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Abstract

In this paper, we describe our systems submit-
ted to the NADI Subtask 1: country-wise di-
alect classifications. We designed two types of
solutions. The first type is convolutional neural
network CNN) classifiers trained on subword
segments of optimized lengths. The second
type is fine-tuned classifiers with BERT-based
language specific pre-trained models. To deal
with the missing dialects in one of the test sets,
we experimented with binary classifiers, an-
alyzing the predicted probability distribution
patterns and comparing them with the devel-
opment set patterns. The better performing ap-
proach on the development set was fine-tuning
language specific pre-trained model (best F-
score 26.59%). On the test set, on the other
hand, we obtained the best performance with
the CNN model trained on subword tokens ob-
tained with a Unigram model (the best F-score
26.12%). Re-training models on samples of
training data simulating missing dialects gave
the maximum performance on the test set ver-
sion with a number of dialects lesser than the
training set (F-score 16.44%)

1 Introduction

Arabic Natural Language Processing (NLP) is tra-
ditionally faced with the problem of dialect iden-
tification. Although Arabic is spoken by a large
community of about 400 million people, this com-
munity is distributed around different countries
and extremely diverse in term of regional linguistic
varieties, often called dialects. Modern Standard
Arabic (MSA), which is the official language in
many Arabic speaking countries is highly formal
language used in books and official communica-
tion, but newspapers and online writing already
show considerable diversification, which is greatly
increased in the spoken language of everyday com-
munication. MSA differs from regional varieties

lexically, syntactically and phonetically (Zaidan
and Callison-Burch, 2014).

In the long history of Arabic Dialect Identifica-
tion (ADI), multiple datasets have been developed.
Some of the most popular datasets include: The
ADI VarDial dataset (Zampieri et al., 2017, 2018),
which includes Arabic text that is both speech tran-
scribed and transliterated (Malmasi et al., 2016; Ali
et al., 2016). Arabic Online Commentary (AOC) is
another dataset, which includes a large-scale repos-
itory of Arabic dialects obtained from reader com-
mentary of online Arabic newspapers (Zaidan and
Callison-Burch, 2011). Multi Arabic Dialect Ap-
plications and Resources (MADAR) corpus consti-
tutes parallel sentences written in different Arabic
city dialects from travel domain (Bouamor et al.,
2019).

Classification methods tried out on these
datasets range from feature-based machine learn-
ing approaches (Touileb, 2020; Younes et al., 2020;
AlShenaifi and Azmi, 2020; Harrat et al., 2019),
n-gram based language models (Çöltekin et al.,
2018; Butnaru and Ionescu, 2018) and ensemble
models El Mekki et al. (2020) to neural and pre-
trained models (AlKhamissi et al., 2021; El Mekki
et al., 2021; Elaraby and Abdul-Mageed, 2018; Ali,
2018).

In this paper, we describe the solutions submit-
ted by our team to the Nuanced Arabic Dialect
Identification (NADI) shared task 2022 (Abdul-
Mageed et al., 2022), subtask-1, which targets a
more fine-grained classification than in previous
tasks. The NADI shared task focuses on the study
and analysis of Arabic dialects at country-level,
province-level and city-level. NADI 2020 (Abdul-
Mageed et al., 2020) and 2021 (Abdul-Mageed
et al., 2021) tasks focused on dialects across 21
Arab countries and 100 provinces.

This paper is organized as follows: The data
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Models Fscore(%) Accuracy(%)
Unigram_CNN 17.06 32.45
BPE_CNN 17.17 33.97
AraBERT 21.38 37.54
Multi-dialect-Arabic-BERT 26.59 42.61

Table 1: Evaluation results on development set

Average Positive Probabilities

Dialect TEST-B DEV1 DEV2 DEV3 DEV4
Bahrain 0.8995 0.8907 0.8905 0.8965 0.8973
Jordan 0.8888 0.9053 0.9041 0.9146 0.9097
Lebanon 0.8557 0.8588 0.8622 0.8576 0.8605
Qatar 0.8984 0.8798 0.8788 0.8811 0.8837
UAE 0.9244 0.9009 0.9023 0.9019 0.9040
Oman 0.9203 0.9219 0.9219 0.9194 0.9228
Algeria 0.7978 0.8806 0.8588 0.8825 0.8836
Egypt 0.9432 0.9447 0.9456 0.9076 0.9496
Libya 0.8973 0.9185 0.9168 0.9215 0.9105
Palestine 0.8990 0.9086 0.9080 0.9227 0.9072
Tunisia 0.8589 0.9162 0.9141 0.9080 0.9185
Syria 0.8840 0.8969 0.8944 0.9020 0.8973
Morocco 0.8417 0.8735 0.8626 0.8767 0.8751
KSA 0.9408 0.916 0.9166 0.9205 0.9227
Yemen 0.8793 0.8899 0.8889 0.8991 0.8918
Kuwait 0.9459 0.9297 0.9296 0.9329 0.9299
Iraq 0.8652 0.8896 0.8857 0.8899 0.8623
Sudan 0.8276 0.8931 0.8990 0.9128 0.8975

Table 2: Comparing the average positive predicted prob-
abilities for each binary classifier on simulated devel-
opment set and TEST-B. The possible missing dialects
identified by our approach are bolded.

statistics is described in Section 2, methods used
are discussed in Section 3, experimental results are
reported in Section 5, followed by conclusions in
Section 6.

2 Data

The subtask 1 of NADI 2022 provides training and
development sets with 18 country dialects. The
training set constitutes 20,398 instances and de-
velopment set 4871 instances. In the evaluation
phase, two test sets were provided, TEST-A with
4871 instances and TEST-B with 1474 instances.
TEST-A had all the 18 dialects as in the training
set, while TEST-B had k missing dialects, where k
< 18.

3 Models and Methods

We tried two kinds of solutions described in the
following subsections.

3.1 Approach 1: Sub-word Level Convolution
Neural Network

In our first solution, we train from scratch a Convo-
lution Neural Network (CNN) on subword tokens
produced with different algorithms. The CNN is
an adapted version of the architecture proposed
by Kim et al. (2016). This architecture is origi-
nally used for building a neural language model
(NLM). To use this architecture for dialect classi-
fication, we take the CNN encoder part substitute
the decoder part with dense and softmax layers.
We used the CNN filter sizes as proposed by Kim
et al. (2016). In general, the filter size can be seen
as the length of n-grams and hence using different
filters helps to capture text units of different spans.

To decide the optimal splits for input subword
tokenization, we tune on the development set the
vocabulary size (vocab_size) of two subword tok-
enization algorithms from the SentencePiece1 li-
brary: the Unigram model and Byte Pair Encoding
(BPE). We experimented with gradually increasing
vocab_size, ranging from the character vocab_size
to 0.4 ∗ |V | following Mielke et al. (2019), where
|V | is the word-level vocabulary size, and kept the
one which gave the best performance on the devel-
opment set. The optimal vocabulary size turned
out to be 20,045 for Unigram model and 7,045 for
BPE.

3.2 Approach 2: Pre-trained Models

Our second solution makes use of pre-trained mod-
els, specifically BERT-based (Devlin et al., 2019)
language-specific models. We used AraBERT (An-
toun et al.)2 and Multi-dialect-Arabic-BERT (Ta-
lafha et al., 2020)3 models for our experiments.
AraBERT is a BERT-based model, pre-trained ad-
ditionally with Arabic articles from Wikipedia, OS-
CAR4 and OSIAN corpus (Zeroual et al., 2019).
Multi-dialect-Arabic-BERT model is initialized
with the weights of Arabic-BERT model5 and fur-
ther trained on the 10M unlabelled tweets provided
by NADI shared task. For loading and fine-tuning
the pretrained models, we used the HuggingFace6

1https://github.com/google/sentencepiece
2https://huggingface.co/aubmindlab/

bert-base-arabert
3https://huggingface.co/bashar-talafha/

multi-dialect-bert-base-arabic
4https://oscar-corpus.com/
5https://huggingface.co/asafaya/

bert-base-arabic
6https://huggingface.co/
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transformer library and followed BERT single sen-
tence classification pipeline.

For TEST-A, we used the fine-tuned AraBERT
and Multi-dialect-Arabic-BERT models directly
for the predictions. In TEST-B, we did additional
adaptations, specifically to deal with the unknown
or missing dialect(s) (described in Subsections 4.1
and 4.2).

4 Adaptation to Unknown Set of Dialects
(TEST-B)

To deal with the missing dialects in TEST-B, we ap-
ply two additional techniques to the Multi-dialect-
Arabic-BERT model as the baseline. These tech-
niques are described in the remainder of this sub-
section.

4.1 Label Smoothing

Label smoothing helps to alleviate overfitting prob-
lem (Müller et al., 2019) and is used as an effective
regularization technique in neural models. We used
label smoothing (LS) with a specific α (hyperpa-
rameter) for fine-tuning the pre-trained model.

4.2 Binary Classifiers

In order to identify the possible missing dialects,
we train binary classifiers, one for each dialect
in the training set. Given an input sentence, we
pass it through each of the 18 classifiers to identify
whether the sentence belongs to the particular di-
alect class/not. For instance, if the classifier is for
dialect Egypt, then it predicts whether the sentence
dialect is Egypt/Not.

Uneven distribution of training data across di-
alects has a strong impact on models in such binary
classification set-up causing strong preferences for
some classes. To deal with this issue, we sam-
ple balanced datasets for each dialect class. For
this, we label all the instances belonging to the
particular dialect class as 1 and sample equal num-
ber of instances from the remaining classes in the
training set without replacement and label it as 0.
This helped in boosting the performance for some
classes.

In an ideal situation, we expect that for a partic-
ular sentence input, only one of the 18 classifiers
predicts 1, which means the sentence belongs to
the respective dialect class. Further in the ideal sce-
nario, for any sentence input, the missing dialects
(in TEST-B) should not be predicted. But, since
these country dialects are closely related and over-

lapping, misclassifications can occur quite often.
To tackle this, we need to devise some approach to
decide a threshold or some pattern that can help us
in deciding the possible missing dialects.

To set the threshold for missing dialects, we
simulate TEST-B conditions on the development
set. We randomly removed some dialect classes
from the development set and performed the eval-
uations. We performed multiple simulations and
recorded the average correct prediction probabili-
ties for each dialect class. We repeated the same
for TEST-B. We then analyzed the probability dis-
tribution patterns and compared the average proba-
bilities of each dialect from TEST-B with the sim-
ulated development sets. Further, we observed
the change/ difference in probabilities and iden-
tified those dialects with an evident drop in aver-
age probabilities. The probabilities for four sim-
ulated development sets are tabulated in Table 2
with the missing dialects as: DEV1: {‘palestine’,
‘yemen’, ‘lebanon’}, DEV2: {‘yemen’, ‘algeria’,
‘syria’}, DEV3: {‘egypt’, ‘tunisia’, ‘morocco’} and
DEV4: {‘sudan’, ‘libya’, ‘iraq’}. Based on these
observations, we selected five dialects: {‘Algeria’,
‘Tunisia’, ‘Morocco’, ‘Iraq’ and ‘Sudan’} as the
missing dialects and retrained the Multi-dialect-
Arabic-BERT model by removing these five di-
alects from the training set.

5 Experimental Settings and Results

The results obtained on the development set are
reported in Table 1. The F-scores obtained
with pretrained models (AraBERT 21.38% and
Multi-dialect-Arabic-BERT 26.59%) is consider-
ably higher than those obtained with the CNN
models (Unigram_CNN 17.06% and BPE_CNN
17.17%).

Table 3 shows the official evaluation of our
models on two test sets provided by the or-
ganizers. In TEST-A (with all the 18 di-
alects), we used the four models: Unigram_CNN,
BPE_CNN, AraBERT and Multi- dialect-Arabic-
BERT. In TEST-B (with missing dialects), we sub-
mitted five models: Unigram_CNN, BPE_CNN,
Multi- dialect-Arabic-BERT, Multi- dialect-Arabic-
BERT_LS (Multi- dialect-Arabic-BERT with Label
Smoothing with α = 0.1) and Binary classifiers
+ Multi- dialect-Arabic-BERT (Binary classifiers
with Multi- dialect-Arabic-BERT). In Binary clas-
sifiers + Multi- dialect-Arabic-BERT, we use the
binary classifier approach as discussed in Section
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Test Set Models Fscore (%) Accuracy (%)

TEST-A

Unigram_CNN 16.18 31.39
BPE_CNN 16.66 33.50
AraBERT 19.99 36.65
Multi-dialect-Arabic-BERT 26.12 42.07

TEST-B

Unigram_CNN 8.71 18.59
BPE_CNN 7.58 19.34
Multi-dialect-Arabic-BERT 13.47 27.88
Multi-dialect-Arabic-BERT_LS 13.75 27.88
Binary classifier + Multi-dialect-Arabic-BERT 16.44 27.68

Table 3: Official evaluation results on test set

4.2 for identifying the possible missing dialects
and further retraining the model.

It can be observed that the best performance on
TEST-A was achieved with Multi-dialect-Arabic-
BERT model. On TEST-B, pretrained models work
better with the best result achieved in the last set-
ting (Binary classifiers + Multi- dialect-Arabic-
BERT model).

Now, we discuss briefly the different outcomes
on the two test sets. In both test sets, the best results
are obtained by language specific pre-trained mod-
els. In TEST-B, all the scores are higher and the
results with pretrained models are much better. We
believe that this difference can be attributed to two
factors. First, the smaller number of classes seems
to make the task easier for all the models. Sec-
ond, our adaptation techniques are better suited to
the setting with pretrained models. Label smooth-
ing helped in improving the performance slightly
(Multi- dialect-Arabic-BERT_LS) and binary clas-
sifiers with model retraining brings additional im-
provement.

Overall, based on the official results, we
achieved a F-score of 21.28%.

6 Conclusion

In this paper, we described and discussed two kinds
of solutions for the NADI shared task, subtask 2:
automatic country-wise identification of Arabic di-
alects. Among the solutions that we submitted, the
language specific pre-traiend models gave the best
performance in both TEST-A and TEST-B. Label
smoothing and simulating the missing dialect sce-
nario with binary classifiers were our techniques
for TEST-B with unknown set of labels. These
techniques improve the performance compared to
the baseline setting. In TEST-B, adaptation tech-
niques enable better performance on this set, but
there is still a lot of room for improving the perfor-

mance.
In future work, we aim to pursue the develop-

ment of CNN architectures for fine-grained dis-
crimination. We plan to investigate self-attention
mechanisms with CNN and unsupervised deep em-
bedding clustering.
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