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Abstract

The mixing of two or more languages in speech
or text is known as code-mixing. In this form of
communication, users mix words and phrases
from multiple languages. Code-mixing is very
common in the context of Indian languages due
to the presence of multilingual societies. The
probability of the existence of code-mixed sen-
tences in almost all Indian languages since in
India English is the dominant language for so-
cial media textual communication platforms.
We have participated in the WMT22 shared
task of code-mixed machine translation with
the team name: CNLP-NITS-PP. In this task,
we have prepared a synthetic Hinglish–English
parallel corpus using transliteration of origi-
nal Hindi sentences to tackle the limitation of
the parallel corpus, where, we mainly consid-
ered sentences that have named-entity (proper
noun) from the available English-Hindi parallel
corpus. With the addition of synthetic bi-text
data to the original parallel corpus (train set),
our transformer-based neural machine transla-
tion models have attained recall-oriented un-
derstudy for gisting evaluation (ROUGE-L)
scores of 0.23815, 0.33729, and word error
rate (WER) scores of 0.95458, 0.88451 at Sub-
Task-1 (English-to-Hinglish) and Sub-Task-2
(Hinglish-to-English) for test set results respec-
tively.

1 Introduction

The mixing of alternating words from two different
language vocabulary without misinterpreting the
context of the sentence is known as code-switching
or code-mixing (Poulisse, 1998). This style of com-
munication is one of the most frequent in multilin-
gual communities, such as India. English is exten-
sively mixed with local languages, such as Hindi,
and Bengali, which causes code-mixed English-
Hindi: Hinglish and English-Bengali: Binglish
languages (Sailaja, 2011). Code-mixing is not ob-
served in formal literature such as books but is com-
monly used on social media platforms such as Face-

book and Twitter. The WMT22 organizes shared
task code-mixed machine translation for English-
to-Hinglish and Hinglish-to-English, where the
main challenge is low-resource availability of par-
allel corpus. We have participated in the same
task and to mitigate the issue of data scarcity, a
synthetic Hinglish-English parallel corpus is pre-
pared (as discussed in Section 3.1). In this work,
the transformer-based neural machine translation
(NMT) technique (Vaswani et al., 2017; Laskar
et al., 2022) is utilized to build NMT models for
both directions (English-to-Hinglish, Hinglish-to-
English) of code-mixed MT.

2 Related Work

In recent times, many significant NLP studies
have included the study of code-mixed languages.
The EMNLP 2022 seventh conference on machine
translation (WMT22) has put forward several tasks
directed to meet new challenges in the field of NLP
for code-mixed Indian languages. The competition
has attracted many researchers to follow up with
these tasks, which have eventually led to new di-
rections and problems in this domain. The task
of machine translation for code-mixed languages
has not been an active area of research due to the
scarcity of manually annotated datasets. Recently,
researchers have been developing datasets for code-
mixed MT that includes Hinglish-English paral-
lel corpus, namely, HinGe (Srivastava and Singh,
2021) and PHINC (Srivastava and Singh, 2020) to
overcome the datasets scarcity issue to build code-
mix MT that is associated with the code-mixed text
from various social media platforms. In this work,
we addressed the issue of data scarcity by using
synthetic Hinglish–English parallel corpus to in-
crease the training data for code-mixed MT shared
tasks at WMT22.
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3 System Description

The experiments are carried out in four phases,
namely, synthetic data preparation and augmenta-
tion to the train set, data preprocessing, model train-
ing, and testing. The OpenNMT-py (Klein et al.,
2017) tool is utilized to build the NMT models
independently for English-to-Hinglish (subtask-1)
and Hinglish-to-English (subtask-2).

3.1 Dataset Description

We have used the dataset provided by the WMT22
organizer1 and the statistics are presented in Table
1. Moreover, the synthetic English-Hinglish paral-
lel dataset is prepared and directly augmented with
the train set to expand the training amount of data.
For synthetic data preparation, the English-Hindi
parallel sentences are collected from Samanantar
dataset (Ramesh et al., 2022) and selected 100k
sentences (maximum length of 15 words). To se-
lect parallel sentences, the following steps are con-
sidered:

• Step-1: Extract proper nouns (named-entity)
from the English side using NLTK2 toolkit.

• Step-2: Extract English sentences that have
extracted proper nouns in Step-1.

• Step-3: Select corresponding Hindi sentences
of English that are extracted in Step-2.

Then, Hindi side sentences are transliterated into
English script using Indic-trans3 (Bhat et al., 2014)
and prepared synthetic Hinglish sentences. Thus,
we have prepared 100k Hinglish–English synthetic
parallel corpus. The sample sentences of synthetic
Hinglish-English are presented in Figure 1. The
data statistics of the train set, before and after aug-
mentation of synthetic Hinglish–English corpus is
presented in Table 2.

1https://www.statmt.org/wmt22/
code-mixed-translation-task.html

2https://github.com/nltk/nltk
3https://github.com/libindic/indic-trans

Figure 1: Sample sentences of synthetic Hinglish-
English.

3.2 Experimental Setup

We have performed byte pair encoding jointly (sub-
word level) (Sennrich et al., 2016) on the Hinglish-
English with 32k merge operations. The sub-
word level source-target vocabulary is shared dur-
ing the training process of the NMT model. The
OpenNMT-py toolkit has been used for text data
tokenization, preprocessing, and conducting the
NMT model training. We have followed the default
settings of the 6 layer transformer model (Vaswani
et al., 2017) in the training process. We have used a
batch size of 32, 0.1 drop-outs, and an Adam opti-
mizer with a 0.001 learning rate during the training
process. The NMT model is trained on a single
GPU with early stopping criteria, i.e., the model
training is halted if it does not converge on the
validation set for more than 10 epochs. The ob-
tained trained model is used to translate the test
data provided by the WMT22 organizers.

4 Results

The WMT22 shared task organizer published the
evaluation result4 of the code-mixed machine trans-
lation (MixMT) task for English–Hinglish lan-
guage pair. We participated with the team name
CNLP-NITS-PP in the monolingual to code-mixed
machine translation: English-to-Hinglish (Sub-
Task-1) and code-mixed to a monolingual machine
translation: Hinglish-to-English (Sub-Task-2) sub-
mission tracks of the same task where ten teams
participated. The automatic evaluation metrics,
namely, ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) (Lin, 2004), WER (Word Error
Rate) (Morris et al., 2004) and human evaluation
(HE) are used for the evaluation of results. Table
3, 4 reported the official results of our systems in
terms of automatic and HE evaluation metrics. We

4https://codalab.lisn.upsaclay.fr/
competitions/2861#results
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Task Data Set No. of Sentences
Tokens

English Hinglish

Sub-Task-1
Train Set 2766 47347 52074
Validation Set 500 5847 5565
Test Set 1500 17694 17049

Sub-Task-2
Train Set 13738 169158 176410
Validation Set 500 5847 10263
Test Set 1500 27659 29335

Table 1: Data Statistics of English-Hinglish (provided by the organizer).

Train Set Number of Parallel Sentence/Segments
Before Augmentation 2766 (Sub-Task-1) 13738 (Sub-Task-2)
After Augmentation 102,766 (Sub-Task-1) 113,738 (Sub-Task-2)

Table 2: Data Statistics of train set (before and after augmentation).

have attained better automatic evaluation scores
and positions in Sub-Task-2 as compared to Sub-
Task-1 for the validation and test set, whereas, in
the case of human evaluation, we have achieved a
higher score and position in Sub-Task-1 than Sub-
Task-2. It is observed that due to the presence of
a high amount of transliteration errors in synthetic
code-mixed sentences, i.e., Hinglish, the predicted
sentences suffer lower translation accuracy. A few
examples of transliteration errors are presented in
Figure 2.

Task Set ROUGE-L WER

Sub-Task-1 Validation 0.23359 (8th) 0.97136 (7th)
Test 0.23815 (7th) 0.95458 (7th)

Sub-Task-2 Validation 0.33835 (4th) 0.88002 (3rd)
Test 0.33729 (6th) 0.88451 (6th)

Table 3: Our system’s results (official) at MixMT
shared task (WMT22).

Task HE
Sub-Task-1 2.10 (4th)
Sub-Task-2 1.35 (7th)

Table 4: Our system’s human evaluation results (offi-
cial) at MixMT shared task (WMT22).

Figure 2: Sample examples of transliteration errors.

5 Conclusion and Future Work

In this work, we have investigated a transformer-
based model for Hinglish–English language pair
in the WMT22 code-mixed MT task. We have ad-
dressed the data scarcity issue by the augmentation
of synthetic Hinglish–English parallel sentences
to the train set for both English-to-Hinglish and
Hinglish-to-English translation tasks (Sub-Task-1
and Sub-Task-2). Furthermore, synthetic parallel
data will be corrected in the future to improve trans-
lational performance.
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