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Abstract

Closely related languages are often mutually in-
telligible to various degrees. Therefore, speak-
ers of closely related languages are usually ca-
pable of (partially) comprehending each other’s
speech without explicitly learning the target,
second language. The cross-linguistic intel-
ligibility among closely related languages is
mainly driven by linguistic factors such as lexi-
cal similarities. This paper presents a computa-
tional model of spoken-word recognition and
investigates its ability to recognize word forms
from different languages than its native, train-
ing language. Our model is based on a recur-
rent neural network that learns to map a word’s
phonological sequence onto a semantic repre-
sentation of the word. Furthermore, we present
a case study on the related Slavic languages
and demonstrate that the cross-lingual perfor-
mance of our model not only predicts mutual
intelligibility to a large extent but also reflects
the genetic classification of the languages in
our study.

1 Introduction

Speakers of closely related languages are usually
capable of understanding each other’s speech to
a great degree without having a prior exposure
to the second language (L2) or switching a lin-
gua franca for communication1 (Jan and Zeevaert,
2007; Gooskens, 2019). The ability of the lis-
tener to comprehend spoken utterances in a dif-
ferent language (L2) using their native language
(L1) competence is termed in the sociolinguistics
literature as intercomprehension. Gooskens (2017)
categorized the factors that facilitate intercompre-
hension into linguistic factors (e.g., inherent cross-
linguistic similarity between L1/L2) as well as
extra-linguistic factors (e.g., listener’s attitude to-
wards communicating in a different language than
their own L1).

1A language used for communication between people who
do not share a native language.

Several studies in the sociolinguistics literature
have documented the levels of intercomprehension
between related languages through empirical test-
ing of mutual intelligibility with human subjects of
different language backgrounds (Gooskens, 2007,
2017; Van Heuven, 2008, inter alia). It has been
observed that objective measures of cross-language
distance—such as lexical distance—are strong pre-
dictors of cross-linguistic intelligibility. Therefore,
mutual intelligibility of related languages is largely
driven by the presence of word cognates—words
that encode the same concepts with similar phono-
logical forms across languages.

From the psycholinguistic perspective, the lis-
tener’s ability to recognize word forms in a dif-
ferent language is an example of the remarkable
human ability to cope with the variability of speech
(Pisoni and Levi, 2007). Thus, spoken-word recog-
nition across different, but related languages can be
considered as lexical access problem—processing
the spoken-word form to activate and retrieve the
lexical category that is intended by the speaker.
In the cognitive modeling literature, the task of
spoken-word recognition has been addressed as a
mapping problem between an acoustic-phonetic
representation of the word form onto its semantic
representation in memory (see Weber and Scharen-
borg (2012) for a detailed overview). Recently,
deep neural networks have been explored as mod-
els of spoken-word processing and recognition in
several studies (Magnuson et al., 2020; Mayn et al.,
2021; Matusevych et al., 2021). Our paper adds
another contribution to this line of research by
considering the cross-lingual aspects of spoken-
word recognition and sheds light on its contribution
to cross-linguistic intelligibility using a computa-
tional model. Our contribution is two-fold: (1) we
present a neural model of spoken-word recogni-
tion and investigate the degree to which a monolin-
gual model—i.e., has only been trained on a single
language—is able to recognize the meaning of spo-
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ken words across related languages, and (2) we
present a case study on the Slavic languages which
are remarkably similar and mutually intelligible
to various degrees. Concretely, we investigate the
following research questions:

RQ1 Does the cross-lingual performance of
model predict the mutual intelligibility of the
languages in our study?

RQ2 Do the results of cross-lingual evalu-
ation reflect the genetic relations among the
studied Slavic languages?

RQ3 Which linguistic distance measures
predict the cross-lingual performance of the
monolingual models? and how do they com-
pare to predictors of human performance?

2 Background and Related Work

2.1 Slavic Intercomprehension
Previous sociolinguistic research on intercompre-
hension and mutual intelligibility has focused on
two related questions: (1) how to experimentally
measure the level of mutual intelligibility across re-
lated languages using functional testing and human
listeners? and (2) which measures of linguistic
distance are strong predictors of cross-language
intelligibility? (Golubović and Gooskens, 2015).
One of the earliest sociolinguistic studies has in-
vestigated the intelligibility of Spanish and Brazil-
ian Portuguese (Jensen, 1989). For languages
within the Slavic language family, Golubović and
Gooskens (2015) have tested mutual intelligibil-
ity across two modalities—i.e., text and speech—
using three cross-language tasks: (1) word trans-
lation, (2) cloze test and (3) picture naming task.
Golubović and Gooskens (2015) have observed
that the degree of cross-language intelligibility is
largely dependent on the genetic proximity of the
languages under study. For example, language
pairs within the same Slavic sub-family such as
Czech and Polish (West Slavic group) are more mu-
tually intelligible than language pairs that cross the
group division (Czech and South Slavic languages
such as Croatian or Bulgarian). Furthermore, the
authors demonstrated that lexical and phonetic sim-
ilarities across languages are strong predictors of
their intelligibility.

Other studies on Slavic intercomprehension take
an information-theoretic angle to analyze this phe-
nomenon. For example, Jagrova et al. (2018) inves-

tigated the effect of in-context predictability (or lex-
ical surprisal) on the written intelligibility of Czech
text for Polish readers and vice versa. Moreover,
the information-theoretic metric of word adapta-
tion surprisal has been shown to predict asymmet-
ric intelligibility of Slavic readers of Cyrillic script,
namely Russian and Bulgarian (Mosbach et al.,
2019). In the speech modality, Kudera et al. (2021)
have analyzed the cognate facilitation effect on
cross-language auditory lexical processing using a
cross-lingual priming study. In summary, the stud-
ies we reviewed in this section have demonstrated a
great degree of mutual intelligibility among speak-
ers of Slavic languages, and this intelligibility can
be predicted by linguistic measures of similarity to
a great degree.

2.2 Computational Models of Spoken-word
Processing

Using computational models based on deep neural
networks (DNNs) to simulate spoken-word pro-
cessing have been proposed in several prior studies.
Magnuson et al. (2020) presented a minimal neural
architecture based on an LSTM to map between
acoustic word forms onto their respective sparse
semantic representation. Mayn et al. (2021) ana-
lyzed the effect of speech variability on spoken-
word recognition using a DNN model trained on
German words from read speech corpora. As part
of their experiments, the authors have shown that
the model can fairly recognize word cognates from
related Germanic languages (namely Dutch and
English), and the cross-lingual performance of the
model reflected language proximity. Matusevych
et al. (2021) introduced a phonetic model of spoken-
word processing and demonstrated that the model
predicts perceptual difficulties of non-native speak-
ers. It was also shown that neural models of spoken-
word processing capture cross-linguistic, typolog-
ical similarities in their representational geome-
try (Abdullah et al., 2021b). Macher et al. (2021)
proposed a recurrent model that takes as input a
phonological sequence and projects it onto a se-
mantic space to investigate orthographic effects
on word recognition. These computational studies
have demonstrated the usefulness of neural net-
works to simulate human listeners who have been
exposed to a single language, which enables re-
searchers to test specific hypotheses or isolate the
effect a particular linguistic level on language pro-
cessing.



56

Phonological
Input /mj/ /i/ /r/

Phonemic
Feature
Representation

RNN Layer LSTM LSTM LSTM

MLP
Output
Layer

Word
Meaning
Representation

L = MSE

Figure 1: Schematic architecture of the model.

3 The Model

Similar to the work of Macher et al. (2021), our
model takes a phonological sequence (spoken word
form) as input, builds up a whole-word phono-
logical representation of the sequence, and then
projects it onto a semantic space (meaning repre-
sentation) of the lexical item encoded by the word
form. Formally, we model the spoken-word recog-
nition task of as a mapping function Fθ : Φ −→ S,
where Φ is the (discrete) space of phonological
word forms, S is the word semantic space, and θ
are the parameters of the mapping function. Since
phonological word forms can have any length, we
model the function F using a recurrent neural net-
work (LSTM) followed by a multi-layer perceptron
(MLP) (see Figure 1). Given the word form of
the lexical category w as a phonological sequence
Φ(w) = φ1:τ = (φ1, φ2, . . . , φτ ), a vector repre-
sentation is computed as

v = F(φ1:τ ;θ) ∈ RD (1)

Here, D is the dimensionality of the semantic space.
Since our goal is to map the phonological input
onto a semantic representation, the learning objec-
tive is based on vector regression loss and it aims
to minimize the term

L = ||v − Λ(w)||2 (2)

where Λ(w) ∈ RD is the ground-truth distributed
representation, or semantic word embedding, of
the lexical category w. We assume that continuous-
space, distributed word representations are avail-
able to the model during training.

3.1 Phoneme Representation
Each phoneme in the input phonological sequence
φ1:τ = (φ1, φ2, . . . , φτ ) is represented as a fea-

Figure 2: t-SNE visualization of phoneme embeddings
vectorized with PHOIBLE feature set. One can notice
two clear clusters of consonants (on the left) and vowels
(on the right), as well as a visible difference in the
positioning of front and back vowels, fricatives, plosives,
etc.

ture vector based on the PHOIBLE feature set
(Moran and McCloy, 2019). That is, we repre-
sent each of the 135 phonemes in our inventory as
a discrete, multi-valued feature vector of 38 pho-
netic features similarly to the method introduced
in Abdullah et al. (2021a). PHOIBLE includes dis-
tinctive feature data for every phoneme in every
language. The feature system used is created by
the PHOIBLE developers to be descriptively ad-
equate cross-linguistically. In other words, using
PHOIBLE feature set allows our model to capture
phoneme similarities across languages even if the
phonemes have distinct symbols. For each of the
38 available features, every phoneme receives a
value, which is +1 if the feature is present, −1 if it
is not, and 0 if the feature is not applicable.

To illustrate the structure of the phoneme feature
representation, we visualize a two-dimensional pro-
jection of phoneme representations using the t-SNE
algorithm (Van der Maaten and Hinton, 2008) in
Figure 2.

3.2 Word Meaning Representation

To represent the word’s meaning which our model
has to build from the word phonological form,
we use distributed word embeddings from fast-
Text (Mikolov et al., 2018). FastText word vectors
are pre-trained using the continuous bag-of-words
(CBOW) algorithm with position-weights, in di-
mension 300, with character n-grams of length 5,
a window of size 5 with contrastive negative sam-
pling.
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Figure 3: Major countries where Slavic languages are
spoken. Red coloring – for West Slavic, yellow – for
Eastern Slavic, and green – for South Slavic.

3.3 Model Hyperparameters and Training

We train six monolingual models for the follow-
ing languages: Russian, Ukrainian, Polish , Czech,
Bulgarian and Croatian. The final model for each
language is trained using a batch size of 128 for 150
epochs. We employ the ADAM optimizer (Kingma
and Ba, 2014) with the Mean Squared Error (MSE)
loss as the vector regression objective function. To
account for the different size of input phonemic
sequences, we used zero padding to make the size
of the input sequence equal to 16. We employ one
layer of LSTM, followed by a one-layer MLP con-
sisting of a linear followed by a tanh layer. Since
every phoneme has 38 features (every phoneme
embedding has the length of 38), and every input
sequence has the length of 16, the dimensions of
the input matrix are 38×16. We use the hidden di-
mension size of 512, which consequently maps the
phonetic sequence to the 300-dimensional target
of fastText embeddings. All the models are built
using PyTorch (Paszke et al., 2019).

4 Experimental data

In our paper, we present a case study on the Slavic
languages which have been shown to exhibit re-
markable similarities and high degrees of mutually
intelligibility at the conversational level (Sussex
and Cubberley, 2006, Golubović and Gooskens,
2015). We use two languages of each of the three
main branches of Slavic languages, that is, Russian
and Ukrainian for East Slavic; Polish and Czech for

West Slavic; and Bulgarian and Croatian for South
Slavic2. One of the factors that drive our choice is
the availability of high quality G2P tools available.

4.1 Phonetic Transcriptions

To obtain an IPA phonetic transcription for each
orthographic form of each word embedding in our
data, we employ eSpeak speech synthesizer3. For
the Ukrainian data, we use Epitran transcription
library (Mortensen et al., 2018), as this language
is not currently supported by eSpeak. For the lan-
guages which we only used for evaluation (Belaru-
sian, Slovak, Slovene, Latvian, Romanian, German,
and Turkish), the original Northeuralex transcrip-
tions were retrieved using Lexibank (List et al.,
2021)4.

4.2 Training Data

For the training data, we sample experimental word
forms from fastText embeddings while excluding
the word forms that appear in the test data. Apart
from that, we exclude word forms that are classi-
fied as parts of speech not present in the test data
to reduce noise during training. Parts of speech
that are included are noun, verb, adverb, adjective,
pronoun, and numeral.

For each lexical concept in the test data, we make
sure that at least three word forms with the same
lemma are within the training data. For example,
if the word form (ноль, nolj) is in the test data,
it cannot be in the training data, but another word
form (ноля, nolja) can. We hypothesize that the
model will be able to capture the semantics of a
word by learning to be invariant to inflections and
derivations.

4.2.1 Evaluation Data
To evaluate the model performance, we employ
parallel lists of word forms from lexicostatistical
database NorthEuraLex (Dellert et al., 2019) which
cover the 1,016 concepts in all languages. Having
a concept for all testing data words in all languages

2Henceforth, we use ISO 639-1 codes for the languages:
Russian – ru, Ukrainian – uk, Polish – pl, Czech – cs, Bulgar-
ian – bg, Croatian – hr.

3http://espeak.sourceforge.net/index.html
4Since our input phoneme embeddings capture the features

of each phoneme (described in §3.1), transcription difference
between the tools should have minimal effect on the model’s
performance. We additionally tested several transcription tools
for the same language, which did not result in a significant
change of performance on our model’s main task of retrieving
meaning of a phonological sequence.
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Table 1: Examples of Northeuralex concepts

Russian Czech Bulgarian
Concept Orth IPA Orth IPA Orth IPA
EAR ухо /u x A/ ucho /u x o/ ухо /u x O/
NOSE нос /n o s/ nos /n o s/ нос /n O s/
FOOD еда /je d a/ strava /s t r a v a/ храна /x r a n a/
BROTHER брат /b r a t/ bratr /b r a t r/ брат /b r a t/

allows us to systematically investigate the cross-
linguistic performance of the models. Overall, we
exclude 514 concepts and use 502 concepts for
each of the 13 parallel test sets. Our reasons to ex-
clude some concepts were: 1) the concept does not
have a corresponding fastText embedding in any
of the 6 training languages; 2) some concepts do
not exist in some of the languages as a single word
and use a descriptive term for some concepts (for
example, the term breast corresponds to женская
грудь /ZEnsk@j@ grutj /) in Russian), which also
makes it impossible to retrieve a fastText embed-
ding; 4) a word in one of the 6 training languages
maps to more than one concept, which could lead
to confusion with its fastText embedding. An ex-
ample of the NorthEuraLex data we use for testing
is represented in Table 1.

5 Evaluation

During testing, the model computes the meaning
representation of the phonemic sequence in the test
language. To evaluate the model retrieval on the
test set, the closest match between the model output
and target vector for the model training language
is retrieved using cosine similarity. Cosine simi-
larity determines whether two vectors are pointing
in roughly the same direction and is measured by
the cosine of the angle between two vectors. Co-
sine similarity, on the abstract level, represents the
proximity of the meaning retrieved by the listener
to the actual meaning of the word. In other words,
it would tell us how semantically similar two given
vectors are. Cosine Similarity is computed between
a model’s output and all the 502 possible ground
truth vector representations in the language of train-
ing. The vectors to be compared include all the
word vectors used for monolingual testing. Given
these competing word embeddings, we also calcu-
late average Recall at 1 (R@1), Recall at 5 (R@5),
Recall at 10 (R@10), as well as Mean Reciprocal
Rank (MRR) for the test data. R@n as the propor-
tion of times that the set of top n word embeddings
which are closest to the model’s output also in-
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Figure 4: Monolingual performance of the models

cludes the ground truth vector representation. If
the ground truth is most similar to the output vector
of a model, R@1 is 1, otherwise it is 0. Likewise,
R@5 is 1, if the corresponding ground truth embed-
ding is within the top 5 most similar words to the
output vector, and R@10 is 1 if the embedding is
within 10 most similar words. Hence, the average
R@n is a number between 0 and 1. The Reciprocal
Rank information retrieval measure calculates the
reciprocal of the rank at which the first relevant
document was retrieved. For evaluation of the test
data, we compute an average of Reciprocal Rank
for all the given word forms.

5.1 Monolingual Evaluation

The procedures that are used for monolingual and
cross-lingual evaluations are comparable, and dif-
fer only in the language of the test lexical concept.
For both monolingual and cross-lingual evaluations,
the retrieved fastTest meaning embeddings for both
training and validation sets come from the same
embedding space. For the monolingual evaluation,
the output embedding for a particular phonemic
sequence is compared to groundtruth embeddings
of the concepts of test set. The monolingual per-
formance of the models is shown in Figure 4. The
monolingual scores for all models are very simi-
lar. Such consistency could of course be due to the
generally good performance of the current model
structure and parameters on any human language.
However, it could also be related to structural simi-
larity of the languages of Slavic group (such as, for
example, all Slavic languages being synthetic and
expressing syntactic relationships via inflection).

5.2 Cross-lingual Evaluation

To make the cross-lingual evaluation comparable
across different languages, we compute the cosine
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similarity of the L2 target concept to all evalua-
tion concepts in the embedding space of the model
training language (L1). For instance, if the model
has observed during training the Russian word лю-
ди /lj u d i/ (eng.trans: people), during testing the
model on Czech concepts we compute the meaning
representation of lidé /l i d @/ (eng.trans: people)
and then estimate its similarity to test sequences in
Russian with the target meaning representation be-
ing that of the Russian word люди /lj u d i/. Such
concept mapping during testing has two goals: (1)
the pre-trained fastText embeddings for different
languages live in different embedding spaces, so
it is not possible to compare them as they are, and
(2) we assume that a human listener also compares
foreign words that they hear to words from their
native language, and attempts to retrieve the mean-
ing based on their L1 mental lexicon. For cross-
lingual performance, we evaluated each model on
all languages under analysis and added three more
languages of the Slavic group (East Slavic – Belaru-
sian, West Slavic – Slovak, South Slavic – Slovene)
three other languages from the Indo-European lan-
guage family, to which the Slavic language also
belong (German, Romanian, and Latvian), and the
Turkish language coming from the Turkic language
family5. If the model produces human-like be-
haviour, we can expect it to be better at recognising
spoken word forms from more related languages.

The recall at 10 (R@10) results for each model
are shown in Figure 5. On the plots, scores for
languages of the same language group as the model
language, are located on the left side. We also
use different color coding for different language
group, i.e. reddish colors for East Slavic languages,
blueish colors for West Slavic languages, and green-
ish for South Slavic. Languages outside the Slavic
language family are colored in the shades of grey.
First, we observe a clear distinction between the
retrieval performance of the Slavic and non-Slavic
test word forms. The retrieval performance on
non-Slavic test word forms (Latvian, Romanian,
German, and Turkish) is generally lower for all
models except for Bulgarian, which recognizes Ro-
manian evaluation set better than Ukrainian. How-
ever, given the geographic proximity between the
speaker communities of Romanian and Bulgarian
and the fact that both are within the Balkan Sprach-
bund, this could indicate an effect of lexical bor-

5the ISO 639-1 codes for the languages: Belarusian – be,
Slovak – sk, Slovene – sl, German – de, Romanian – ro,
Latvian – lv, Turkish – tr.

rowing between the two languages. From these
findings, we conclude that our hypothesis that the
languages which are more genetically related are
also more mutually intelligible within the proposed
model is mostly supported, with notable exceptions
that could related to geographic transfer.

Regarding the evaluation within the Slavic lan-
guage family, the phonemic sequences in the lan-
guage from the same subgroup of Slavic languages
(such as, Ukrainian for Russian and Croatian for
Bulgarian) are recognised significantly better than
others by most models. However, there are a few
exceptions to this trend. One notable exception in
the cross-lingual evaluation is the performance of
the Czech model, which seems to have an expected
high retrieval performance on Slovak word forms,
but unexpectedly does not seem to recognize Polish
word forms with a comparable performance. An-
other surprising result is the fact that the Russian
model seems to recognize Croatian and Bulgarian
word forms better than Belarusian word forms.

To get further insights onto the cross-lingual per-
formance of the model, we apply hierarchical clus-
tering on the R@10 results between the six models
we trained in this study using the Ward algorithm
implemented in the SciPy Python library. The
Ward’s linkage function specifying the distance
between two clusters is computed as the increase
in the error sum of squares after merging two clus-
ters into a single cluster. The dendrogram of the
Ward clustering of R@10 results is shown in Fig-
ure 6. The dendrogram in Figure 6 shows we can
correctly reconstruct the Slavic language tree from
the cross-lingual retrieval performance of the six
languages that we have trained models for.

5.3 Correlation with Linguistic Metrics

To investigate which data-driven, linguistic predic-
tors make the model behave as it does, we use Pear-
son correlation between the cross-lingual model
performance and two measures of phonetic-lexical
distance. The first metric of phonetic-lexical dis-
tance is Levenshtein Distance (LD) where the dif-
ference between two strings is calculated as the
minimum number of single-character edits (inser-
tions, deletions or substitutions) required to change
one word into the other. For the second metric, we
use Phonologically Weighted Levenshtein Distance
(PWLD), which is a measure of phonological sim-
ilarity between different phonemic sequences or
word forms (Fontan et al., 2016). The PWLD met-
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Figure 6: Dendrogram of the Ward clustering of R@10
results.

ric is an extension of the string-based Levenshtein
distance that also calculates the cost of each phone
substitution based on phoneme features. We sup-
pose that PWLD is more suitable for cross-lingual
analysis than Levenshtein Distance, since it is more
capable of catching less apparent phonological sim-
ilarities, such as, for example in the pair of Czech
and Bulgarian cognates ucho /u x o/ and ухо /u
x O/, where phonemes /o/ and /O/ are very similar
to each other. We use the same adaption of the
original PWDL proposed in Abdullah et al. (2021a)

Table 2: Pearson correlation coefficient for metrics un-
der analysis. Statistical significance is marked with *
and *** for p < 0.05 and p < 0.001, respectively.

R@10 MRR cos sim LD PWLD
R10 0.98*** 0.5*** -0.74*** -0.57***

MRR 0.5*** -0.75*** -0.56***
cos sim -0.29* -0.44***

LD 0.8***
PWLD

to make it suitable for our analysis.
Table 2 shows the correlation scores of all the

metrics under analysis. We observe that both met-
rics correlate with MRR and R@10, while the cor-
relation with cosine Similarity scores are much
lower. Surprisingly, PWLD has a lower correlation
with the retrieval metrics than LD, even though it
uses the same phoneme vectorization scheme as
the model.

5.4 Qualitative Analysis

Figure 7 shows t-SNE visualization on the output
on the Russian model. For t-SNE computation,
we used output vectors for all the test data. On
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the visualization, only the concepts FOG, WIND,
FISH, and MOSQUITO are shown. For concepts
WIND, FISH, and MOSQUITO one can observe
clear clusters of concepts, as they also appear to
sound similarly in all the 6 languages. This is
not the case with the concept FOG. As shown in
Figure 7, t-SNE clustered the concept in different
languages quite far from each other even for simi-
larly sounding words. It is interesting that concepts
MOSQUITO and WIND that do not sound similar,
but probably have a contextual, distributional sim-
ilarity, appear close to each other. This probably
has to do with the nature of the target fastText em-
beddings, which are trained to predict the word’s
context. Additionally, we provide the top retrieved
words for the model trained on Russian and tested
on Ukrainian. Table 3 demonstrates other candi-
dates in Ukrainian for some phonemic sequences
in Russian. The English translation of the concept
is given in the brackets.

From the lists of cross-lingual nearest neighbors
reported in Table 3, one can notice that the model
learns to push semantically similar words closer
to each other, despite them having a very different
phonetic shape (for instance, soup-porridge-food
or who-why-was). This could again be related to be
the nature of fastText embeddings (Mikolov et al.,
2018) that we used as target embeddings for the
model. As already mentioned, the vector for each
word also contains information about this word’s
context. As a result, the output embeddings pro-
duced by the model for contextually close words
appear to have a lot in common and are recognized
as semantically similar.

Another observation from Table 3 is the clear
advantage of shorter and non-content spoken word
forms over longer ones. Most of the short words in
the list are non-content words, that do not have any
distinctive semantic context, and appear in any type
of text. In this regard, these words can be seen as
items that share fewer features compared to longer
words and content words.

6 Discussion and Conclusion

In this paper, we presented a spoken-word recogni-
tion model based on a recurrent neural architecture
that maps variable-length phonological sequences
of word forms into their respective meaning repre-
sentations. Our goal is to simulate auditory lexi-
cal processing in human listeners where we test
the model on word forms from closely related
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(PL): FISH - r  b a(HR): FISH - r i b a(UK): FOG - t u m  n(RU): FOG - t u m  n

(BG): FOG - m    

(CS): FOG - m l  a

(PL): FOG - m  w a

(HR): FOG - m a  l a

(UK): WIND - v i t  r

(RU): WIND - v  e t  i r
(BG): WIND - v  a t  r

(CS): WIND - v i  t r

(PL): WIND - v a t r

(HR): WIND - v j e t a r

Figure 7: t-SNE on the concept retrieval of the Russian
model.

languages and investigate the cross-lingual perfor-
mance of the model. Furthermore, we presented
a case study on the family of Slavic languages,
which are known to be remarkable similar and ex-
hibit (partial) mutual intelligibility to various de-
grees. We grounded our research on the findings
from the sociolinguistics literature of Slavic mu-
tual intelligibility and intercomprehension. Using
our proposed model, we trained different instances
of our model on six Slavic languages: Bulgarian,
Croatian, Czech, Polish, Russian, and Ukrainian.
Finally, we conducted a cross-lingual evaluation
on our trained models to investigate their perfor-
mance on retrieving and recognizing word forms
from other L2 languages.

Returning to our research questions in §1, the
cross-lingual analysis of our model performance
has shown a trend where the model performance
is better on languages that exhibit higher cross-
linguistic intelligibility as documented in sociolin-
guistics studies (RQ1). However, this effect is
more consistent within South and East Slavic lan-
guages, but less consistent in the case of West
Slavic languages (Czech and Polish). The factors
that drive this inconsistency remain unknown and
would require further future work to identify and
analyze. Despite this inconsistency, the cluster-
ing analysis on the cross-lingual concept retrieval
performance resulted in a dendrogram that reflects
the traditional genetic classification of the six stud-
ied Slavic languages onto West, East, and South
languages (RQ2). Furthermore, we have shown
that cross-linguistic phonetic-lexical similarities
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Table 3: Top scored candidates in Ukrainian for the model trained on Russian

/j a/ (‘I’) /r A n a/ (‘wound’) /k t o/ (‘who’) /k A S a/ (‘porridge’) /s u p/ (‘soup’)

Nearest
neighbors

/j A/ (‘I’)
/d E"/ (‘yes’)
/s i m/ (‘if’)
/x t O/ (‘who’)
/j i A/ (‘life’)

/r A n A/ (‘wound’)
/j A/ (‘I’)
/ A p k A/ (‘hat’)
/j i A/ (‘life’)
/d E"/ (‘yes’)

/x t / (‘who’)
/t u t/ (‘here’)
/v r / (‘whisper’)
/t O m u/ (‘why’)
/b i j/ (‘was’)

k A S A (‘porridge’)
/r A n A/ (‘wound’)
/v O r O / (‘whisper’)
/S A p k A/ (‘hat’)
/k n A/ (‘book’)

s u p/ (‘soup’)
/k S / (‘porridge’)
/d E" n/ (‘day)
/x r t/ (‘food’)
/k rjuk/(‘hook′)

between the languages—operationalized as string
and feature-based phonetic distance on a parallel
word list—correlate with the cross-lingual concept
retrieval performance of the model. This finding
is consistent with the observation in the sociolin-
guistics literature regarding how lexical similarity
between languages facilitates intercomprehension
(e.g., the cognate facilitation effect). Therefore, the
cross-lingual concept retrieval performance of our
model can be predicted using measures of linguistic
distance similar to those that predict cross-language
comprehension performance (RQ3).

The work presented in this paper can be further
extended in different directions. For instance, mu-
tual intelligibility between related languages have
been found in many cases to be asymmetric. For ex-
ample, speakers of Portuguese seem to understand
Spanish better than the other way around. Future
work could analyze and investigate whether or not
and to what extent such an asymmetric behavior is
observed in our model.
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