
Proceedings of the 2022 COLING Workshop: The 8th Workshop on Noisy User-generated Text (W-NUT 2022), pages 201–214

201

A multi-level approach for hierarchical Ticket Classification

Matteo Marcuzzo ∗

Alessandro Zangari ∗

Digital Strategy Innovation Srl

30175, Venice, Italy

{name.surname}@unive.it

Lorenzo Giudice
Andrea Gasparetto

Ca’ Foscari University of Venice

Department of Management

30121, Venice, Italy

{name.surname}@unive.it

Michele Schiavinato
Andrea Albarelli

Ca’ Foscari University of Venice

Department of Environmental
Sciences, Informatics and Statistics

30172, Mestre (VE), Italy

{michele.schiavinato,albarelli}@unive.it

Abstract

The automatic categorization of support tickets
is a fundamental tool for modern businesses.
Such requests are most commonly composed
of concise textual descriptions that are noisy
and filled with technical jargon. In this paper,
we test the effectiveness of pre-trained LMs for
the classification of issues related to software
bugs. First, we test several strategies to pro-
duce single, ticket-wise representations starting
from their BERT-generated word embeddings.
Then, we showcase a simple yet effective way
to build a multi-level classifier for the catego-
rization of documents with two hierarchically
dependent labels. We experiment on a public
bugs dataset and compare our results with stan-
dard BERT-based and traditional SVM classi-
fiers. Our findings suggest that both embedding
strategies and hierarchical label dependencies
considerably impact classification accuracy.

1 Introduction

Support tickets and incident reports are a valuable
point of contact between customers and service
providers (Al-Hawari and Barham, 2021). They
are fundamental tools in the management of the
relationship between businesses and users, allow-
ing for the swift resolution of issues, thus lead-
ing to improved customer satisfaction, productivity,
and compliance which Service-Level Agreements
(SLAs) (Gupta and Sengupta, 2012). Tickets can
be derived from multiple communication channels,
most commonly emails, specialized web forms,
phone calls, live chats, and social media platforms
(Zicari et al., 2021). Help requests are therefore
logged as text, which represents the most impor-
tant source of information to be used for automatic
ticket management. Being conversational by na-
ture, tickets describe the issue or request in an often
noisy and concise format (Cristian et al., 2019).

∗ Authors contributed equally.

As a response to the increasingly high volume of
these requests by customers, researchers have pro-
posed the automation of various steps of the ticket
resolution pipeline (Fuchs et al., 2022; Ali Zaidi
et al., 2022). These include the classification of
tickets into broad topic categories (ticket classifica-
tion) (Zicari et al., 2021; Revina et al., 2020), the
direct assignment of the issue to an expert capable
of resolving it (expert finding) (Husain et al., 2019),
as well as the direct resolution of tickets in a com-
pletely autonomous way (ticket resolution) (Zhou
et al., 2017). Among these tasks, the accurate clas-
sification of incoming tickets within a pre-defined
hierarchy of labels is among the most prevalent, as
well as one of particular importance to ensure that
these requests are dealt with swiftly. Indeed, it is
common for support tickets to be framed within
a multi-level hierarchy such as the one just men-
tioned: each level of the hierarchy describes the
issue at different levels of specificity.

Contributions This work will explore Ticket
Classification (TiC), a sub-task of Text Classifi-
cation (TC), with the following objectives:

• Verifying the effectiveness of contextualized
Language Models (LMs) (Radford et al.,
2018; Marcuzzo et al., 2022) on noisy pieces
of text from this particular domain;

• Exploring the impact of document embedding
strategies on downstream task performance;

• Establishing how much a LM can benefit from
the injection of hierarchy information for topi-
cal classification within a two-level hierarchy.

Our experiments show that both document sum-
marization strategies and hierarchical information
injection can contribute in a major way to TiC accu-
racy. The code and datasets utilized in this work’s
experiments are made publicly available online1.

1https://gitlab.com/distration/
dsi-nlp-publib/-/tree/main/WNUT22

https://gitlab.com/distration/dsi-nlp-publib/-/tree/main/WNUT22
https://gitlab.com/distration/dsi-nlp-publib/-/tree/main/WNUT22


202

2 Related work

The task of topical TiC has been explored in recent
works, which we briefly outline. Relatedly, we
also discuss recent advancements in the broader
TC environment, as well as a short mention of
dedicated hierarchical TC methods.

Ticket Classification (TiC) In the particular con-
text of TiC, much work has been done towards the
application of traditional methods, a popular exam-
ple being that of Support Vector Machines (SVMs)
(Boser et al., 1992) applied on simple word-count-
based text representation techniques such as TF-
IDF (Jones, 1972). Recent works such as Yang
(2021); Revina et al. (2020) have argued for the
efficacy of traditional methods, often introducing
more advanced text representation techniques such
as Word2Vec (Mikolov et al., 2013). There has
also been recent interest in the application of Deep
Neural Networks, such as Multilayer Perceptrons
(Kallis et al., 2019), Convolutional Neural Net-
works (Zicari et al., 2021; Pistellato et al., 2018),
and Recurrent Neural Networks (Mani et al., 2019;
Lyubinets et al., 2018).

Text Classification (TC) In the broader environ-
ment of Natural Language Processing (NLP), all
downstream tasks — including TC — have been
recently revolutionized by the introduction of the
Transformer architecture (Vaswani et al., 2017).
This approach to text representation has allowed
for much more meaningful vectorial representa-
tions for words, crucially able to discern context.
Contextualized LMs based on this architecture are
now the staple NLP transfer learning approach, and
have showcased massive performance boosts in TC
benchmarks. Among others, we focus on the influ-
ential Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019), which
we utilize in this work. We refer to Gasparetto et al.
(2022a,b) for a thorough description of BERT’s ar-
chitecture. Though succeeded by more refined LMs
in recent years, it is still widely studied and utilized.
BERT-based LMs have been extensively applied
to NLP tasks on user-generated content, such as
tweets (Polignano et al., 2019) and user reviews (Lu
et al., 2020). Interestingly, recent findings suggest
that BERT is quite sensible to the presence of noise
in text (e.g., spelling mistakes) (Kumar et al., 2020).
On the other hand, other works suggest that BERT
is quite resistant to label-noise, and the application
of common noise-handling methods can in fact de-

teriorate BERT’s performance (Zhu et al., 2022).
With this work, we aim to give practitioners some
insights into the usage of BERT for classification
in the support ticket classification domain. While
an excellent source of noisy user-generated data,
we find this context to be understudied at present.

Hierarchical Text Classification As we are dis-
cussing datasets whose labels are hierarchical by
nature, it would be reasonable to utilize Hierarchi-
cal TC approaches. The architecture we propose in
this work is partly inspired by these approaches, in
particular by the distinction between flattened clas-
sifiers (Koller and Sahami, 1997), which simplifies
the hierarchy by flattening it to a single multiclass
or multilabel problem, and global classifiers, which
build upon these classifiers but integrate hierarchy
information within their framework (Labrou and
Finin, 1999). Still, we point out that the amount of
overlap with hierarchical TC literature is somewhat
limited by the fact that the hierarchy in ticketing
systems is usually very shallow (two to three lev-
els), while HTC systems usually operate in multil-
abel environments with very complex hierarchies.

3 The Linux Bugs dataset

To evaluate a TiC scenario, we experiment on a
dataset of bugs crawled from the publicly available
Linux kernel bug-tracker 2, as inspired by Lyubi-
nets et al. (2018). The resulting Linux Bugs dataset
contains tickets organized through the hierarchi-
cal dependent labels of “product” (e.g., Network,
Drivers, etc.) and “component” (e.g., BIOS, sched-
uler, etc.). Therefore, we utilize the former as main
labels and the latter as sub-labels. To be precise, to
avoid redundancies, we utilize the flattened labels
as sub-labels, such as to differentiate sub-labels
that share their name across main categories (e.g.,
Network_Other vs Drivers_Other). More-
over, to reduce class imbalance, we discard all la-
bels and sub-labels that appear less than 100 times.
More details on the dataset, including an exemplary
subset of the resulting hierarchy, reports on the la-
bels’ frequency and an example of the content of a
ticket can be found in Appendix B.

4 Methods

The aforementioned BERT LM has been one of
the most popular contextualized LMs since its in-
ception. Conceptually, BERT is a bidirectional

2https://bugzilla.kernel.org

https://bugzilla.kernel.org


203

Transformer-based neural network, made by stack-
ing multiple encoder blocks. These blocks are en-
tirely based on the self-attention mechanism (Bah-
danau et al., 2015), eliminating the sequential bot-
tleneck of previous recurrent models.

BERT models are pre-trained on two specifically
devised language modeling tasks that allow the
networks to learn semantically and contextually
meaningful representations of text. These mod-
els can then be fine-tuned on specific tasks quite
easily (in the case of classification, by adding a
simple linear layer as a classifier) to obtain state-
of-the-art performances. In our case, we utilize
the models available on HuggingFace (Wolf et al.,
2020), which are pre-trained on BookCorpus (Zhu
et al., 2015) and English Wikipedia, and have a
vocabulary of around 30,500 word segments.

4.1 Document summarization strategies

In terms of text interpretation, BERT first trans-
forms raw text into tokens through the Word-
Piece sub-word tokenization algorithm (Schuster
and Nakajima, 2012). The output is then passed
through the stacked encoder blocks, with each layer
producing an embedding for each token.

A common approach to classification using
BERT is to utilize the [CLS] token as a docu-
ment summary. This special symbol is pre-pended
to each sequence of words and is utilized during
pre-training on the Next Sentence Prediction bi-
nary classification task (NSP). Despite its popu-
larity, several authors suggest that other “summa-
rization strategies” for documents may be prefer-
able (Reimers and Gurevych, 2019). For instance,
Tanaka et al. (2019) experiment with the averag-
ing of the individual word embeddings composing
the sentences rather than the single [CLS] token.
They utilize the output of one or more encoder
blocks and combine them, highlighting classifica-
tion improvements when concatenating the output
of several layers. Researchers have further hinted
at the phenomenon of “layer specialization” within
BERT, arguing that each encoding block may focus
on the extraction of linguistic features at different
levels: syntactic features are mostly extracted in the
first blocks, while deeper layers progressively focus
on semantic features. They also discuss how infor-
mation from each layer can be beneficial to down-
stream tasks, like classification (de Vries et al.,
2020; Jawahar et al., 2019; Torsello et al., 2014).

In this work, we explore the impact of different

approaches to the creation of a condensed docu-
ment representation starting from BERT’s word
vectors. In particular, we test several strategies,
including the usage of the [CLS] token from the
last layer (referred to as cls last), but also the con-
catenation and average of the [CLS] tokens of the
last h hidden layers, respectively indicated with cls
concath and cls avgh. We also experiment with
approaches that do not use such token, such as av-
eraging the embeddings of all words in a document
(avg), taking the maximum (max), or using their
normalized sum (sum nor). A description of each
strategy is given in Appendix A.

4.2 Multi-level classifiers
Our second aim in this work is to design an effec-
tive multi-level architecture able to exploit the hi-
erarchical dependency information between labels.
The following paragraphs detail the two proposed
approaches. Notably, our multi-level classifiers
are based on BERT LMs, but may be used with
any model capable of producing contextualized
word embeddings. In both frameworks, we utilize
two separate LMs trained on the categorization of
macro-labels (task T1) and on the categorization
of flattened sub-labels (T2). A visualization of the
approaches is provided in the Appendix (Fig. 1).

ML-BERT The Multi-Level BERT (ML-BERT)
classifier is a combination of two distinct pre-
trained BERT LMs, previously fine-tuned on the
prediction of the T1 and T2 tasks, respectively
(LM1, LM2). In the ML-BERT model, the weights
of the two base LMs are kept frozen during the fine-
tuning procedure — the output of the pre-trained
classifiers is discarded. Only the word embed-
dings produced by each model are utilized; docu-
ment representations are obtained by using the best-
performing summarization strategy among the ones
mentioned in Section 4.1. Embeddings from both
models are then concatenated into a global ticket
representation and passed through a single linear
layer with a softmax activation function. Therefore,
fine-tuning only requires the learning of the last
layer’s weights, reducing the computational cost.

Supported-BERT The Supported-BERT
classifier similarly utilizes a LM previously trained
on T1 (LM1). However, LM2 is not trained in
isolation but instead utilizes the fine-tuned LM1

as support during its own fine-tuning. As before,
the ticket embeddings from the two LMs are
concatenated and passed to the output layer. Thus,



204

the difference from the previous setup is that
LM2 is trained directly with the output layer and
with external influence, instead of being trained
beforehand.

5 Experiments

We report in this section the experiments we con-
ducted to select the most suitable summarization
strategy and to determine the effectiveness of the
multi-level classifiers. While the core of our exper-
iments was performed on BERT’s base pre-trained
model (i.e., “bert-base-uncased”), we also report
results using a larger BERT LM (i.e., “bert-large-
uncased”).

5.1 Experimental setup

We describe our experimental settings in this sec-
tion, adding details on the metrics we choose to use
and on how we select the model hyper-parameters.

Metrics We evaluate the models in a multiclass
setting, where the ground truth label is the concate-
nation of the parent and child categories. There-
fore, the models must predict a single class for each
ticket (e.g., Networking_IPV4 is the target la-
bel for a ticket that belongs to the Networking
category and IPV4 sub-category). This approach
is widely utilized in the evaluation of global HTC
methods, which our approaches can be seen as
(Silla and Freitas, 2011). We use standard clas-
sification metrics, i.e., accuracy and F1-score, to
measure the performance. Briefly, accuracy mea-
sures the ratio of correct predictions over the total
of number predictions, but can give a skewed repre-
sentation of imbalanced datasets. F -score is a com-
bination of precision and recall, which measure a
model’s correctness and completeness, respectively
(Gasparetto et al., 2022a, 2018). We report the F1-
score — the harmonic mean of precision and recall
— in its macro-averaged version, i.e., considering
all class contributions equally.

Hyper-parameter tuning We use a stratified 3-
fold CV to split the dataset into training and testing
subsets. Before testing BERT’s performance with
different summarization strategies on the testing
split, we tune the learning rate and the number
of training epochs on the training split, reserving
20% of it as a validation set. We use the BERT-
base model on task T2 using the standard avg last
strategy with early stopping set on the loss function
to determine the optimal number of epochs.

Table 1: Effect of additional processing procedures on
the performance of a BERT model on the validation set.

Model Clean Weigh Acc F1

BERT
(base)

✗ ✗ 0.533 [± 0.003] 0.396 [± 0.005]
✓ ✗ 0.503 [± 0.003] 0.374 [± 0.006]
✗ ✓ 0.471 [± 0.005] 0.382 [± 0.004]
✓ ✓ 0.464 [± 0.007] 0.371 [± 0.008]

* Standard deviation over 3 runs is reported in brackets.

After validation, the BERT-base models are
trained for 3 epochs with learning rate set to 2e−5

and batch size set to 8. The BERT-large models
were similarly validated and trained with a learning
rate of 1e−5 for 3 epochs, with batch size set to 8.

Following Lyubinets et al. (2018), we test the
impact of a more comprehensive text cleaning pro-
cedure that removes most of the stack traces and
memory addresses, which are quite frequent in this
dataset. Listing 2 in the Appendix showcases an
example of a bug report treated with the more ag-
gressive cleaning procedure. Furthermore, because
our dataset is imbalanced class-wise, we experi-
ment with weighting classes’ contribution to the
loss value based on their support. We find that
neither the additional preprocessing step nor the
weighting scheme improved the performance in
terms of F1 and accuracy scores using the default
avg last strategy, as can be seen in Table 1. We
hypothesize that, even though the representations
of pieces of text such as the hexadecimal codes of
Listing 1 have low syntactic and semantic value,
they still provide discriminative power in the down-
stream classification task.

To train the multi-level models, we separately
train LM1 and LM2 on T1 and T2 tasks respec-
tively, and use the same hyperparameters selected
for the previous tests. Moreover, we select the best
learning rate and number of epochs for the final
classifier using the same procedure as described
above, obtaining the values of 2e−5 (2 epochs) and
1e−5 (3 epochs) for the base and large versions of
BERT, respectively.

5.2 Results

In this section, we report test set results obtained
with the best hyper-parameters as just described.

Document summarization Results with the dif-
ferent summarization strategies introduced in Sec-
tion 4.1 using BERT-base on task T2 are reported in
Table 2. First off, there is a considerable difference
in performance between the pooled and “raw” ver-



205

Table 2: Test set results* with BERT classifier on T2
comparing summarization strategies on Linux Bugs.

Basis Strategy Acc F1

last (p)† 0.518 [± 0.006] 0.354 [± 0.009]
last 0.566 [± 0.012] 0.446 [± 0.018]
avg2 0.531 [± 0.010] 0.393 [± 0.012]
concat2 0.535 [± 0.010] 0.400 [± 0.014]
concat3 0.571 [± 0.008] 0.456 [± 0.013]
concat4 0.568 [± 0.009] 0.457 [± 0.014]

cls

concat5 0.565 [± 0.012] 0.456 [± 0.013]
last 0.525 [± 0.008] 0.387 [± 0.010]
avg2 0.522 [± 0.005] 0.383 [± 0.013]avg
concat2 0.523 [± 0.007] 0.390 [± 0.009]
last 0.522 [± 0.011] 0.385 [± 0.014]
avg2 0.519 [± 0.007] 0.375 [± 0.013]max
concat2 0.518 [± 0.006] 0.373 [± 0.015]
last 0.522 [± 0.010] 0.377 [± 0.011]max_min avg2 0.522 [± 0.009] 0.374 [± 0.010]
last 0.516 [± 0.007] 0.381 [± 0.012]max_avg avg2 0.519 [± 0.006] 0.379 [± 0.007]
last 0.406 [± 0.018] 0.171 [± 0.017]
concat2 0.379 [± 0.013] 0.135 [± 0.019]sum_nor
concat5 0.388 [± 0.015] 0.135 [± 0.015]

* Standard deviation over 6 runs is reported in brackets.
† Pooled, using cls pooled strategy.

Table 3: Test set results* for all models on the T2 task.
BERT models utilize the cls concat3 strategy.

Model Acc F1

SVM 0.551 [± 0.004] 0.473 [± 0.006]
ML-BERT (base) 0.602 [± 0.010] 0.500 [± 0.014]
Supp-BERT (base) 0.611 [± 0.007] 0.485 [± 0.013]
BERT (base) 0.571 [± 0.008] 0.456 [± 0.013]
ML-BERT (large) 0.577 [± 0.008] 0.461 [± 0.006]
Supp-BERT (large) 0.597 [± 0.007] 0.480 [± 0.011]
BERT (large) 0.559 [± 0.008] 0.438 [± 0.011]

* Standard deviation over 6 runs is reported in brackets.

sions of the cls last strategy, with the raw [CLS]
token without pooling achieving considerably bet-
ter results. Stacking multiple layers further im-
proved the results; tests with cls concat3 achieved
the best overall performance in terms of accuracy,
precision, and recall (though macro-averaging fa-
vors cls concat4 in terms of F1 score), confirming
that features extracted in other BERT hidden lay-
ers can be beneficial to the classification task (see
Table 5 in the Appendix).

Multi-level classifiers Table 3 reports the clas-
sification performance of both ML-BERT and
Supported-BERT (shortened as Supp-BERT),
utilizing the previously determined best document
summarization strategy (in our case, cls concat3).

The smaller ML-BERT achieves an improve-
ment of 9.7% macro F1-score and 5.4% accuracy
as compared to the BERT model trained on the flat-
tened hierarchy of labels. Supported-BERT’s

improvement amounts instead to 6.4% and
7.0% on the same metrics. While ML-BERT
performed better in terms of macro F1-score,
Supported-BERT resulted in the highest ac-
curacy. The larger pre-trained BERT model
showcases overall a similar trend, though with
lower performance than with the base model in
all experiments. Nevertheless, the multi-level
models still improved results over the flat T2
classifier: ML-BERT (large) achieved 3.1% and
5.2% improvement in macro F1-score and ac-
curacy respectively, while the performance of
Supported-BERT improved by 6.8% and 9.5%.
In practice, we observed that the larger model did
not converge as well as the base one. This is likely
to be a consequence of the limited size of our highly
skewed dataset, as well as the limited semantic sig-
nificance of its composing documents (that contain
many technical bits of text, like stack traces).

The SVM classifier was trained with a simple
one-vs-rest strategy and also performed very well,
surprisingly achieving better macro F1 than the
smaller BERT model in the flattened setting. How-
ever, all base multi-level models perform better on
both metrics. As is also discussed in the literature,
BoW features with TF-IDF weighting are suitable
representations for noisy text, effectively able to fil-
ter out many unimportant words (Das et al., 2021).
On the other hand, contextualized LMs such as
BERT are meant to exploit sentence structure and
word context, which might be insufficiently infor-
mative in such environments.

Error analysis Because of time and space limita-
tions, we do not perform an in-depth error analysis
of our models in this work. However, a discussion
in this regard can be found in Appendix D, in which
we also discuss how we would like to address this
analysis in future work.

6 Conclusion

In this article, we experimented with contextualized
LMs for TiC, and found that different document
embedding summarization strategies are a major
factor in classification performance. Moreover, we
devised two multi-level classification approaches
based on LMs, and found further improvement
by injecting information from the label hierarchy
within the architecture. We hope our work can pro-
vide useful insights into the usage of BERT models
for classification in a previously understudied do-
main.



206

References
Feras Al-Hawari and Hala Barham. 2021. A machine

learning based help desk system for it service man-
agement. Journal of King Saud University - Com-
puter and Information Sciences, 33(6):702–718.

Syed S. Ali Zaidi, Muhammad Moazam Fraz, Muham-
mad Shahzad, and Sharifullah Khan. 2022. A mul-
tiapproach generalized framework for automated so-
lution suggestion of support tickets. International
Journal of Intelligent Systems, 37(6):3654–3681.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. arXiv.org,
abs/1409.0473.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N.
Vapnik. 1992. A training algorithm for optimal mar-
gin classifiers. In Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, pages
144–152. Association for Computing Machinery.

Matei Cristian, Săcărea Christian, and Tolciu Dumitru-
Tudor. 2019. A study in the automation of service
ticket recognition using natural language process-
ing. In 2019 International Conference on Software,
Telecommunications and Computer Networks (Soft-
COM), pages 1–6.

Mamata Das, Selvakumar Kamalanathan, and PJA
Alphonse. 2021. A comparative study on tf-idf fea-
ture weighting method and its analysis using unstruc-
tured dataset. In COLINS, pages 98–107.

Wietse de Vries, Andreas van Cranenburgh, and Malv-
ina Nissim. 2020. What’s so special about BERT’s
layers? a closer look at the NLP pipeline in mono-
lingual and multilingual models. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 4339–4350, Online. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Simon Fuchs, Clemens Drieschner, and Holger Wittges.
2022. Improving support ticket systems using ma-
chine learning: A literature review. In Proceedings
of the 55th Hawaii International Conference on Sys-
tem Sciences, pages 1893–1902, Honolulu, HI 96822.
ScholarSpace.

Andrea Gasparetto, Matteo Marcuzzo, Alessandro Zan-
gari, and Andrea Albarelli. 2022a. A survey on text
classification algorithms: From text to predictions.
Information, 13(2).

Andrea Gasparetto, Dalila Ressi, Filippo Bergamasco,
Mara Pistellato, Luca Cosmo, Marco Boschetti, En-
rico Ursella, and Andrea Albarelli. 2018. Cross-
dataset data augmentation for convolutional neural
networks training. In 2018 24th International Confer-
ence on Pattern Recognition (ICPR), pages 910–915.

Andrea Gasparetto, Alessandro Zangari, Matteo Mar-
cuzzo, and Andrea Albarelli. 2022b. A survey on
text classification: Practical perspectives on the ital-
ian language. PLOS ONE, 17(7):1–46.

Hari S. Gupta and Bikram Sengupta. 2012. Schedul-
ing service tickets in shared delivery. In Service-
Oriented Computing, pages 79–95, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Omayma Husain, Naomie Salim, Rose Alinda Alias,
Samah Abdelsalam, and Alzubair Hassan. 2019. Ex-
pert finding systems: A systematic review. Applied
Sciences, 9(20).

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Karen Spärck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval. J.
Doc., 28(1):11–21.

Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and
Sebastiano Panichella. 2019. Ticket tagger: Machine
learning driven issue classification. In 2019 IEEE
International Conference on Software Maintenance
and Evolution (ICSME), pages 406–409.

Daphne Koller and Mehran Sahami. 1997. Hierarchi-
cally classifying documents using very few words. In
Proceedings of the Fourteenth International Confer-
ence on Machine Learning, ICML ’97, page 170–178,
San Francisco, CA, USA. Morgan Kaufmann Pub-
lishers Inc.

Ankit Kumar, Piyush Makhija, and Anuj Gupta. 2020.
Noisy text data: Achilles’ heel of BERT. In Proceed-
ings of the Sixth Workshop on Noisy User-generated
Text (W-NUT 2020), pages 16–21, Online. Associa-
tion for Computational Linguistics.

Yannis Labrou and Tim Finin. 1999. Yahoo! as an ontol-
ogy: Using yahoo! categories to describe documents.
In Proceedings of the Eighth International Confer-
ence on Information and Knowledge Management,
CIKM ’99, page 180–187, New York, NY, USA. As-
sociation for Computing Machinery.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations, New Orleans,
Louisiana, USA.

https://doi.org/https://doi.org/10.1016/j.jksuci.2019.04.001
https://doi.org/https://doi.org/10.1016/j.jksuci.2019.04.001
https://doi.org/https://doi.org/10.1016/j.jksuci.2019.04.001
https://doi.org/10.1002/int.22701
https://doi.org/10.1002/int.22701
https://doi.org/10.1002/int.22701
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.23919/SOFTCOM.2019.8903676
https://doi.org/10.23919/SOFTCOM.2019.8903676
https://doi.org/10.23919/SOFTCOM.2019.8903676
https://doi.org/10.18653/v1/2020.findings-emnlp.389
https://doi.org/10.18653/v1/2020.findings-emnlp.389
https://doi.org/10.18653/v1/2020.findings-emnlp.389
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://hdl.handle.net/10125/79570
https://hdl.handle.net/10125/79570
https://doi.org/10.3390/info13020083
https://doi.org/10.3390/info13020083
https://doi.org/10.1109/ICPR.2018.8545812
https://doi.org/10.1109/ICPR.2018.8545812
https://doi.org/10.1109/ICPR.2018.8545812
https://doi.org/10.1371/journal.pone.0270904
https://doi.org/10.1371/journal.pone.0270904
https://doi.org/10.1371/journal.pone.0270904
https://doi.org/10.1007/978-3-642-34321-6_6
https://doi.org/10.1007/978-3-642-34321-6_6
https://doi.org/10.3390/app9204250
https://doi.org/10.3390/app9204250
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://doi.org/10.1109/ICSME.2019.00070
https://doi.org/10.1109/ICSME.2019.00070
https://doi.org/10.18653/v1/2020.wnut-1.3
https://doi.org/10.1145/319950.319976
https://doi.org/10.1145/319950.319976
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7


207

Zhibin Lu, Pan Du, and Jian-Yun Nie. 2020. Vgcn-
bert: Augmenting bert with graph embedding for
text classification. In Advances in Information Re-
trieval, pages 369–382, Cham. Springer International
Publishing.

Volodymyr Lyubinets, Taras Boiko, and Deon Nicholas.
2018. Automated labeling of bugs and tickets using
attention-based mechanisms in recurrent neural net-
works. In 2018 IEEE Second International Confer-
ence on Data Stream Mining & Processing (DSMP),
pages 271–275.

Senthil Mani, Anush Sankaran, and Rahul Aralikatte.
2019. Deeptriage: Exploring the effectiveness of
deep learning for bug triaging. In Proceedings of the
ACM India Joint International Conference on Data
Science and Management of Data, CoDS-COMAD
’19, pages 171–179, New York, NY, USA. Associa-
tion for Computing Machinery.

Matteo Marcuzzo, Alessandro Zangari, Andrea Al-
barelli, and Andrea Gasparetto. 2022. Recommen-
dation systems: an insight into current development
and future research challenges. IEEE Access.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In 1st International Conference
on Learning Representations, ICLR 2013, volume
abs/1301.3781.

Mara Pistellato, Luca Cosmo, Filippo Bergamasco, An-
drea Gasparetto, and Andrea Albarelli. 2018. Adap-
tive albedo compensation for accurate phase-shift
coding. In 2018 24th International Conference on
Pattern Recognition (ICPR), pages 2450–2455.

Marco Polignano, Pierpaolo Basile, Marco de Gemmis,
Giovanni Semeraro, and Valerio Basile. 2019. Al-
BERTo: Italian BERT language understanding model
for NLP challenging tasks based on tweets. In Pro-
ceedings of the Sixth Italian Conference on Compu-
tational Linguistics, CLiC-it 2019, volume 2481 of
CEUR Workshop Proceedings, Bari, Italy.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Aleksandra Revina, Krisztian Buza, and Vera G. Meister.
2020. It ticket classification: The simpler, the better.
IEEE Access, 8:193380–193395.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5149–5152.

Carlos N. Silla and Alex A. Freitas. 2011. A survey of
hierarchical classification across different application
domains. Data Mining and Knowledge Discovery,
22(1):31–72.

Hirotaka Tanaka, Hiroyuki Shinnou, Rui Cao, Jing Bai,
and Wen Ma. 2019. Document classification by word
embeddings of BERT. In 16th International Con-
ference of the Pacific Association for Computational
Linguistics, PACLING 2019, pages 145–154, Hanoi,
Vietnam. Springer Singapore.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language inter-
pretability tool: Extensible, interactive visualizations
and analysis for NLP models. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 107–118, Online. Association for Computa-
tional Linguistics.

A. Torsello, A. Gasparetto, L. Rossi, L. Bai, and E.R.
Hancock. 2014. Transitive state alignment for the
quantum jensen-shannon kernel. Lect. Notes Comput.
Sci., 8621:22–31.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, pages 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45. Association for Com-
putational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and
Daniel Weld. 2019. Errudite: Scalable, reproducible,
and testable error analysis. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 747–763, Florence, Italy.
Association for Computational Linguistics.

Libo Yang. 2021. Fuzzy output support vector machine
based incident ticket classification. IEICE Transac-
tions on Information and Systems, E104.D(1):146–
151.

Jun Yuan, Jesse Vig, and Nazneen Rajani. 2022. Isea:
An interactive pipeline for semantic error analysis
of nlp models. In 27th International Conference on
Intelligent User Interfaces, IUI ’22, pages 878–888,

https://doi.org/10.1109/DSMP.2018.8478511
https://doi.org/10.1109/DSMP.2018.8478511
https://doi.org/10.1109/DSMP.2018.8478511
https://doi.org/10.1145/3297001.3297023
https://doi.org/10.1145/3297001.3297023
https://doi.org/10.1109/ACCESS.2022.3194536
https://doi.org/10.1109/ACCESS.2022.3194536
https://doi.org/10.1109/ACCESS.2022.3194536
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1109/ICPR.2018.8545465
https://doi.org/10.1109/ICPR.2018.8545465
https://doi.org/10.1109/ICPR.2018.8545465
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1109/ACCESS.2020.3032840
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1007/978-981-15-6168-9_13
https://doi.org/10.1007/978-981-15-6168-9_13
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.1007/978-3-662-44415-3_3
https://doi.org/10.1007/978-3-662-44415-3_3
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.1587/transinf.2020EDP7044
https://doi.org/10.1587/transinf.2020EDP7044
https://doi.org/10.1145/3490099.3511146
https://doi.org/10.1145/3490099.3511146
https://doi.org/10.1145/3490099.3511146


208

New York, NY, USA. Association for Computing
Machinery.

Wubai Zhou, Wei Xue, Ramesh Baral, Qing Wang,
Chunqiu Zeng, Tao Li, Jian Xu, Zheng Liu, Lar-
isa Shwartz, and Genady Ya. Grabarnik. 2017. Star:
A system for ticket analysis and resolution. In Pro-
ceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’17, pages 2181–2190, New York, NY,
USA. Association for Computing Machinery.

Dawei Zhu, Michael A. Hedderich, Fangzhou Zhai,
David Adelani, and Dietrich Klakow. 2022. Is BERT
robust to label noise? a study on learning with noisy
labels in text classification. In Proceedings of the
Third Workshop on Insights from Negative Results in
NLP, pages 62–67, Dublin, Ireland. Association for
Computational Linguistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In 2015 IEEE International Con-
ference on Computer Vision (ICCV), pages 19–27.

Paolo Zicari, Gianluigi Folino, Massimo Guarascio,
and Luigi Pontieri. 2021. Discovering accurate deep
learning based predictive models for automatic cus-
tomer support ticket classification. In Proceedings of
the 36th Annual ACM Symposium on Applied Com-
puting, SAC ’21, pages 1098–1101, New York, NY,
USA. Association for Computing Machinery.

https://doi.org/10.1145/3097983.3098190
https://doi.org/10.1145/3097983.3098190
https://doi.org/10.18653/v1/2022.insights-1.8
https://doi.org/10.18653/v1/2022.insights-1.8
https://doi.org/10.18653/v1/2022.insights-1.8
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1145/3412841.3442109
https://doi.org/10.1145/3412841.3442109
https://doi.org/10.1145/3412841.3442109


209

A Embedding summarization strategies

Table 4 describes all the summarization strategies
tested in this work. The “cls last (p)” strategy refers
to the one adopted in the original BERT paper, us-
ing the [CLS] token embedding passed through
the NSP prediction layer, with a tanh activation,
commonly referred to as “pooled” embedding. In
contrast, all other cls strategies use the un-pooled
embedding, meaning that it is used directly as pro-
vided by the encoder without additional processing.

Table 5 reports the complete set of performance
metrics measured to test the effectiveness of the
summarization strategies. In the main article, only
the accuracy and F1-score are reported. All met-
rics besides accuracy refer to the macro-averaged
metrics; metrics are computed separately for each
label and then averaged, irrespective of the labels’
frequency.

B Details on the Linux Bugs dataset

The preprocessing procedure applied to the Linux
Bugs dataset discards bug reports without a valid
message text, applies lowercasing to all text, and
concatenates the issue title with the message body.
The final dataset, after preprocessing, contains
35,050 bug descriptions, 17 first-level labels, and
73 sub-labels. The average number of characters
per-ticket is 2,026 and each ticket is labeled with
exactly one label and one sub-label. The label hier-
archy for a subset of 3 macro-labels is shown in Fig.
2, and histograms with the frequency of labels and
sub-labels are shown in Figs. 3 and 4, respectively.

One example of a pre-processed and lowercased
bug report is displayed in Listing 1, and the effect
of the text cleaning procedure described in Sec-
tion 5.1 on the same body of text is showcased in
Listing 2. As can be seen, these tickets are rich in
technical information, like stack traces and error
messages, mixed with text written in natural lan-
guage. Misspellings are also quite frequent, since
bugs are often filed by non-native English speakers.

C Other experimental details

All tests are run using PyTorch 1.11.0 and Python
3.10 using an NVIDIA RTX 2080 Ti. We use the
AdamW optimizer (Loshchilov and Hutter, 2019)
during training.

BERT-large validation The BERT-large models
are validated on the T2 task to find the most suitable
learning rate (choosing between 1e−5, 2e−{5,6})

(a) ML-LM.

(b) Supported-LM.

Figure 1: Two-level classification models.

and number of epochs. In this case, we use gradi-
ent accumulation to emulate this batch size value,
due to the larger model size and computational
limitations.

Multi-level validation We search for the best
learning rate and number of epochs for the multi-
level models separately, as Supported-LM con-
tains a trainable LM, while ML-LM does not. In
the first case, we validate with learning rates 1e−5

and 2e−{6,5,4} with both base and large BERT, and
use 2e−5 (2 epochs) and 1e−5 (3 epochs), respec-
tively, during tests. The classification layer of the
ML-LM models is validated with learning rates set
to 1e−{5,3} and 2e−{5,4}, and final tests are run
with 2e−4 (1 epoch) and 1e−3 (1 epoch) respec-
tively for the smaller and larger BERT models.



210

D Error analysis

We share a brief analysis of the per-class
performance of our models (ML-BERT and
Supported-BERT) in Table 6. In particular, the
table reports per-class metrics of three of the top-
performing labels, as well as of three of the worst-
performing labels. The average length of tickets in
that class (number of characters) and the number
of samples of that class present in the test and train
splits, respectively, are also displayed. The average
ticket length is, in general, a good representative of
actual length, as the outliers are few in this dataset,
and are usually very long tickets (which will be
truncated by the tokenizer in any case). Classes
with a higher number of samples usually perform
better, though this is not always the case (as ex-
emplified by the Networking_Wireless cat-
egory). Finally, the worst values of the F1 score
seem to be mostly dominated by low recall, which
indicates a high number of false negatives. In this
regard, it would be interesting to test different over-
and under-sampling techniques, such as to verify
whether this can help in the classification of these
classes.

An analysis performed through specialized tools
could reveal whether these classes are hard to clas-
sify because of linguistically-relevant factors, such
as the lack of discriminative terms. For instance,
it could be argued that certain labels are seman-
tically similar (e.g., Drivers_Network,
Drivers_network-wireless, and
Networking_Wireless), and might therefore
contain semantically similar tickets. We plan to
expand this analysis in future work, looking into
more refined tools aimed at interpreting the inner
workings of LMs, such as Errudite (Wu et al.,
2019), the Language Interpretability Tool (LIT)
(Tenney et al., 2020) and iSEA (Yuan et al., 2022).
For example, the LIT would allow to directly
examine individual examples that the model
performs poorly upon as well as performing an
investigation of the reasoning behind the model’s
decisions.



211

Table 4: Summarization strategies for document embeddings.

Basis Strategy Emb. size Description
last (p) [CLS] embedding from last layer (default strategy)
last [CLS] embedding from last layer without pooling
avgh

d
Average of the [CLS] embeddings (no pooling) from the last h layers

cls

concath d ∗ h Concatenation of the [CLS] embeddings from the last h layers
last Average of all embeddings∗ from the last layer
avgh

d
Average of the average of embeddings from the last h layersavg

concath d ∗ h Concatenation of the average of embeddings from the last h layers
last Column-wise maximum of all embeddings∗ from the last layer
avgh

d
Average of the max of embeddings from the last h layersmax

concath d ∗ h Concatenation of the max of embeddings from the last h layers
last Concatenation of the max and min of embeddings from the last layer

max_min
avgh

d ∗ 2
As above, but averaging vectors from the last h layers

last Concatenation of the max and avg of embeddings from the last layer
max_avg

avgh
d ∗ 2

As above, but averaging vectors from the last h layers
last d Sum of token embeddings divided by its norm (i.e., normalized sum)

sum_nor
concath d ∗ h Like last but concatenating the last h layers

* Excluding special symbols (e.g. [CLS] and padding).

Table 5: Test set results* with BERT classifier on T2 comparing summarization strategies on the Linux Bugs dataset.
Best results are outlined in bold.

Basis Strategy Acc F1 Prec Rec
last (p)† 0.518 [± 0.006] 0.354 [± 0.009] 0.386 [± 0.009] 0.365 [± 0.006]

last 0.566 [± 0.012] 0.446 [± 0.018] 0.479 [± 0.027] 0.452 [± 0.017]

avg2 0.531 [± 0.010] 0.393 [± 0.012] 0.420 [± 0.018] 0.398 [± 0.012]

concat2 0.535 [± 0.010] 0.400 [± 0.014] 0.426 [± 0.015] 0.401 [± 0.012]

concat3 0.571 [± 0.008] 0.456 [± 0.013] 0.498 [± 0.013] 0.458 [± 0.015]

concat4 0.568 [± 0.009] 0.457 [± 0.014] 0.490 [± 0.013] 0.458 [± 0.017]

cls

concat5 0.565 [± 0.012] 0.456 [± 0.013] 0.486 [± 0.011] 0.458 [± 0.018]

last 0.525 [± 0.008] 0.387 [± 0.010] 0.420 [± 0.015] 0.388 [± 0.010]

avg2 0.522 [± 0.005] 0.383 [± 0.013] 0.409 [± 0.021] 0.387 [± 0.010]avg
concat2 0.523 [± 0.007] 0.390 [± 0.009] 0.411 [± 0.015] 0.394 [± 0.011]

last 0.522 [± 0.011] 0.385 [± 0.014] 0.415 [± 0.011] 0.391 [± 0.014]

avg2 0.519 [± 0.007] 0.375 [± 0.013] 0.395 [± 0.021] 0.387 [± 0.014]max
concat2 0.518 [± 0.006] 0.373 [± 0.015] 0.401 [± 0.021] 0.383 [± 0.012]

last 0.522 [± 0.010] 0.377 [± 0.011] 0.395 [± 0.019] 0.395 [± 0.010]
max_min

avg2 0.522 [± 0.009] 0.374 [± 0.010] 0.395 [± 0.019] 0.385 [± 0.011]

last 0.516 [± 0.007] 0.381 [± 0.012] 0.406 [± 0.017] 0.390 [± 0.012]
max_avg

avg2 0.519 [± 0.006] 0.379 [± 0.007] 0.402 [± 0.011] 0.392 [± 0.007]

last 0.406 [± 0.018] 0.171 [± 0.017] 0.192 [± 0.023] 0.206 [± 0.016]

concat2 0.379 [± 0.013] 0.135 [± 0.019] 0.149 [± 0.022] 0.179 [± 0.021]sum_nor
concat5 0.388 [± 0.015] 0.135 [± 0.015] 0.149 [± 0.015] 0.180 [± 0.014]

* Standard deviation over 6 runs is reported in brackets.
† Pooled, using cls pooled strategy.



212

Figure 2: Example of 3 macro-categories (in blue) and their children from the Linux Bugs dataset.

Figure 3: Frequency count of first-level labels in the Linux Bugs dataset.



213

Figure 4: Frequency count of second-level labels in the Linux Bugs dataset, obtained by flattening labels and
sub-labels.



214

Product: Drivers
Component: Network
Title: kernel crashes after stop network and remove e100.

Description: exact kernel version:linux-2.5.51 distribution:redhat 8.0+linux2.5.51
hardware environment:intel stl2 mother boar d problem description: compile
e100 as kernel module, insmod e100 and start the network. then stop network and
remove e100 together. then kernel crashes in random places. for example: use
command : insmod e100 /etc/init.d/network start /etc/init.d/network stop; rmmod
e100 then the kernel crashes. eflags: 00010887 eip is at cascade+0x25/0x60
eax: defd02b8 ebx: 00000001 ecx: 00000000 edx: c150a4c0 esi: c150acd4
edi: c150acd4 ebp: c150acd4 esp: c0559f1c ds: 0068 es: 0068 ss: 0068
process swapper (pid: 0, threadinfo=c0558000 task=c0497f60) stack: 00000000
c0559f94 00000001 c150a4c0 fffffffd 00000000 c012abb2 c150a4c0 c150acd4
c010baf5 00000000 00000000 c0559f94 00000001 c0553d68 fffffffd 00000000 c0125bb5
c150a4c0 00000046 00000000 00000000 c0559f94 c01070c0 call trace: [<c012abb2>]
__run_timers+0x1b2/0x202 [<c010baf5>] handle_irq_event+0x45/0x70 [<c0125bb5>]
do_softirq+0xc5/0xd0 [<c01070c0>] default_idle+0x0/0x50 [<c0116f3d>]
smp_apic_timer_interrupt+0xcd/0x130 [<c01070c0>] default_idle+0x0/0x50
[<c010a3a6>] apic_timer_interrupt+0x1a/0x20 [<c01070c0>] default_idle+0x0/0x50
[<c01070c0>] default_idle+0x0/0x50 [<c01070ea>] default_idle+0x2a/0x50
[<c010718a>] cpu_idle+0x3a/0x50 [<c0105000>] rest_init+0x0/0x30 code: 0f 0b
6f 01 ba a7 41 c0 8b 18 89 44 24 04 89 3c 24 e8 a5 0c

Listing 1: A lowercased ticket from the Linux Bugs dataset; Fields “Product” and “Component” are used as
labels and sub-labels respectively.

Product: Drivers
Component: Network
Title: kernel crashes after stop network and remove e100.

Description: exact kernel distribution:redhat hardware environment:intel stl2
mother boar d problem description: compile e100 as kernel module, insmod e100
and start the network. then stop network and remove e100 together. then
kernel crashes in random places. for example: use command : insmod e100
/etc/init.d/network start /etc/init.d/network stop; rmmod e100 then the kernel
crashes. eflags: eip is at eax: ebx: ecx: edx: esi: edi: ebp: esp: ds:
0068 es: 0068 ss: 0068 process swapper (pid: 0, stack: fffffffd fffffffd
call trace: code: 0f 0b 6f 01 ba a7 41 c0 8b 18 89 44 24 04 89 3c 24 e8 a5 0c

Listing 2: The same ticket from Listing 1, preprocessed with the more aggressive strategy.

Table 6: Label-specific performances and statistics for three of the best performing and three of the worse performing
classes. The values are calculated and averaged over the usual 3-fold CV.

Model Label F1 Prec Recall Avg ticket len # in test # in train

ML-BERT
(base)

Drivers_Network 0.958 0.953 0.963 2825.49 379 1008
Drivers_Hardware-Monitoring 0.891 0.861 0.925 1365.25 62 74

File-System_VFS 0.842 0.789 0.905 2494.28 143 110
...

Tools_Trace-cmd-Kernelshark 0.328 0.436 0.268 1429.63 24 80
Documentation_man-pages 0.196 0.284 0.163 907.67 41 242

Networking_Wireless 0.064 0.107 0.074 2406.04 45 434

Supp-BERT
(base)

Drivers_Network 0.963 0.961 0.965 2825.49 379 1008
Drivers_Hardware-Monitoring 0.888 0.887 0.892 1365.25 62 74

File-System_VFS 0.829 0.767 0.902 2494.28 143 110
...

Tools_Trace-cmd-Kernelshark 0.104 0.667 0.057 1429.63 24 80
Documentation_man-pages 0.225 0.472 0.163 907.67 41 242

Networking_Wireless 0.079 0.192 0.052 2406.04 45 434


