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Abstract

Current neural network solutions in scien-
tific document processing employ models pre-
trained on domain-specific corpi, which are usu-
ally limited in model size, as pretraining can
be costly and limited by training resources. We
introduce a framework that uses data augmen-
tation from such domain-specific pretrained
models to transfer domain-specific knowledge
to larger general pretrained models and im-
prove performance on downstream tasks. Our
method improves the performance of Named
Entity Recognition in the astrophysical do-
main by more than 20% compared to domain-
specific pretrained models finetuned to the tar-
get dataset.

1 Introduction

Scientific Document Processing (SDP) is an emerg-
ing field in Natural Language Processing (NLP)
that proves to have more obstacles than every-
day text due to the extensive scientific jargon and
long text spans. Recent work in SDP on trans-
former architectures (Vaswani et al., 2017) has
placed emphasis on constructing pretrained models
in scientific corpi, such as BioBERT (Lee et al.,
2019), SciBERT (Beltagy et al., 2019), and as-
troBERT (Grezes et al., 2021). However, such
models are usually trained on the base size of its
corresponding architectures, limiting the potential
inference performances due to the smaller number
of trainable parameters compared to the large-size
models usually used in state-of-the-art (SOTA) per-
formance for benchmarks in everyday text. Are
we able to achieve similar or better results with
finetuning models larger in size whilst transferring
knowledge from such pretrained scientific models
to increase robustness?

In this paper, we propose a training method
inspired by the Unsupervised Data Augmenta-
tion (Xie et al., 2020a) and the Noisy Student (Xie
et al., 2020b) framework. We first augment the

training data with model that is trained on a cor-
pus that is more closely aligned with the context
domain of the target dataset. We then train a larger
model on both the original training data and the
augmented training data, combining the compu-
tational availability of the larger model with the
domain-specific trained knowledge of the smaller
domain-pretrained model.

We describe the shared task DEAL (Grezes et al.,
2022) and its dataset in Section 2 and briefly re-
view the previous work we used in Section 3. We
detail our model architecture and methodology in
Section 4, and go through our experimental setup
and results in Section 5. Finally, we go through an
in depth discussion of our results in Section 6 and
conclude our findings in Section 7.

2 Task Description and Dataset

Named Entity Recognition (NER) refers to the
identification and recognition of entities from a
string of text. Although this task is well explored
in everyday text in benchmarks such as CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003) and
WNUT2017 (Derczynski et al., 2017), the focus of
scientific text is not prominently showcased in such
work. Even in benchmarks that focus on scientific
document processing (SDP), the corpi in question
often lie in the domain of biology and chemistry,
such as the NCBI-Disease (Doğan et al., 2014) and
BioCreative V CDR (Li et al., 2016) corpi, with
a lack of evaluation and state-of-the-art models in
the astrophysics domain.

The shared task DEAL (Detecting Entities in
the Astrophysics Literature; Grezes et al. 2022)
is a sequence labeling task that aims to increase
the accuracy in Named Entity Recognition in the
domain of astrophysics. Given the overlapping us-
age of historical names and acronyms in different
types of astrophysical entities, it may be difficult
to extract named entities in astrophysics purely by
carefully constructed systematic rules. For exam-
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ple, Maxwell may refer to either the physician
James Clerk Maxwell, a crater on the far side of
the moon, or a series of equations. DEAL aims
not only to discern such entities, but also to discern
between such different types of entities.

The training dataset consists of 1,753 samples
of text fragments from the text and acknowledg-
ments of astrophysics papers provided by the
NASA Astrophysical Data System (NASA ADS;
Kurtz et al. 1993). For evaluation purposes,
the labeled development dataset consists of 20
samples, while the unlabeled validation and test
dataset consists of 1,366 and 2,505 samples, re-
spectively. We evaluate the performances based
on the seqeval (Nakayama, 2018) F1 score at
the entity level and Matthew’s correlation coeffi-
cient (Matthews, 1975) at the token level in the
validation and test dataset.

3 Literature Review

We briefly review some previous work that are uti-
lized in our proposed system.

3.1 Pretrained Transformer Models
With the introduction of BERT (Devlin et al., 2019),
the usage of pretraining as a self-supervised tech-
nique to optimize model weights in a particu-
lar text domain for transformer architectures has
been widely used in scientific document process-
ing and other domain-specific language tasks such
as biomedical text (Lee et al., 2019) and clinical
notes (Alsentzer et al., 2019). We now discuss key
transformer models we use in our work.

• RoBERTa (Liu et al., 2019), which is more
optimally pretrained on a larger corpus com-
pared to BERT, and has a larger vocabulary.

• SciBERT (Beltagy et al., 2019), which is pre-
trained on a scientific corpus with a mixture of
biology and computer science papers. SciB-
ERT’s vocabulary is also constructed sepa-
rately, consisting of more scientific jargon
than BERT, with a token overlap of 42%.

• SpaceTransformers (Berquand et al., 2021),
a series of models including SpaceRoBERTa
and SpaceSciBERT, which are further trained
on astronomical text based on the base model
of RoBERTa and the uncased version SciB-
ERT on its scientific vocabulary, respectively.
SpaceTransformers do not construct a new vo-
cabulary and instead reuse the vocabularies
constructed in the original models.

3.2 Adapter Architecture

Adapters (Houlsby et al., 2019) are introduced as
a parameter-efficient alternative to finetune trans-
former models (Vaswani et al., 2017) for down-
stream tasks. Unlike finetuning, which modifies the
top layer of the transformer, adapters inject layers
of parameters into the architecture itself, training
only on these injected parameters while freezing
the parameters of the original network. Adapter
training consumes much less computational cost
when compared to direct finetuning, making it a
more cost-efficient architecture to adopt while train-
ing large sized models.

3.3 Data Augmentation and Semi-Supervised
Methods

Data augmentation is a commonly used technique
in semi-supervised training in conjunction with un-
labeled data to increase the robustness of the model.
Xie et al. (2020a) noted that such augmentations
should have both diversity and validity compared to
the original data. They proposed using backtransla-
tion (Sennrich et al., 2016; Edunov et al., 2018) as
an augmentation method to produces paraphrases
of the original text that can be utilized for sequence
classification tasks.

In the same paper, the authors introduced a semi-
supervised learning technique named Unsupervised
Data Augmentation (UDA; Xie et al. 2020a) which
compares unlabeled data with its augmented ver-
sion by introducing a consistency loss term, rea-
soning that a robust enough model should yield
similar predictions. For sequence labeling tasks,
Lowell et al. (2021) proposed to augment the data
by randomly masking parts of the test and filling in
the masked tokens with BERT (Devlin et al., 2019),
similar to a cloze test, as known as the MaskLM
task. Furthermore, Lowell et al. (2021) also showed
that even without the inclusion of unlabeled data,
adding a consistency loss term by comparing train-
ing data and its augmented version can also in-
crease the robustness of the inference model.

Another semi-supervised learning framework,
the Noisy Student, proposed by (Xie et al., 2020b),
utilizes self-training and pseudo-labeling to itera-
tively train a series of student-teacher models that
increase in performance level. A normal teacher
model is first trained on labeled images. The
teacher model is then used to generate pseudo la-
bels for the unlabeled data. The labeled and now
pseudo-labeled data would then be used to train an
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equal-or-larger student model with noise injected
via data augmentation and model dropout. The pro-
cess can then be iterated using the student model as
the new teacher model and training a new student
model.

4 Architecture and Methodology

We propose a system that uses data augmentation
as a low-cost method of teacher-student training
to transfer domain-specific knowledge to a larger
adapter-based model.

4.1 Preprocessing

The DEAL training dataset contains samples that
far exceed the size of the token number of 512 that
transformer models such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) are pre-
trained on. Although transformer architectures for
long text such as Big Bird (Zaheer et al., 2020) can
be used train the entire text in less than quadratic
time, we reason that the recognition of named enti-
ties may not require the contextual information of
text in sentences in which the named entity itself
does not reside. We instead partition the sample
text into multiple input cases, separating the text
by sentence via regex.

We first identify end-of-sentence characters,
namely periods, question marks, and exclamation
marks. We then partition the text unless the end-
of-sentence character is followed by another punc-
tuation or whitespace followed by punctuation, in
which case we partition after the punctuation. Us-
ing the nltk library (Bird et al., 2009), we avoid
tokenizing common abbreviations such as “Mr.”
and “Dr.”, as well as other abbreviations found in
the training data and scientific text in general such
as “fig.”, “tab.”, “et al.”, etc. Due to capitaliza-
tion being important in the identification of named
entities, we retain capitalization after tokenization.

The training dataset is partitioned into 25596
samples after our preprocessing, with an average
of 22.39 words and a standard deviation of 15.64
words. Furthermore, the number of named entities
in a sample has an average of 1.6, and a standard
deviation of 2.6, with 41159 named entities in the
training dataset in total.

4.2 Augmentation

For our data augmentation step, we borrowed the
consistency loss term from UDA (Xie et al., 2020a)
on a supervised basis and augment our text by

Figure 1: Our Proposed Architecture for Low Cost Do-
main Specific Teachers

BERT based MaskLM as suggested by Lowell et al.
(2021). We take this a step further and view the
MaskLM data augmentation technique as a low-
cost teacher model that we can use to further train
a larger student model while finetuning the train-
ing dataset. Replacing the simple BERT for data
augmentation domain-specific pretrained models
such as SciBERT (Beltagy et al., 2019), we aim
to transfer the domain-specific knowledge of such
models to the main backbone model. We randomly
mask 30% of the total tokens as suggested by Low-
ell et al. (2021), and, following Devlin et al. (2019),
replacing 80% of such tokens with the [MASK]
token, 10% of such tokens with a random token,
and keep 10% unchanged. However, as our task re-
quires the augmented text to have the same amount
of words as the original, since our labels are pro-
vided on a word-level basis, we revert the tokens to
the original if the replaced token causes a reduction
or increase of words in the augmented sentence.

4.3 Backbone Model Architecture

Instead of training smaller student models to per-
form knowledge distillation, we take inspiration
from the Noisy Student framework (Xie et al.,
2020b) and train a student model larger than the
teacher model to act as our backbone model for
training. Due to its various SOTA performances in
GLUE (Wang et al., 2018), we select DeBERTaV3-
large (He et al., 2021a,b) as our backbone model.

As opposed to finetuning the backbone model
directly, we use the adapter (Houlsby et al., 2019)
version of the model to decrease computational
costs, while obtaining similar results to finetuning
the full model itself.
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Original:

This research made use of NASA’s Astrophysics Data System Bibliographic Services;
the SIMBAD data base (Wenger et al. 2000 ) and VizieR catalogue access tool
(Ochsenbein, Bauer Marcout 2000 ), both operated at CDS, Strasbourg, France;
and the Jean-Marie Mariotti Center Aspro2 service 1 .

Augmented:

The project made use of NASA’s Astrophysics Data System Bibliographic database;
the SIMBAD data base (Wenger et al. 2000 ) and VizieR data access tool
(Sch,ouin, and Marcout 2000 ), which operated at CNR, Strasbourg, France;
and the Jean-Marie Mariotti Center Asprox service 1 .

* Bold text indicates augmented text.
† ulined text indicates named entities.

Table 1: Sample Augmentations by CosmicRoBERTa

4.4 Loss Function Engineering

Incorporating the augmented data created from the
MaskLM task, we add an additional consistency
loss between the original data and the augmented
data during training, as shown in Figure 1.

We now write the full loss term that we use for
training. Let X = {(xb, yb) : b ∈ 1, 2, · · · , b}
be a batch of B labeled data samples with xb be-
ing the input sample and yb being the ground-truth
label. We denote ŷ(x) as the predicted class dis-
tribution of sample x made by the model. Further,
we also denote H(q, p) the standard cross-entropy
loss of predicted distribution p and target distri-
bution q, and D(q||p) as the Kullback–Leibler di-
vergence (Kullback and Leibler, 1951) between
distributions p and q. Denoting the augmentation
via MaskLM as A(·), we get the loss term that we
use for training:

L =
1

B

B∑
i=1

H(yb, ŷ(xb)) +D(ŷ(A(xb))||ŷ(xb))

(1)
For validation and testing purposes, we compute
the loss term based on the cross entropy loss alone.

5 Experiments

We describe the experimental setup and the results
in this section.

5.1 Experimental Setup

We implement our model using PyTorch (Paszke
et al., 2019) and Lightning1, importing pretrained
model weights from Huggingface (Vaswani et al.,
2017). We set the learning rate of 3× 10−4 on the
AdamW optimizer (Loshchilov and Hutter, 2019).

1https://github.com/Lightning-AI/
lightning

Training was conducted on a single core 12GB
NVIDIA K80 kernel.

5.2 Results
We present an abridged comparison of our re-
sults and established baselines provided in the
DEAL task in Table 2. Our best model on
the DEAL testing dataset uses Pfeiffer et al.
(2020)’s adapter architecture of the DeBERTaV3-
large model as the backbone model and uses Cos-
micRoBERTa2, a further pretrained version of
SpaceRoBERTa (Berquand et al., 2021), as the aug-
mentation teacher model. Our model has a +20
improvement on the F1 score, while having a +8
improvement on the MCC score, indicating an in-
crease in performance both on the token-level and
the entity-level recognition of entities.

6 Analysis

We now present a more detailed analysis of the
performance of different variants of our model and
some considerations between experimental setups.

6.1 Large Parameter Efficient Models
Our first idea to increase performance is simple:
Use a larger model to boost performance, as the
increased number of hyperparameters to tune and
the larger architecture indicates a larger capacity
to generalize to the training dataset. In order to
train a large sized model on limited training re-
sources to increase accuracy, we adopt the usage of
adapter architecture due to the reduction of tunable
parameters by two orders without affecting training
convergence (Houlsby et al., 2019), which also re-
duces memory usage as less gradient computations
need to be computed and stored. According to the

2https://huggingface.co/icelab/
cosmicroberta

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://huggingface.co/icelab/cosmicroberta
https://huggingface.co/icelab/cosmicroberta
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F1(entity) MCC(word)

Random 0.0166 0.1089
BERT (Devlin et al., 2019) 0.4738 0.7405
SciBERT (Beltagy et al., 2019) 0.5595 0.8016
astroBERT (Grezes et al., 2021) 0.5781 0.8104

(Ours) DeBERTaV3adapter (He et al., 2021a,b; Houlsby et al., 2019)
+ SciBERT (Beltagy et al., 2019) 0.7751 0.8898
+ CosmicRoBERTa (Berquand et al., 2021) 0.7799 0.8928

Table 2: Evaluation Results on Testing Dataset

F1(entity) MCC(word) Accuracy(entity)

astroBERT 0.5781 0.8104 0.9389

DeBERTaV3adapter (He et al., 2021a,b; Houlsby et al., 2019) 0.7896 0.8987 0.9667
+ SciBERTcased (Beltagy et al., 2019) 0.7988 0.9063 0.9692
+ RoBERTa (Liu et al., 2019) 0.7970 0.9057 0.9690
+ CosmicRoBERTa (Berquand et al., 2021) 0.7972 0.9050 0.9687
+ SpaceSciBERTuncased (Berquand et al., 2021) 0.7859 0.9030 0.9680

Table 3: Augmentation Model Comparison on Validation Dataset

empirical results of Rücklé et al. (2021), the use
of adapters speeds up training approximately 1.35
times. With such settings, we are able to construct
the baseline model directly by using DeBERTV3-
large in an adapter setting, achieving a +21 im-
provement on the entity-level F1 metric and a +8
improvement on the word-level MCC metric with-
out further augmentations. (See Tab. 3)

6.2 Augmentation as Teacher Models

Using the results of direct finetuning of the DeBER-
TaV3 model as our baseline, we explore the effects
of using different pretrained “teacher models” to
augment training data. We present the training re-
sults in Table 3, evaluated in the validation dataset.

We find that augmentation via SciBERT seems
to provide the best performance on the validation
dataset, while augmentation via CosmicRoBERTa
provides the best performance on the test dataset.

As we are using the MaskLM task to augment
sentences, the model would only fill the masked
tokens with tokens in its vocabulary, which would
rely on both the vocabulary itself and the model’s
ability to fill in the correct token. While Cosmi-
cRoBERTa is pretrained on an astronomical corpus,
the vocabulary itself is based on RoBERTa, thus
producing a more valid augmentation, but not di-
verse enough. On the other hand, SciBERT has
a self-constructed vocabulary, thus such an aug-

mentation would produce a more diverse augmen-
tation, or at least an augmentation containing more
scientifically oriented text, but not valid enough.
On the other hand, while SpaceSciBERT seems to
fit the above two criteria of diversity and validity,
the model itself is uncased, hence the produced
augmented words are uncased, leading to a poor
augmentation, the model would underfit on the aug-
mented data and overfit on the training data, leading
to poorer performance during inference.

For further work, we expect the usage of as-
troBERT as an augmentation teacher model to
be more beneficial than previous attempts, as the
model is both pretrained on astrophysical text, and
contains a vocabulary with more jargon, achieving
both diversity and validity in augmentation.

7 Conclusion

In this paper, we show that we are able to surpass
models pretrained on domain-specific knowledge
by utilizing general corpus pretrained adapter mod-
els of larger sizes. Furthermore, such a method
can by used in conjunction to the aforementioned
domain-specific pretrained models via data aug-
mentation to transfer such knowledge to the back-
bone model. Further work may explore other meth-
ods of augmentation to act as teacher models or
combining multiple augmentations in training.
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