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Abstract

Despite recent advances in machine learning
based hate speech detection, classifiers still
struggle with generalizing knowledge to out-
of-domain data samples. In this paper, we in-
vestigate the generalization capabilities of deep
learning models to different target groups of
hate speech under clean experimental settings.
Furthermore, we assess the efficacy of three dif-
ferent strategies of unsupervised domain adap-
tation to improve these capabilities. Given the
diversity of hate and its rapid dynamics in the
online world (e.g. the evolution of new target
groups like virologists during the COVID-19
pandemic), robustly detecting hate aimed at
newly identified target groups is a highly rele-
vant research question. We show that naively
trained models suffer from a target group spe-
cific bias, which can be reduced via domain
adaptation. We were able to achieve a relative
improvement of the F1-score between 5.8%
and 10.7% for out-of-domain target groups of
hate speech compared to baseline approaches
by utilizing domain adaptation.

Author contacts are given in the footnotes. 1

1 Introduction

Current state-of-the-art machine learning ap-
proaches for hate speech detection reach F1-scores
above 93% (Arango et al., 2019). Despite this
progress, in some settings these scores drop to 50%
when tested on out-of-domain data (Arango et al.,
2019). The lack of generalization capabilities of
hate speech detection systems hinders their suitabil-
ity in real world applications.

Several challenges are faced when trying to gen-
eralize knowledge in hate speech detection tasks.
Firstly, most benchmark hate speech datasets are
focused on certain topics, such as hate speech
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directed at journalists (Charitidis et al., 2020),
refugees and Muslims (Zhang et al., 2018), women
only (Basile et al., 2019) or blacks, other races
and women (Waseem, 2016). These datasets re-
flect biases towards different targets of hate, which
will usually influence model training and predictive
performance. Different target groups are also ad-
dressed by different perpetrators in the real world.
For example, left-wing hate is frequently aimed
against the ‘system’, with police or politicians be-
ing targeted, whereas right-wing hate is frequently
aimed against Jews or foreigners. Moreover, new
target groups can arise due to new phenomena such
as the Corona pandemic (Fan et al., 2020). There-
fore, being able to adapt models to unknown target
groups of hate speech without the need of time con-
suming labeling of new datasets is crucial. Another
challenge for generalizing knowledge across differ-
ent hate speech datasets is the disagreement over
the definition of hate speech (Ross et al., 2017),
which is especially problematic for benchmark
datasets. These disagreements lead to incompatible
annotation of different datasets (MacAvaney et al.,
2019; Fortuna et al., 2020), which hinders a proper
assessment of the generalization capabilities of the
models.

In this work we investigate the generalization
and adaptation capabilities of hate speech classi-
fiers to different domains of hate speech while
eliminating errors due to incompatible datasets.
This is done by conducting our experiments on
a single dataset, namely the HateXplain dataset
(Mathew et al., 2020), which was annotated
following consistent annotation rules. There are
many possibilities to categorize hate speech into
different domains. For example, hate speech
with common topics, hate speech that addresses
common target groups, hate speech from common
time periods or hate speech from common datasets
can be considered as separate domains. In this
work, we regard the adaptation capabilities of the
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(a) MixUp Regularization. In manifold MixUp, virtual
samples and virtual labels are computed by interpolating
between the feature representations and corresponding la-
bels (pseudo-labels for unlabeled samples) of data points.

(b) Adversarial Domain Adaptation. The goal of adver-
sarial domain adaptation is to align the feature distribu-
tions of source domain samples with feature distributions
of target domain data samples.

(c) Curriculum Labeling. After training a model on labeled samples (left), the model predicts
pseudo labels (middle) for unlabeled samples from the target domain. Samples which belong to the
most confident model predictions are included in the training set, together with their predicted class
labels. Finally, the model is retrained from scratch on the augmented dataset (right).

Figure 1: Three different strategies for improving the generalization capabilities of models to different target groups
are investigated. These approaches utilize labeled source data samples (colored data points) and unlabeled target
domain data samples (grey data points).

models with respect to different target groups of
hate speech due to the relevance of the topic for
real world applications and the suitability of the
HateXplain dataset for this research. An advantage
of utilizing the HateXplain dataset for this research
is, that target groups were annotated for all
samples, not only the hateful ones, which allows
us to appropriately select samples that correspond
to different domains and therefore to properly
investigate the generalization capabilities of our
approaches. Adaptation of models to different
target groups of hate speech is here investigated
by unsupervised domain adaptation methods,
namely via manifold MixUp regularization (Fig.
1a), adversarial domain adaptation (Fig. 1b) and
curriculum labeling (Fig. 1c).

In summary, we make the following contribu-
tions:

• We analyze the influence of data and target
group specific bias on hate speech classifiers;

• We investigate the suitability of unsupervised
domain adaptation for improving model per-
formances for out-of-domain target groups;

• Our experiments are conducted under clean
conditions with properly separated domains
and without data incompatibilities during
model evaluation.

2 Related Work

Several approaches for machine learning based hate
speech detection were investigated in recent years
(Badjatiya et al., 2017; Djuric et al., 2015; Mozafari
et al., 2019). An active line of research aims at im-
proving generalization capabilities of hate speech
detection systems, with most studies focusing on
cross-dataset generalization capabilities of models
(Bashar et al., 2021; Waseem et al., 2018).

Karan and Šnajder (2018) show the the diffi-
culties of hate speech classifier to deal with out-
domain datasets. The authors emphasize the im-
portance of in-domain data for their generaliza-
tion results. They integrated target domain data in
their learning procedure using frustratingly easy
domain adaptation Daumé III (2007). In contrast to
our work, the authors investigated the cross-corpus
generalization and adaptation capabilities of linear
support vector machines. In this work, we focus
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on target group specific domain adaptation of deep
learning based hate speech classifiers.

The generalization capabilities of deep learning
models from topic generic to topic specific hate
speech corpora were investigated by Chiril et al.
(2021). The authors showed that models failed
to generalize to domain specific corpora, but that
the integration of domain specific knowledge im-
proves the classification results in new domains. In
contrast to our work, the authors focus on cross
dataset generalization, which makes a clean evalua-
tion of target group specific generalization difficult.
Faal et al. (2021) suggested exploitation of multi-
task learning and domain adaptation for improving
the generalization capabilities of hate speech clas-
sifiers. After domain adaptive pre-training of a
BERT based feature extractor (Devlin et al., 2019),
the whole model was trained on multiple tasks by
utilizing shared parameters as well as task specific
parameters. The authors showed that the reduction
of unintended target group specific model bias via
multi-task learning successfully boosted generaliza-
tion. In contrast to our work, they focus on general
robustness with respect of target groups rather than
a target group specific optimization.

In Bashar et al. (2021), the authors propose to
train a language model to learn domain invariant
and disentangled feature representation for differ-
ent hate speech domains. After that, they trained a
classifier on top of these feature representations and
used it for robustly classifying hate speech from dif-
ferent domains. The authors demonstrated the suc-
cess of the model in detecting hate speech related to
the COVID-19 pandemic. On the other side, Bose
et al. (2021) showed that the application of widely
used unsupervised domain adaptation approaches
can be problematic in the field of hate speech detec-
tion. The authors applied various pivot-based and
adversarial-based approaches to generalize knowl-
edge across different hate speech corpora. Unlike
our work, which focuses on target group specific
domain adaptation, these works focus on gener-
alizing on knowledge on the level of hate speech
corpora, which introduced previously discussed dif-
ficulties in model evaluation and which might be
the main reason for bad adaptation results.

3 Methods and Experiments

In this section we describe the dataset, model ar-
chitecture as well as the training and evaluation
strategies used in our experiments.

Figure 2: Number of experimental data samples by
target group and and class label.

3.1 Dataset

The HateXplain dataset (Mathew et al., 2020), con-
sisting of around 20K annotated posts, was used as
the basis for all our experiments. The dataset was
primarily annotated with the class labels normal,
offensive and hateful, with additional labeling
of the target groups of hate (’Race’, ’Religion’,
’Sexual orientation’, ’Gender’, ’Origin’, ’Other’)
undertaken. Unlike other datasets, such as (Del Vi-
gna12 et al., 2017; Ousidhoum et al., 2019), each
target group was annotated for all data points, in-
cluding those belonging to the "normal" and "offen-
sive" classes. This allows us to examine the gener-
alization capabilities of different approaches with
strictly separated target groups across all labels. To
the best of our knowledge, the HateXplain dataset
(Mathew et al., 2020) is the only dataset that explic-
itly annotates target groups for the classes "normal"
and "offensive" as well, which is why this dataset
is the only one that was used to conduct our experi-
ments with strictly separated domains. To ensure
that the trained models generalize from a single
source domain to a single target domain, we select
only those data points for training and validation
purposes which have solely been annotated as be-
longing to either a source domain (e.g. "Race") or
a target domain (e.g. "Religion"). We discard data
points which have been annotated with multiple tar-
get groups (e.g. "Race" and "Gender"). We focus
on the domains "Race," "Religion," and "Sexual
Orientation" because the other target groups each
contain fewer than 60 instances annotated as "Hate
Speech," which risks inconsistent experimental re-
sults due to insufficient coverage of all class labels.
Therefore, "Gender," "Origin," and "Other" are dis-
carded, resulting in a final dataset that yields 170
to 1424 instances per class label (see Fig. 2). We
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also experiment with data augmentation. Recently,
various techniques for text data augmentation have
been proposed (Shorten et al., 2021), such as rule
based techniques (Wei and Zou, 2019; Spasic et al.,
2020; Karimi et al., 2021), feature space augmen-
tations (Cheung and Yeung, 2020; Khosla et al.,
2020) or neural augmentation (Wu et al., 2019).
Due to the success of back translation based data
augmentation (Xie et al., 2020; Yaseen and Langer,
2021; Corbeil and Abdi Ghadivel, 2020; Sugiyama
and Yoshinaga, 2019), we decided to use this ap-
proach with pre-trained neural translation models
(provided by HuggingFace 2) in order to created
an augmented version of the original HateXplain
dataset. Back translation is done with the language
pairs English - German, English - French and En-
glish - Spanish, resulting in nearly three times the
number of instances per class.

3.2 Model Architecture and Training

In our experiments, we use the Structured Self-
Attentive Sentence Embedding model (Lin et al.,
2017), which provides a good trade-of between
model performance and computational costs. The
model is visualized in figure 3. The encoder of the
model consists of a two layer bidirectional LSTM,
followed by an attention module, as proposed by
(Lin et al., 2017). The predictor of the model is a
linear classifier, consisting of a single linear layer
followed by a Softmax activation function. We use
WordPiece tokenization (Devlin et al., 2018; Schus-
ter and Nakajima, 2012). The embedding size and
the hidden sizes of the LSTMs are 128, the dimen-
sion of the attention module 350, and the number
of attention heads 30. A domain discriminator is
applied in those experiments in which we perform
adversarial domain alignment. The input of the do-
main discriminator is the output of the encoder of
the Structured Self-Attentive Sentence Embedding
model. The applied discriminator model consists
of a gradient reversal layer (Ganin and Lempitsky,
2015), followed by a two layer feed forward neu-
ral network with a leaky ReLU activation function
at the hidden position and a Sigmoid activation
function at the output position.

We use the Adam optimizer (Kingma et al.,
2015) with a learning rate of 5e−4 and beta values
of (0.9, 0.99) during our experiments. We apply
dropout regularization (Srivastava et al., 2014) with
a dropout probability of 0.6 to the LSTM modules

2 https://huggingface.co/

Figure 3: Structured Self-Attentive Sentence Embed-
ding model (left) and domain discriminator (right), used
in our experiments.

to prevent overfitting. All models are trained for a
total of 50.000 training iterations with a batch size
of 32. Our experiments are implemented using the
deep learning framework Pytorch.3

3.3 Model Assessment

All models are evaluated using the macro-average
F1-score with five-fold cross-validation. During
training, we store those model states for which
the models achieved the best results on the out-of-
fold validation data of the training domains. For
these model states, we report the results achieved
on the validation data of the other domains, too.
We believe that this is a realistic scenario, since we
assume that only unlabeled data samples of other
domains are available and we therefore need to
select our models based on their performances on
the source domains, for which labeled data samples
are available.

3.4 Zero-Shot Approaches

In the first set of experiments, we investigate the
generalization capabilities of models that use only
labeled data from one domain and no data from
other domains. As we examine the generalization
capabilities of the models to target domains that
were not present in the training data, we refer to
these experiments as zero-shot approaches. In the
first, naive zero-shot approach (Zero), models are
trained with labeled data from the original HateX-
plain dataset (Mathew et al., 2020) that belong to
a specific target group (e.g. "Race"). The training
batches provided to the model in each training itera-

3 https://pytorch.org/
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tion are randomly sampled. In the second zero-shot
approach (Zero +), models are trained with target
group specific data from the augmented dataset (see
Section 3.1). Similar to the first zero-shot learning
approach, training batches are sampled randomly.
In the last zero-shot learning approach (Zero B+),
the training batches are sampled in a balanced man-
ner from the augmented dataset with equal proba-
bility per class in each iteration. In all zero-shot
approaches, models are evaluated with validation
data from the original HateXplain dataset (Mathew
et al., 2020), as described in Section 3.3.

3.5 Unsupervised Domain Adaptation

Unsupervised single source domain adaptation uses
data from two different domains during the training:
source data XS = {(xi, yi)}Ni=1, which consist of
N labeled samples from a source domain DS =
{XS , PS(XS)}, and target data XT = {xj}Mj=1,
which consist of M unlabeled samples from a tar-
get domain DT = {XT , PT (XT )}. X = XS =
XT is a shared feature space, PS(XS) ̸= PT (XT )
are marginal probability distributions over the fea-
ture space, which are similar, but differ. The goal
of the learning algorithm is to train a model which
achieves a strong performance for a task T on the
target domain although no labeled data points from
the target domain are available during the train-
ing. For the domain adaptation approaches, we use
the same data and sampling strategy as for the last
zero-shot learning approach (Zero B+).

The goal in our paper is to cover different re-
search directions in the field of domain adaptation
for hate speech detection purposes. The approaches
investigated in this paper are typical candidates for
their line of research, which consider the problem
of domain adaptation from a regularization-based
view 3.5.1, a data-based view 3.5.2 and a feature-
based view 3.5.3.

3.5.1 MixUp Regularization
We adapt the approach of manifold MixUp regu-
larization proposed by Verma et al. (2019) (Fig.
1a). Given is a deep neural network with an en-
coder e, which maps an input x ∈ X into hidden
representation h ∈ Rm, and a predictor p, which
computes predictions z ∈ RK based on the hidden
representation h ∈ Rm. Manifold MixUp regular-
ization introduces an additional regularization loss
based on MixUp feature representations h̃ ∈ Rm

and MixUp labels ỹ ∈ RK , which are computed
based on hidden representations h1, h2 ∈ Rm and

corresponding labels y1, y2 ∈ RK of two samples:

h̃ = α · h1 + (1− α) · h2 (1)

ỹ = α · y1 + (1− α) · y2 (2)

Here, α ∈ [0, 1] is sampled from a Beta
distribution: α ∼ Beta(2, 2). y1 and y2 are
represented as one-hot encoded class labels for
source domain samples and as soft pseudo-labels,
which are iteratively computed by the neural
network, for target domain samples.

The MixUp features are used for computing the
MixUp predictions z̃ = p(h̃) based on the predic-
tor of the neural network. The loss between MixUp
predictions and MixUp labels is computed as Cross-
Entropy loss for source domain samples (l̃sm) and
L1 loss for target domain samples (l̃tm). The com-
plete MixUp loss l̃m is computed as follows:

lm = λs · l̃sm + λt · l̃tm (3)

We set λs = λt = 0.1 in our experiments.

3.5.2 Curriculum Labeling
In addition to MixUp regularization, we adapt the
approach of Cascante-Bonilla et al. (2020), which
combines pseudo-labeling with curriculum learn-
ing, for domain adaptation purposes (Fig. 1c). Cur-
riculum labeling is done by selecting data points
from an unlabeled data pool based on the network’s
prediction confidences. The selected data points
with corresponding pseudo-labels are iteratively in-
cluded to the training procedure during the learning
epochs. Following Cascante-Bonilla et al. (2020),
we select data points based on percentile scores
of the prediction confidences. During the train-
ing, the percentile threshold for selecting samples
corresponding to the most confident predictions
is increased from 0% to 100% in increments of
20%. In contrast to Cascante-Bonilla et al. (2020),
we select the pseudo-labeled samples based on the
model’s prediction confidences independently for
each predicted class. This is done to prevent a bias
towards the selection of data points from majority
classes, which is crucial for hate speech detection
tasks. During each iteration (’curriculum epoch’),
the network is re-trained from scratch with both
the labeled samples and the pseudo-labeled sam-
ples selected by the model trained in the previous
curriculum epoch.
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Target Domain
Source Eval. Race Rel. Sex.
Domain Domain Zero Zero + Zero B+ Mix. Adv. Cur. Mix. Adv. Cur. Mix. Adv. Cur.

Race .56 .57 .58 .58 .57 .57 .58 .57 .58
Race Rel. .52 .52 .52 - .54 .54 .51 .52 .53 .53

Sex. .50 .50 .51 .53 .53 .50 .51 .52 .53
Race .46 .46 .48 .48 .52 .52 .48 .49 .50

Rel. Rel. .47 .48 .50 .50 .52 .52 - .49 .50 .50
Sex. .47 .48 .49 .50 .52 .51 .48 .49 .51
Race .36 .37 .42 .42 .48 .47 .42 .39 .42

Sex. Rel. .39 .39 .43 .44 .46 .47 .43 .43 .45 -
Sex. .42 .42 .46 .46 .49 .50 .45 .45 .48

Table 1: Macro average F1 scores achieved by the approaches, averaged over five validation folds and split into
target groups, approaches and domains. Improvements over the results, achieved by the best zero-shot approach
are marked in green. Violet indicates negative transfer, in which the models achieved worse results than the naive
zero-shot learning approach.

Approach Source Target Other

Zero 0.483 0.450

Zero + 0.490 0.455
+1.4% +1.1%

Zero B+ 0.513 0.475
+6.2% +5.6%

MixUp 0.510 0.476 0.481
+5.6% +5.8% +6.9%

Adv. 0.517 0.496 0.487
+7.0% +10.2% +8.2%

Cur. 0.525 0.498 0.488
+8.7% +10.7% +8.4%

Table 2: Average F1-Scores of the investigated ap-
proaches and relative improvements compared to the
naive zero-shot learning approach with respect to the
domains.

3.5.3 Adversarial Domain Alignment
In order to learn domain invariant feature repre-
sentations, Ganin et al. (2016) introduced Domain
Adversarial Neural Networks (Fig. 1b). Beside the
main model, a domain discriminator D : Rm 7→ R
is trained to distinguish between feature represen-
tations hs ∈ Rm and ht ∈ Rm for source domain
samples xs and target domain samples xt, com-
puted by encoder e. At the same time, the encoder
e is trained to confuse the domain discriminator D,
such that the discriminator is not able to distinguish
between these feature representations. To achieve
this, an adversarial loss is introduced:

Ladv = E
xs∼Xs

[log(D(e(xs)))]

+ E
xt∼Xt

[log(1−D(e(xt)))] (4)

Approach Normal Offensive Hate Speech

Zero 0.479 0.287 0.618

Zero + 0.476 0.286 0.637
-0.6% -0.3% +3.1%

Zero B+ 0.494 0.288 0.683
+3.1% +0.35% +10.5%

MixUp 0.490 0.281 0.690
+2.1% -2.1% +11.7%

Adv. 0.500 0.312 0.689
+4.4% +8.7% +11.7%

Cur. 0.505 0.311 0.692
+6.5% +8.4% +12.0%

Table 3: Average F1-Scores and its relative improve-
ments over naive zero-shot learning, divided into ap-
proaches and classes labels.

The domain discriminator D is trained to
maximize the adversarial loss Ladv, while at
the same time the encoder e is trained to fool
the discriminator and therefore minimize Ladv.
The theoretical equilibrium is reached when the
encoder e produces features which cannot be
reliably classified as belonging either to the source
or to the target domain by an optimal discriminator.

4 Results and Discussion

In this section, we present and discuss the results
of our experiments. In table 1, we present macro
average F1-scores, achieved by the investigated
approaches. The scores are divided into source
domain (first column), the domain on which the
models were evaluated (second column) and
the approaches used. Since the investigated
domain adaptation approaches, unlike zero-shot
approaches, used unlabeled target domain data
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in addition to labeled source domain data, their
results are further subdivided into the target
domain that was involved in model training. In
table 2 we present the average F1-scores of the
investigated approaches, split by source, target
and uninvolved domain. In addition to the average
values, relative improvements compared to the
naive zero-shot learning approach are also given.
Table 3 shows the achieved performances with
respect to the class labels "normal", "offensive"
and "hate speech". Again, we report the relative
improvements of the approaches compared to
the naive zero-shot approach. In table 4, we
provide feature visualizations of our models for
hate related samples based on lime (Ribeiro et al.,
2016). The visualizations are provided for different
approaches and combinations of source target and
evaluation domains.

OFFENSIVE CONTENT WARNING: The fol-
lowing sections contain examples of hateful con-
tent. This is strictly for the purpose of enabling this
research. Please be aware that this content could
be offensive and cause you distress.

4.1 Model Bias

Although there are cases, in which models show
poor generalization abilities to some out-of-domain
target groups, all of our models were able to gen-
eralize knowledge to other domains to some ex-
tent. Best or equal best model performance was
achieved when evaluating models against the do-
main on which they were trained (i.e. source do-
main) for both the zero-shot approaches (Table 1)
as well as after averaging across domain adaptation
approaches (Table 2). Data augmentation generally
helped to improve the model performances, which
shows that the models suffer from a bias due to the
low amount of available training data. On average,
the class "Hate Speech" benefits most from data
augmentation (Table 3), while the performance on
the classes "Normal" and "Offensive" is slightly
worse compared to the naive zero-shot approach.
Models additionally benefit from class balanced
data sampling (Zero B+), which on average out-
performed the other zero-shot learning approaches
on all domains and across all class labels. Despite
the improvements due to data augmentation and
class balanced sampling, a gap between the perfor-
mances on source domain and the other domains is
still preserved. Moreover, both techniques slightly

increased the performance gap between source and
other domains (Table 2). We conclude that the mod-
els suffer from a target group specific bias, which
occurs due to the lack of domain specific knowl-
edge of domains other than the source domain and
which cannot be reduced via typical data sampling
strategies or data augmentation techniques such as
back-translation. Therefore, the integration of do-
main specific knowledge of the target domain is
crucial for reducing the performance gap between
source domain and target domain.

Domain adaptation enabled models to learn do-
main specific features and to produce better model
predictions in some instances (see samples a and b,
e - h, i and l, Table 4). These results concur with the
findings of (Karan and Šnajder (2018)), who high-
lighted the importance of in-domain knowledge for
the generalization capabilities of hate speech clas-
sifiers and showed that models trained on domain
general hate speech corpora failed to generalize
to domain specific hate speech data Chiril et al.
(2021). In contrast to our work, the authors inves-
tigated the generalization capabilities of models
across different datasets, which hinders a clean
evaluation due to possible dataset incompatibili-
ties. Our results indicate that the integration of
domain specific knowledge via adversarial domain
adaptation and curriculum labeling is able to re-
duce the performance gap and achieve the largest
improvements on the target domains, thereby re-
ducing model bias (Table 2).

4.2 Effects of Domain Adaption Approaches
on Model Performance

Domain adaptation was able to improve the per-
formance over all zero-shot learning approaches
for each combination of source and target domain
(Table 1). Additionally, all domain adaptation ap-
proaches achieved better results on average than
the zero-shot learning approaches for not only the
target domain but also for the third, uninvolved
domain (Table 2) and was observable for all three
classes (Table 3). Moreover, the adversarial domain
adaptation approach and the curriculum labeling
approach on average outperformed the zero-shot
learning approaches on the source domain. How-
ever, in our experiments the choice of the data in-
cluded in the training procedure had greater im-
pact to the model performances than the chosen
domain adaptation approaches themselves. Further-
more, none of our investigated domain adaptation
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MixUp Regularization
Text Source Target Evaluation Prediction

a) this little k**e is a good little donkey american Race Rel. Rel. Hate Speech

b) |user| good job scamming you fu***ng fa**ot Race Rel. Sex. Hate Speech

c) y’ all n***as is hoes Sex. Race Race Offensive

d) are yall n***as retarded Sex. Race Race Offensive

Adversarial Domain Adaptation
Text Source Target Eval Prediction

e) enjoy being a childless n****r fu**er Rel. Race Race Hate Speech

f) deport that be**er sp**k to mexico Sex. Race Race Hate Speech

g) like pick a struggle fa**ot Rel. Race Sex. Hate Speech

h) kill yourself fa**ot Rel. Race Sex. Hate Speech

Curriculum Labeling
Text Source Target Eval Prediction

i) started as trash ending as worthless n****r trash Rel. Race Race Hate Speech

j) those fa**ots off queer eye hate jews Rel. Race Sex. Hate Speech

k) i fu***ng hate jews Race Rel. Rel. Offensive

l) kill yourself fa**ot Rel. Race Sex. Hate Speech

Table 4: Feature visualization for hate related samples. Words highlighted in red strengthen the model to predict
the class "Hate Speech", while words which are highlighted in blue, decrease this prediction confidence.

approaches outperformed the other methods in each
experiment (Table 1), which makes the choice of
the appropriate approach in practical settings diffi-
cult, especially when no labeled data of the target
domain is available to asses the model performance
on that domain.

While the two approaches curriculum labeling
and adversarial domain adaptation both performed
similarly, they outperform MixUp regularization
in most cases. Adversarial domain adaptation im-
proved the performances in 4 out of 6 domain com-
binations on the target domain, and in 5 out of
6 combinations on the uninvolved domain. Cur-
riculum labeling resulted in better performances
on the target domain in 5 out of 6 training do-
main pairs, and in 4 out of 6 cases on the unin-
volved domain. In contrast, MixUp regularization
improved performances on the target domain in
only 1 out of 6 source-target domain combinations,
namely "Race"-"Religion", and yielded the small-
est improvements in average model performance of
all three domain adaptation approaches (Table 2).
Moreover, MixUp regularization was not able to
correctly learn domain specific features, such as the
domain specific word "n***as" for its predictions
(see samples c) and d), Table 4). Thus, MixUp
regularization is inferior to the other approaches
for the investigated task.

Remarkably, the curriculum labeling approach

resulted in worse outcomes than the zero-shot ap-
proaches in one instance (Table 1), although the
risk of predicting incorrect pseudo-labels is miti-
gated by implementing the curriculum steps pro-
posed in (Cascante-Bonilla et al., 2020). This per-
formance loss or negative transfer is indicated by
the phrase "hate jews" leading to a decrease in the
prediction confidences of the models for the hate
speech class and, in case of sample k), an incorrect
prediction (samples j & k, Table 4). This negative
transfer is attributable to a negative confirmation
bias, which can occur in pseudo-labeling based
approaches (Rizve et al., 2021) and can lead to
a large number of incorrect pseudo-labels that in-
terfere with the training procedure and thus affect
the model performance. Nevertheless, the curricu-
lum labeling approach proved to be best suitable to
adapt hate speech classifiers in our study, achieving
the best averaged results on the source, target and
other domains.

4.3 Data Dependency of the Performance

In our experiments, the choice of the training
data had the greatest impact on the model per-
formances. Models trained on the source domain
"Race" yielded the best results in general with F1
scores ranging from .50 and .58. Models, trained
on the source domain "Sexual Orientation" per-
formed worst overall and achieved F1 scores be-
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tween .36 and .50. Models, trained on the source
domain "Religion" achieved F1 scores between .46
and .52. A similar pattern was observed for unla-
beled data from the target domain. The largest im-
provements via domain adaptation were achieved
by utilizing unlabeled data from the target domain
"Race", whereas utilizing unlabeled data from the
target domain "Sexual Orientation" yielded the
lowest improvements. We attribute these obser-
vations to the number of training samples avail-
able in each class. The best performances were
achieved with the largest amount of labeled train-
ing data (source domain "Race"), the worst per-
formances were achieved with the lowest amount
of labeled training data (source domain "Sexual
Orientation"). Additionally, the largest improve-
ments were achieved by incorporating the largest
amount of unlabeled data (target domain "Race"),
the smallest improvements were achieved with the
lowest amount of unlabeled data (target domain
"Sexual Orientation"). Since the domain adapta-
tion performance on the target domain depends on
the performance achieved on the source domain
(Zhang and Harada, 2019), this observation also
holds true for the investigated domain adaptation
approaches.

5 Conclusion

The goal of this work was to analyze the generaliza-
tion capabilities of hate speech classifiers to differ-
ent target groups of hate under clean experimental
conditions. Furthermore, we aimed to investigate
the suitability of unsupervised domain adaptation
to improve these generalization capabilities. Our
results indicate that naively trained hate speech
classifiers suffer from a target group specific bias
and that unsupervised domain adaptation is able to
improve the generalization capabilities of models
across different target groups of hate. In contrast
to previous works, which mainly focus on the gen-
eralization capabilities of hate speech classifiers
in cross dataset settings, we investigated the gen-
eralization capabilities of hate speech classifiers
to new hate targets on a single dataset, the HateX-
plain dataset. This enabled us to strictly separate
target groups across all class labels and therefore
allowed a clean analysis of the abilities of mod-
els to generalize to different target groups of hate,
while avoiding the risk of inconsistencies over the
definition of hate speech between datasets. We
observed a gap of the model performances on the

source domains and the model performances on the
target domains. While data augmentation and bal-
anced data sampling was able to generally improve
the model performances, these methods tend to
preserve these gaps. The integration of domain spe-
cific knowledge via domain adaptation was able to
improve the generalization capabilities of models
to other target groups, whereby the number of the
involved labeled and unlabeled training samples
strongly influenced the results of the approaches.
However, our study does not allow a clear conclu-
sion about which domain adaptation approach is
best in which constellation of available data, which
makes the choice of the appropriate approach diffi-
cult in real world situations. In total, there is still
potential to improve the prediction quality of the
models, especially when it comes to real world ap-
plications. Failures to detect hate speech, which
contain threats, may lead to life-threatening situa-
tions for people, for example. In such scenarios, the
achieved model performances are not good enough
to reliably support law enforcement agencies. Im-
provements could be made with more advanced
model architectures and a larger amount of avail-
able training data, which is a limitation of our work.
We also analyzed generalization capabilities for
only three target groups of hate, namely "race," "re-
ligion," and "sexual orientation." These limitations
should be addressed in future works, for which we
suggest investigating the generalization capabili-
ties to new targets of hate in settings with a greater
amount of data, higher diversity of target groups
and with more advanced models like transformer
based models. Moreover, the limitations of each
of the domain adaptation methods can be further
investigated in order gain insight into when and
why some methods might fail.
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