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Abstract

We describe TTIC’s model submission to
WMT-SLT 2022 task (Müller et al., 2022) on
sign language translation (Swiss-German Sign
Language (DSGS) → German). Our model
consists of an I3D backbone for image encod-
ing and a Transformer-based encoder-decoder
model for sequence modeling. The I3D is pre-
trained with isolated sign recognition using
the WLASL dataset. The model is based on
RGB images alone and does not rely on the
pre-extracted human pose. We explore a few
different strategies for model training in this
paper. Our system achieves 0.3 BLEU score
and 0.195 Chrf score on the official test set.

1 Introduction

Sign language, a full-fledged natural language that
conveys meaning through gestures, is the primary
chief of communication among Deaf people. Sign
language translation is a task for automatically
translating sign languages into written languages.
Due to its widespread potential applications, it has
recently received growing research interest (Cam-
goz et al., 2018, 2021).

Existing methods for sign language translation
are primarily based on gloss, a transliteration sys-
tem annotating sign language with symbols from
written language. Utilizing gloss usually boosts
the performance of current translation systems by
a large margin. In the widely used German sign
language translation benchmark Phoenix14T (Cam-
goz et al., 2018), state-of-the-art gloss-based mod-
els (Chen et al., 2022) are roughly 15 points better
(in Bleu-4) than gloss-free models (Camgoz et al.,
2018). However, gloss is more expensive to anno-
tate than written language translation. There have
been relatively few amounts of studies for gloss-
free sign language translation. Specifically, Orbay
and Akarun (2020); Shi et al. (2022) utilize local
visual features (e.g., hands) to enhance the transla-
tion performance. Those systems require domain-

specific training data (e.g., labeled handshape data
used in Orbay and Akarun (2020)), which is not
always accessible for the target sign language. The
fusion of visual features at different scales also
increases the complexity of the modeling pipeline.

In this paper, we study a simple model for sign
language translation between DSGS and German
in a gloss-free setting. Our model uses a 3D convo-
lutional network for visual feature extraction and a
Transformer-based encoder-decoder for sequence
modeling. It is built on raw RGB images rather
than pose keypoints, thus avoiding potential mis-
takes from pose estimation and remaining fast in
inference. We further study the impact of hyper-
parameters and different pretraining strategies on
translation quality. Without ensembling, our model
achieves 0.3 Bleu score and 0.195 Chrf score on
the official test set.

2 Method

In this section, we describe our method for sign
language translation. Our model consists of an In-
flated 3D ConvNet (I3D) (Carreira and Zisserman,
2017) for visual encoding and a Transformer-based
encoder-decoder model (Vaswani et al., 2017) for
sequence modeling, which are described respec-
tively below.

I3D I3D (Carreira and Zisserman, 2017) is a
3D convolutional neural network proposed in ac-
tion recognition. I3D has previously been explored
in sign language processing (Albanie et al., 2020;
Li et al., 2020; Vaezi Joze and Koller, 2019) and
achieved competitive performance in isolated sign
recognition (Li et al., 2020). More formally, given
a sequence of image frames I1:T , the I3D model
Mv encodes them into a sequence of visual fea-
tures f1:T ′ : f1:T ′ = Mv(I1:T ), where T and T ′

respectively denote the length of video and visual
feature sequence. Note due to the temporal stride
in convolutional kernels of I3D, T ′ is not equal to
T and is usually several factors smaller.
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To encourage the visual encoder Mv to capture
more signing-related visual cues (e.g., arm move-
ment, handshape, and so on), we pretrain the I3D
model with isolated sign recognition on WLASL,
a large-scale dataset consisting of isolated Ameri-
can sign language (ASL) signs. Though ASL and
DSGS are two different sign languages, visual fea-
tures regarding body movement are shared. Empir-
ically, we observed considerable gains in isolated
sign pretraining. For computational efficiency, the
pretrained I3D network Mv is frozen in translation
model training.

Transformer-based encoder-decoder
We employ a Transformer-based encoder-
decoder (Vaswani et al., 2017) model M(s)

to decode visual feature f
(v)
1:T ′ into text w1:N :

w1:N = M(s)(fv1:T ). Ms is a standard sequence-
to-sequence model widely used in machine
translation (Vaswani et al., 2017; Barrault et al.,
2020; Akhbardeh et al., 2021). Thus we only
briefly review it here and a more detailed de-
scription can be found in Vaswani et al. (2017).
Our sequence-to-sequence model Ms includes a
Transformer encoder and Transformer decoder,
which are joined via attention. Specifically, the
Transformer encoder transforms the visual features
fv1:T into e1:T by injecting temporal information
based on self-attention and positional embedding.
The Transformer decoder generates token sequence
w1:N in an auto-regressive manner while attending
to the encoder output e1:T through the attention
mechanism.

Training loss We use cross-entropy loss for
model training. More formally, given the trans-
lation pair (I1:T , ŵ1:N ), suppose the model outputs
probability vector p(·|I1:T , ŵ1:n−1) at decoder step
n. The loss is then computed as

l = −
N∑

n=1

log p(ŵn|I1:T , ŵ1:n−1) (1)

Inference At test time, we use beam search for
decoding image sequence I1:T . The beam width
and length penalty are hyperparameters tuned using
the development set.

3 Experimental Setup

Data We use FocusNews and SRF data to train our
translation model. Both FocusNews and SRF con-
sist of DSGS-German pairs, which include 19 and
16 hours (10,136 and 7,071 sequences) of DSGS

videos, respectively. The two datasets differ in mul-
tiple aspects. For example, FocusNews are live
signing from teleprompters by deaf signers based
on news from 2008 to 2014, whereas SRF dataset
contains news videos from 2020 to 2021 which
is interpreted into DSGS by hearing interpreters.
Both datasets are incorporated into training. Note
that frame rates in videos of FocusNews and SRF
differ, we feed the raw videos in FocusNews and
SRF without frame rate conversion. To pretrain the
visual encoder, we use WLASL (Li et al., 2020), a
large-scale isolated sign dataset including ∼ 21k
pairs of American sign language video clips and
English words.

Training We use sentencepiece unigram tok-
enizer (Kudo, 2018) to tokenize the German trans-
lation. The number of subword units is tuned to
18,000 We use a 2-layer Transformer with 512 hid-
den dimensions and 2048 hidden dimensions for
both encoder and decoder. A dropout layer with
a zeroing probability of 0.1 is added between the
self-attention layer and the feedforward network.
The model is trained with Adam (Kingma and Ba,
2015) for 18K steps at a batch size of 32. The
learning rate is linearly increased to 0.0008 for
2K steps and decayed to 0 in the remaining steps.
The visual backbone I3D is pretrained on WLASL
and frozen during translation model training. Dur-
ing isolated sign training, we initialize I3D from
a model trained on the action recognition dataset
Kinetics (Carreira and Zisserman, 2017). We use
SGD with a 0.9 momentum value to train the model
for 50 epochs at a batch size of 4. The initial learn-
ing rate is 0.001 and is halved if accuracy on the
validation set does not increase for 3 epochs. Be-
fore feeding into I3D, each isolated sign video is
truncated to a 64-frame clip, which is padded with
all-zero frames if the length is shorter than 64. Each
image frame is resized to 240×240. It is randomly
cropped to 224× 224 and horizontally flipped at a
probability of 0.5 in training. At test time, we only
center cropping to every image frame.

Evaluation We evaluate the system using BLEU-
{1,2,3,4} (Lin, 2004) and ROUGE (Lin, 2004)
scores.

4 Experimental Results

In this section, we report results and conduct some
analyses of the translation model on the develop-
ment set.
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Hypothesis Reference Bleu-4

das der stand der dinge im moment.
gibt es eine grosse aufsp. das der stand der dinge im moment. 51.56

(that’s the state of things at
the moment. is there a big sp.)

(that’s the state of things at
the moment.)

mit live-untertiteln von swiss txt guten abend,
meine damen und herren, willkommen zur

"tagesschau"

guten abend, meine damen und herren,
willkommen zur "tagesschau". 51.42

(with live subtitles from swiss txt
good evening, ladies and gentlemen,

welcome to the "tagesschau")

(good evening, ladies and gentlemen,
welcome to the "tagesschau".)

die armee muss ihre arbeit nicht mehr einmal. doch die bevölkerung macht nicht mit. 0.00
(the army doesn’t even have to do

its job anymore.) ( but the population does not participate.)

die französischen roben programm speziell
für gehörlose.

bei auf der webseite des sportverbandes
können detailliertere informationen

nachgelesen werden.
0.00

(the french robes program especially
for the deaf.)

(more detailed information can be
found on the website of the

sports association.)

Table 1: Qualitative examples produced by our translation system. The sentence within () is the corresponding
English translation.

4.1 Main Results

Table 2 shows the performance of our model on
the development set compared to the Sockeye base-
lines reported from the official repo (Müller et al.,
2022). Our model outperforms Sockeye baselines,
which are models based on the pre-extracted hu-
man pose. However, the overall values in different
metrics are very low. We further show translation
examples produced by our model (see Table 1).
We noticed the phrases that are translated correctly
by our model are usually duplicate phrases fre-
quently appearing in training (e.g., willkommen
zur "tagesschau"). For most of the sentences, the
model is unable to capture its meaning generally
though many predictions are grammatically correct.
Such observation shows that large-vocabulary sign
language translation is very challenging.

Train Data Rouge B1 B2 B3 B4

Sockeye (Müller et al., 2022) FN - - - - 0.21
Sockeye (Müller et al., 2022) Srf - - - - 0.59
Sockeye (Müller et al., 2022) FN,Srf - - - - 0.15

Ours FN,Srf 7.92 8.36 2.92 1.55 1.02

Table 2: Performance of our model on development set.
The Sockeye baselines are from the official repo (Müller
et al., 2022). FN: FocusNews

4.2 Hyperparameter Tuning

Among the set of hyperparameters, we find that
the following two hyperparameters have the most
significant effect on translation performance: learn-
ing rate and the number of layers. We detail their
impact on model performance below. Other hyper-
parameters (e.g., dropout, learning rate schedule)
are also tuned in our experiments. However, their
impact is relatively negligible and thus not detailed
in the paper.

Learning rate We tuned the learning rate among
{0.001, 0.002, 0.004, 0.008, 0.016}. As is shown
in Table 3, increasing the learning rate consistently
improves the model performance across all the met-
rics. The benefit plateaus around 0.008, which is
the optimal value among the set of values we con-
sider.

Number of layers We further tuned the number
of Transformer layers (see Table 4). We keep the
number of encoder and decoder layers the same and
set the hidden/feedforward dimension to 512/2048
in the corresponding experiments of Table 4. In-
creasing number of transformer layers degrades the
performance. This is probably because the 3D con-
volutional kernels of I3D capture some temporal
relations in the video, which reduces the reliance of
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LR Rouge B1 B2 B3 B4

0.001 7.82 8.38 2.51 1.21 0.76
0.002 6.85 7.25 2.22 1.05 0.69
0.004 6.86 6.08 2.22 1.18 0.82
0.008 7.92 8.36 2.92 1.55 1.02
0.016 7.54 6.11 2.27 1.35 1.01

Table 3: Impact of learning rate on translation perfor-
mance

the whole model on Transformer modules to cap-
ture sequential information. Furthermore, larger
models (i.e., more layers) usually require more
training data. The total amount of sign language
videos (35 hours) is probably insufficient to train a
deep transformer encoder-decoder.

# Layer Rouge B1 B2 B3 B4

2 7.92 8.36 2.92 1.55 1.02
4 7.10 7.01 2.31 1.21 0.82
6 6.17 7.32 1.55 0.52 0.24

Table 4: Impact of Transformer layers on translation
performance

4.3 Effect of I3D pretraining

The I3D backbone is pretrained on WLASL. Here
we compare three options of I3D pretraining:
WLASL, BSL-1K, and Kinetics-400. BSL-1K is
a coarticulated sign dataset of 1064 British sign
language (BSL) signs (273K video clips in total),
collected from BBC videos interpreted into BSL.
Kinetics (Carreira and Zisserman, 2017) is the ac-
tion recognition dataset with 650K videos from 400
human action categories. As is shown in Table 5,
pretraining with sign-language specific datasets
(WLASL, BSL-1K) consistently outperforms pre-
training with general human action videos (Kinet-
ics). This is expected as signing-related visual cues
(e.g., handshapes), essential for sign language trans-
lation, are better captured in isolated sign datasets.
Pretraining with WLASL achieves better results
than BSL-1K. Though BSL-1K contains an overall
larger number of video clips than WLASL (21K vs.
273K), it has fewer unique signs (1064 vs. 2000).
This probably suggests that a sign language corpus
with more signing categories will be more benefi-
cial to sign language translation compared to its
counterpart with fewer signs.

PT Data Rouge B1 B2 B3 B4

WLASL 7.92 8.36 2.92 1.55 1.02
BSL-1K 6.88 6.19 1.86 0.84 0.69
Kinetics 5.05 4.18 1.02 0.65 0.41

Table 5: Impact of Transformer layers on translation
performance

5 Conclusion

This paper describes TTIC’s DSGS-German trans-
lation system submitted to the WMT-SLT 2022
challenge. Our model consists of an I3D model for
visual feature extraction and a Transformer-based
encoder-decoder for sequence modeling. The sys-
tem is based on RGB images alone and remains
conceptually simple. Our experiments show that
pretraining the visual frontend with isolated sign
recognition helps achieve better translation perfor-
mance. However, the overall translation quality is
still in a very low regime. Our future work includes
combining pose and RGB-based models for sign
language translation.
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