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Abstract
Hate speech detection systems have been
shown to be vulnerable against obfuscation at-
tacks, where a potential hater tries to circum-
vent detection by deliberately introducing noise
in their posts. In previous work, noise is of-
ten introduced for all words (which is likely
overestimating the impact) or single untargeted
words (likely underestimating the vulnerabil-
ity). We perform a user study asking people
to select words they would obfuscate in a post.
Using this realistic setting, we find that the
real vulnerability of hate speech detection sys-
tems against deliberately introduced noise is
almost as high as when using a whitebox at-
tack and much more severe than when using a
non-targeted dictionary. Our results are based
on 4 different datasets, 12 different obfuscation
strategies, and hate speech detection systems
using different paradigms.

1 Introduction

Computer-mediated communication is plagued by
toxic and hateful behavior that can cause seri-
ous harm (Waldron, 2012; Gelber and McNa-
mara, 2016). Consequently, automatically detect-
ing such behavior has become a major research area
(Waseem and Hovy, 2016; Waseem et al., 2017; Ku-
mar et al., 2018; Wiegand et al., 2019; Aggarwal
et al., 2019; Kovács et al., 2021).

Whenever there is an automatic system in place
to filter out hateful messages, people will try to
circumvent it by obfuscating their message. How-
ever, there are limits, as the communicative intent
has to stay intact. If the intended audience cannot
relatively easily understand a message, obfuscation
has gone too far. Thus, people will usually only ob-
fuscate a few terms they think will be problematic
or could be responsible for filtering out a message
(see Table 1). Adding to much noise may render the
message unrecognizable even to human readers.

In this paper, we analyze the real vulnerability
of state-of-the-art hate speech detection systems

against targeted obfuscation. We keep a post recog-
nizable by obfuscating at most one target token per
test example. We perform an annotation study to
analyze the target selection strategies in real-world
setting. We use 12 types of plausible obfuscation
strategies and apply them to the targeted tokens.
In order to generalize our analysis, we repeat our
experiments on multiple hate speech datasets. For
future benchmarking, we open-source our code
base, trained models, and obfuscated test samples1.

2 Ethical Considerations

In our research, we are discussing and explain-
ing obfuscation strategies. People could use those
strategies to avoid detection and eventually cause
even more harm (Prabhumoye et al., 2021). We
consider this risk to be small, as people are creative
and would have (and almost certainly already have)
come up with all of the described strategies.

We decided to release all our code (even the parts
obfuscating single words), as we see a clear benefit
in researchers reproducing our results and facili-
tate their own research. This outweighs the risk
caused by people using that code to automatically
obfuscate their messages.

Law enforcement agencies might use our re-
search to build more robust detection systems. This
can be positive, as marginalized groups might not
have to deal with being targets of hate speech all
the time and might dare again to use their free
speech rights without being threatened into silence.
However, social media platforms may use deobfus-
cation to ban words they consider offensive. This
might have unintended consequences, e.g. a person
called Richard Gaywood was not able to use his
name as it include the word gay and consider to
violate community standards (Suzor, 2010).

An even more serious harm are overreaching
governments censoring non-hateful expression of

1https://github.com/aggarwalpiush/
HateSpeechDetection

https://github.com/aggarwalpiush/HateSpeechDetection
https://github.com/aggarwalpiush/HateSpeechDetection
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Post Obfuscation Level

A** h*te sp**ch res**rchers sh**ld b* b**ten t* d**th High
All h*te speech res**rchers should be b**ten to d**th Medium
All hate speech researchers should be b**ten to d**th Low

Table 1: Trade-off between level of obfuscation and message understandability.

opinions. Over the last years, the web-based cen-
sorship as well as surveillance has significantly in-
creased in some parts of the world (Polyakova and
Meserole, 2019). Improved detection models will
even more empower such authoritarian regimes and
give them the opportunity to increase the severity
of surveillance towards its citizens (Sherman, 2020;
Wright, 2018), as they can no longer circumvent
censorship through obfuscation.

3 Obfuscation Strategies

Obfuscation is the deliberate act of obscuring the
intended meaning of communication by adding
noise to the message. This can happen in many
ways. For example, Gröndahl et al. (2018) show
that appending a positive word like love can al-
ready fool a classifier. Kirk et al. (2022) demon-
strate the vulnerability of hate detection models by
simple replacements of certain tokens with emojis.
Another obfuscation strategy is to paraphrase the
whole message or use a metaphorical expression to
indirectly express the same point. For example, in-
stead of All those researchers are stupid as hell one
could write Those Einsteins are not the sharpest
knife in the drawer. However, this also changes the
meaning and presupposes that the intended audi-
ence is aware of the possible replacement and able
to make the connection. Such a replacement might
also change the perceived severity of a toxic com-
ment, e.g. it is possible that people would consider
the sentence with Einstein as more hateful, as it
adds a potential connotation of Jewish researcher.

In this paper, we only focus on producing simple
obfuscation strategies (Röttger et al., 2020) which
are generally observed to be implemented in realis-
tic settings. Table 2 gives examples of all strategies
that we consider.

Camel Case While camel casing is usually used
to improve the readability of a text (e.g. naming
conventions in computer programming), it can also
be used to add noise. In our camel-casing strategy,
we capitalize every alternate letter (starting from
the second letter).

Char Drop While keeping first and last charac-
ter untouched we either drop a randomly chosen
character from the selected token or drop all vow-
els (Cleary, 1976; Baluch, 1992). We call the later
obfuscation as Vowel Drop. We ensure preserva-
tion of token perception (Baba and Suzuki, 2012;
ThambiJose, 2014; Pruthi et al., 2019)). Therefore,
we only add the noise to tokens with 3 or more
characters.

Char Flip Character shuffling within the bound-
aries of the word (excluding boundary characters)
does not have much effect on word semantics. How-
ever, it would be quite easy to get this implemented
during the message composition. To generate such
noise, we only consider tokens having length more
than 3. Excluding first and last, we randomly select
two characters and flip them.

Diacritics Some non English languages use ex-
tra marks or glyph (such as ˆ) above or below (or
sometimes next to) a letter for explicit enunciation.
We use mapping table to generate diacritic version
of the input token.

Kebab Instances are created by adding a dash
(-) between each letter of the word. This looks like
meat on a kebab stick, hence the name.

Leetspeak Visual resemblance of alphabets
(Simpson et al., 2012) with numbers and mathemat-
ical symbols can also be used to obfuscate token.
Therefore we exploit leetspeak where we consider
commonly used English alphabets namely a, e, l,
o, s and replace with 4, 3, 1, 0, 5 respectively.

Masking Deliberate introduction of symbols
such as mathematical operators are common prac-
tice to obfuscate the disputed tokens. We generate
masking based obfuscation examples where we ran-
domly choose and replace one letter with * (tokens
with two letters are not considered for this obfusca-
tion). To increase the perception of the token, we
do not consider first and last letter of the token for
the replacement.

Mathspeak Similar to leetspeak, mathspeak re-
places characters with mathematical symbols such
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Strategy Example

researcher

Camel Case rEsEaRcHeR
Char Drop researher
Char Flip resaercher
Diacritics résearchêr
Kebab r-e-s-e-a-r-c-h-e-r
Leetspeak re5earc7er
Masking resear**er
Mathspeak ℜesearcher
Phonetic rIs3:Ù@
Spacing r e s e a r c h e r
Snake r_e_s_e_a_r_c_h_e_r
Vowel Drop rsrchr

Table 2: Overview of Obfuscation Strategies.

as R with ℜ.

Phonetic In phonetic obfuscation, the token is
replaced with a representation of how it is pro-
nounced. For our example researcher, this could
be a layperson representation like ‘ri-sur-chur’ or
blending with aspects of mathspeak if using the
international phonetic alphabet (IPA) which would
result in ‘rIs3:Ù@’. In this study, we apply IPA rep-
resentation for obfuscation generation. Though we
do not consider this a very practical obfuscation
strategy outside of ‘Linguistics Twitter’, still keep
it in our experiments as an extreme case.

Spacing In this case, examples are created by
adding spaces between each letter of the word.

Snake Instances are created by adding under-
score (_) mark between each letter of the word.

4 Target Selection

We propose model independent token selection
strategies that range from very broad (all tokens)
to very specific (the words conveying the hateful
intent). Our intention is to provide every possible
cases in order to analyse the model robustness in
depth. Table 3 illustrates how tokens are chosen
based on different target selection strategies. In this
section, we describe each of the strategy in detail.

All We obfuscate all tokens with more than 3
characters (obfuscation of shorter words cannot be
reliably performed). This is the most aggressive
obfuscation strategy that will probably make it un-
readable to humans and machines alike.

Random Any A single word (with more than 3
characters) is randomly selected from the message

text. We do not obfuscate the first and last word of
the text.

Random Content The same strategy as random
word, only that selected words have to be either
nouns, verbs, adjectives, or adverb.

Dict Fixed We collect a number of lexicons with
hateful words from various sources (including Hate-
base2 and published research on lexicons (Bassig-
nana et al., 2018; Wiegand et al., 2018; Chan-
drasekharan et al., 2017)). For each language we
combine all lexicons and remove duplicates. As to-
ken (starting from left side) in the input text found
match in the dictionary is selected for the obfusca-
tion and the remaining available tokens are ignored.

Dict Whitebox Following (Papernot et al., 2016)
hypothesis, we build an in-house lexical dictionary
populated with tokens which are important for an
LSTM-based hate-speech classification model for
hate-labels predictions. We refer these lexicons
as whitebox tokens as they are selected based on
model internal parameters. To extract such tokens,
first we train this model on the existing hate-speech
datasets (see Section 4) and apply a hierarchical
based explanation method (Jin et al., 2020). To
generate explanations, we use the same training
instances on which the model was trained as we are
only interested in hateful tokens. The explanations
are in the form of scores for all possible n-grams
available in the training statements which repre-
sent contribution of the n-grams towards hate label
predictions. Heuristically, we choose all unigrams
having threshold value less than or equal to -0.02
(negative polarity leads to hatefulness). For selec-
tion, among all the token matches, we consider
token with most negative score.

Dict Domain All target selection methods out-
lined so far, are trying to simulate the real obfus-
cation process in a rather crude way. When people
want to obfuscate single words, they know which
are the most problematic ones and focus only on
those. However, for our experiments, we do not
know which words this would be. We thus per-
formed an annotation study (described next), which
resulted in a domain-specific dictionary. We later
use this dictionary (like Dict Whitebox) to obfus-
cate exactly one word in each post that people con-
sider as most problematic. Thus, this target selec-
tion strategy is much more realistic than the other

2https://hatebase.org/

https://hatebase.org/
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Target Selection Post

Clean All hate speech researchers should be beaten to death
Random Content All hate speech researchers should be beaten to death
Random Any All hate speech researchers should be beaten to death
Dict Fixed All hate speech researchers should be beaten to death
Dict Whitebox All hate speech researchers should be beaten to death
Dict Domain All hate speech researchers should be beaten to death
All All hate speech researchers should be beaten to death

Table 3: Overview of target selection strategies. They differ in which and how many tokens will be selected for
obfuscation.

ones and will allow us to better estimate the real
vulnerability of hate speech detection systems.

4.1 Annotation Study

To gather a domain specific lexicons, we perform
an annotation study. We chose a random sample
of 100 hate speech statements from the (Davidson
et al., 2017) dataset. We recruited three annotators3

and asked them to think like potential hater and
select three tokens from each statements which
are most likely to be chosen for obfuscation (see
Figure 1) For the annotation study, we used the
inception framework (Klie et al., 2018).

Annotators received the following instructions.
First, we provided the scenario:

Imagine you want to spread hate using social
media platforms. Sooner, you realize most
of these social media platforms are equipped
with hate speech detection systems. Now
you want to fool these systems by playing
with words you used in message. For exam-
ple: Researchers should be banished from holy
places

You can play with words such as banished

and make it ban1shed

Then, we provided the purpose of annotation study:

This annotation process is intended to per-
form sociological analysis. We manually la-
belled the tokens in the social media posts
which potentially be obfuscated during the
post-composition to escape from automatic
hate-speech detection process.

Finally, we explained the annotation process:

For each sentence (total: 100), choose three
tokens and annotate with their priority levels.
For example:

First_Priority: banished

Second_Priority: Researchers

Third_Priority: holy

3university graduates and active social media users.

The study resulted in 455 tokens marked by the
annotators. Inter-annotator agreement (taking pri-
ority into account) was 0.64 gamma (Mathet et al.,
2015). It illustrates that annotators are not only
in high agreement for token selection but also for
priority.

To generate the domain specific dictionary from
the annotations, we assign them with a score. This
score represents the polarity of hatred carried by the
token relative to other tokens available in the list.
We use the scores4 (Equation 1) to prioritize the
token selection strategy during obfuscation process.

Sti =

vti∑
j=1

P⃗tij · W⃗ (1)

To calculate, we create priority vectors (e.g.
[1,0,0] for retard, [0,0,1] for stupid, etc. in Fig-
ure 1) for each token (Sti), we take dot product
of the priority vector (P⃗tij) with constant scalar
weight vector (W⃗ ) [0.5, 0.33, 0.17], summation
over token’s frequency (vti) (as single token can
have multiple priority vectors depending upon its
usage across the statements). The constant weight
vector describe the relative amount of preference
should be given to each token based on its priority
with respect to other token.

5 Experimental Setup

We experiment with all the obfuscation and target
selection strategies outlined above. To make sure
that our results are not specific to a dataset or de-
tection method, we also use multiple dataset and
methods as outlined next.

5.1 Datasets
In order to analyze the vulnerability of available
hate speech classifiers, we have used 4 social media
hatespeech datasets (see Table 4).

4The list of tokens with their scores can be download from
the provided github repository
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Figure 1: A sample hate statement with top three tokens that are most likely to be obfuscated by a potential hater.

Name Reference # posts tokens % hate

T1 (Davidson et al., 2017) 24,783 370k 6
T2 (Waseem and Hovy, 2016) 10,588 160k 26
G (Kennedy et al., 2022) 27,663 590k 12
TF (Mandl et al., 2019) 7,004 170k 36

Table 4: Specification of datasets use to analyze the real
vulnerability against target obfuscations.

• Davidson et al. (2017) (T1) contains Twitter
posts labeled with hate, offensive, not. It con-
tains a wide range of domains as its collec-
tion strategy is based on lexicons provided by
Hatebase.org.

• Waseem and Hovy (2016) (T2) contains
tweets manually tagged with sexist, racist, not.
Like T1, the tweets were collected but with
fewer lexicons.

• Kennedy et al. (2022) (G) contains posts from
social media service gab.ai with multiple hate-
based rhetoric labels.

• Mandl et al. (2019) (TF) contains binary-
labeled Tweets and Facebook posts.

For datasets with non-binary labels, we aggregate
the labels into two categories namely hateful and
not-hateful. We randomly stratified dataset posts
into train, dev and test set in the ratio of 80:10:10
respectively. We apply the proposed obfuscation
attacks only on the test set in order to analyse the
model robustness against unknown attacks.

5.2 Hate Detection Systems

To generalize our study we train 12 different types
of hate detection systems. It include shallow,
deep, deep-attention and deep-contextualized based
paradigm.

Shallow Models Following Davidson et al.
(2017), training shallow machine learning algo-
rithm for hate-speech classification such as support
vector machine and logistic regression can be con-
sidered as strong baseline. In addition, we use
ensemble based classification algorithms such as
AdaBoost, Gradient Boosting and Random Forest.

Deep Models Wide range of approaches have
been used for hate speech detection. We select
a range of reference architectures instead of spe-
cific configurations by certain researchers, as we
are mainly interested in the relative vulnerability
of architectures. Contextualized language model
based classification systems such as BERT (Devlin
et al., 2019) promise state of the art result in wide
domain of downstream tasks. Consequently, for
hate-speech classifications, we perform fine-tuning
of a variant of BERT called Distilbert (Sanh et al.,
2019). Textual classification is often considered a
time-series problem, where the representation of
each token in the text is depends on former and
later tokens available in the text. Therefore, we
train different variants of LSTM based neural net-
work such as LSTM, BILSTM, CNN with attention
networks and CNN-LSTM. Hochreiter and Schmid-
huber (1997); Zhou et al. (2016); Brahma (2018);
Sainath et al. (2015).

5.3 Model Training

Except Distilbert, for training of rest of the sys-
tems, we lowercase all postings for each dataset
and use the Ark Tokenizer (Gimpel et al., 2011) for
word splitting. To extract features, we use word em-
beddings (Zhang and Luo, 2018; Kshirsagar et al.,
2018; Badjatiya et al., 2017). Due to many OOVs
in hate speeches, hate speech models adopt charac-
ter level features (Del Vigna et al., 2017; Warner
and Hirschberg, 2012; Lee et al., 2018) where a
DNN produces local features around each char-
acter of the word and then combines them using
a max operation to create a fixed-sized character-
level embedding of the word. Char-level embed-
dings are more likely to encode all variants of a
word’s morphology closer in the embedded space
(Bojanowski et al., 2017). We use n-char fastext
embeddings trained on Twitter corpus of 400 Mil-
lion tweets (Godin, 2019). For shallow models, we
apply grid-search algorithm using a dev set on all
shallow classifiers (Pedregosa et al., 2011). For
all the deep-neural networks, we use the learning
rate of 10−3 with 16 as batch size. We train each
network for 10 epochs with early stopping on dev
set accuracy and for 4 patience level. In the case of
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Distilbert, we use BERT-base tokenizer and corre-
sponding contextual embeddings for tokenization
and feature extraction respectively. We use default
hyperparameter settings described in the original
Distilbert implementation5

6 Results

We analyze model vulnerability by looking at the
decline in relative performance when they are
tested on obfuscated posts. Since we use unbal-
anced datasets, we estimate the performance using
F1 Macro score evaluate on hate-labels.

Target Selection Table 5 shows relative change
in F1(Hate) averaged over obfuscation strategies
for all systems. We use the broadest as well as the
most specific target selections for obfuscations. As
expected, model performance is worst when All
tokens are obfuscated in the test samples. Since
this is an unrealistic strategy, we do not consider
this effect as real vulnerability. On the other end
of the spectrum, random target selection (Random
Content and Random Any) has little effect. It be-
comes clear that the model are sensitive to specific
and meaningful tokens.

Dict Fixed accommodates meaningful lexicons
towards hatred and therefore makes systems rela-
tively more vulnerable to it. The T2 dataset is an
exception, as it has relatively fewer swear words
and hence less number of target tokens are selected.
It also indicate that reliance on fixed set of tokens
may not be the best solution to generate the obfus-
cation examples.

An important finding is that a model-dependent
dictionary (Dict Whitebox) has a large impact on
model susceptibility, as does Dict Domain. The
comparable performance indicate towards the sim-
ilar ranking order of tokens in both of the dictio-
naries. To estimate the similarity, we calculate the
Spearmanr Coefficient (Schober et al., 2018) and
find it as 0.421 with p < 0.005 which is a moderate
correlation. This shows the promising future di-
rection for conducting annotation studies on larger
datasets to compile a better manual preferences
based dictionary.

Obfuscation Strategies Table 6 shows the aver-
age relative change in F1 (Hate) for all our obfus-
cation strategies, where higher numbers mean that
systems are more vulnerable against this strategy.

5https://huggingface.co/docs/
transformers/model_doc/distilbert

We find that the type of preprocessing might play
an important role as e.g. camelcasing has almost no
effect because lowercasing is performed during pre-
processing. In general, models are more vulnerable
to strategies that insert characters in a token (like
Kebab or Spacing), than to strategies that remove
characters (like Char Drop or Vowel Drop). This
could be linked to the modeling of subwords, but
more research is needed in that direction. Strate-
gies that replace characters sometimes have limited
applicability, e.g. Mathspeak can only be applied
for certain characters limiting its effect.

Distilbert To perform deep analysis, we visual-
ize the fine-grained results for our best performing
model Distilbert (Figure 2 and 3) on T1 dataset.
In most cases, we find the model performance in
accordance with numbers mention in Table 5 and
6. As expected, the effect of Random Content is
more prominent compared to Random Any which
validate the advantages of using limited POS tags.
Multiple edit operations make system more vul-
nerable to Vowel Drop than Char Flip and Char
Drop (need only single edit). We also note that for
this specific classifier (in contrast to the averaged
results discussed above) the Phonetic method is
even better than Kebab and Spacing. Please refer
Appendix A for fine-grained results of Distilbert
evaluated on other datasets.

Other Paradigms Other than Distilbert, we have
evaluated the vulnerability on shallow classifier
such as SVM, LogReg, AdaBoost, Gradient Boost-
ing and Random Forest as well as on Deep Net-
works namely LSTM, BILSTM, CNN with atte-
nion networks, also on CNN-LSTM. We found
the order of model’s vulnerabilities with respect
to obfuscation targets are consistent with distilbert
which can be interpreted by Tables 5. Table 7 in
Appendix B illustrates the performance drop for
each system across T1 dataset.

7 Related Work

Although most of the previous studies raise concern
about model robustness against obfuscation attacks,
the real vulnerability is understudied. Among sim-
ple obfuscation strategies, studies (Gröndahl et al.,
2018; Röttger et al., 2021; Ebrahimi et al., 2018;
Szegedy et al., 2013) introduce syntactic perturba-
tions to validate the robustness of hate detection
models. We find overlapping of some of the obfus-
cation strategies discussed in this paper. Kirk et al.

https://huggingface.co/docs/transformers/model_doc/distilbert
https://huggingface.co/docs/transformers/model_doc/distilbert
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Figure 2: Distilbert’s F1 (Hate label) performance on T1 dataset before and after obfuscation on all obfuscation
strategies for all target selections. Except Camel Case, differences are found to be statistically significant based on
McNemar-Test after Bonferroni correction p < 0.05.

Figure 3: Distilbert’s performance decline on T1 dataset based on differences in the True Positives (Hate label)
before and after obfuscation on all obfuscation strategies for all target selections.



237

Datasets
Target T1 T2 TF G

All .16 .35 .26 .28

Dict Domain .13 - - -
Dict Whitebox .13 .13 .16 .10
Dict Fixed .11 .01 .06 .11
Random Content .05 .06 .02 .08
Random Any .03 .05 .02 .07

Table 5: Relative change in F1 (Hate) for different target
selection strategies. Results are averaged over obfusca-
tion strategies and detection systems.

Datasets
Strategy T1 T2 TF G

CamelCase .01 .02 .03 .04
Char Drop .12 .11 .09 .13
Char Flip .09 .11 .13 .13
Diacritics .12 .11 .14 .14
Kebab .17 .25 .13 .19
Leetspeak .12 .11 .06 .11
Masking .12 .12 .13 .14
Mathspeak .07 .03 .05 .07
Phonetic .13 .13 .14 .13
Snake .12 .12 .14 .14
Spacing .16 .21 .10 .17
Vowel Drop .12 .10 .10 .14

Table 6: Relative change in F1 (Hate) for different ob-
fuscation strategies. Results are averaged over target
selections and detection systems.

(2022) proposes test-suite contained emoji-based
hateful statements and find high vulnerability of
text based models. The study also proposes adver-
sarial examples to strengthen the model robustness.
Complex obfuscation include VIPER (Eger, 2015)
which is a probabilistic visual perturber that keep
the token recognizable. Target selection has been
studied in both model dependent and independent
settings. Model dependent targets are either se-
lected by looking at model architecture and its pa-
rameters (Goodfellow et al., 2014; Ebrahimi et al.,
2018) or solely depend upon model output (Naro-
dytska and Kasiviswanathan, 2017; Papernot et al.,
2016; Liu et al., 2017). Among model indepen-
dent targets, studies consider all the tokens in the
message (Gröndahl et al., 2018; Jones et al., 2020;
Eger et al., 2019). However, in real time settings,
this type of target selection is not observed. In our
work, we squeeze target selection to maximum of
single token and perform an annotation study, that
estimate real vulnerability of the models.

8 Conclusions

Previous work, simulating the obfuscation behav-
ior of haters in a simplified way, is likely to mis-
analyze the real vulnerability of hate speech de-
tection systems to obfuscation. We have shown
that obfuscating all words in a post is a useful
lower bound, but a very unrealistic strategy (as
the communicative value of the message breaks
down). Note that in this work, we deliberately
limited ourselves to quite simple lexical modifi-
cations. However, detection systems still show a
surprising vulnerability against these simple strate-
gies. While it might be possible (and fairly easy)
to shield a system against particularly known ob-
fuscation strategies (e.g. by detecting K-e-b-a-b or
S_n_a_k_e obfuscation with a regular expression),
we need to aim for systems that are also robust
against unseen strategies.

As the user study conducted in this paper shows,
people have an intuitive understanding of which
words are problematic. By obfuscating a single
word, someone trying to obfuscate their message
can impact the system performance on the same
scale as when using a whitebox attack (that has the
‘unfair’ advantage of having access to the internal
workings of the system). We also show that experi-
ments relying on a fixed dictionary of problematic
words for obfuscation are likely underestimating
the impact of obfuscation on hate speech detection
systems.
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Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung
Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant
Swarnkar, Edwin Simpson, and Iryna Gurevych.
2019. Text processing like humans do: Visually
attacking and shielding NLP systems. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1634–1647, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Katharine Gelber and Luke McNamara. 2016. Evi-
dencing the harms of hate speech. Social Identities,
22(3):324–341.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-Speech Tagging
for Twitter: Annotation, Features, and Experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 42–47. Association
for Computational Linguistics.

Fréderic Godin. 2019. Improving and Interpreting Neu-
ral Networks for Word-Level Prediction Tasks in Nat-
ural Language Processing. Ph.D. thesis, Ghent Uni-
versity, Belgium.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti,
and N. Asokan. 2018. All You Need is "Love": Evad-
ing Hate Speech Detection. In Proceedings of the
11th ACM Workshop on Artificial Intelligence and
Security, AISec ’18, page 2–12, New York, NY, USA.
Association for Computing Machinery.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Comput.,
9(8):1735–1780.

Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue, and
Xiang Ren. 2020. Towards Hierarchical Importance

https://doi.org/10.1145/3041021.3054223
https://doi.org/10.1145/3041021.3054223
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1145/3134666
https://doi.org/10.1145/3134666
https://doi.org/10.1145/3134666
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.3115/v1/P15-1088
https://doi.org/10.3115/v1/P15-1088
https://doi.org/10.3115/v1/P15-1088
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.1080/13504630.2015.1128810
https://doi.org/10.1080/13504630.2015.1128810
http://aclweb.org/anthology/P11-2008
http://aclweb.org/anthology/P11-2008
https://doi.org/10.1145/3270101.3270103
https://doi.org/10.1145/3270101.3270103
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=BkxRRkSKwr


239

Attribution: Explaining Compositional Semantics for
Neural Sequence Models. In International Confer-
ence on Learning Representations.

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy
Liang. 2020. Robust Encodings: A Framework for
Combating Adversarial Typos. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2752–2765, Online. Asso-
ciation for Computational Linguistics.

Brendan Kennedy, Mohammad Atari,
Aida Mostafazadeh Davani, Leigh Yeh, Ali
Omrani, Yehsong Kim, Kris Coombs, Shreya Haval-
dar, Gwenyth Portillo-Wightman, Elaine Gonzalez,
Joe Hoover, Aida Azatian, Alyzeh Hussain, Austin
Lara, Gabriel Cardenas, Adam Omary, Christina
Park, Xin Wang, Clarisa Wijaya, Yong Zhang,
Beth Meyerowitz, and Morteza Dehghani. 2022.
Introducing the Gab Hate Corpus: defining and
applying hate-based rhetoric to social media posts at
scale, journal=Language Resources and Evaluation.
56(1):79–108.

Hannah Kirk, Bertie Vidgen, Paul Rottger, Tristan
Thrush, and Scott Hale. 2022. Hatemoji: A Test Suite
and Adversarially-Generated Dataset for Benchmark-
ing and Detecting Emoji-Based Hate. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1352–1368,
Seattle, United States. Association for Computational
Linguistics.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The INCEpTION Platform: Machine-Assisted
and Knowledge-Oriented Interactive Annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9, Santa Fe, New Mexico. Association for
Computational Linguistics.

György Kovács, Pedro Alonso, and Rajkumar Saini.
2021. Challenges of Hate Speech Detection in Social
Media. SN Computer Science, 2(2).

Rohan Kshirsagar, Tyrus Cukuvac, Kathy McKeown,
and Susan McGregor. 2018. Predictive Embeddings
for Hate Speech Detection on Twitter. In Proceed-
ings of the 2nd Workshop on Abusive Language On-
line (ALW2), pages 26–32, Brussels, Belgium. Asso-
ciation for Computational Linguistics.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 1–11, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Chanhee Lee, Young-Bum Kim, Dongyub Lee, and
Heuiseok Lim. 2018. Character-Level Feature Ex-
traction with Densely Connected Networks. In Pro-
ceedings of the 27th International Conference on

Computational Linguistics, pages 3228–3239, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.
2017. Delving into Transferable Adversarial Exam-
ples and Black-box Attacks. In International Confer-
ence on Learning Representations.

Thomas Mandl, Sandip Modha, Prasenjit Majumder,
Daksh Patel, Mohana Dave, Chintak Mandlia, and
Aditya Patel. 2019. Overview of the HASOC Track
at FIRE 2019: Hate Speech and Offensive Content
Identification in Indo-European Languages. In Pro-
ceedings of the 11th Forum for Information Retrieval
Evaluation, FIRE ’19, page 14–17, New York, NY,
USA. Association for Computing Machinery.

Yann Mathet, Antoine Widlöcher, and Jean-Philippe
Métivier. 2015. The Unified and Holistic Method
Gamma (γ) for Inter-Annotator Agreement Mea-
sure and Alignment. Computational Linguistics,
41(3):437–479.

N. Narodytska and S. Kasiviswanathan. 2017. Sim-
ple Black-Box Adversarial Attacks on Deep Neural
Networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
pages 1310–1318.

Nicolas Papernot, Patrick Mcdaniel, and Ian J. Good-
fellow. 2016. Transferability in Machine Learning:
from Phenomena to Black-Box Attacks using Adver-
sarial Samples. ArXiv, abs/1605.07277.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Alina Polyakova and Chris Meserole. 2019. Exporting
digital authoritarianism: The Russian and Chinese
models. Policy Brief, Democracy and Disorder Se-
ries, pages 1–22.

Shrimai Prabhumoye, Brendon Boldt, Ruslan Salakhut-
dinov, and Alan W Black. 2021. Case Study: Deon-
tological Ethics in NLP. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3784–3798, Online.
Association for Computational Linguistics.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating Adversarial Misspellings with
Robust Word Recognition. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5582–5591, Florence, Italy.
Association for Computational Linguistics.

Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Margetts, and Janet Pierrehumbert.
2021. HateCheck: Functional tests for hate speech

https://openreview.net/forum?id=BkxRRkSKwr
https://openreview.net/forum?id=BkxRRkSKwr
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.1007/s10579-021-09569-x
https://doi.org/10.1007/s10579-021-09569-x
https://doi.org/10.1007/s10579-021-09569-x
https://doi.org/10.18653/v1/2022.naacl-main.97
https://doi.org/10.18653/v1/2022.naacl-main.97
https://doi.org/10.18653/v1/2022.naacl-main.97
https://aclanthology.org/C18-2002
https://aclanthology.org/C18-2002
https://doi.org/10.1007/s42979-021-00457-3
https://doi.org/10.1007/s42979-021-00457-3
https://doi.org/10.18653/v1/W18-5104
https://doi.org/10.18653/v1/W18-5104
https://aclanthology.org/W18-4401
https://aclanthology.org/W18-4401
https://aclanthology.org/C18-1273
https://aclanthology.org/C18-1273
https://openreview.net/forum?id=Sys6GJqxl
https://openreview.net/forum?id=Sys6GJqxl
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1145/3368567.3368584
https://doi.org/10.1162/COLI_a_00227
https://doi.org/10.1162/COLI_a_00227
https://doi.org/10.1162/COLI_a_00227
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.18653/v1/2021.naacl-main.297
https://doi.org/10.18653/v1/2021.naacl-main.297
https://doi.org/10.18653/v1/P19-1561
https://doi.org/10.18653/v1/P19-1561
https://doi.org/10.18653/v1/2021.acl-long.4


240

detection models. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 41–58, Online. Association for
Computational Linguistics.

Paul Röttger, Bertram Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Z. Margetts, and Janet B. Pierrehum-
bert. 2020. HateCheck: Functional Tests for Hate
Speech Detection Models. CoRR, abs/2012.15606.

Tara N. Sainath, Oriol Vinyals, Andrew Senior, and
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A Fine-Grained Results

Figure 4, 5 and 6 illustrates fine-grained results
for Distilbert evaluated on T2, G and TF datasets.
On all datasets, models are highly susceptible to
Dict Whitebox which is considered to be expected
behavior. We find large influence of static dictionar-
ies (Dict Fixed) on G and TF datasets because of
the availability of larger amount of obscene tokens
which make more target selection. Also Spacing
and Kebab are most sensitive obfuscation strate-
gies.

B System Performance on T1 Dataset

Figure 7 illustrating the performance drop for each
hate speech detection systems on applying obfus-
cation attacks across the targets. We find the con-
sistency in the order of vulnerabilities. We also
find that the drop is proportional to model’s perfor-
mance.
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Figure 4: Distilbert’s F1 (Hate label) performance on T2 dataset.

Figure 5: Distilbert’s F1 (Hate label) performance on G dataset.
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Figure 6: Distilbert’s F1 (Hate label) performance on TF dataset.

Hate Detection Systems
Target Distilbert BILSTM CNN-ATT CNN-LSTM LSTM AdaBoost GradB LogReg RF SVM

All .34 .21 .07 .21 .20 .08 .18 .13 .10 .25

Dict Domain .27 .15 .05 .18 .17 .07 .13 .11 .09 .18
Dict Whitebox .29 .17 .05 .18 .18 .07 .12 .10 .08 .21
Dict Fixed .17 .14 .05 .14 .12 .07 .10 .11 .09 .17
Random Content .06 .06 .03 .07 .04 .03 .05 .05 .04 .08
Random Any .04 .05 .03 .04 .03 .02 .04 .03 .03 .07

Table 7: Relative change in F1 (Hate) performance for each system estimated on the T1 dataset for different
obfuscation strategies. Results are averaged over target selections. GradB, LogReg and RF is abbreviated for
Gradient Boosting, Logistic Regression and Random Forest respectively.


