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Abstract

In this paper we propose a new method for
training adversarial text-to-speech (TTS) mod-
els for low-resource languages using auxiliary
data. Specifically, we modify the MelGAN (Ku-
mar et al., 2019) architecture to achieve better
performance in Arabic speech generation, ex-
ploring multiple additional datasets and archi-
tectural choices, which involved extra discrimi-
nators designed to exploit high-frequency simi-
larities between languages. In our evaluation,
we used subjective human evaluation, MOS -
Mean Opinion Score, and a novel quantitative
metric, the Fréchet Wav2Vec Distance, which
we found to be well correlated with MOS. Both
subjectively and quantitatively, our method out-
performed the standard MelGAN model.

1 Introduction

Text-to-speech (TTS) is the task of generating nat-
ural speech that corresponds to a given text. TTS
systems play essential roles in a wide range of ap-
plications, ranging from human-computer interac-
tion to assistance for people with vision or speech
impairments.

In recent years the field of TTS has been dom-
inated by the neural auto-regressive models for
raw audio waveform such as WaveNet (Oord et al.,
2016a), SampleRNN (Mehri et al., 2016) and Wa-
veRNN (Kalchbrenner et al., 2018). However, in-
ference with these models is inherently slow and
inefficient given the high frequency of audio data;
because of the auto-regressive behaviour and the
sequential generation of the audio samples. Thus,
auto-regressive models are usually impractical for
real-time applications. Researchers put much ef-
fort into enabling parallelism of the TTS models,
which resulted in a number of non-auto-regressive
ones, such as Parallel WaveNet (Oord et al., 2018)
which distils a trained auto-regressive decoder into
a flow-based convolutional student model, Wave-
Glow (Prenger et al., 2019) which is a flow-based

generative model based on Glow (Kingma and
Dhariwal, 2018) as well as the Generative Adversar-
ial Network (GAN (Yi et al., 2019))-based models
such as MelGAN (Kumar et al., 2019) and GAN-
TTS (Bińkowski et al., 2019). They are highly
parallelizable and more suitable to run efficiently
on modern hardware. However, those recent de-
velopments often came at the price of scale, and
hence may be impractical for certain applications
with limited compute or data budgets.

Deep neural networks have revolutionized the
field of TTS achieving human-level performance
on particular languages by leveraging massive col-
lections of good-quality datasets, e.g. The LJ
Speech Dataset1. However, these successes came
at cost since creating these large datasets typically
requires a great deal of human effort to manually
record and label individual data samples. This cost
can be particularly extreme when recording and
labelling requires expert supervision (for example,
recording high quality audio requires a professional
studio and staff). For many languages we lack re-
sources to create sufficiently large labelled datasets,
which limits the widespread adoption of TTS tech-
niques.

The lack of available resources makes it ex-
tremely valuable to study the relationship between
the different languages. The high-frequency simi-
larities between languages can be exploited to learn
better speech synthesis models for low-resource
languages. However, not much work has focused so
far on exploring this direction. The notable excep-
tions include some multi-lingual TTS models (Do
et al., 2021). In Lee et al. (2018) they pre-trained
a speech synthesis network using datasets from
both high-resource and low-resource languages,
and fine-tuned the network using only low-resource
data. The results showed that the learned phoneme
embedding vectors are located closer if their pro-
nunciations are similar across the languages.

1https://keithito.com/LJ-Speech-Dataset/

76

https://keithito.com/LJ-Speech-Dataset/


In this work, we explore raw waveform gener-
ation for low-resource languages using auxiliary
data, taking Arabic as our case study and MelGAN
(Kumar et al., 2019) as our baseline model. This
study examines the Arabic language since it has a
large global population, it is a complex language
to model,2 and there is a scarcity of Arabic TTS
datasets, making it a low-resource language. Our
main contributions are as follows:

• We train a fast and efficient TTS system for
the Arabic language using a publicly available
speech dataset3.

• We propose an extension to MelGAN (Ku-
mar et al., 2019) model which makes it
more amenable to knowledge transfer be-
tween languages and evaluate its efficiency
for low-resource speech datasets, focusing
on co-training between vastly different lan-
guages/dialects and learning from low-quality
samples.

• We propose a quantitative metric for Ara-
bic speech generation based on Fréchet dis-
tance (Eiter and Mannila, 1994), the metric
inspired by the DeepSpeechDistance for En-
glish language (Bińkowski et al., 2019), where
we replace the DeepSpeech network with the
Wav2Vec2ForCTC Arabic audio recognition
network4.

2 Background

The generative Adversarial Networks (GANs)
Goodfellow et al. (2014) are a class of implicit
generative models trained by adversarial means
between two networks: the generator and the dis-
criminator. Generators attempt to produce data that
resemble reference distributions, while the discrim-
inator tries to distinguish real data from generated
data, providing a useful training signal.

Due to the high temporal resolution of raw
waveform, the presence of structure at different
time scales, and the short- and long-term inter-
dependencies among these structures, audio synthe-
sis is a challenging task. Most approaches simplify

2Worldwide there are more than 420 million native Arabic
speakers who speak over 25 dialects of the language, each of
which has its own unique characteristics and dialectal words.

3http://en.arabicspeechcorpus.com/
4https://huggingface.co/docs/transformers/

model_doc/wav2vec2#transformers.

the problem by modelling a lower-resolution inter-
mediate representation that can be efficiently com-
puted from the raw temporal signal and preserves
enough amount of information to allow a faithful
inversion back to audio. It is therefore common to
decompose text-to-speech (TTS) systems into two
stages: the first stage maps text into the interme-
diate representation, while the second stage trans-
forms it into audio waveform. Among the most
commonly used intermediate representations are
aligned linguistic features (Oord et al., 2016b) and
Mel-spectrograms (Shen et al., 2018; Gibiansky
et al., 2017). In this work, we use Mel-spectrogram
as an intermediate representation and focus on the
second stage. Considering the Mel-spectrogram in-
version stage, the TTS systems can be categorized
into three distinct families: the pure signal process-
ing techniques, the auto-regressive models and the
non-auto-regressive models. The auto-regressive
models like the WaveNet (Oord et al., 2016a) pro-
duced the state-of-the-art results in text-to-speech
synthesis (Sotelo et al., 2017; Shen et al., 2018) but
inference with these models is inherently slow and
inefficient due to the sequential generation of audio.
The non-auto-regressive models hence are highly
parallelizable and can exploit modern deep learn-
ing hardware like GPUs and TPUs. Well known
examples are the WaveGlow (Prenger et al., 2019)
which is a flow-based generative model based on
Glow (Kingma and Dhariwal, 2018), and GAN-
based TTS models like MelGAN (Kumar et al.,
2019) and GAN-TTS (Bińkowski et al., 2019).

MelGAN generator is a fully convolutional feed-
forward network which takes Mel-spectrogram as
input and outputs a raw waveform. The generator
is trained adversarially against a multi-scale archi-
tecture comprised of three discriminators that have
identical network structures but operate on differ-
ent audio scales. On the other, End-to-end architec-
tures like the Tacotron (Wang et al., 2017), EATS
(Donahue et al., 2020) and WaveGrad 2 (Chen
et al., 2021) are introduced in the field of TTS
to reduce the compound error of two-stage TTS
systems. Tacotron is a generative text-to-speech
model based on a seq-to-seq model with an atten-
tion mechanism (Sutskever et al., 2014), whereas
Tacotron 2 (Shen et al., 2018) is a follow-up work
that eliminates the non-neural network elements
used in the original Tacotron.

Many works covered Arabic TTS synthesis to
generate human-like speech, such as Abdel-Hamid
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et al. (2006), Rebai and BenAyed (2016) and
Fahmy et al. (2020), but none of them adopted
the GAN-based TTS models for the Arabic lan-
guage. Fahmy et al. (2020) describes how to use a
modified deep architecture from Tacotron 2 (Shen
et al., 2018) to generate Mel-spectrograms from
Arabic diacritic text as an intermediate feature rep-
resentation followed by a WaveGlow (Prenger et al.,
2019) architecture acting as a vocoder to produce a
high-quality Arabic speech. The proposed model
is trained using a published pre-trained Tacotron
2 English model using a dataset with a total of
2.41 hours of recorded speech 3. To the best of our
knowledge, this is the best Arabic TTS available.

3 Methodology

In this section, we present the details of the ar-
chitectures of our models, the datasets, and the
evaluation metrics we used. In MelGAN’s official
repository5, generator weights are publicly avail-
able, but discriminator weights are not. We use
various methods of knowledge transfer between
languages, including fine-tuning and co-training.

3.1 Model Architecture

In our analysis, we used the MelGAN architecture
(Kumar et al., 2019) with an amended downsam-
pling schedule that we found to perform better in
our early experiments. With the proposed schedule,
we ensure that there is no common divisor between
downsampling factors to encourage focus on dif-
ferent frequencies across discriminators. We used
factors 3 and 5 to downsample audio before pass-
ing it to the second and third discriminators. The
downsampling is done by a strided average pooling
layer.

MelGAN’s multi-discriminator architecture in-
corporates an inductive bias that aims to exploit
different structures at various temporal resolutions.
In addition, we are interested in investigating an-
other inductive bias that aims to exploit the consid-
erable overlap between the phonemes of different
languages and dialects, which may be helpful to im-
prove the performance of low-resource languages.
In the proposed approach we introduce auxiliary
data to the model through an additional discrim-
inator, designed to operate on short segments of
speech to capture high-frequency similarities. We
found optimal segment length for this extra dis-

5https://github.com/descriptinc/
melgan-neurips

criminator to be 512-time steps. We consider two
ways of feeding the extra data to the model:

• As part of first setting, the additional discrimi-
nator is fed a batch of 512-time step segments
of two types, one generated directly by pass-
ing a small window of the auxiliary dataset
mel-spectrogram to the generator, and another
produced by sub-sampling the audio gener-
ated with the main dataset conditioning to pass
to the main discriminators.

• While in the second setting, the additional
discriminator accepted a batch of 512-time
step segments both are sub-sampled from the
audio generated with the main dataset condi-
tioning to pass to the main discriminators, but
to introduce the auxiliary dataset, part of the
ground truth segments are replaced by random
segments of the auxiliary dataset.

The mixing ratio between the two types of seg-
ments in both settings is a hyper-parameter that we
optimise experimentally.

Passing the auxiliary data to the generator in the
first setting provides a more complicated task for
the generator to learn, while in the second setting
the generator’s task remains unchanged; however
the additional discriminator is provided with more
ground truth samples and hence enriches the adver-
sarial signal passed back to the generator. Finally,
the additional discriminator uses half of the stan-
dard MelGAN discriminators’ capacity6, which we
found to perform roughly on par with the full ca-
pacity variant.

3.2 Datasets
We used the Arabic Speech Corpus dataset3 as our
main dataset. The training set contains 1813 spo-
ken utterances of a standard Arabic dialect recorded
by a single speaker, covering a duration of 2 hours;
additional 100 samples form a test set. The data is
labelled with diacritic Arabic text (Sweet, 1877).
In addition to the main dataset, we used three aux-
iliary datasets as described in the table 1. The aux-
iliary datasets include LJSpeech1, Tunisian_MSA7

and AMMI_Speech datasets8. The AMMI_Speech
dataset is gathered by AMMI9 student. The

6half the number of convolution filters
7https://www.openslr.org/46/
8https://github.com/besacier/AMMIcourse/tree/

master/STUDENTS-RETURN/Arabic4
9African Master of Machine Intelligence - https://

aimsammi.org
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Name Language Dialect Speakers Quality Hrs
LJSpeech English - 1 high 24

Tunisian_MSA train Arabic Tunisian 118 low 11
Tunisian_MSA test Arabic Tunisian/Libyans 4 average 2

AMMI_Speech Arabic Standard 3 low 6

Arabic Speech Corpus Arabic Standard 1 high 2

Table 1: The datails of the auxiliary datasets used.

Tunisian_MSA train and test set are separated into
two auxiliary datasets due to their varying quality.

3.3 Evaluation Metrics

For evaluation, two metrics are employed: the
Mean Opinion Score (MOS) and a novel quanti-
tative metric, the Conditional Fréchet Wav2Vec
Distance (cFWD).

Mean Opinion Score In order to compare the
performance of our models, we carried out Mean
Opinion Score (MOS) tests. We gathered 100 sam-
ples generated by the different models using the
same conditioning, along with 100 original sam-
ples. All the generated samples were not seen dur-
ing training. MOS scores were computed on a pop-
ulation of 53 individual raters; each of them had
to evaluate blindly a subset of 150 samples drawn
randomly from the overall pool and assign a score
from 1 to 5. Our tests were crowdsourced over mul-
timedia platforms and testers were asked to wear
headphones and be Arabic speakers. Additionally,
we computed the 95% confidence intervals for the
scores:

µ̂i =
1

Ni

Ni∑

k=1

si,k

CIi =

[
µ̂i − 1.96

σ̂i√
Ni

, µ̂i + 1.96
σ̂i√
Ni

]

Conditional Fréchet Wav2Vec Distance This
metric is inspired by the DeepSpeech Distances
(Bińkowski et al., 2019) and analogous to Fréchet
Inception Distance (FID, Heusel et al., 2017) com-
monly used in generative modelling of images.
In order to extract the high-level features from
raw Arabic audio, the DeepSpeech2 model was
replaced by the pre-trained Wav2Vec2ForCTC Ara-
bic speech recognition model found in the Hug-
gingFace Transformers library4.

To obtain reasonable estimates of this metric it
is preferred to use sufficiently large sets of samples.

The original implementation used 50 thousand sam-
ples (Soloveitchik et al., 2021). However, as this
would be too resource-intensive, we artificially ex-
pand the generated and real sets by randomly sub-
sampling small windows from each audio.

The distribution for a set of waveforms is formed
by sub-sampling thirty 2-second-long sub-samples
from each audio; this way we construct fixed-length
sub-samples from arbitrary-long ones, covering
their whole length and putting equal weight to short
and long samples. Finally, the features extraction
is done by framing each sub-sample using a 40ms
window of raw audio at 16kHz and stride of 20ms,
passing the frames to the speech recognition model,
and extracting the 512-dimensional output of the
feature_projection layer, and then taking the av-
erage of the features along the temporal dimension.
The Fréchet distance is calculated by comparing
the distributions of such representations of real and
generated samples from our test set, which has
100 samples, resulting in 3000 samples after sub-
sampling. For representations X ∈ Rm×d and
Y ∈ Rn×d, where d is the representation dimen-
sion, and m is the number of samples, the (squared)
Fréchet distance is obtained using the following es-
timator:

̂Fréchet 2(X,Y ) =

∥X − µY ∥22 + Tr
(
ΣX +ΣY − 2 (ΣXΣY )

1/2
)

An initial evaluation of the metric involved cal-
culating the Fréchet distance between a reference
sound and the same sound after adding multiple
levels of Gaussian noise separately. The results are
shown in figure 1.

4 Experiments

In this section we provide details on the experi-
ments, including baselines and ablation study. We
train our models using our main dataset, the Arabic
Speech Corpus dataset3, either with or without ad-
dition of the one of the auxiliary datasets described
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Figure 1: An initial evaluation for the Conditional
Fréchet Wav2Vec Distance using different levels of
Gaussian noise.

in table 1. In all experiments, unless stated other-
wise, the English dataset1 is used as an auxiliary
dataset. The MelGAN model (Kumar et al., 2019)
with an amended downsampling schedule was used
in all experiments, and we added one additional dis-
criminator when auxiliary datasets were analyzed.
Currently, no clear strategies have been developed
for GANs with auxiliary data; thus, fine-tuning and
training from scratch using both the main and aux-
iliary datasets seems reasonable and we explored
both here.

4.1 Baselines
We compare MelGAN model with a model de-
scribed by Fahmy et al. (2020) to evaluate its ef-
fectiveness for Arabic language synthesis. Based
on a modified deep architecture from Tacotron
2 (Shen et al., 2018), the model creates a mel-
spectrogram of diacritical Arabic text as an inter-
mediate feature representation, before using Wave-
Glow (Prenger et al., 2019) as a vocoder to synthe-
size high-quality Arabic speech. To develop the
final model, Fahmy et al. (2020) started from En-
glish pre-trained model and fine-tuned using Arabic
Speech Corpus dataset3.

To examine the effectiveness of the additional
discriminator (through which the auxiliary data is
introduced), we compare the baseline MelGAN
with the results obtained with different mixing ra-
tios for the main and auxiliary segments that are
passed to this additional discriminator.

4.2 Fine-tuning
In this experiment, we carry out transfer learning in
its plain form, i.e. we start with a model pre-trained
on an auxiliary dataset and then fine-tune using our

main dataset. We use the standard MelGAN ar-
chitecture (Kumar et al., 2019), with no additional
discriminators. The initial pre-training is done on
English data1, followed by fine-tuning on 2 hours
of Arabic data3.

Transfer learning in our setting involves addi-
tional challenge that is specific to adversarial mod-
els: it seems crucially important to ensure that
the min-max game between the generator and dis-
criminator is balanced both during pre-training and
fine-tuning. The latter becomes difficult e.g. in a
situation when only one of the networks is avialable
with pre-trained weights. This unfortunately hap-
pens to be the case with MelGAN, whose generator
weights are publicly available from official repos-
itory5, but discriminator weights are not shared.
Of course pre-training both generator and discrim-
inator from scratch using the English dataset is
technically an option, however it is also computa-
tionally intensive, and was beyond capacity of our
resources. In order to address this issue, we fine-
tuned the discriminator alone with the main dataset
for 2K steps while fixing the generator weights be-
fore fine-tuning the entire model. The discriminator
was initially initialized either randomly or using
the weights of a pre-trained Arabic discriminator.

4.3 Training GANs with auxiliary data

In this set of experiments we introduce an auxil-
iary dataset by developing a variant of MelGAN
architecture with an additional discriminator. Orig-
inal discriminators in MelGAN use longer seg-
ments than discriminators in GAN-TTS. In training
the proposed architecture, we used both the main
dataset and a range of auxiliary ones; including an
English dataset1, two Arabic dialect datasets7, or
a low-quality standard Arabic dataset8. According
to how the auxiliary dataset is introduced to the
model, the experiments can be divided into two
parts as follows:

Generator with auxiliary segments In this set-
ting, we send to the generator the mel-pectrogram
of 512-time steps windows of the auxiliary dataset.
The resulting segments are added to the discrim-
inator along with 512-time steps segments sub-
sampled from the audio generated given the main
dataset conditioning. Mixing ratio refers to the
ratio between these two types of segments.

Extra ground truths for discriminator In this
setting, as illustrated in figure 2, we present a way
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Figure 2: An illustration of the second part of training
GANs with auxiliary data experiments, where we pass
as extra ground truths for the discriminator.

to incorporate auxiliary data into the model with-
out complicating the generator task. The additional
discriminator batches are derived by subsampling
512-time steps segments from audios generated
given the main dataset conditioning. The ground
truths for part of this segment are replaced with
random segments from the auxiliary datasets, but
the rest remain fixed. Mixing ratio refers to the ra-
tio between these two types of segments. Through
this, we can improve the discriminator adversarial
signal being fed back to the generator. A small win-
dow was used to concentrate on the high-frequency
features. Different segments sizes were tested and
512 was found to perform the best.

4.4 Efficiency analysis of various speech
datasets as auxiliary dataset

We present here a discussion of the effects of us-
ing various auxiliary datasets. For the comparison,
each of the auxiliary datasets is introduced sep-
arately as additional ground truths for the extra
discriminator with a mixing ratio of 1:1 between
the main and the auxiliary datasets respectively.

4.5 Ablations

The proposed model combines several hyper-
parameters and we have two approaches to intro-
ducing auxiliary datasets to the model; we hence
conduct an ablation study to understand how dif-
ferent choices impact the model. In light of our
limited resources, the ablation study was carried
out using English as the auxiliary dataset, which
provided the best results compared to other auxil-
iary datasets. Our experiments examined different

ratios for mixing the Arabic and English segments
passed to the extra discriminator. Further, we com-
pared how well the auxiliary dataset worked either
as additional ground truths or as a generator input.
Finally, we evaluated the effect of smaller segment
lengths and the full capacity of the extra discrimi-
nator.

4.6 Training Details

All the training is performed on the Arabic Speech
Corpus train-set3 and one of the three additional
datasets. The training settings is the same as de-
scribed in the MelGAN paper (Kumar et al., 2019).
The experiments ran on Google Cloud Virtual Ma-
chine with a 4-Core CPU and Nvidia T4 GPU. Each
model is trained for 500000 steps.

5 Results

This section summarizes all the results of the ex-
periments described in the Experiments section 4.
We evaluated the performance on the test set of
the Arabic Speech Corpus dataset3 using the MOS
and the average of the last five Conditional Fréchet
Wav2Vec Distance scores. It is worth noting that
the mean of the best and the mean of the last five
scores produced almost the same ordering. Also,
in all tables and figures, the mixing ratio represents
the ratio between main and auxiliary segments re-
spectively we feed to the additional discriminator.

Table 2 presents the quantitative results of the
proposed model incorporating the English dataset1

as additional ground truths for the extra discrimi-
nator, as well as the MelGAN (Kumar et al., 2019)
model and WaveGlow model (Prenger et al., 2019).
The table shows the models that have 4 or less ad-
ditional signals compared to the MelGAN model.
The addition of one segment of the Arabic dataset
would result in adding two additional signals: one
to the generator’s adversarial loss and one to the
discriminator’s adversarial loss, while the addition
of one segment of the English dataset would result
in one signal added to the discriminator’s adver-
sarial loss. The results show that MelGAN is able
to achieve a performance that is comparable to
WavGlow in the synthesis of Arabic speech. Fur-
thermore, the study shows that MelGAN + Extra
Disc outperforms both MelGAN and WaveGlow
models, and adding auxiliary dataset increases the
performance even further. MelGAN + Extra Disc
and mixing ratio of 1:2 between Arabic and En-
glish data sets respectively provided the best per-
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formance across all models. Figure 3 shows the
importance of adding a mixture of Arabic and En-
glish segments compared to the extreme cases.

Figure 3: Conditional Fréchet Wav2Vec Distance re-
ported every 500 steps during training of MelGAN +
Extra Disc model with three different mixing ratios.

Table 3 represents the quantitative results of
using different auxiliary datasets 1 as additional
ground truths for the extra discriminator in the pro-
posed model. The mixing ratio between the main
and auxiliary datasets was 1:1. The results shows
that different language auxiliary datasets (English1)
with high quality produce better results than the
same language or dialects (Standard8, Tunisian7

or Libyan Arabic7) auxiliary datasets with low or
average quality.

FWD Auxiliary Dataset
27.50 Tunisian_MSA trian
18.64 AMMI_Speech
18.56 Tunisian_MSA test
16.95 LJSpeech

Table 3: Average of the last five Conditional Fréchet
Wav2Vec Distance for MelGAN + Extra Disc models
trained with different auxiliary datasets fixed mixing
ration if 1 : 1. The extra segments is added as an
additional ground truths.

Tables 4, 5, 6 shows the results of the ablation
study. According to the study, MelGAN + Ex-
tra Disc with 1:2 mixing ratio between Arabic3

and English1 data sets provided the best perfor-
mance across all models. As well, adding auxiliary
datasets as additional grounds truths in the extra
discriminator is better than including the auxiliary
dataset in the generator itself. Last but not least, by
using full capacity extra discriminator and reducing

segment lengths, we would achieve better results
than with the current settings.

FWD How Auxiliary Date Introduced
13.57 Generator with auxiliary segments
11.16 Extra ground truths for discriminator

Table 5: Average of the last five Conditional Fréchet
Wav2Vec Distance for MelGAN + Extra Disc models
with different ways of introducing the extra segments to
the models and finxed mixing ratio of 1 : 2.

FWD Capacity Length
22.94 Half 512
18.85 Full 512
13.57 Full 256
10.46 Full 128

Table 6: Average of the last five Conditional Fréchet
Wav2Vec Distance for MelGAN + Extra Disc models
with different extra discriminator’s capacity and seg-
ment length and mixing ratio of 1 : 1.

6 Ethical considerations

This paper aims to advance the field of text-to-
speech and hence all considerations related to po-
tential nefarious applications of such technology
apply to this work. This includes the potential use
of such systems to imitate voice of a certain individ-
ual in order to present a message that such person
has never uttered. We also acknowledge that TTS
systems carry a bias towards the dialect/accent of
the population whose speech was used as a training
data. However, we hypothesise our model might be
suitable to counter such effects: as it has been de-
signed for low-resource languages, it might well be
used to improve TTS systems for underrepresented
dialects or accents of otherwise well-modelled lan-
guages, in turn reducing geographical bias affecting
certain populations.

Nevertheless, we believe that overall benefits of
improved text-to-speech models outweight these
and other ethical risks.

7 Conclusion

In this work, we have proposed an extension for
MelGAN that utilizes information of auxiliary high-
resource languages/dialects to help training of low
resource language audio synthesis models. The pro-
posed approach outperformed standard MelGAN
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Model Mixing Ratio FWD MOS 95%CI

WaveGlow − − 3.13 ±0.061
MelGAN − 18.01 3.10 ±0.063
MelGAN + Extra Disc 1 : 0 22.94 3.29 ±0.057
MelGAN + Extra Disc 2 : 0 12.15 3.40 ±0.056
MelGAN + Extra Disc 1 : 1 16.95 3.55 ±0.058
MelGAN + Extra Disc 1 : 2 11.16 3.63 ±0.056

Original − − 3.88 ±0.061

Table 2: Mean Opinion Score and average of the last five Conditional Fréchet Wav2Vec Distance scores for the
MelGAN + Extra Disc models that have 4 or less additional signals compared to the MelGAN model. The extra
segments is added as an additional ground truths. Note here, for MOS of WaveGlow model the samples are generated
using the predicted mel-spectrogram not the ground truth mel-spectrogram.

Arabic
English

0 segments 1 segments 2 segments 3 segments 4 segments

0 segments 18.01 105.51 − − −
1 segments 22.94 16.95 11.16 27.46 19.80
2 segments 12.15 11.68 17.30 18.27 17.37
3 segments 22.03 13.54 12.24 22.03 16.85
4 segments 13.07 18.59 16.84 18.73 15.41

Table 4: Average of the last five Conditional Fréchet Wav2Vec Distance for MelGAN + Extra Disc models with
different mixing ratios. The extra segments is added as an additional ground truths.

model as well as the baseline WaveGlow in both the
quantitative and subjective human evaluation. We
demonstrated in an ablation study the importance
of different components of the system to achieve
good results. We hope to see how this approach can
help training of the audio synthesis models in the
future. Before that, we have trained the MelGAN
model for conditional Arabic TTS using a publicly
available dataset.

Furthermore, We have proposed a quantitative
metric for generative models of Arabic speech that
we called Conditional Fréchet Wav2Vec Distance,
and demonstrated experimentally that it ranks mod-
els in line with Mean Opinion Scores obtained
through human evaluation. The metric is based
on the available Wav2Vec2ForCTC Arabic speech
recognition model. Our quantitative results as well
as subjective evaluation of the generated samples
showcase the efficiency of our proposed approach
for speech generation.
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