reference templates.

3.1 Span Extraction and Representation

ITERX takes spans as input and thus relies on
a span proposal component to obtain candidate
spans.5 For all experiments, we use the neural CRF-
based span finder employed for FrameNet parsing
in Xia et al. (2021) and for the BETTER Abstract
task in Yarmohammadi et al. (2021).6 CRF-based
span finders have been empirically shown to excel
at IE tasks (Gu et al., 2022).

The input document is first embedded using
a pretrained Transformer encoder (Devlin et al.,
2019; Raffel et al., 2020) that is fine-tuned during
model training.7 Each span 𝑥 = 𝐷 [𝑙 : 𝑟] extracted
by the span extractor is encoded as a vector xenc,
which is obtained by first concatenating three vec-
tors of dimension 𝑑: the embeddings of the first
and the last tokens in the span, and a weighted sum

5 Although many systems since Lee et al. (2017) that re-
quire spans as input have trained span proposal modules end-
to-end, we found this to be unnecessary to obtain strong results
and leave this extension for future work.

6 The code of the span finder can be found at
github.com/hiaoxui/span-finder. We refer the reader
to these papers for further details.

7 Different encoders are used in §4 for fair comparison
with prior work. For documents exceeding maximum length
𝑁max = 1024, tokens are encoded in chunks of size 𝑁max.

https://github.com/hiaoxui/span-finder


of the embeddings of all tokens within the span, us-
ing a learned global query (Lee et al., 2017). This
3𝑑-dimensional vector is then compressed to size
𝑑 using a two-layer feedforward network. Lastly,
to incorporate positional information, we add sinu-
soidal positional embeddings based on the token-
level offset of 𝑙 within the document to yield xenc.

3.2 Policy: Generating a Single Template
A policy 𝜋 generates a single template given span
states X = (x1, · · · , x𝑛) and template type 𝑡 ∈ T ,
conditioned on the document and all of its candi-
date mention spans.

Since an action 𝑎 represents a set of slot type
assignments for all candidate mentions, the policy
𝜋(𝑎 | 𝑡,X) can be factorized as

𝜋(𝑎 | 𝑡,X) =
∏

(𝑥:𝑠) ∈𝑎
𝑃(𝑠 |𝑡, x) . (1)

Thus we only need to model the slot type distribu-
tion for each candidate span. Here, we employ two
models described below.

Independent Modeling We train a classifier that
outputs a slot type (or 𝜀) given both the template
type embedding t and the slot type embedding s,
inspired by a standard practice in binary relation
extraction (Ebner et al., 2020; Lin et al., 2020, i.a.).
It computes the probability with a two-layer feed-
forward network (FFN), with slots not associated
with the template type (i.e., 𝑠 ∉ 𝑆𝑡 ∪ {𝜀}) assigned
0 probability:

𝑃ind(𝑠 |𝑡, x) ∝ 1𝑠∈𝑆𝑡∪{𝜀 } ·exp(sT·FFN( [t; x])) (2)

where [· ; ·] denotes vector concatenation.

Joint Modeling Following Chen et al. (2020),
we create a model that jointly considers all candi-
date spans given the template type. We begin by
prepending t to the sequence of span states X to
yield the sequence (t, x1, · · · , x𝑛). This sequence
is fed to a different Transformer encoder, which
naturally models interactions both between spans
and between a span and the template type via self-
attention (Vaswani et al., 2017):

(t̂, x̂1, · · ·, x̂𝑀 ) = Transformer(t, x1, · · ·, x𝑀 ) (3)

We emphasize that the inputs to the Transformer
are embeddings of spans (see §3.1) and not tokens,
following Chen et al. (2019, 2020).8 For each x𝑖,

8 Positional embeddings are not needed in this Transformer
since sinusoidal embeddings are already added to the span
representations.

we pass the representation x̂𝑖 output by the Trans-
former to a linear layer with output size |S |, the
total number of slot types. A softmax activation is
then applied over all slot types 𝑠 that are valid for 𝑡
(i.e., 𝑠 ∈ 𝑆𝑡 ∪ {𝜀}), with invalid types masked out,
yielding the following distribution:

𝑃joint(𝑠 |𝑡, x) ∝ 1𝑠∈𝑆𝑡∪{𝜀 } · exp(sTx̂) (4)

3.3 State Transition Model
A state transition model models the environment
𝐸 (𝐴, 𝑎). Recall that a state transition just consists
in the generation of a single template, where the
current state 𝐴 is the set of all templates that have
been generated up to the current step.

Here, we propose a neural model that produces
a representation of 𝐴. Specifically, we model 𝐴 as
a sequence of vectors Xmem(𝐴) ∈ R𝑀×𝑑 — one
𝑑-dimensional state vector for each of the 𝑀 can-
didate spans 𝑥 ∈ X . Each state vector xmem ∈ R𝑑
acts as a span memory, tracking the use of that span
across generated templates. We model state tran-
sitions using a single gated recurrent unit (GRU;
Cho et al., 2014). Given the current template as-
signment (𝑥 : 𝑠) ∈ 𝑎 of a slot type 𝑠 to a span 𝑥,
the state transition for 𝐴′ = 𝐴 ∪ {𝑎} is given as
follows:

x′
mem =

{
GRU(xmem, [s ; t̂]) if 𝑠 ≠ 𝜀;
xmem if 𝑠 = 𝜀.

(5)

where t̂ is a template embedding given by t̂ = t
when using the independent policy model given
in Equation 2 and given by Equation 3 when us-
ing the joint model. Intuitively, t̂ is a summarized
vector of the current template, akin to the role of
the [CLS] token employed in BERT (Devlin et al.,
2019). Here, we use a concatenation of the slot
type embedding s and the template vector t̂ as the
input to the state transition GRU to track the use of
the span.

The input representation of a span 𝑥 at each step
is simply x = xenc+xmem — the sum of the original
span embeddings xenc described in §3.1 and the
current memory vector xmem.

3.4 Policy Learning
We use direct policy learning (DPL), a type of im-
itation learning, to train our model. DPL entails
training an agent to imitate the behavior of an in-
teractive demonstrator as given by optimal actions
𝑎∗ drawn from some expert policy 𝜋∗, a proposal



distribution over actions. This expert policy is com-
puted dynamically based on the current state of the
agent, as we describe below. For this reason, the
interactive demonstrator is sometimes referred to
as a dynamic oracle (Goldberg and Nivre, 2012).

The log-likelihood of the oracle action under the
ITERX policy model is the reward. This ensures
that the learning problem can be optimized directly
using gradient descent, where the objective is given
by the expected reward:

E𝑎∗∼𝜋∗
𝐴∼𝑑 �̃�

[
∞∑︁
𝑘=0

𝛾𝑘 log 𝜋(𝑎∗ |𝑡,X(𝐴))
]

(6)

Here, 𝛾 is a discount factor, �̃� is the mixed policy,
and states are repeatedly sampled from their in-
duced state distribution 𝑑 �̃� . The mixed policy �̃� is
a mixture of the expert policy and the agent’s policy
(Ross et al., 2011). Sampling from �̃� can thus be
described as first sampling some 𝑢 ∈ {0, 1}, then
sampling from the agent’s parameterized policy 𝜋

if 𝑢 = 1, or sampling an action from the dynamic
oracle 𝜋∗ if 𝑢 = 0:

𝑢 ∼ Bernoulli(𝛼);
�̂� ∼ 𝑢𝜋 + (1 − 𝑢)𝜋∗. (7)

Here 𝛼, the agent roll-out rate, or the agent policy
mixing rate, is a hyperparameter that controls the
probability of the agent following its own policy
vs. the dynamic oracle.

This process resembles scheduled sampling
(Bengio et al., 2015), a technique commonly em-
ployed in training models for sequence generation
tasks like machine translation: when updating de-
coder hidden states, either the gold token 𝑦∗ or the
predicted token �̂� may be used, and the decision
is made via a random draw. Here, the difference
is that we are generating templates at each step
instead of tokens.

Expert Policy We construct an expert policy
based on the agent’s policy. At training time, given
the set of gold templates 𝐴∗ and the current state 𝐴

(all templates predicted thus far), the set �̄� = 𝐴∗\𝐴
contains all gold templates not yet predicted. Our
expert policy is formulated as

𝜋∗(𝑎 | 𝑡,X) ∝
{
𝑒log 𝜋 (𝑎 |𝑡 ,X)/𝛽 if 𝑎 ∈ �̄�

0 if 𝑎 ∉ �̄�
, (8)

where 𝛽 is a temperature parameter. Intuitively,
our expert policy seeks to “please” the agent: a

(viable) action’s probability under the expert policy
is proportional to the probability under the agent’s
policy. Temperature 𝛽 controls concentration: 𝛽 →
0+ reduces it to a point distribution over a single
action and 𝛽 → ∞ results in equal probability
assigned to all remaining gold templates.

3.5 Inference

Although many search algorithms for sequence pre-
diction can be employed (e.g. beam search, A*),
we find greedy decoding to be effective, and leave
further exploration for future work. Setting the ini-
tial state 𝐴(0) = ∅, we take actions (i.e., generate
templates) by greedy decoding �̂� = arg max𝑎 𝜋(𝑎 |
𝑡,X) for every step. Decoding stops when all spans
are assigned the null slot type 𝜀 in �̂�.

4 Experiments

We evaluate ITERX on three datasets: SCIREX
(Jain et al., 2020), MUC-4 (Grishman and Sund-
heim, 1996), and BETTER Phase II English Granu-
lar.9 SCIREX is a challenge dataset for 4-ary rela-
tion extraction10 on full academic articles related to
machine learning. MUC-4 and Granular are both
traditional template extraction tasks, though they
differ in important respects, which we discuss in
Appendix C. For summary statistics, see Table 1.

SCIREX MUC-4 Granular

Train Dev Test Train Dev Test Train Dev Test

# documents 306 66 66 1,300 200 200 302 34 32
# templates 1,627 251 271 1,114 191 209 610 57 47

# temp. types 1 6 6
# slot types 4 5 92 + 4†

Table 1: Summary statistics of the datasets. † indicates
slot types that take non-span values as fillers.

4.1 Baselines

GTT (Du et al., 2021b) To our knowledge, this
is the only prior work to have attempted full tem-
plate extraction in recent years, and it is thus our
primary baseline for comparison on MUC-4.11

GTT first prepends the document text with the valid
template types, then passes the result to a BERT

9 https://ir.nist.gov/better.
10 SCIREX also contains a binary relation extraction task,

but the binary relation is a subrelation of the 4-ary relation,
and thus is subsumed by the more difficult task.

11 We were unfortunately unable to obtain reasonable per-
formance with GTT on SCIREX, and so do not compare
ITERX and GTT on this task.

https://ir.nist.gov/better


encoder. A Transformer decoder (whose parame-
ters are shared with the encoder) then generates a
linearized sequence of template instances.

TEMPGEN (Huang et al., 2021) This is the cur-
rent state-of-the-art system for REE (the simpli-
fied slot-filling entity extraction task) on MUC-4.
On SCIREX, TEMPGEN may output multiple rela-
tion instances, but only one canonical mention as
the filler for each role in the relation. On MUC-
4, TEMPGEN outputs a single aggregate template
per document, but allows multiple spans to fill a
template slot. We make minimal modifications to
the TEMPGEN source code to support multi-filler,
multi-template prediction on both datasets, allow-
ing for direct comparison to ITERX and GTT on
full template extraction.

4.2 Metrics
The currently used metric for template extraction
and REE on MUC-4 is CEAF-REE, proposed in
Du et al. (2021a) and then used in Du et al. (2021b)
and Huang et al. (2021).12 CEAF-REE is based on
the CEAF metric (Luo, 2005) for coreference res-
olution, that computes an alignment between gold
and predicted entities that maximizes a measure of
similarity 𝜙 between aligned entities (e.g. CEAF𝜙4

in coreference resolution). This alignment is sub-
ject to the constraint that each reference entity is
aligned to at most one predicted entity.

The CEAF-REE implementation (henceforth,
CEAF-REEimpl) employed in Du et al. (2021a,b)
and Huang et al. (2021) unfortunately departs from
the stated metric definition (CEAF-REEdef) in two
ways: (1) it eliminates the constraint on entity align-
ments and (2) it treats the template type as an ad-
ditional slot when reporting cross-slot averages.
For maximally transparent comparisons to prior
work, we report scores under both CEAF-REEdef
and CEAF-REEimpl, obtaining state-of-the-art re-
sults on MUC-4 with each.

However, we argue that neither CEAF-REEdef
nor CEAF-REEimpl is consistent with historical
evaluation of template extraction systems. CEAF-
REEdef errs in enforcing the entity alignment con-
straint: doing so effectively requires systems to
perform coreference resolution, which is too strict
and runs contrary to the original MUC-4 evaluation.

12 The standard metrics for template extraction may be
unfamiliar to IE researchers more accustomed to sentence-
level event extraction. Accordingly, we thoroughly motivate
and describe all template extraction metrics we use in this work
in Appendix D. What follows is a more abridged discussion.

By contrast, CEAF-REEimpl also errs in treating the
template type as just another slot: this elides the im-
portant distinction between the kind of event being
described and the participants in that event (§6).

In the interest of clarity, we define a modified
version of the CEAF-REE metric that avoids both
pitfalls: it relaxes the entity alignment constraint
and it does not include template type in cross-slot
averages. We call this version CEAF-RME, where
“M” stands for mention and emphasizes the focus
on mention-level rather than entity-level (“E”) scor-
ing. Intuitively, relaxing this constraint amounts
to placing the burden of coreference resolution on
the metric: if the scorer aligns two predicted men-
tions to the same reference entity, the mentions are
implicitly deemed coreferent.

Note that for a CEAF-family metric, the similar-
ity function for entities 𝜙(𝑅, 𝑆) between the refer-
ence entity 𝑅 and the predicted 𝑆 is arbitrary (Luo,
2005). In Du et al. (2021a), CEAF-REEimpl uses
𝜙⊆ (𝑅, 𝑆) = 1[𝑆 ⊆ 𝑅]. We argue that 𝜙⊆ overly
penalizes models for predicting incorrect mentions,
as even a single incorrect mention reduces the score
to 0. Instead, a better choice is 𝜙3(𝑅, 𝑆) = |𝑅 ∩ 𝑆 |
from Luo (2005): this computes a micro-average
score of all mentions, and it adequately assigns
partial credit to the overlap between the predicted
mention set and the reference mention set. See
Figure 4 for a succinct comparison among these
variants.13 A more detailed discussion can be found
in Appendix D.

For SCIREX, we report CEAF-RME (under
both 𝜙3 and 𝜙⊆). For MUC-4, we report all met-
rics so that fair comparison with prior work can be
made. For BETTER Granular, we use its official
metrics, described in Appendix D.

Entity alignment

REEdef

RMEφ

REEimpl

RMEφ3

!

relaxed

relaxed

relaxed

strict

Type not a slot

✔

✔

✗
✔

Cluster similarity

φ3

φ!
φ!
φ!

Figure 4: A comparison of the metrics discussed. Fea-
tures in blue are “desired” for the evaluation of our task.

13 See github.com/wanmok/iterx for implementations.

https://www.github.com/wanmok/iterx


Model (Encoder) CEAF-RME𝜙3 CEAF-RME𝜙⊆
P R F1 P R F1

TEMPGEN (BARTbase) 8.7 5.0 6.4 8.6 8.2 8.4
TEMPGEN (BARTlarge) 19.9 5.0 8.0 8.9 22.3 12.7

ITERX (BERTbase) 16.2 7.6 10.4 16.2 17.4 16.8
ITERX (BARTenc

base) 15.0 15.0 15.0 14.3 35.4 20.3
ITERX (T5enc

large) 26.4 12.4 16.9 25.0 40.6 31.0

Table 2: Results on SCIREX.

Model (Encoder) CEAF-RME𝜙3 CEAF-RME𝜙⊆ CEAF-REEdef
† CEAF-REEimpl

P R F1 P R F1 P R F1 P R F1

TEMPGEN (BARTbase) 54.2 15.8 24.5 58.3 31.0 40.5 53.1 29.5 37.9 55.7 40.0 46.4
TEMPGEN (BARTlarge) 55.8 18.9 28.3 61.3 32.9 42.8 60.3 31.2 41.1 63.7 37.4 47.2
GTT (BERTbase) 54.7 23.0 32.3 55.0 36.8 44.1 54.7 37.0 44.1 61.7 42.4 50.2

ITERX (BERTbase) 41.3 27.9 33.3 47.2 45.0 46.1 41.3 45.3 43.2 52.3 51.1 51.7
ITERX (BARTenc

base) 39.2 24.8 30.4 44.8 40.1 42.3 35.4 20.3 39.2 49.8 45.7 47.6
ITERX (T5enc

large) 53.5 26.2 35.2 55.8 42.4 48.2 47.5 42.4 44.8 60.9 46.9 53.0

Table 3: Results on MUC-4. † Note that scores under CEAF-REEdef are compared as if every mention forms a singleton
entity. We made this assumption since neither prior work nor our model perform coreference resolution. Thus, CEAF-REEdef is
a somewhat inappropriate metric for these systems, but is included for completeness.

4.3 Results

SCIREX For TEMPGEN, we report models
trained with BARTbase and BARTlarge, where only
BARTbase was used in Huang et al. (2021). While
BART is an encoder-decoder architecture, ITERX
uses only the encoder part, and thus requires about
half the pretrained parameters that TEMPGEN

does.14 Even with far fewer parameters, ITERX
outperforms the BARTlarge baseline by a wide mar-
gin. Moreover, our best performing model under
T5enc

large (Raffel et al., 2020) achieves roughly 2× the
performance of TEMPGEN15 (see Table 2).

MUC-4 Under the most comparable setting,
ITERX outperforms GTT under all metrics by 1–
2%, both using BERTbase (Table 3). With T5enc

large,
ITERX obtains even better performance, with most
gains coming from increased precision.16 Further-
more, we note a consistent gap of ≈ 5% F1 be-

14 We add the superscript “enc” to pretrained models to de-
note the use of the encoder only (decoder discarded): T5enc

large.
15 Replacing BART with T5 in TEMPGEN would have man-

dated destructive modifications to the pretrained architecture,
and we therefore do not report results under this setting.

16 For GTT, we directly use the output files included in the
codebase of Du et al. (2021b). However, we were unsuccessful
in adapting their codebase ourselves to make use of T5.

tween CEAF-RME𝜙⊆ and CEAF-REEimpl,17 which
we suspect is due to CEAF-REEimpl’s inclusion of
scores for template type into the aggregated slot F1:
as template type scores are higher across models
than slot type scores, they are liable to inflate the
aggregate score.

BETTER Granular We report scores on the
English-only Phase II BETTER Granular task us-
ing the official BETTER scoring metric in Table 4.
Given the complexity of the Granular task, the ac-
companying difficulty of developing models to per-
form it, and the lack of existing work on Granular,
we report scores only for ITERX under T5enc

large. We
intend these to serve as a solid baseline against
which future work may be measured.

Template Slot Combined

P R F1 P R F1

89.7 74.5 81.4 41.0 33.5 36.9 30.0

Table 4: Results on the BETTER Granular dataset. Com-
bined score is Template F1 × Slot F1.

17 Recall from Figure 4 that CEAF-REEimpl is essentially
CEAF-RME𝜙⊆ with the template type as an additional slot.



5 Analysis

We next conduct ablations to examine how specific
aspects of ITERX’s design affect learning. Here,
we focus on SCIREX as a case study, as it has
the highest average templates per document of the
three datasets, allowing us to best investigate the
behavior of ITERX over long action sequences.

Recall that the dynamic oracle specifies an expert
policy 𝜋∗ (Equation 8) from which expert actions
𝑎∗ are drawn. One design decision concerns the
agent roll-out rate, 𝛼, which controls how often we
draw from the expert policy vs. the agent policy
when making updates. Another decision concerns
how entropic this policy distribution should be, con-
trolled by the temperature 𝛽. Both decisions reflect
a trade-off between exploration and exploitation in
the space of action sequences.

Agent Roll-out Rate 𝜶 We show how model
performance changes as we increase the agent roll-
out rate 𝛼 ∈ [0, 1] in Figure 5, where 𝛼 = 0 to
always following the expert policy, and 𝛼 = 1 cor-
responds to always updating based on the agent’s
own policy. The model performs poorly under low
𝛼, but improves quickly as 𝛼 increases, reaching
a plateau past 𝛼 ≥ 0.5. The results are intuitive,
as relying more on the expert (lower 𝛼) for learn-
ing would result in a fixed and deterministic set
of states that may hinder the agent from visiting
new states, which are often encountered at test time.
With higher 𝛼, the agent’s behavior is more consis-
tent between train and test time.

13
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Figure 5: Performance changes on CEAF-RME𝜙3 with
respect to 𝛼, for which higher means higher probability
of rolling out agent’s policy for state update.

Temperature 𝜷 We compare the following four
settings for sampling from 𝜋∗, keeping 𝛼 = 0 to
control for effects of policy mixing:

• FIXED: Select the next template in the document
based on the order as is given in the dataset. In
this case, 𝛽 does not come into play. This set-
ting corresponds to the standard practice of using

fixed template linearizations (Du et al., 2021b;
Huang et al., 2021).

• 𝛽 → 0+ (ARGMAX): Select the template
that maximizes the likelihood with the system-
predicted distributions over slots.

• 𝛽 = 1 (XENT): Sample a template according
to the distribution defined by the cross entropy
between references and predictions.

• 𝛽 → ∞ (UNIFORM): Sample a template uni-
formly from the correct template set.

Test set performance for each setting is shown in
Table 5. The results for CEAF-RME𝜙⊆ show a
trade-off in precision and recall corresponding to
the exploitation-exploration trade-off induced by 𝛽,
with the higher 𝛽 (more exploration) of XENT and
UNIFORM, yielding higher recall. The trend for
CEAF-RME𝜙3 is similar, though less pronounced.

Approach CEAF-RME𝜙3 CEAF-RME𝜙⊆
P R F1 P R F1

FIXED 28.7 7.3 11.7 29.9 29.9 29.9

ARGMAX 26.4 6.9 11.0 29.4 30.2 29.8
XENT 28.7 10.7 15.6 27.8 32.3 29.9
UNIFORM 29.1 11.3 16.3 27.6 32.0 29.7

Table 5: Results with different choices of temperature.

Interestingly, while CEAF-RME𝜙⊆ F1 scores are
consistent across settings, CEAF-RME𝜙3 F1 scores
are higher under higher temperature settings. To
the extent that the more entropic settings conduce
to higher template and mention recall, we would
expect these settings to yield more partial-credit
template alignments (under the 𝜙3 similarity func-
tion) than non-random settings, which tend to focus
on correct prediction of fewer templates — thus po-
tentially missing templates entirely and receiving
no partial credit.

6 Related Work

Template Extraction The term template extrac-
tion was originally proposed in the Message Un-
derstanding Conferences (MUC; Sundheim, 1991,
i.a.) to describe the task of extracting templates
from articles. Researchers later focused more heav-
ily on sentence-level IE, especially after the release
of the ACE 2005 dataset (Walker et al., 2006). But
following renewed interest in document-level IE,
researchers (Du et al., 2021b; Huang et al., 2021;
Gantt et al., 2022, i.a.) have begun to revisit MUC



and to develop new template extraction datasets
(notably, BETTER Granular).

Traditionally, template extraction comprises two
sub-tasks: template identification, in which a sys-
tem identifies and types all templates in a docu-
ment, and slot filling or role-filler entity extraction
(REE), in which the slots associated with each tem-
plate are filled with extracted entities. Much recent
work in this domain has turned away from the full
task, focusing only on REE, which is tantamount to
assuming that there is just a single aggregate tem-
plate per document (Patwardhan and Riloff, 2009;
Huang and Riloff, 2011, 2012; Du et al., 2021a;
Huang et al., 2021).

Document-Level Relation Extraction Along-
side template extraction, there has been consider-
able recent interest within IE in various challeng-
ing document-level relation extraction objectives,
beyond the longstanding and dominant focus on
coreference resolution. Argument linking — a gen-
eralization of semantic role labeling (SRL; Gildea
and Jurafsky, 2002) in which a predicate’s extra-
sentential arguments must also be labeled — is
one notable example, and has attracted recent at-
tention through the RAMS (Ebner et al., 2020) and
WikiEvents (Li et al., 2021) benchmarks.18 Prior
benchmarks on this task include SemEval 2010
Task 10 (Ruppenhofer et al., 2010), Beyond Nom-
bank (Gerber and Chai, 2010), ONV5 (Moor et al.,
2013), and Multi-sentence AMR (O’Gorman et al.,
2018). A separate line of work has concentrated on
general N-ary relation extraction challenge tasks,
in which entities participating in the same relation
may be scattered widely throughout a document.
Beyond SCIREX, PubMed (Quirk and Poon, 2017;
Peng et al., 2017) and DocRED (Yao et al., 2019)
are two other prominent benchmarks in this area.

Imitation Learning Our approach casts the prob-
lem of generalized template extraction as a Markov
decision process. SEARN (Daumé III et al., 2009)
and other related work (Ross et al., 2011; Venka-
traman et al., 2015; Chang et al., 2015, i.a.) have
considered structured prediction under a reinforce-
ment learning setting. Notably, in dependency pars-
ing, Goldberg and Nivre (2012) proposed the use
of a dynamic oracle to guide an agent toward the
correct parse (see §3.4).

18 Argument linking also goes by the names event argument
extraction and implicit semantic role labeling, though these
terms are not precisely equivalent.

We also employ direct policy learning for opti-
mization of the template extraction MDP, thus re-
ducing the problem to one of supervised sequence
learning that is amenable to gradient descent. Such
treatment is reminiscent of other similar techniques
in NLP. Scheduled sampling (Bengio et al., 2015),
for instance, trains a sequence generator with an ex-
pert policy consisting of a mixture of the predicted
token and the gold token. Relatedly, Levenshtein
Transformers (Gu et al., 2019) learn to edit a se-
quence by imitating an expert policy based on the
Levenshtein edit distance.

7 Conclusion

We have presented ITERX, a new model for gener-
alized template extraction that iteratively generates
templates via a Markov decision process. ITERX
demonstrates state-of-the-art performance on two
benchmarks in this domain — 4-ary relation ex-
traction on SCIREX and template extraction on
MUC-4 — and establishes a strong baseline on a
third benchmark, BETTER Granular. In our exper-
iments, we have also shown that imitation learn-
ing is a viable paradigm for these problems. We
hope that our findings encourage future work to
confront the challenge of dealing with documents
that describe multiple complex events and relations
head-on, rather than veiling this difficulty behind
simplified task formulations.

8 Limitations

Although we believe our iterative extraction
paradigm to be promising, we acknowledge that
this work is not without limitations. First, ITERX
features a significant number of hyperparameters.
We found that these generally required some effort
to tune for specific datasets, and that there was no
single configuration that was uniformly the best
across domains. We showed the impact of ma-
nipulating some of these hyperparameters in §5.
Second, our ITERX implementation iterates over
all template types in the template ontology during
training and inference, which means that runtime
grows linearly in the number of template types.
While our framework could in principle support
template type prediction as well (which would re-
duce this to 𝑂 (1)), it does not do so in practice,
and hence runtime may be long for large ontolo-
gies. However, we again stress that actual template
ontologies tend to be small.
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has historically referred to extraction of predicate-
argument structures within a single sentence. One
could conceivably argue that this usage has begun
to change with the recent interest in argument link-
ing datasets like RAMS (Ebner et al., 2020) and
WikiEvents (Li et al., 2021), in which arguments
may appear in different sentences from the one
containing their predicate. Even so, these cross-
sentence arguments are still arguments of a partic-
ular predicate, in a particular sentence. Moreover,
the overwhelming majority of arguments in these
datasets are sentence-local (Ebner et al., 2020). As
emphasized above, templates are not necessarily
anchored to particular lexical items. For this rea-
son, they also do not necessarily exhibit the level
of locality one finds in EE.

These differences are what motivate the use of
CEAF-REE as an evaluation metric, in contrast to
the precision, recall, and F1 scores for events and
arguments that are typically reported for EE. In
brief, it simply is not possible to compute these for
GTE in the same way as they are computed for EE.
We elaborate on this point in Appendix D.

B Model Training and Hyperparameters

We implemented our models in PyTorch (Paszke
et al., 2019) and AllenNLP (Gardner et al., 2018).
We trained all our models with a single NVIDIA
RTX6000 GPU. For all experiments that reproduce
prior works, we trained models until full conver-
gence under the patience settings provided in the
publicly released code. For all ITERX models, we
trained and tuned hyperparameters under our grid’s
limit of 24 hours per run, with which we were able
to obtain solid performance on all datasets. We
performed hyperparameter search manually and
report the best performing hyperparameters and
the bounds we searched in Table 6, Table 7, and
Table 8.

C Dataset Details

C.1 MUC-4
The MUC-4 dataset features a total of 1,700 En-
glish documents (1,300 for train and 200 each
for dev and test) concerning geopolitical conflict
and terorrism in South America. Documents are
annotated with templates of one of six kinds —
Attack, Arson, Bombing, Murder, Robbery, and
ForcedWorkStoppage — and may have multiple
templates (often of the same type) or no tem-
plates at all. All templates contain the same

Name Best Search Bounds

Encoder T5enc
large {T5enc

base,T5enc
large,BARTenc

base,BARTenc
large,BERTbase}

LR 3 × 10−5 {1 × 10−5, 3 × 10−5, 5 × 10−5}
Encoder LR 1 × 10−5 1 × 10−5

𝛼 0.5 [0, 1]
𝛽 1.0 {0, 1.0,∞}
𝛾 1.0 {1.0}
𝜋 Type Joint {Independent, Joint}
Max #Iteration 10 {10, 30}
Training Spans Gold {Gold, Upstream}

Avg. training time 3 hrs
Validation Metric CEAF-RME
# of parameters* ∼362 million

Table 6: Hyperparameters and other reproducibility in-
formation for SCIREX. “LR” denotes learning rate, “𝜋
Type” indicates which policy network architecture is
used (see §3.2), “Max #Iteration” sets the maximum
number of iterations that the model is allowed to per-
form, and “Training Spans” determines whether the
training spans come from gold annotations or the inter-
section of gold spans and those predicted by the span
finding module. *The number of trainable parameters
include the parameters from the (best) encoder.

Name Best Search Bounds

Encoder T5enc
large {T5enc

base,T5enc
large,BARTenc

base,BARTenc
large,BERTbase}

LR 3 × 10−5 {1 × 10−5, 3 × 10−5, 5 × 10−5}
Encoder LR 1 × 10−5 1 × 10−5

𝛼 0.6 [0, 1]
𝛽 1.0 {0, 1.0,∞}
𝛾 1.0 {1.0}
𝜋 Type Independent {Independent, Joint}
Max #Iteration 14 {14}
Training Spans Upstream {Gold, Upstream}

Avg. training time 20 hrs
Validation Metric CEAF-RME
# of parameters ∼379 million

Table 7: Hyperparameters and other reproducibility in-
formation for MUC-4.

slots. While the original data contains numerous
slots, it has become standard practice to evalu-
ate systems on just five of these (apart from the
slot for the template’s type), all of which take
entity-valued fillers: Perpetrator(Individual),
Perpetrator(Organization), Victim, Weapon,
and Target.

C.2 BETTER Granular

The BETTER Granular dataset contains documents
spanning a number of domains, and, like MUC-4,
focuses on six types of complex event, though cov-
ering different topics: protests, epidemics, natural
disasters, acts of terrorism, incidents of corruption,
and (human) migrations. However, Granular is sub-
stantially more difficult than MUC-4 in several
ways. First, each template type is associated with a
distinct set of slots. Second, only some of the slots
take entities as fillers, whereas others take events,
boolean values, or one of a fixed number of strings.



Name Best Search Bounds

Encoder T5enc
large {T5enc

base,T5enc
large,BARTenc

base,BARTenc
large}

Optimizer AdamW {AdamW}
LR 3 × 10−5 {1 × 10−5, 3 × 10−5, 5 × 10−5}
Encoder LR 1 × 10−5 1 × 10−5

𝛼 048 [0, 1]
𝛽 ∞ {0, 1,∞}
𝛾 1.0 {1.0}
𝜋 Type Joint {Independent, Joint}
Max #Iteration 10 {10, 30}
Training Spans Gold {Gold, Upstream}

Avg. training time 24 hrs
Validation Metric BETTER combined score
# of parameters ∼591 million

Table 8: Hyperparameters and other reproducibility in-
formation for Granular.

Finally, the formal evaluation setting for Granular —
which we do not adopt in this paper — is zero-shot
and cross-lingual: systems trained only on English
documents are evaluated exclusively on documents
in a different target language.19 The data used in
our experiments is English-only and comprises the
“train,” “analysis,” and “devtest” splits from Phase
II of the BETTER program, for which the target
language is Farsi.

C.3 SCIREX

The 4-ary SCIREX relation extraction task seeks
to idenfity entity 4-tuples that describe a metric
used to evaluate a method applied to an ML task
as realized by a specific dataset — e.g. (span F1,
BERT, SRL, ACE 2005). The challenge of SCIREX
lies not only in these pieces of information tending
to be widely dispersed throughout an article, but
also in the fact that only tuples describing novel
work presented in the paper (and not merely cited
work) are labeled as gold examples. Following
Huang et al. (2021), we frame this as a template
extraction task, treating each 4-tuple as a template
with four slots.

D Model Evaluation Details

A key consideration that arises in evaluating gener-
alized template extraction is the need to align pre-
dicted and reference templates: a given predicted
template may be reasonably similar to multiple dif-
ferent reference templates, and one must decide on
a single template to use as the reference for each
predicted one. Generalized template extraction is
similar in this respect to coreference resolution, in

19Systems are permitted to use machine-translated versions
of this documents, but gold data in the target language is
prohibited.

which predicted entities may (partially) match mul-
tiple reference entities, and one must determine a
ground truth alignment. Importantly, this consid-
eration also renders metrics that are traditionally
reported for event extraction — namely, event and
argument precision, recall, and F1 — inappropriate.
This is because event extraction is fundamentally a
span labeling problem, and the identity of the ap-
propriate reference span is always clear for a given
predicted span: either a reference span with the
same boundary and type exists or it does not.20 By
contrast, the mapping from prediction to reference
for templates is only this transparent in cases of
perfectly accurate predictions.

All the evaluation metrics presented in this
appendix are, at base, minimal extensions of
precision, recall, and F1 to cases where tem-
plate alignments are both necessary and non-
trivial. For CEAF-REE in particular, the var-
ious versions of the metric that we discuss
(CEAF-RME𝜙3 , CEAF-RME𝜙⊆ , CEAF-REEdef,
and CEAF-REEimpl) merely reflect differences
in how this alignment should be performed and
whether the template type should be treated in the
same way as slot types for reporting purposes.

D.1 MUC-4

MUC-4 evaluation presents a special challenge, ow-
ing to its long and complicated history, and to ter-
minological confusion.21 Here, we discuss CEAF-
REE (Du et al., 2021a), the current standard metric
for MUC-4 evaluation. We begin with definitions,
following with a discussion of some of its prob-
lems, and conclude with an extended presentation
of our CEAF-RME variant, introduced in §4.

D.1.1 CEAF and CEAF-REE: Definitions
The CEAF-REE metric, introduced by Du et al.
(2021a), has since been adopted as the standard
evaluation metric for MUC-4 (Du et al., 2021b;
Huang et al., 2021). To our knowledge, no official
scoring script has ever been released for MUC-
4, although the metrics used as part of the origi-
nal evaluation are described in detail in Chinchor
(1992). CEAF-REE does not attempt to implement
these original metrics, but is rather a lightly adapted
version of the widely used CEAF metric for corefer-

20In the case of argument spans, one may additionally re-
quire the associated trigger spans to match as well.

21Early writing on MUC-4 used the term entity to refer to
what the IE community would now call a mention. We suspect
this is the source of a great deal of confusion.



ence resolution, proposed in Luo (2005).22 CEAF
computes an alignment between reference (R) and
system-predicted (S) entities, with each entity rep-
resented by a set of coreferent mentions, and with
the constraint that each predicted entity is aligned
to at most one reference entity. This is treated as
a maximum bipartite matching problem, in which
one seeks the alignment that maximizes the sum
of an entity-level similarity function 𝜙(𝑅, 𝑆) over
all aligned entities 𝑅 ∈ R and 𝑆 ∈ S within a
document. In principle, CEAF is agnostic to the
choice of 𝜙, though it is generally desirable that
𝜙(𝑅, 𝑆) = 0 when �𝑥 ∈ 𝑆 such that 𝑥 ∈ 𝑅 and that
𝜙(𝑅, 𝑆) = 1 when 𝑅 = 𝑆, for reasons described
in Luo (2005). In practice, the 𝜙4 similarity func-
tion is most commonly used, defined as the Dice
coefficient (or F1 score) between 𝑅 and 𝑆:

𝜙4(𝑅, 𝑆) :=
2|𝑅 ∩ 𝑆 |
|𝑅 | + |𝑆 | . (9)

Another possible version is 𝜙3:

𝜙3(𝑅, 𝑆) = |𝑅 ∩ 𝑆 |. (10)

Given this 𝜙 similarity function and the maximal
match 𝑔∗ between entities, the final precision and
recall are computed as follows:

𝑝 =

∑︁
(𝑅,𝑆) ∈𝑔∗ 𝜙(𝑅, 𝑆)∑︁

𝑆
𝜙(𝑆, 𝑆) ; (11)

𝑟 =

∑︁
(𝑅,𝑆) ∈𝑔∗ 𝜙(𝑅, 𝑆)∑︁

𝑅
𝜙(𝑅, 𝑅) . (12)

Here we see that 𝜙4 computes a version of
macro-average over entities, whereas 𝜙3 computes
a micro-average.

The CEAF that uses 𝜙4 is sensibly denoted
CEAF𝜙4 in coreference resolution. CEAF-REEimpl
differs from CEAF𝜙4 in the following ways:

• All entities are aligned within role, conditioned
on matching template type. E.g. only predicted
entities for the Victim slot in Bombing templates
would be considered valid candidates for align-
ment with entities filling the Victim slot in ref-
erence Bombing templates.

• A binary similarity function 𝜙⊆ is used, defined
as follows:

𝜙⊆ (𝑅, 𝑆) :=

{
1, if 𝑆 ⊆ 𝑅

0, otherwise
(13)

22 Luo’s motivations for proposing CEAF actually derive
in large part from observed shortcomings with the original
MUC-4 F1 score. See Luo (2005) for details.

This function 𝜙⊆ says that a model receives full
credit (1.0) for a predicted entity if and only if its
mentions form a subset of those in the reference
entity. If even one incorrect mention is included,
the model receives a score of zero for that entity.

D.1.2 CEAF-REE: Problems and Solutions
Our principal concerns with CEAF-REE lie with
how it has so far been reported and implemented,
and with challenges in extending it to the full tem-
plate extraction task, in which multiple templates
of the same type may be present in a document. We
elaborate on two issues discussed briefly in §4 and
also introduce a third.

First, previous work that reports CEAF-REE
treats the template type merely as another slot, with
template type labels treated as special kinds of “en-
tities” that may fill this slot. This is not necessarily
problematic in itself: template type-level metrics
are valuable for evaluating system performance.
However, it is problematic when reporting (micro
or macro) average CEAF-REE figures across slots,
as these works do. This is because incorporating
the scores for template type into the average elides
the distinction between roles (slots) and the kind
of event being described (the template type). More-
over, the alignment between slot-filling entities is
also already conditioned on a match between the
template types. There are thus two distinct ways
in which information about a system’s predictive
ability with respect to template type end up in a
slot-level average CEAF-REE score. This results
in reported values that are very difficult to interpret,
and potentially misleading to the extent that these
features of CEAF-REE implementations are not
made apparent in writing.

Second, the constraint that at most one pre-
dicted entity be aligned to each reference entity —
stipulated in the metric definition (CEAF-REEdef)
— is not enforced in the implementation (CEAF-
REEimpl). Practically, this means that the align-
ment shown in Figure 6 would receive full credit,
whereas it ought to receive a precision score of only
0.75, as Du et al. (2021a) describe. As we argue
in §4, we believe this constraint to be overly strict.
But this point aside, the discrepancy between defi-
nition and implementation is problematic in itself.

Third, full template extraction introduces a sec-
ond maximum bipartite matching problem, which
requires aligning predicted and reference templates
of the same type, and which CEAF-REE (either
CEAF-REEdef or CEAF-REEimpl) is not natively



Figure 6: An example alignment between predicted
and reference entities from Du et al. (2021a). In past
implementations of CEAF-REE, this alignment would
receive full credit, rather than being penalized for preci-
sion (𝑃 = 0.75).

equipped to handle, given that it operates at the
level of slots. Du et al. (2021b) reports CEAF-
REE for GTT under an optimal template alignment,
but this is obtained via brute-force, enumerating
and evaluating every possible alignment, including
those between templates of different types. The
similarity function, (call it 𝜙TEMP (𝑇𝑅, 𝑇𝑆)) that they
use for template alignment is itself the cross-slot av-
erage CEAF-REEimpl score for predicted template
𝑇𝑆 and reference template 𝑇𝑅. This brute-force tem-
plate alignment, in conjunction with the two-level
maximum bipartite matching problem, results in
prohibitively long scorer execution times in cases
where there are even a modest number of predicted
or reference templates of the same type.23

In addition to our implementation of CEAF-
RME (see below), we also present the first cor-
rect implementation of CEAF-REEdef that fully
addresses the first two points above: template types
are no longer treated as additional slots and the
entity-level alignment constraint is enforced. On
the third point, our implementation efficiently com-
putes optimal template alignments using the Kuhn-
Munkres algorithm (Kuhn, 1955; Munkres, 1957).
However, even with this efficient implementation,
solving the two-level maximum bipartite matching
problems is still computationally intensive.

23Only CEAF-REEdef requires solving a two-level
maximum-bipartite matching problem. Since CEAF-REEimpl
does not enforce the entity alignment constraint, these align-
ments will not necessarily be bipartite.

D.1.3 Coreference and CEAF-RME
As CEAF was designed for coreference, it is unsur-
prising that coreference considerations introduce a
further wrinkle for CEAF-REE. None of the three
models described in this work (including ITERX)
performs entity coreference resolution. This clearly
presents a problem because CEAF-REEdef is an
entity-level metric. One way to score these mod-
els is simply to treat each extracted mention as a
singleton entity and use CEAF-REEdef exactly as
defined, and we report these scores in the main
text for MUC-4. However, reporting only CEAF-
REEdef would be undesirable for several reasons:

• It would render our results incomparable to past
work, which reports only CEAF-REEimpl.

• It would put our work at odds with the over-
whelming majority of the template extraction lit-
erature, where evaluation criteria focus on string
matching between predicted and reference men-
tions. (The original MUC-4 evaluation only re-
quired systems to extract a single representative
mention for each entity — not to identify all such
mentions.)

• The constraint that at most one predicted en-
tity be aligned to a given reference entity would
yield punishingly low scores for systems that are
highly effective at extracting relevant spans, but
that simply do not perform the additional step of
coreference.

For these reasons, we disfavor a template ex-
traction metric that requires template extraction
systems to do coreference. These considerations
motivate our introduction of CEAF-RME (role-
filler mention extraction) — that makes a minimal
modification to CEAF-REEdef to address (1) and
(2) above. CEAF-RME treats system-predicted
mentions as singleton entities, but deliberately re-
laxes the alignment constraint, potentially allowing
multiple predicted singletons to map to the same
reference entity, effectively pushing the burden of
coreference into the metric. We believe CEAF-
RME is consistent with what template extraction
research has in fact historically cared about (identi-
fying mentions that fill some slot) while correcting
implementation problems with CEAF-REE that
produce misleading results.

The micro-average CEAF-RME𝜙3 results that
we report on MUC-4 in the main body of the paper



are micro-average CEAF-RME scores under an op-
timal template alignment (using CEAF-RME as the
template similarity function), which is efficiently
obtained using the Kuhn-Munkres algorithm.

We additionally include a version of CEAF-
RME that uses 𝜙⊆ (CEAF-RME𝜙⊆ ) for parallel
comparison against CEAF-REEimpl. Recall that
CEAF-REEimpl is essentially CEAF-RME𝜙⊆ with
the template type included as an additional slot. We
reiterate that CEAF-RME𝜙3 is the more appropri-
ate metric since it can award partial credit for pre-
dicted entities whose mentions overlap imperfectly
with those in the reference, where CEAF-RME𝜙⊆
assigns zero credit in such cases.

D.2 SCIREX
We use the same CEAF-RME𝜙3 implementations
for scoring SCIREX as we use for MUC-4. Full
evaluation using the original SCIREX scoring
script requires systems to perform coreference res-
olution, which makes it similarly inappropriate to
CEAF-REEdef for evaluating the systems presented
in this work, none of which feature a coreference
module. The CEAF-RME𝜙3 and CEAF-RME𝜙⊆
results presented in the main text together give a
clearer picture of these models’ ability to extract
relevant mentions (short of clustering them) than
would a coreference-based metric. We simply treat
the SCIREX 4-tuples as 4-slot templates, following
Huang et al. (2021).

D.3 BETTER Granular
Evaluation for the BETTER Granular task bears
some core similarity to CEAF-REEdef in that re-
lies on obtaining the alignment between system
and reference templates that maximizes some sim-
ilarity function that decomposes over slot fillers.
And just as with (our corrected implementation
of) CEAF-REEdef, this is achieved via the Kuhn-
Munkres algorithm. However, Granular scoring
differs from CEAF-REEdef in four key respects.
First, the overall system score — referred to as the
combined score — incorporates both a slot-level
F1 score and a template-level F1 score:

CombinedScore := TypeF1 × SlotF1

Only exact matches between system and reference
templates types are awarded credit. It is worth not-
ing that because this score does not decompose
over template pairs, it cannot be optimized directly
using Kuhn-Munkres. In practice, what is opti-
mized is response gain — the number of correct

slot fillers minus the number of incorrect ones —
which provably yields alignments that optimize the
combined score within a probabilistic error bound.

The remaining three key differences relate to the
calculation of the slot-level F1. For one, Granular
slots are not exclusively entity-valued, but may also
be event-, (mixed) event-and-entity-, boolean-, and
(categorical) string-valued, and different similarity
functions must be employed in these different cases.
For another, where CEAF-REE defines mentions
by their string representation, the Granular score
defines mentions based on document offsets. Fi-
nally, Granular also requires extraction of temporal
and irrealis information for slots, and this in turn
impacts the SlotF1 score.

Borrowing terminology from the discussion of
MUC-4 above, we describe below how 𝜙(𝑅, 𝑆)
is calculated for some generic reference slot filler
𝑅 and system-predicted slot filler 𝑆 for slots of
different types.

Boolean and Categorical Values For boolean-
and categorical-string valued slots (i.e., slots taking
on one of a predefined set of values). 𝜙(𝑅, 𝑆) = 1
if there is an exact match between the system and
reference fillers and is 0 otherwise.

Entities Unique among the three tasks discussed
in this paper, Granular features an explicit prefer-
ence for informative arguments in its scoring struc-
ture. In particular, (proper) name mentions of an en-
tity are worth more than nominal mentions, which
in turn are worth more than pronominal ones.24

Thus, if Barack Obama were represented by the ref-
erence entity {Obama, the former President, he},
full credit would be awarded for returning only the
mention Obama, less credit for the former Presi-
dent, and still less for he. Exact point values depend
on the mentions present in the reference entity:

• Correct name mentions always receive full credit
(𝜙(𝑅, 𝑆) = 1)

• Correct nominal mentions receive half-credit
(𝜙(𝑅, 𝑆) = 0.5) if the reference entity addition-
ally contains a name mention, and receive full
credit otherwise.

• Correct pronominal mentions receive quarter-
credit (𝜙(𝑅, 𝑆) = 0.25) if the reference entity
additionally contains both a name and a nomi-
nal mention, and half-credit if only a nominal
24This is precisely the hierarchy described for the informa-

tive argument extraction task in Li et al. (2021).



mention is featured. (Note that entities will never
feature only pronominal mentions.)

Events Some Granular slots require events as
fillers. Like entities, events are represented as sets
of mentions (event anchors or triggers). Unlike en-
tities, there is no informativity hierarchy for events.
Furthermore, while event coreference is not a part
of the Granular task, annotations for event corefer-
ence are nonetheless provided for scoring purposes:
𝜙(𝑅, 𝑆) = 1.0 iff 𝑆 contains only mentions belong-
ing to events in the set of gold coreferent events 𝑅,
and is 0 otherwise, akin to 𝜙REE.

Mixed Entities and Events Some slots may take
a mix of events and entities as fillers. Since systems
must indicate whether predicted mention clusters
are entity- or event-denoting, the same similarity
criteria for events and entities as described above
are used to compute 𝜙 for events and entities that
fill these slots.

Temporal and Irrealis Information One
of the features of Granular that makes it de-
cidedly more difficult than either MUC-4 or
SCIREX is the requirement to extract information
relating to the time and irrealis status of an
event when such information is available in the
document. This information is encapsulated
in special time-attachments and irrealis
fields associated with each slot-filling entity
or event. The former is given as a set of tem-
poral expressions that describe the time at or
during which the filler satisfied the role denoted
by the slot (e.g. when individuals filling the
tested-count slot in the Epidemic template
were tested for the disease). The latter is given
as one of a set of strings that describe whether
or how the filler satisfied the role denoted by
the slot: counterfactual, hypothetical,
future, unconfirmed, unspecified, and
non-occurrence. time-attachments and
irrealis are each worth 0.25 points, where exact
matches are required for full credit on either and
where zero points are awarded otherwise. For slots
for which time-attachments and irrealis are
required, the value of 𝜙 appropriate to its filler
type is scaled by 0.5 such that the maximum
overall score 𝜙(𝑅, 𝑆) for a given filler — factoring
in time-attachments, irrealis, and event or
entity similarity — is 1.


