@inproceedings{jin-etal-2022-manifolds,
title = "Manifold`s {E}nglish-{C}hinese System at {WMT}22 General {MT} Task",
author = "Jin, Chang and
Shi, Tingxun and
Xue, Zhengshan and
Lin, Xiaodong",
editor = {Koehn, Philipp and
Barrault, Lo{\"i}c and
Bojar, Ond{\v{r}}ej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-juss{\`a}, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Freitag, Markus and
Graham, Yvette and
Grundkiewicz, Roman and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Jimeno Yepes, Antonio and
Kocmi, Tom and
Martins, Andr{\'e} and
Morishita, Makoto and
Monz, Christof and
Nagata, Masaaki and
Nakazawa, Toshiaki and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Popel, Martin and
Turchi, Marco and
Zampieri, Marcos},
booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2022.wmt-1.20/",
pages = "275--279",
abstract = "Manifold`s English-Chinese System at WMT22 is an ensemble of 4 models trained by different configurations with scheduled sampling-based fine-tuning. The four configurations are DeepBig (XenC), DeepLarger (XenC), DeepBig-TalkingHeads (XenC) and DeepBig (LaBSE). Concretely, DeepBig extends Transformer-Big to 24 encoder layers. DeepLarger has 20 encoder layers and its feed-forward network (FFN) dimension is 8192. TalkingHeads applies the talking-heads trick. For XenC configs, we selected monolingual and parallel data that is similar to the past newstest datasets using XenC, and for LaBSE, we cleaned the officially provided parallel data using LaBSE pretrained model. According to the officially released autonomic metrics leaderboard, our final constrained system ranked 1st among all others when evaluated by bleu-all, chrf-all and COMET-B, 2nd by COMET-A."
}