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Abstract
There are still hurdles standing in the way of
faster and more efficient knowledge consump-
tion in industrial environments seeking to fos-
ter innovation. In this work, we address the
portability of extractive Question Answering
systems from academic spheres to industries
basing their decisions on thorough scientific
papers analysis. Keeping in mind that such in-
dustrial contexts often lack high-quality data
to develop their own QA systems, we illustrate
the misalignment between application require-
ments and cost sensitivity of such industries
and some widespread practices tackling the
domain-adaptation problem in the academic
world. Through a series of extractive QA ex-
periments on QASPER, we adopt the pipeline-
based retriever-ranker-reader architecture for
answering a question on a scientific paper and
show the impact of modeling choices in differ-
ent stages on the quality of answer prediction.
We thus provide a characterization of practical
aspects of real-life application scenarios and no-
tice that appropriate trade-offs can be efficient
and add value in those industrial environments.

1 Introduction

It is widely recognized today that the most ad-
vanced countries have moved to the so-called
knowledge-based economy. In the industrial field,
including service providers, this new paradigm
has particular consequences for most players in
R&D and innovation activities where decisions are
based on the analysis of huge corpora of docu-
ments (scientific papers, patents, reports, etc). The
thorough exploitation of this pre-existing knowl-
edge by highly-skilled workers is costly and time-
consuming, but such costs can be significantly re-
duced by NLP technologies that make exploita-
tion and consumption of textual content faster and
more efficient. For instance, Information-Seeking
Question-Answering is of particular interest to in-
dustrial environments conducting scientific mon-
itoring, but there still remain significant hurdles

to efficiently adopt such systems in those environ-
ments, predominantly the complexity and accessi-
bility of the data landscape.

As a matter of fact, extracting information from
scientific publications is a cognitively complex pro-
cess and requires domain expertise, but obtaining
and ensuring such high-quality annotations could
become unreasonably expensive and unreliable.
The scarcity of in-house annotation efforts, fre-
quent domain shifts, and lack of deep understand-
ing of data-model interaction and evaluation make
these technologies inaccessible especially for indus-
trial environments lacking computational resources.
One direction would be to entirely rely on models’
transfer learning capabilities and make use of the
knowledge they learn on academic benchmarks that
meet the size requirement. However, zero and few-
shot settings successes, i.e, when few to no annota-
tions are available, seem to be largely dominated
by large-scale autoregressive models (Chowdhery
et al., 2022), which are accessible only to a hand-
ful of researchers and practitioners with enormous
compute power.

In this paper, we take on extractive information-
seeking QA on scientific papers from an industrial
point of view. We identify the hurdles standing in
the way of adopting such systems and show through
a simulation of such context that some modeling
and evaluation practices might not align with a suit-
able return on investment sought by such industries.
Our contributions can be summarized as follows:
First, we explore the portability challenges of QA
models toward scientific content-consuming indus-
trial environments and split them into three major
long-standing issues. Second, we simulate through
a series of experiments on QASPER (Dasigi et al.,
2021) the context where information is sought in
research papers and thus illustrate the identified
portability issues. Third, we discuss based on the
results the relevance of modeling and evaluation
choices when compared to the goal of adequately
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solving the task in a cost-effective way.

2 The portability challenge in industrial
environments

For small and medium-sized enterprises (SMEs)
interested in Information-Seeking QA on scientific
publications, the question of work to be done com-
pared to the benefit of it is very important as it
informs the way resources are allocated. When
bringing advancements like QA systems into real-
world applications suffering data scarcity issues,
choosing a benchmark representative of contexts,
questions, and answers one would expect in their
application remains the most widely adopted prac-
tice for maximizing accuracy. Unfortunately, due
to the fact that meeting an information need is a
hard concept to quantify, adopting such technolo-
gies can fall short of quantitatively measuring the
impact and the business value created. We discuss
hereafter three major inter-connected long-standing
issues that restrain from successful portability:

Issue 1: Modeling real-world problems is chal-
lenging. Question Answering aims at meeting an
information need and providing a user with relevant
answers to their questions. However, in domains
with high levels of expertise, assisting profession-
als in such complex processes requires, depending
on the nature of the query, cognitive abilities that
AI systems have not yet matured to (Chollet, 2019).
The AI community has factually been benchmark-
ing intelligence by comparing the defined skill ex-
hibited by AI and humans at specific tasks, and
building special-purpose systems capable of han-
dling narrow, well-described tasks, more and more
above human-level performance. This created a
plethora of QA benchmarks/tasks measuring very
specific skills (Rogers et al., 2021) as opposed to
the complex processes one would long for in in-
telligent systems. Further, annotating the required
amount of quality data to build such systems can
be unaffordable for many industries and organiza-
tions. The question that arises here is whether to
favor quantity in task format adequacy and thus
potentially model performance, or limited content
representativeness with complexity that guarantees
quality and better alignment with real-world appli-
cations.

Issue 2: There is a real need for transparency
and confidence not only in predictions but also in
the whole predictive process in a way that allows
users to assess how well-informed their decisions

would be. However, there still remains insufficient
understanding of the capabilities and limitations of
models and the way they interact with data during
the different stages of their training (Ramnath et al.,
2020; Zhou and Srikumar, 2021). Up until recently,
there has been little guidance on the suitability of
which models for which cases in Question Answer-
ing (Luo et al., 2022). Tremendous work contin-
ues to be done on modeling and exploring new
model architectures and training schemes, however
interpretation and explanation of models’ behav-
iors that inform modeling choices in adopting such
technologies, have not developed at the same pace.
This makes it challenging for adopters to select
their models for real-world settings, whether the
intended use is at early stages or later in production.
The obvious issue here is to identify what makes
a certain model a trustworthy fit for the project
motivation rather than another.

Issue 3: A good performance metric is not syn-
onymous with how well application requirements
are met. While current evaluation schemes con-
tribute to overly specializing solutions for perfor-
mance benchmarks, adopters and end-users are not
only more sensitive to the plus-value models pro-
vide, but also the costs of developing and deploying
such systems. Extractive QA systems are mainly
evaluated using the F-measure, but a token-overlap
metric is not informative on how well the system is
assisting the user and providing relevant answers.
For this reason, misaligning what is measured and
what is intended and desired might lead in cer-
tain cases to misallocating resources, and although
progress has been made towards user-centered eval-
uation (Chen et al., 2022), real-world applications
still have more complexity and demands whereas
models’ evaluation is lagging behind.

These issues impact different phases of the devel-
opment cycle of QA systems in real-world expert
applications. For instance, issue 1 impacts prob-
lem definition and adequate data collection, which
are the backbone of the whole cycle. Issue 2 in-
troduces hurdles to experiment design and model
training, while issue 3 directly impacts evaluation
and complicates the path to successful model de-
ployment. In the rest of the paper, we simulate
a scenario of seeking information in research pa-
pers and consider our end-user to be an expert in
decision support based on scientific publications
analysis. We particularly focus on the extractive
QA setting where the goal is to provide the user
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with answers to a particular question on a given
paper. This translates to the following formulation
of the issues mentioned above: 1. What kind of
task and data should we use, given the complexity
and the level of expertise present both in the ques-
tions and the context? 2. What models would solve
this task and would interact well with such data,
peculiarly since we need as much transparency as
possible in the process of identifying the answers?
3. How does the performance of the chosen model
on the chosen task and data reflect the return on
investment for deploying such systems?

3 Related work

3.1 Information-Seeking Question Answering

Figure 1: Example instance taken from QASPER as
presented in Dasigi et al. (2021)

Rogers et al. (2021) make the distinction be-
tween information-seeking and probing questions
based on the communicative intent of the user. We
are more interested in information-seeking ques-
tions that aim to bring forth answers that are un-
known at the time of formulating the query. There
exists conversational information-seeking datasets
such as QuAC (Choi et al., 2018), and grounded-
in-documents datasets such as Natural Questions
(Kwiatkowski et al., 2019) and QASPER (Dasigi
et al., 2021).

3.2 Domain Adaptation for Question
Answering

QA systems are often considered to be reliable
when they have been trained on enough in-domain
data, which is typically around 100k question and

answer training examples. However, it is well
known that such data is not abundant in special-
ized and restricted domains that require high-levels
of expertise. Sparked industrial interest in QA use-
cases has given rise to a line of work on Domain-
Adaptation (Hazen et al., 2019; Miller et al., 2021;
Yue et al., 2021) hoping to build robust systems for
domains with limited data.

Overall, the general approach to domain adap-
tation of Question-Answering models is to synthe-
size question-answer pairs (Shinoda et al., 2021;
Yue et al., 2022). Nevertheless, in the case of
information-seeking QA on research papers, such
approaches fall short of producing high-quality
questions and are so far unable to efficiently deal
with complex question and answer generation
from long context dependencies (Luu et al., 2020).
Therefore, domain adaptation of QA techniques
cannot yet deal with generating synthetic, high-
quality, and representative question-answer pairs
of information sought in research papers.

3.3 Modular pipelined systems for Question
Answering

Although modular pipelined QA systems are
mainly developed and used in Open-Domain QA
(Zhu et al., 2021), their components can be also ben-
eficial for tackling in-context QA. Figure 2 shows
the way we adopt retriever-ranker-reader architec-
ture for answering a question on a scientific pa-
per. We favor such building blocks of a solution
rather than complex do-it-all models to increase our
chances of understanding and trusting the system.

Retriever
A retriever aims at retrieving passages from a cor-
pus that are relevant w.r.t. a given query. Its goal is
to filter out irrelevant context and therefore it can
be used in QA grounded in documents when these
are very long sequences of text like research papers.
The granularity of passages to be retrieved depends
on the application and the type of answers sought.

State-of-the-art retrievers are mostly dense re-
trievers (Luan et al., 2021), i.e, they extract dense
representations of a question and a context by feed-
ing them into a language model and using the
dot-product of these representations as a similarity
score to rank and select most relevant passages.

Re-ranker
In information-seeking QA, especially on research
papers, the end-user might not always employ the
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terms in their query as they appear in context,
whether for lexical reasons like specific terminol-
ogy or simply because the terms themselves are
sought by the query. To this end, in order to im-
prove retrieval quality, a common strategy is to
process the retrieved passages or answers using a
re-ranking module. Rankers post-retrieval in par-
ticular are useful when retrievers have a high recall
but fail to rank documents according to relevance,
sometimes due to the semantic similarity between
questions and passages being very low (Lin et al.,
2020).

Reader
A reader infers the answer to the question from a set
of ordered documents it receives in a pipelined QA
system. Readers are generally regarded as either
extractive or generative. Extractive readers mainly
assume the correct answer is present in the context
and usually focus on learning to predict the start
and end position of the answer, while the generative
ones generate the answers from their vocabulary.
The choice of reader type depends on the nature
of questions and context and therefore evaluation
procedures differ (Zhang et al., 2020).

Figure 2: Modular pipeline for Information-Seeking
Question Answering grounded in research papers. Left
is a retriever-reader pipeline (referred to as pipeline R);
Right is retriever-ranker-reader (R-2).

4 Experimental Setup

4.1 Datasets
QASPER for simulation
In restricted domains with high level of expertise,
users tend to ask questions that are naturally dif-
ferent from those in open and general domains.
For instance, the distribution of Google Search
queries is not representative of all questions an

astrophysicist or an economist routinely ask in a
work-day. Such big datasets, arising from real-
world use cases, might contain microscopic frac-
tions of those specialized distributions one seeks,
but will not be representative if regarded as a whole
general domain. Therefore, we chose to focus our
simulation on a dataset that drifts away from those
general and “natural” distributions. To this end,
QASPER (Dasigi et al., 2021) is an information-
seeking dataset of questions and answers anchored
in research papers whose main topic is NLP: it
compromises 5,049 questions over 1,585 papers.
The dataset is challenging in nature because of
the long context requiring reading entire papers
and the multiple types of questions (extractive, ab-
stractive, yes/no, and unanswerable). Its task is
formally defined as determining the answerability
of the question and outputting an answer that can
have different formats (span(s), free-form, yes/no).

We consider QASPER to be a good dataset for
simulating an industrial environment seeking infor-
mation in scientific text as the nature of the context,
as well as the annotation strategy, are suitable and
equivalent to our use-case. At the time of writing,
it is currently the only existing benchmark focusing
on entire research papers and not just abstracts.

The official baseline for QASPER is Longformer
Encoder-Decoder (LED) (Beltagy et al., 2020).
LED was trained in a multi-task setup for evidence
identification and answer generation and chosen be-
cause of its ability to handle the variety of answer
types as well as encoding papers’ full text.

SQuAD

The Stanford Question Answering Dataset (Ra-
jpurkar et al., 2016, 2018) has been widely used in
QA tasks since its creation. It compromises over
100k crowd-sourced question-answer pairs derived
from Wikipedia. Questions in SQuAD are diverse
but answers are very short spans and require less
expertise than QASPER to produce.

Natural Questions

Natural Questions (Kwiatkowski et al., 2019) in-
troduced user queries issued to the Google search
engine paired with high-quality annotations in the
form of (question, Wikipedia page, long answer,
short answer) quadruples. Additionally, Natural
Questions is compromised of 323k examples, mak-
ing it 64 times the size of QASPER.
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4.2 Evidence Retrieval

For identifying relevant evidence paragraphs, we
use Dense Passage Retrieval (DPR) (Karpukhin
et al., 2020), a highly efficient dual-encoder using
two BERT (Devlin et al., 2019) based models to
encode documents and queries separately. Both the
question encoder and context encoder have been
trained on Natural Questions (Kwiatkowski et al.,
2019). We use Haystack1 as a framework and re-
trieval is performed using ElasticSearch.

Instead of encoding the entire long-context pa-
pers that cannot be handled with BERT-like en-
coders, and building on the definition of the task it-
self, i.e, identifying evidence paragraphs, we chose
to deal with paragraphs as units of passages (Fig-
ure 2). Furthermore, 55% of the answers to ques-
tions with text-only evidence in QASPER have
multiple evidence paragraphs. For this reason, and
because retriever results could serve as explana-
tions for the end-user and thus increase their confi-
dence in predictions, we experiment with returning
k candidate paragraphs with k ∈ {1, 3, 5, 10}. We
chose these values to be "human-readable": an end-
user is not visually bothered by having such k ≥ 1
returned paragraphs highlighting answer elements.

Finally, because the semantic similarity between
questions and passages can be very low (Figure 1),
we experiment with re-ranking paragraphs using
cross-encoders (Hofstätter et al., 2020) based on
two models: MiniLM (Wang et al., 2020) and
ELECTRA (Clark et al., 2020), trained on the
MS Marco Passage Ranking2 (Microsoft Machine
Reading Comprehension) task. We choose to pass
the minimum between the top-50 ranked para-
graphs and the total number of paragraphs in the
article3 to the re-ranker because of its computa-
tional cost.

4.3 Answer Prediction

QASPER is composed of questions with multiple
evidence and answer types. We focus on text-only
evidence excluding tables and figures. We further
limit experiments to extractive questions as we
mentioned before (roughly 51.8% of the dataset)
because we prioritized our focus on accessible and
extensively-studied models as well as the extrac-

1https://github.com/deepset-ai/
haystack

2https://github.com/microsoft/
MSMARCO-Passage-Ranking

3Articles in QASPER have a number of paragraphs ranging
from ≈ 20 to a maximum of ≈ 230

tive evaluation scheme. Finally, because we use a
pipelined system with paragraphs as units of pas-
sages, we are able to fit candidate evidence in all
readers4. We conduct two sets of experiments:

• Zero-shot settings on a few selected models
that are known for robustness, generalization
ability, and efficiency among others. This
scenario is the closest to a real-world setting
where no annotated data is available and the
application is quite different from existing
benchmarks. Such experiments lay the ground
for what can be expected in a least-available
resources scenario and it is interesting to see
if there is value in those settings.

• Fine-tuned settings where all models are fine-
tuned on the extractive set of questions in
QASPER. We are particularly interested in
seeing how models adapt their answers to bet-
ter suit the answers’ nature in QASPER. Since
there would intuitively be improvements over
the zero-shot setting when fine-tuning, this
kind of scenario gives hints about the rele-
vance of investing in expert annotations when
considering the nature of such improvements.

The readers we chose to experiment with are the
following: RoBERTa (Liu et al., 2019) offering
a great trade-off between performance and infer-
ence speed, SciBERT (Beltagy et al., 2019) trained
on scientific text, deBERTaV3 (He et al., 2021)
particularly performing on NLU tasks, UnifiedQA
(Khashabi et al., 2020) for its strong generalization
abilities and Longformer (Beltagy et al., 2020)
which, although we do not need long-range mod-
els as the pipeline deals with paragraphs as units,
has the ability to produce longer answer spans if
needed.

We choose to have RoBERTa, SciBERT, de-
BERTa and Longformer trained on SQuAD v2.0
(Rajpurkar et al., 2018) because it is a simple and
accessible starting point, i.e, a widely used dataset
and trained models are open-sourced. UnifiedQA
has been trained on other datasets with other for-
mats in addition to SQuAD.

5 Results

We present in this section the results of the different
stages of the pipeline when adding components or
using different training strategies.

4For readers with 512 tokens limit, one passage exceeded
the maximum length so we truncated the input.

https://github.com/deepset-ai/haystack
https://github.com/deepset-ai/haystack
https://github.com/microsoft/MSMARCO-Passage-Ranking
https://github.com/microsoft/MSMARCO-Passage-Ranking
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Evidence Span (F1) Top-k retrieval accuracy (%)
LED 32.28 -

Retriever ↓ Ranker ↓ k = 1 k = 3 k = 5 k = 10 k = 1 k = 3 k = 5 k = 10

DPR
w/o 37.68 54.73 66.68 79.38 23.23 40.69 55.57 71.86

ELECTRA 52.63 72.07 80.28 89.17 39.08 62.63 73.45 85.60
MiniLM 54.65 74.05 81.76 90.91 41.54 65.31 75.48 87.97

Table 1: Evidence F1 and top-k retrieval accuracy on extractive questions in QASPER test.

5.1 Evidence retrieval

We show in Table 1 the results of the evidence
retrieval stage with and without the use of a re-
ranker for k ∈ {1, 3, 5, 10} where k is the number
of retrieved paragraphs. For k > 1, evidence-span
(F1) refers to the maximum overlap found between
the gold evidence and the k retrieved paragraphs,
whereas top-k retrieval accuracy (%) considers the
case where an exact match is found within the top-k
retrieved elements. We chose to report this metric
because it is more informative to the end-user.

The retriever adequately improves with greater
values of k, which is expected since the more it
retrieves the more chances of finding a relevant
paragraph. However, the use of the re-ranker con-
siderably enhances the evidence retrieval step, with
an average gain of 13.92F1 points with ELEC-
TRA, and 15.73F1 points with MiniLM for the
different values of k. In terms of retrieval accu-
racy, re-ranking adds on average 17.35% accuracy
with ELECTRA and 19.74% with MiniLM. If we
want to avoid overloading the end-user with irrel-
evant/incomplete evidence, using a ranker with a
smaller k can be a very good option.

5.2 Answer identification

We select the best performing retrieval pipeline, i.e,
DPR and MiniLM, and test different readers for
end-to-end answer selection. We report the results
in Table 2: for pipelines where k > 1, the reader
produces an answer ai for each retrieved (ranked)
paragraph pi. The results show the maximum over-
lap between {ai}i≤k and gold answers5.

In both zero-shot and fine-tuned settings, all
models surpass the LED baseline when returning
k ≥ 3 with ranking (note that LED does not return
multiple candidates). When seeing QASPER for
the first time, deBERTa outperforms the rest of the
models, widening the gap with greater values of k.

5In QASPER, many questions have multiple annotators
and therefore many answers. In v0.3, the answers have the
same nature, i.e, all extractive in our case.

It is interesting to see that RoBERTa, UnifiedQA,
Longformer and SciBERT have very close scores
to each other.

Further, finetuning on QASPER does not pre-
serve the performance ranking of models: Uni-
fiedQA outperforms ∀k ∈ {1, 3, 5, 10} all other
models, both with and without ranking. This is
to be expected with such generalization abilities.
Unsurprisingly, models do not all benefit the same
from re-ranking and fine-tuning as discussed in
Issue 2. We present hereafter the differences in
end-to-end performance gain for each model.

Effect of re-ranking

Figure 3: Gain in Answer-Span (F1) when reranking

Figure 3 shows how much performance Uni-
fiedQA, Longformer, SciBERT and deBERTa gain
from re-ranking. The cross-encoder pre-reading
helps improve answer identification in all scenar-
ios: ∀k ∈ {1, 3, 5, 10}, with and without fine-
tuning. The most significant gains are observed
for k = 1 (a model average of 9.2F1(zero-shot)
and 10.73F1(fine-tuned)) and k = 3 (10.45F1 and
12.33F1 respectively). This is a sign of the ranker
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Answer-span (F1) end-to-end
LED 32.0 (29.97⋆)

DocHopper 36.4⋄

k = 1 k = 3 k = 5 k = 10
R R-2 R R-2 R R-2 R R-2

RoBERTa-base 13.01 22.08 25.05 35.75 32.28 40.52 40.10 45.82
UnifiedQA-base 13.58 22.03 25.31 35.02 32.47 40.09 40.61 46.35

Longformer 11.96 21.49 24.59 35.12 31.30 40.20 39.36 45.73
SciBERT 13.23 22.24 25.24 35.74 32.21 40.49 40.89 46.33
deBERTa 12.87 22.79 25.70 36.53 33.57 42.15 42.76 48.15

RoBERTa-baseft 15.57 26.00 28.42 40.37 36.58 45.62 45.59 51.52
UnifiedQA-baseft 16.41 27.54 30.30 42.42 38.14 47.84 47.47 55.08

Longformerft 15.66 26.80 28.32 42.13 36.58 47.22 45.60 52.70
SciBERTft 15.80 26.62 28.79 41.13 36.71 46.60 46.42 52.62
deBERTaft 16.34 26.45 30.01 41.42 38.14 46.87 47.12 53.19

Table 2: Answer-span predictions on extractive questions in QASPER test using DPR and MiniLM for retrieval. ft
stands for further fine-tuning on QASPER. (⋆ reported in Dasigi et al. (2021), ⋄ reported in Sun et al. (2021))

propelling better context at the top. For all values
of k, Longformer benefits most from re-ranking.

Effect of fine-tuning
Similarly, Figure 4 shows the gain in performance
that the two pipelines benefit from when fine-tuning
readers on QASPER. In all scenarios, fine-tuning
enhances performance, with UnifiedQA having the
largest gains (an average of 4F1(without-ranking)
and 7.35F1(with-ranking)). The greater the value
of k, the more models benefit from fine-tuning.
This is due to the retrieval stage providing more
relevant context.

Figure 4: Gain in Answer-Span (F1) when fine-tuning

6 Discussion

We discuss hereafter the sources of improvements
and their alignment with the portability challenges.

6.1 Retrieval stage
Intuitively, we suspect that LED is under-optimized
not only due to the size of QASPER but also be-
cause it treats evidence selection as a classification
task (which is probably good for dealing with mul-
tiple evidence). DPR on the other hand has an
appropriate training dataset size and the approach
is done in a contrastive learning setting that might
be better aligned with identifying how close a pas-
sage is to a query. If we consider the modeling
issue (1) in this case, Natural Questions is one of
the benchmarks that have the most similarities with
QASPER: different levels of granularity (long and
short answers), different types of answers, and no
observation bias. With DPR being trained on NQ,
this offers an adequate trade-off between task for-
mat adequacy and content representativeness.
The remaining issue would be the low seman-
tic similarity faced in Information-Seeking QA
grounded in research papers, which we try to cir-
cumvent with the use of a re-ranker. The latter
very significantly enhances the evidence selection
stage. As research papers are themed and specific,
and throughout an article, information is redun-
dant with varying degrees of detail, a bi-encoder
might not be enough to relevantly score those dif-
ferences. Additionally, top-k retrieval accuracy is
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Paper Question Zero-Shot Fine-Tuned Gold Answer

1602.03483

Which un-
supervised
representation-
learning
objectives do
they intro-
duce?

Sequential
Denoising
Autoen-
coders

Sequential Denoising Au-
toencoders (SDAEs) and
FastSent, a sentence-level
log-linear bag-of-words
model

Sequential Denoising Au-
toencoders (SDAEs) and
FastSent

1606.07043
On which cor-
pora do they
evaluate on?

20 News-
group

20 Newsgroups and the
i2b2 2008 Obesity Chal-
lenge BIBREF22 data set

20 Newsgroups, i2b2
2008 Obesity Challenge
BIBREF22 data set

1602.04341

What was
the margin
their system
outperformed
previous
ones?

15.6/16.5

The margin between
our best-performing
ABHCNN-TE and
NR is 15.6/16.5 (ac-
curacy/NDCG) on
MCTest-150 and 7.3/4.6
on MCTest-500

15.6/16.5 (accu-
racy/NDCG) on MCTest-
150 and 7.3/4.6 on
MCTest-500

1707.07212

What are the
components
of the classi-
fier?

context
words,
distance
between
entities

context words, distance be-
tween entities, presence of
punctuation, dependency
paths, and negated key-
word

log-linear model, five fea-
ture templates: context
words, distance between
entities, presence of punc-
tuation, dependency paths,
and negated keyword

Table 3: Longformer’s predictions where the fine-tuned model produces longer spans over the zero-shot prediction.

more informative than span-F1: for instance with
an appropriate retriever and ranker, the user can
expect to have 3 questions over 4 where a correct
evidence paragraph is placed within 5 suggestions.

6.2 Reading stage

Having models that are fine-tuned with large
general-domain datasets before fine-tuning on
QASPER is helpful. However, It has to be kept
in mind that higher performance is not necessarily
a sign of different and thus better answer identifi-
cation, as the F1 metric does not faithfully reflect
the actual performance (especially if the difference
is about very few points): greater (lesser) non-zero
values of F1 are not systematic indicators of bet-
ter (worse) candidate answers (Bulian et al., 2022).
The fact that many models have extremely small
differences of performance in zero-shot emphasizes
the need to look for other preferences than perfor-
mance when selecting readers before considering
investing in their improvement; for instance an abil-
ity to return longer answers. To this end, we exam-
ined Longformer’s predictions in the case k = 1,
i.e, either it receives correct evidence or not, to

see how faithful the performance gain is to the im-
provement of predictions. When investigating the
questions where fine-tuning improved the zero-shot
prediction, we surprisingly noticed that the gained
performance in the pipeline R is due in 36.36% of
cases to longer answers containing the string of the
zero-shot prediction. Similarly for pipeline R-2,
43.78% of the improved answers are merely longer
spans. This might be a sign of completeness, but
how necessary is it really compared to the cost of
attaining such gains if the answer is visually lo-
cated in its context? We provide examples of such
predictions in Table 3.

6.3 Implications for the portability issues

In real-world settings, a user seeking information
in scientific publications might face very frequent
topic change. It is well known, both in academia
and industry, that QA annotations on scientific pa-
pers is extremely scarce: QASPER is the current
only benchmark on entire papers. Further, its sub-
set of extractive questions compromises over 1000
expert-annotated questions. As this is very expen-
sive to obtain, users will be tempted to focus on

https://arxiv.org/abs/1602.03483
https://arxiv.org/abs/1606.07043
https://arxiv.org/abs/1602.04341
https://arxiv.org/abs/1707.07212
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zero-shot settings performance. We discuss here-
after the implications for the portability issues from
what we observed on QASPER:

Issue 1: Current benchmarks do not faithfully
translate the complexity of tasks humans carry in
their quests for innovation and knowledge con-
sumption and there is a tendency to criticize how far
real-world data can be from such datasets. Because
obtaining high-quality and representative annota-
tions in such environments is way too costly, there
can be a plus-value in trading-off content represen-
tativeness with task format adequacy. For instance,
Natural Questions accounts for a great "similar"
task for the retrieval stage.
Issue 2: In some cases, accessible models trained
on adequate benchmarks can provide satisfying
zero-shot results without incurring the need to in-
vest in having a greater reported F1. To this end,
building simple and fast to deploy blocks of a solu-
tion does not imply jeopardizing performance since
design complexity is not necessarily the ground-
laying part of accuracy: LED is outperformed by
simpler pipelines offering more transparency of the
whole predictive process.
Issue 3: Users should align their application needs
with models’ characteristics rather than solely fo-
cusing on performance metrics and the processes
of improving it. Not only enhancing model per-
formance by fine-tuning on domain-specific data
might not align well with the cost sensitivity of
adopters, but also experts seeking to more effi-
ciently consume scientific content are not to be
withdrawn from the information-seeking process
the greater the reported performance metric is. For
instance, a user visually locating the answer span
in a paper accounts for 43% of Longformer’s per-
formance improvement with fine-tuning (and the
related costs).

6.4 Limitations of this work

We did not experiment on few-shot settings, even-
though such scenarios are anchored in real-world
settings. The reason for this is that such scenarios
heavily rely on data augmentation techniques; but
these approaches fall short of producing the qual-
ity we seek in such annotations as we explained
in Section 3.2. Therefore we are left with large
autoregressive models with stunning few-shot abil-
ities, but those are not yet accessible options either.
Another limit is that we restrained our experiments
to the extractive questions only. We made this

choice because evaluation schemes would be more
complex and it would be harder to interpret perfor-
mance variations (Gehrmann et al., 2022). It is also
not mandatory from the industrial point of view at
this time to go beyond extractive models, as these
already have a plus-value for the workers.

7 Conclusion

Information-seeking QA on scientific content is
gaining popularity in a world of knowledge-based
economies. In this paper, we identified the hur-
dles that stand in the way of efficient portability
of such systems into industrial environments suf-
fering data scarcity. We revealed through a series
of experiments on extractive QA anchored in re-
search papers, that bridging the gap between aca-
demic benchmarks along with their models’ per-
formance, and concrete user needs that are most
often hindered by resource allocation constraints
in business can be done with appropriate trade-offs
and that caution needs be taken when investing in
widespread but costly practices.
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