@inproceedings{tan-etal-2023-ccl23,
title = "{CCL}23-Eval任务4系统报告:基于深度学习的空间语义理解(System Report for {CCL}23-Eval Task4:Spatial Semantic Understanding Based on Deep Learning.)",
author = "Tan, ChenKun and
Hu, XianNian and
Qiu, XinPeng",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2023.ccl-3.13/",
pages = "139--149",
language = "zho",
abstract = "{\textquotedblleft}本文介绍了参赛系统在第三届中文空间语义理解评测(SpaCE2023)采用的技术路线:面向空间语义异常识别任务提出了抽取方法,并结合生成器进一步完成了空间语义角色标注任务,空间场景异同判断任务则使用了大语言模型生成。本文进一步探索了大语言模型在评测数据集上的应用,发现指令设计是未来工作的重点和难点。参赛系统的代码和模型见https://github.com/ShacklesLay/Space2023。{\textquotedblright}"
}
Markdown (Informal)
[CCL23-Eval任务4系统报告:基于深度学习的空间语义理解(System Report for CCL23-Eval Task4:Spatial Semantic Understanding Based on Deep Learning.)](https://preview.aclanthology.org/jlcl-multiple-ingestion/2023.ccl-3.13/) (Tan et al., CCL 2023)
ACL