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Preface

Welcome to TextGraphs, the Workshop on Graph-Based Methods for Natural Language Processing.
The sixteenth edition of our workshop is being organized on October 16, 2022 in Gyeongju,
Republic of Korea, in conjunction with the 29th International Conference on Computational Linguistics
(COLING 2022).

For the past sixteen years, the workshops in the TextGraphs series have published and promoted
the synergy between the field of Graph Theory (GT) and Natural Language Processing (NLP). The
mix between the two started small, with graph-theoretical frameworks providing efficient and elegant
solutions for NLP applications. Graph-based solutions initially focused on single-document part-of-
speech tagging, word sense disambiguation, and semantic role labeling. They became progressively
larger to include ontology learning and information extraction from large text collections. Nowadays,
graph-based solutions also target Web-scale applications such as information propagation in social
networks, rumor proliferation, e-reputation, multiple entity detection, language dynamics learning, and
future events prediction, to name a few.

The target audience comprises researchers working on problems related to either Graph Theory or graph-
based algorithms applied to Natural Language Processing, Social Media, and the Semantic Web.

This year, we received 19 submissions and accepted 10 of them. Similarly to the last years, we organized
a shared task on natural language premise selection. This task takes as input a mathematical statement,
written in natural language, and outputs a set of relevant sentences (premises) that could support an
end-user finding a proof for that mathematical statement. The shared task attacted four teams; their
participation reports along with the shared task overview by its organizers are also presented at the
workshop.

We would like to thank our keynote speaker and we are also thankful to the members of the program
committee for their valuable and high-quality reviews. All submissions have benefited from their expert
feedback. Their timely contribution was the basis for accepting an excellent list of papers and making
the sixteenth edition of TextGraphs a success.

Dmitry Ustalov, Yanjun Gao, Alexander Panchenko, Marco Valentino, Mokanarangan Thayaparan,
Thien Huu Nguyen, Gerald Penn, Arti Ramesh, and Abhik Jana

TextGraphs-16 Organizers

October 2022
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Multilevel Hypernode Graphs for Effective and Efficient Entity Linking ∗

David Montero and Javier Martinez and J. Javier Yebes
NielsenIQ

{david.montero,javier.martinezcebrian,javier.yebes}@nielseniq.com

Abstract

Information extraction on documents still re-
mains a challenge, especially when dealing
with unstructured documents with complex and
variable layouts. Graph Neural Networks seem
to be a promising approach to overcome these
difficulties due to their flexible and sparse na-
ture, but they have not been exploited yet. In
this work, we present a multi-level graph-based
model that performs entity building and link-
ing on unstructured documents, purely based
on GNNs, and extremely light (0.3 million pa-
rameters). We also propose a novel strategy
for an optimal propagation of the information
between the graph levels based on hypernodes.
The conducted experiments on public and pri-
vate datasets demonstrate that our model is
suitable for solving the tasks, and that the pro-
posed propagation strategy is optimal and out-
performs other approaches.

1 Introduction

Information extraction (IE) from documents has
become a hot research topic over the last few years
(Jaume et al., 2019; Wang et al., 2020; Carbonell
et al., 2021; Dang et al., 2021). It is a challeng-
ing problem that requires combining Computer Vi-
sion (CV) and Natural Language Processing (NLP)
models in order to locate and parse the information
segments, understand the document layout, and
extract semantic relations between the segments.

This problem becomes especially complex when
dealing with unstructured documents, such as pur-
chase receipts, where the layout of the documents
can highly vary, making it hard for the models to
learn how to extract semantic information. At this
point, Graph Neural Networks (GNNs) seem to
be a promising approach to overcome these diffi-
culties and to solve the semantic information and
relation extraction tasks, as they work over flexi-
ble graph-based representation capable of adapting

∗A patent has been applied for that covers the subject
matter described in this article.

to complex layouts, and they provide efficient and
effective mechanisms for learning the relations be-
tween the segments (Carbonell et al., 2021; Davis
et al., 2021; Hwang et al., 2021b; Baumgartner
et al., 2021; Papagiannopoulou et al., 2021; Luo
et al., 2020; Khalife and Vazirgiannis, 2019).

Nevertheless, semantic IE still remains a chal-
lenging task. In fact, due to its complexity, it is
usually split into three subtasks:

• Entity Building (EB): refers to the task of con-
necting text segments together that are related
semantically and are spatially close in the doc-
ument, also known as word grouping.

• Entity Tagging (ET): classify each of the built
entities attending to their semantic meaning,
e.g., product description, store name, etc.

• Entity linking (EL): connect the semantic en-
tities to form higher level semantic relations,
e.g., a product description is connected to a
quantity and a price.

Thus, we can distinguish between three levels of
information containers:

• Text segment: lowest level information, usu-
ally given by an Optical Character Recogni-
tion (OCR) engine at word level.

• Entity: intermediate level generated by group-
ing the text segments during the EB task.

• Entity group: highest level container that
groups entities resultant from the EL task.

For a solution based purely on GNNs this leaves
two options. One is trying to solve all the tasks
using a single graph at segment level (Hwang et al.,
2021b). The second option is splitting the problem
into two graphs: one graph based on segment nodes
for performing EB, and another one composed of

1



entity nodes for performing ET and EL tasks (Car-
bonell et al., 2021). We believe that the second one
is more effective for the following reasons:

• The model can work on extracting node-level
relations only, which reduces the complexity.

• The information learnt by the segments nodes
during the message passing can be used to
generate optimal features for the entity nodes.

Nevertheless, the multi-graph approach has more
complexity, as it requires designing the way the
output segment features and the entity features are
related, and it has not yet been studied in depth.
Thus, in this work we focus on optimizing this
propagation of information between the two stages
using a novel approach within the IE field based on
hypernodes. These are the main contributions:

• A multi-level GNN-based model that per-
forms EB and EL on unstructured documents.
The model is purely based on GNNs, using as
inputs for each segment the bounding box and
the entity category, and it is extremely light
(0.3 million parameters).

• A novel strategy for an optimal propagation of
the information from the segment nodes to the
entity nodes, where the latter are generated
as hypernodes over the base graph and con-
nected to their child segment nodes using rela-
tion edges. Then, the subgraph resulting from
the relation edges (relation graph) is used to
propagate the features with Graph Attention
Layers (GATs) (Veličković et al., 2018).

• An ablation study on different feature prop-
agation strategies, evaluating among others
the one proposed in (Carbonell et al., 2021),
and comparing them with the single graph
approach (Hwang et al., 2021b).

The conducted experiments demonstrate the effec-
tiveness of the proposed method over highly un-
structured documents in terms accuracy, processing
time, and resource consumption.

2 Related Work

The growing interest in IE is patent in the number
of recent publications. Attending to the input data,
most of the methods rely on the text and bounding
boxes of an OCR engine for extracting the input
features (Jaume et al., 2019; Carbonell et al., 2021;

Hwang et al., 2021b; Prabhu et al., 2021; Zhang
et al., 2021; Hong et al., 2022; Wang et al., 2022).
Other approaches enrich these OCR predictions
with image features (Wang et al., 2020; Dang et al.,
2021; Xu et al., 2021; Tang et al., 2021). However,
the results reported in public IE benchmarks like
FUNSD (Jaume et al., 2019) or CORD (Park et al.,
2019) suggest that the image features are not so
relevant. Finally, there are also a few models that
purely rely on image features (Hwang et al., 2021a;
Kim et al., 2021). The model proposed in this work
extracts features from the OCR bounding boxes,
but does not use the text, as it gathers the necessary
information from the entity category input.

Attending to the model architecture, most of the
methods are based on Transformers (Vaswani et al.,
2017) and Convolutional Neural Networks (CNNs)
(Jaume et al., 2019; Wang et al., 2020; Dang et al.,
2021; Xu et al., 2021; Hwang et al., 2021a; Li et al.,
2021; Prabhu et al., 2021; Zhang et al., 2021; Kim
et al., 2021; Villota et al., 2021; Hong et al., 2022;
Gu et al., 2022; Wang et al., 2022). Nevertheless,
GNNs are gaining importance thanks to their flexi-
bility and capacity of adapting to complex layouts,
along with their effective mechanisms for learn-
ing relationships between the nodes. In (Carbonell
et al., 2021), the authors propose a two-stage GNN
model. First, they generate a k-nearest neighbor
(KNN) graph to solve EB using text and bounding
box features. Then, the entity features are com-
puted by aggregating the output features and pro-
cessing them with a linear layer, and they are used
to solve the ET and EL. In (Hwang et al., 2021b),
the authors propose a single-stage GNN model: EB
and ET are solved via rel-s edges where each seed
entity-type node links to its entity parts in sequence
(solving also ET as a consequence), EL links the
entities via rel-g edges, finally all mentioned edges
are decoded at once. Other GNN approaches solve
only the ET and EL tasks, as they rely on the entity
regions detected by the OCR engine (Tang et al.,
2021; Wan et al., 2021; Zhang et al., 2022), or by a
previous CNN model (Davis et al., 2021).

As it can be seen, there are few approaches based
on GNN solving both EB and EL. We aim at con-
tributing to this line of research following an ap-
proach based on a two-stage GNN model, related
to the one presented in (Carbonell et al., 2021),
but with important modifications in the feature ex-
traction, edge sampling, feature propagation, GNN
architecture, and postprocessing.
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Figure 1: High level diagram of the proposed solution for the EB and EL tasks.

3 Methodology

We aim at solving the entity building (EB) and en-
tity linking (EL) tasks for a given list of documents.
Each document is composed of a list of semantic
entities, that can be linked together to form entity
groups. Each entity can also be divided into smaller
text segments. Thus, given a list of text segments
from an OCR engine, the goal is to group the text
segments by their entity and then link together all
the entities that belong to the same entity group.
We propose to use GNNs as the best approach:

• Graph-based representations can adapt to com-
plex layouts in unstructured documents.

• EB and EL can be modeled as link prediction
tasks between pairs of segments, where GNNs
have been demonstrated to be highly effective.

• The number of connections that need to be
evaluated can be limited based on the coor-
dinates, limiting the time and resource con-
sumption. GNNs are suitable for this type of
highly sparse data structure.

Figure 1 illustrates the proposed solution. From the
incoming list of segments, the system performs the
edge sampling and generates the base graph level.
In parallel, the features for the nodes are extracted.
The input features are passed through the segment
GNN layers and used to generate the segment clus-
ters (EB output). For each generated cluster, an
entity hypernode is created and connected to their
child segment nodes using relation edges. Then,
feature propagation uses the subgraph of relation
edges (relation graph). Finally, these entity features
are processed in the same way as in the previous
stage to generate the entity clusters (EL output).

3.1 Feature extraction

We consider the three sources of information avail-
able: the bounding box, the text string and the
entity category. We discard the text, as we have
empirically observed that all the necessary infor-
mation is contained in the entity category. Also,
we remove the impact of the OCR text errors.

We select the following features from the bound-
ing box: left and right center coordinates, and the
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angle in radians (−π
2 , π2 ). Notice that using the left

and right center we are losing the information re-
lated to the height of the bounding box. We do this
on purpose, as we observed that the model tended
to overfit using this feature. We normalize both
centers using the width of the document, the most
stable dimension, as the height can highly vary. For
extracting the information from the entity category
we use a one-hot encoder, and then a linear layer to
adapt the features and map them to an embedding
of length 8. Finally, the category embedding is con-
catenated with bounding box features to generate
the node feature embedding (with 13 float values).

Figure 2: Feature extraction stage.

3.2 Edge sampling
The message passing involve the edges and also
they are used by the edge prediction head to gen-
erate the final predictions. Hence, it is crucial to
select an appropriate sampling function that covers
all the possible true positives.

Moreover, we are dealing with highly unstruc-
tured documents and we cannot trust the usual sam-
pling functions, such as k-nearest neighbor or beta-
skeleton (Carbonell et al., 2021; Wan et al., 2021;
Zhang et al., 2022), as they are prone to miss con-
nections between segments that are far away from
each other.

Thus, we developed a custom sampling function
to ensure that all the segments in the same line are
connected: an edge from segment A to segment
B is created if the vertical distance between their
centers (C) is less than the height (H) of segment
A by a constant (K) (see Equation 1). In our exper-
iments we set this constant to two, as we want to
generate connections also between the segments of
adjacent lines for the case of multi-line entities, and
to consider the possible rotation of the document.
This sampling function is also used to generate the
edges for the entity level graph.

edgeA−B = |Cy
A − Cy

B| < HA ∗K (1)

3.3 GNN

Selecting the most appropriate type of layer is an-
other important step in the model design. Most
of the GNN layer implementations require an ad-
ditional scores vector for performing a weighted
message passing, for deciding the contribution of
each neighbor node. This implies adding more
complexity to the design of the network for com-
puting the weights.

In our case, the information needed for that com-
putation is already embedded in the node features.
Taking advantage of this, we select Graph Atten-
tion Layers (GAT) (Veličković et al., 2018) as the
best suited. In the GAT layers, the weights for the
message passing are computed directly inside the
layer using the input node features. In addition,
they have been widely used and demonstrated their
efficiency in document understanding tasks (Car-
bonell et al., 2021; Zhang et al., 2022). In order
to avoid 0-in-degree errors (disconnected nodes)
while using the GAT layers, we add a self-loop for
each node.

The proposed GNN architectures for the two
graph levels are illustrated in Figure 3 and they
both use GAT layers. All the layers are followed
by SiLU activations (Elfwing et al., 2018) except
for the last one. This activation seemed to work
better than ReLU and other variants. We also add
residual connections in all the layers to accelerate
the convergence of the model.

Figure 3: Proposed GNN architectures.

Another introduced enhancement is the use of a
global document node, inspired by (Zhang et al.,
2022). We use one global node per graph level, and
we connect it bidirectionally to the rest of the level
nodes. Its feature embedding is initially computed
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by averaging all the level node embeddings. It
has a double function in the network: it provides
context information to the nodes, and it acts as
a regularization term for the GAT layer weights.
These global nodes are only considered during the
message passing.

3.4 Feature propagation

The feature propagation strategy is one of the criti-
cal parts of the model, as it defines the connection
between the two stages and how the entity features
are generated.

First, we analyze the strategy followed in (Car-
bonell et al., 2021), where the features of the nodes
belonging to the same entity are added and pro-
cessed by a linear layer. We believe that this strat-
egy is not optimal for two reasons. First, as the
number of nodes of an entity is variable, adding
their features will lead to variable magnitude em-
beddings, which might impact on the stability of
the model. This could be mitigated by using a
mean aggregation. Second, they assume that all
the segment nodes contribute equally to the entity.
We believe that this is an erroneous assumption, as
there might be key segments (maybe those which
are bigger, or which have a strategic position) that
should contribute more.

We propose a new approach where the entity
nodes are built as hypernodes on top of the segment
level graph and connected to their child segment
nodes using unidirectional relation edges (from seg-
ments to entities). Then, the features propagation
is conducted by GAT layers that operates on the
subgraph of the relation edges (relation graph). The
feature propagation model is composed of 2 GAT
layers with a SiLU activation between them. In
this case we do not use residual connections, as we
want to maximize the information shared by the
segment nodes. See below:

Figure 4: Feature propagation strategy.

3.5 Edge prediction heads

After each GNN level, the node features are used to
solve the corresponding task (EB or EL). For each
pair of connected segments, we extract the con-
fidence that they belong to the same higher-level
container. The strategy we follow is concatenating
the output features of the pair of nodes and pro-
cessing them with an MLP (see Figure 5). After
the first layer, we apply another SiLU activation.
Finally, we apply a sigmoid function to the output
logits to obtain the confidence scores.

Figure 5: Diagram of the edge prediction heads.

3.6 Postprocessing

Once the confidence scores for a task are computed,
we apply a postprocessing function to generate the
final clusters. For edge prediction tasks, a com-
monly used function is Connected Components
(CC) (Carbonell et al., 2021). However, due to its
simplicity, it highly suffers from any link error, it
usually struggles when dealing with complex data
distributions, and it depends on a threshold param-
eter which might be biased to the dataset. For these
reasons, we propose to use a different method based
on Graph Clustering made of 2 blocks (Equation 2):
1) number of clusters estimator and 2) node group-
ing. The former, 1), is based on the eigenvalues
of the normed graph Laplacian matrix computed
from the adjacency matrix (A), by taking first dif-
ferences (D1) of the sorted eigenvalues and getting
the maximum gap + 1. The latter, 2), is based on
recursively merging pair of clusters, using the num-
ber of clusters estimated (nc) and as the linkage
criteria the average of the distances (1 minus the
adjacency matrix), being a highly efficient method.
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λ = EigenV alues(NormGraphLap(A))

nc = argmax(D1(sort(λ))) + 1

ci = FeatAgglom(avg(1−A), nc)

(2)

The benefits are: no need to optimize any param-
eter avoiding concept drift impact, estimating the
number of clusters dynamically for each new data
distribution, no need of handcrafted heuristics, and
efficient and accurate as the CC approach.

3.7 Training details

Only during the training stage, the entities are con-
structed using the ground truth (GT). This acceler-
ates the convergency of the model, as it reduces the
dependency of the EL task and the EB task. The
model is trained for 100 epochs using a batch of 4
graphs on each iteration. The selected optimizer is
Adam, with an initial learning rate of 0.001, with
a reduction factor of 0.1 in epochs 70 and 90. We
use binary cross entropy for computing the loss for
the two tasks, and then we sum both losses. Finally,
we finetune the model using the predicted entities
instead of the GT, so the second part of the model
adapts to the real data. The benefits of finetuning
the models are demonstrated in the experiments
section. The model is finetuned for 10 epochs, with
an initial learning rate of 0.0002, being reduced to
0.00002 at epoch 7.

4 Experiments

4.1 Datasets

4.1.1 Private dataset
We have built an internal challenging dataset com-
posed of 8729 purchase receipt images from 5 coun-
tries: Germany, Italy, France, Mexico, and Brazil.
Receipts vary widely in height, density, and image
quality. They may contain rotation and all kinds
of wrinkles. Each receipt has annotated all the text
segments related to purchased products. The avail-
able annotated information for each text segment
is the rotated bounding box, the text, the entity
category, and the product ID.

There are 9 types entity categories: unit_type,
value, discount_value, code, unit_price, tax,
quantity, discount_description, description.

The dataset also contains the receipt region anno-
tation for each receipt, so we have preprocessed the
dataset for all the models by cropping the images,
filtering the segments that are outside the receipt,

and shifting the coordinates of the remaining seg-
ments to the cropped pixel space. Finally, we split
the dataset in training, validation and test sets using
a ratio of 70/10/20.

In Figure 6 we present some examples of the
dataset after cropping the receipt region. We also
include in the images the GT information for the
entity building (bounding boxes) and the entity
linking (bounding boxes with the same colors and
linked by lines). Note that this dataset is more
challenging than other IE datasets, such as FUNSD
(Jaume et al., 2019) or CORD (Park et al., 2019),
as the number of entities can vary from several
to hundreds, layouts are highly diverse, and the
quality of the receipts and images has a bigger
amount of noise.

4.1.2 CORD
Consolidated Receipt Dataset (CORD) (Park et al.,
2019) is composed of 1000 Indonesian receipts
which contain images and box/text annotations for
OCR, and multi-level semantic labels for semantic
parsing and relation extraction tasks. In the ground
truth, each segment is associated with the category
field (our entity level) and the group_id field (our
group level). It contains more entity categories (30),
but with significantly fewer instances. It can be ob-
served that the difficulty level is lower but it is the
only public dataset we have found for benchmark-
ing. In this dataset, the receipt region annotations
are available only for a subset of receipts, so we are
not considering them. The samples are split into
800 for train, 100 for dev(validation), and 100 for
test.

4.2 Metrics

4.2.1 Group F1 Score
This metric is very restrictive and aims at eval-
uating the number of groups that are perfectly
formed, highly penalizing the groups that are split
or merged with others. We compare the predicted
groups with the ones from the ground truth. For
each predicted group in a document, we only con-
sider it as a true positive (tp) if it matches exactly
the ground truth group. Otherwise, it is considered
a false positive (fp). Ground truth groups not found
in predictions are considered as false negatives (fn).

4.2.2 ARI
The Adjusted Rand Index (ARI) (Halkidi et al.,
2002), is more focused on analyzing the quality of
the segment clusters rather than checking if they
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perfectly match the ground truth ones. First, the
Rand Index (RI) computes a similarity measure
between two clusters by considering all pairs of
samples and counting pairs that are assigned in the
same or different clusters in the predicted and true
clusters. Then, the raw RI score is “adjusted for
chance” into the ARI score.

Figure 6: Examples of successful predictions from dif-
ferent countries and retailers. Each box is a predicted
entity, and the ones with the same color (and connected
by lines) belong to the same group.

4.3 Results

In this subsection, we present and discuss the exper-
imental results with the aim of demonstrating the
effectiveness of the proposed method and the con-
tribution of our novel feature propagation. These
are the considered approaches:

• Relation graph: described in Section 3.4.

• Without feature propagation: the features of
the entities are generated from scratch, in the
same way as the text segment features. The
entity bounding box is computed using the
minimum rotated rectangle and the entity cat-
egory is computed using the mode.

• Sum aggregation + linear layer: the procedure
followed in (Carbonell et al., 2021).

Besides, we include in the comparison the results
of a single-stage version of the model, following
the approach proposed in (Hwang et al., 2021b).
The GNN architecture for this model is the same
as for the entity GNN of the proposed model.

Model
EB EL (E2E)

F1 ARI F1 ARI
ours 0.974 0.966 0.925 0.960

w/o feat prop 0.9756 0.971 0.914 0.955
sum+linear 0.971 0.965 0.915 0.955
Single stage 0.979 0.973 0.913 0.950

Table 1: Results of the proposed model on the purchase
receipt dataset and comparison against different feature
propagation strategies. We present the results for EB
and EL (using the entities predicted in EB).

For all the variants, the model is trained under
the same conditions, following the training details
specified in Section 3.7. The results of the experi-
ments are gathered in Table 1. It can be observed
that the proposed model is achieving impressive
results for both tasks (0.974 F1 Score for EB and
0.9252 for EL) considering the challenges of the
proposed dataset. Some examples of successful
model predictions are shown in Figure 6.

Also the proposed strategy for the entity features
generation outperforms the others in the end2end
metrics by more than 1%. The strategy without
feature propagation achieves slightly better results
in EB (less than 0.2%), but we believe this is be-
cause in this case the two tasks are more indepen-
dent from each other, and the model can focus on
optimizing better the first task (but at the cost of
sacrificing accuracy in the end2end). The same
happens with the single stage strategy.

Additionally, we want to measure the impact of
the finetuning stage described in Section 3.7, where,
instead of using the GT information to construct
the entities, we use the predictions from the EB
task, and train the model in an end2end manner
for 10 epochs. Thus, we compute the end2end
metrics for all the model variants before and after
the finetuning. The results, presented in Table 3,
show that in all the cases both the F1 Score and the
ARI metrics are improved. This improvement is
less noticeable for our approach, as even if we are
using GT information for constructing the entities,
the two tasks are still strongly connected by an
optimal feature propagation strategy.

Next, we conduct an experiment to test the pro-
posed model under a public benchmark, using the
CORD dataset. For this experiment we consider all
the annotated segments, using the category field
as the entity annotation and the group_id field as
the group annotation. Again, the model is trained
following the procedure specified in Section 3.7.
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Model EB Link F1 EL Link F1 EL Group F1 ARI Params
Rel graph (ours) 0.975 0.988 0.943 0.983 0.3M

Spade(Hwang et al., 2021b) 0.969 0.896 - - -
BROS w/o order(Hong et al., 2022) 0.968 0.905 - - 340M
BROS w order(Hong et al., 2022) 0.966 0.974 - - 340M

Table 2: Results on the CORD dataset evaluated at link level and at group level.

Model
Before FT After FT
F1 ARI F1 ARI

Rel graph (ours) 0.917 0.957 0.925 0.960
w/o feat prop 0.903 0.948 0.914 0.955
sum+linear 0.901 0.948 0.915 0.955

Table 3: Impact of the finetuning removing the GT
information for the entity generation.

The results are presented in Table 2. To the best
of our knowledge, there are no published works
that address exclusively the EB and EL tasks, since
they are usually combined with the entity tagging
task. Consequently, although they are not fully
comparable, we decided to include the results of
two state-of-the-art end-2-end models that perform
ET, EB, and EL, Spade (Hwang et al., 2021b) and
BROS (Hong et al., 2022). It can be observed that
the proposed model outperforms the others espe-
cially on the EL task, while massively reducing
the number of parameters if we compare it with
BROS. Notice that for BROS we present the results
with and without the text order information, as it
is dependent on it. We also include the Group F1
Score and the ARI metrics so other future works
can fairly compare against our model.

Finally, we also measure the processing time and
the resource consumption for our model. The ex-
periment was conducted on a machine with one
NVIDIA Tesla V100 GPU, 64 GB of RAM, and
1 Intel(R) Xeon(R) Gold 6142 CPU. For the time
calculation, we infer all the dataset samples using
batch 1 and compute the average time. We take into
account also the preprocessing time since the input
files are loaded, including the parsing, feature ex-
traction, and graph generation. The resulting time
per image is 0.25 seconds (0.15 for preprocessing
and 0.10 for inference and postprocessing), with
a low GPU memory consumption of around 1300
megabytes.

5 Conclusions and Future Work

In this work we have addressed the automation of
information extraction on unstructured documents,
given as inputs the predictions from an OCR en-
gine and an entity tagging model, and focusing
on two tasks, entity building and entity linking.
We have justified the suitability of GNNs for the
considered use case and proposed a model based
on this approach. This model tackles the prob-
lem in two stages that are strongly connected by
using the concept of hypernodes. We have also
proposed a novel strategy of propagating the fea-
tures from the segment nodes to the entity nodes in
an optimal way. The results of the conducted ex-
periments demonstrate that the proposed model is
suitable for solving the tasks, and that the proposed
feature propagation strategy is optimal and outper-
forms other approaches. In addition, we have com-
pared our model with other state-of-the-art methods
that perform the EB and EL tasks using the pub-
lic benchmark CORD and, although the models
are not fully comparable, it can be observed that
our model achieves state-of-the-art results with an
extremely lower number of parameters.

Future work will focus on expanding the appli-
cation of the model to address also the ET task.
To this end, new types of features could be consid-
ered, based on text or image, as we believe that the
layout information is not enough to solve ET task.
In addition, we will keep enhancing the current
capabilities of the model, exploring new ways of
propagating the features, improving the postpro-
cessing, and optimizing the GNN architectures.

References
Matthias Baumgartner, Daniele Dell’Aglio, and Abra-

ham Bernstein. 2021. Entity prediction in knowledge
graphs with joint embeddings. In Proceedings of
the Fifteenth Workshop on Graph-Based Methods
for Natural Language Processing (TextGraphs-15),
pages 22–31, Mexico City, Mexico. Association for
Computational Linguistics.

Manuel Carbonell, Pau Riba, Mauricio Villegas, Ali-
8



cia Fornés, and Josep Lladós. 2021. Named entity
recognition and relation extraction with graph neu-
ral networks in semi structured documents. In 2020
25th International Conference on Pattern Recogni-
tion (ICPR), pages 9622–9627.

Tuan Anh Nguyen Dang, Duc Thanh Hoang,
Quang Bach Tran, Chih-Wei Pan, and Thanh Dat
Nguyen. 2021. End-to-end hierarchical relation ex-
traction for generic form understanding. In 2020
25th International Conference on Pattern Recogni-
tion (ICPR), pages 5238–5245. IEEE.

Brian Davis, Bryan Morse, Brian Price, Chris Tens-
meyer, and Curtis Wiginton. 2021. Visual fudge:
Form understanding via dynamic graph editing. In
International Conference on Document Analysis and
Recognition, pages 416–431. Springer.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018.
Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. In
Neural networks: the official journal of the Inter-
national Neural Network Society 107, volume 107,
pages 3–11. Elsevier.

Zhangxuan Gu, Changhua Meng, Ke Wang, Jun Lan,
Weiqiang Wang, Ming Gu, and Liqing Zhang. 2022.
Xylayoutlm: Towards layout-aware multimodal net-
works for visually-rich document understanding. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
4583–4592.

Maria Halkidi, Yannis Batistakis, and Michalis Vazir-
giannis. 2002. Cluster validity methods: part i. SIG-
MOD Rec., 31:40–45.

Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok
Hwang, Daehyun Nam, and Sungrae Park. 2022.
Bros: A pre-trained language model focusing on text
and layout for better key information extraction from
documents. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 10767–
10775.

Wonseok Hwang, Hyunji Lee, Jinyeong Yim, Geewook
Kim, and Minjoon Seo. 2021a. Cost-effective end-to-
end information extraction for semi-structured doc-
ument images. In Empirical Methods in Natural
Language Processing (EMNLP).

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, So-
hee Yang, and Minjoon Seo. 2021b. Spatial depen-
dency parsing for semi-structured document informa-
tion extraction. In International Joint Conference
on Natural Language Processing (IJCNLP), pages
330–343.

Guillaume Jaume, Hazim Kemal Ekenel, and Jean-
Philippe Thiran. 2019. Funsd: A dataset for form
understanding in noisy scanned documents. In 2019
International Conference on Document Analysis and
Recognition Workshops (ICDARW), volume 2, pages
1–6. IEEE.

Sammy Khalife and Michalis Vazirgiannis. 2019. Scal-
able graph-based method for individual named en-
tity identification. In Proceedings of the Thirteenth
Workshop on Graph-Based Methods for Natural Lan-
guage Processing (TextGraphs-13), pages 17–25,
Hong Kong. Association for Computational Linguis-
tics.

Geewook Kim, Teakgyu Hong, Moonbin Yim, Jinyoung
Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun,
Dongyoon Han, and Seunghyun Park. 2021. Donut:
Document understanding transformer without ocr. In
arXiv preprint arXiv:2111.15664.

Yulin Li, Yuxi Qian, Yuechen Yu, Xiameng Qin,
Chengquan Zhang, Yan Liu, Kun Yao, Junyu Han,
Jingtuo Liu, and Errui Ding. 2021. Structext: Struc-
tured text understanding with multi-modal transform-
ers. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 1912–1920.

Chuwei Luo, Yongpan Wang, Qi Zheng, Liangchen Li,
Feiyu Gao, and Shiyu Zhang. 2020. Merge and recog-
nize: A geometry and 2D context aware graph model
for named entity recognition from visual documents.
In Proceedings of the Graph-based Methods for Natu-
ral Language Processing (TextGraphs), pages 24–34,
Barcelona, Spain (Online). Association for Computa-
tional Linguistics.

Eirini Papagiannopoulou, Grigorios Tsoumakas, and
Apostolos Papadopoulos. 2021. Keyword extraction
using unsupervised learning on the document’s adja-
cency matrix. In Proceedings of the Fifteenth Work-
shop on Graph-Based Methods for Natural Language
Processing (TextGraphs-15), pages 94–105, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee,
Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee. 2019.
Cord: a consolidated receipt dataset for post-ocr
parsing. In Workshop on Document Intelligence at
NeurIPS 2019.

Nishant Prabhu, Hiteshi Jain, and Abhishek Tripathi.
2021. Mtl-foun: A multi-task learning approach to
form understanding. In International Conference on
Document Analysis and Recognition (ICDAR), pages
377–388. Springer.

Guozhi Tang, Lele Xie, Lianwen Jin, Jiapeng Wang,
Jingdong Chen, Zhen Xu, Qianying Wang, Yaqiang
Wu, and Hui Li. 2021. Matchvie: Exploiting match
relevancy between entities for visual information ex-
traction. In International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 1039–1045.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, volume 30.

9
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Abstract
Taxonomy is a graph of terms organized hi-
erarchically using is-a (hypernymy) relations.
We suggest novel candidate-free task formu-
lation for the taxonomy enrichment task. To
solve the task, we leverage lexical knowledge
from the pre-trained models to predict new
words missing in the taxonomic resource. We
propose a method that combines graph-, and
text-based contextualized representations from
transformer networks to predict new entries to
the taxonomy. We have evaluated the method
suggested for this task against text-only base-
lines based on BERT and fastText representa-
tions. The results demonstrate that incorpora-
tion of graph embedding is beneficial in the
task of hyponym prediction using contextual-
ized models. We hope the new challenging task
will foster further research in automatic text
graph construction methods.

1 Introduction

In this paper, we focus on taxonomic structures
which are quite relevant in many Natural Language
Processing (NLP) tasks such as lexical entailment
(Herrera et al., 2005) and entity linking (Moro and
Navigli, 2015; Sevgili et al., 2022) to represent the
relations between products or employees.

Taxonomies are tree-like structures where words
are considered as nodes (synsets) and the edges are
the relations between them. Such kinds of relation-
ship is called a hypo-hypernym relationship. For
instance, let us consider two words: “apple” and
“fruit”. The former word is hyponym (“child”) to
the latter and the latter is hypernym (“parent”) to
the former.

Many approaches have been proposed to
automatically update existing taxonomies
(Schlichtkrull and Martínez Alonso, 2016; Arefyev
et al., 2020; Nikishina et al., 2020b). However,
we argue about one crucial limitation of the
existing setups questioning their usefulness in
real-world application. In the traditional Taxonomy
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Figure 1: Two types of taxonomy enrichment task: at-
taching provided candidates (red, prior art) and generat-
ing nodes in place without candidates (green, our work).

Enrichment task setting the system is provided
with the candidate (orphan) to add and the task
is to find the correct place for it in the existing
taxonomy. Compiling lists with the new words
to add is extremely important but inherently
challenging: it might be not clear to which of the
multiple sources we would give our preference:
neologisms, teenage slang from the Internet or
professional jargon.

On the contrary, large pre-trained language mod-
els such as BERT (Devlin et al., 2019), ELMo (Pe-
ters et al., 2018), GPT (Brown et al., 2020) already
contain information about the majority of terms in
a language. For instance, many probing studies
(Rogers et al., 2020; Jawahar et al., 2019; Ettinger,
2020) show that a vast amount of linguistic informa-
tion is encoded inside large transformer networks,
e.g. syntax or lexical semantics.

In our study, we assume that the huge amount of
knowledge from pre-trained models can be lever-
aged to predict new words missing in taxonomic
resources. We suggest a novel candidate-free task
formulation for taxonomy enrichment, arguing that
compiling word lists may be redundant. Informa-
tion about new words is already present in the large
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pre-trained networks. There would be not need in
compiling lists of “parents” to predict hyponyms
either, as language models should be able to predict
words only if necessary.

Furthermore, we propose a Cross-modal Contex-
tualized Hidden State Projection Method (CHSP)
for candidate-free taxonomy enrichment. The ap-
proach includes several stages: (i) learning embed-
dings of WordNet taxonomy, (ii) projecting them
into the hidden states space of BERT, and (iii) de-
coding them back to text candidates.

Thus, the contribution of our work is three-fold:

• First, we formulate a novel task of candidate-
free taxonomy enrichment and present a
new dataset based on WordNet 3.0 taxon-
omy (Miller, 1995);

• Second, we implement baselines for this task
based on BERT and fastText (Bojanowski
et al., 2017) models, demonstrating the dif-
ficulty of the task;

• Third, we propose a method for incorporating
graph information into pre-trained language
models, based on hidden contextualized state
projection yielding superior performance in
comparison the baselines.

2 Related Work

There has been two major competitions that have
introduced the task of taxonomy enrichment: Se-
mEval 2016 (Jurgens and Pilehvar, 2016) and
RUSSE-2020 (Nikishina et al., 2020a). However,
their formulations both required a predefined list
of candidates. A detailed overview of taxonomy-
related papers is presented in Jurgens and Pilehvar
(2016); Nikishina et al. (2022).

At the same time there exists a lot of research
on how suitable is BERT for capturing and trans-
ferring information about hypo-hypernym relation-
ship Ravichander et al. (2020); Hanna and Mareček
(2021); Schick and Schütze (2019). For instance,
Ravichander et al. (2020) examine hypernymy
knowledge encoded in BERT representations. In
their experiments BERT demonstrated the ability
to correctly retrieve hypernyms, however, they ar-
gue that it does not necessarily follow that BERT
is capable of systematic generalisation.

Another paper about BERT’s knowledge of hy-
pernymy (Hanna and Mareček, 2021) applies sev-
eral patterns to predict possible hypernym candi-
dates: “[MASK], such as x” and “My favorite

[MASK] is x”. Such prompts often elicit correct
hypernyms from BERT. However, BERT still fails
in 43% of cases, therefore, the authors claim that
BERT has limited understanding of hypernymy.
There exist many more Hearst patterns (Hearst,
1992) that aim to identify hypo-hypernym relation-
ship in unlabeled texts (Snow et al., 2006; Pantel
and Pennacchiotti, 2006). We compare baselines
with some of them in Section 6.

Anwar et al. (2020) examine the influence of
context-aware word representation models for lexi-
cal units and frame role expansion task. This task
is related to our setting in a sense of generation of
meaningful substitutes with preservation of content.
We adopt their context-aware methods for our task.
In our case the meaningful substitute will be gen-
erated for a masked hyponym with preservation of
meaning represented in projected embeddings (see
Section 4).

3 Taxonomy Enrichment Task

We formulate taxonomy enrichment in a new way
avoiding the need of pre-supplied candidates (cf.
Fig. 1) making it more challenging yet realistic.
Given a taxonomy T = {h, r, t} ⊆ E×R×E, the
task is to predict new nodes n ∈ N,N ̸⊆ E, which
are not yet included in the taxonomy T , starting
from the current node hi ∈ E.

3.1 Dataset

We provide subgraphs sampled from the existing
taxonomy as input to predict hyponyms at a certain
place (see Fig. 1 as the example). In this research,
we perform experiments on WordNet 3.0 (Miller,
1995) nouns (82,115 synsets, 117,798 lemmas).
We suggest using synsets 2 hops away from the
target node, as further located synsets may not be
semantically related.

From this taxonomy we randomly select 1,000
nodes out of 15,646 nodes which children are
leaves, i.e., the children do not have hyponyms
of their own. We also take into consideration the
distance length from the root to the leaf which
should be more than 5 hops. This allows us to
exclude the case of predicting very abstract or
broad concepts. For each “parental” hypernym
all its hyponyms (leaves) were replaced by a single
“masked” node, e.g., handwear.n.01 had hyponyms
glove.n.02 and muff.n.01 that were replaced by a
single ORPHAN_100000243. This place in the tax-
onomy was then considered for extension and the
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candidates predicted for the masked node could be
compared against true hyponyms. All in all, we
masked 4,376 leaves out of 65,422 noun leaves to
1000 “[MASK]” tokens.

We limit our experiments to leaves only, replac-
ing all children with one mask in order to be able
to compare with a wide range of possible answers,
as one synset might have several hyponyms. We
leave node injection to future work on the topic.

3.2 Evaluation metrics

The generated candidates will be compared against
the true candidates from the existing taxonomy.
We utilize Precision@k (P@k), Recall (R@k), and
Mean Reciprocal Rank (MRR): Precision@k =

relevant items @k
recommended items @k , where k is the number of can-

didates at each step; MRR = 1
|Q|

∑|Q|
i

1
ranki

,
where Q is the sample of queries, ranki is the first
position of the relevant candidate in the ranked list
for the query i. Intuitively, MRR looks how close
to the top of the list the correct answer is. Both
metrics are commonly employed in the Hypernym
Discovery and Taxonomy Enrichment shared tasks,
which require systems to produce ranked lists of po-
tential hypernyms (Camacho-Collados et al., 2018;
Dale, 2020). Furthermore, numbers for both met-
rics are multiplied by 100 for clearer presentation.

4 Cross-modal Contextualized Hidden
State Projection Method

The main idea of the paper is to predict new words
using knowledge preserved in BERT and enhance
the word generation process with graph informa-
tion. Fig. 2 demonstrates the overall architecture
of the CHSP approach that we use to solve the task.
First, we train a graph representation model to com-
pute graph embeddings. Furthermore, we learn a
projection layer to transform target graph embed-
dings to the BERT vector space. Then we apply
the projected embeddings as input to the masked
language modelling part of BERT model. The pre-
diction head generates new lemmas that are treated
as candidate hyponyms for parent nodes. This pro-
cess results in gradual joining of graph and textual
modalities.

4.1 Graph Embedding Computation

In this section, we study various graph embed-
ding representations to integrate into BERT. In Fig.
2, it is the Graph-BERT model that is depicted,
however, it could be any model for represent-

ing graph structure. We evaluated several induc-
tive and non-inductive embeddings such as Graph-
BERT (Zhang et al., 2020), node2vec (Grover and
Leskovec, 2016), GCN (Kipf and Welling, 2016),
GAT (Velickovic et al., 2018), TADW (Yang et al.,
2015), and Poincaré (Nickel and Kiela, 2017) em-
beddings. We also tested directed and undirected
structures of Graph-BERT, node2vec and Poincaré.
We performed both intrinsic and extrinsic evalua-
tion of the computed embeddings.

As for the intrinsic evaluation, which was con-
ducted on the unmasked WordNet, we generated
the top-10 nearest neighbours and computed Preci-
sion@k and Recall@k scores (k=1, 2, 5, 10) met-
rics that assess the amount of hyponyms presented
in the top-k list. We assume that the more “chil-
dren” are presented in the list, the more suitable
embeddings are for the tree-like structures and hy-
ponym prediction. From Table 1 we can see that the
best inductive embedding model is Graph-BERT
on the directed graph and non-inductive node2vec
on the undirected graph. We observe that node2vec
and Poincaré show much higher scores than other
methods. We speculate that this can be explained
by the fact that these two algorithms are the only
ones that do not incorporate textual features into
the learned embeddings. Intuitively, similarity in
textual features is not equal to similarity in graph.
Additionally, degradation of node similarity in mod-
els that aggregate information from graph struc-
ture and node features is a known issue (Jin et al.,
2021) and is linked to the over-smoothing problem.
We believe that this could be one of the reasons
why the approaches, which demonstrate promising
results on traditional taxonomy enrichment task
(Nikishina et al., 2022), like GAT, GCN, TADW
do not perform well on predicting nearest neigh-
bours. Moreover, we hypothesize that it also might
be explained by the fact that such models better
represent co-hyponymy or hypernymy, rather than
hyponymy. Graph-BERT is known for avoiding
over-smoothing problem, thus, performs much bet-
ter than GAT, GCN and TADW.

For the extrinsic evaluation (evaluation of the
downstream task) we have used two models: the
best non-inductive and the best inductive embed-
dings. It is either a Graph-BERT (Zhang et al.,
2020) that accepts a sequence of node represen-
tations and their positional embeddings describ-
ing their local and global positioning in the graph,
or a node2Vec (Grover and Leskovec, 2016) that
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Figure 2: Cross-modal Contextualized Hidden State Projection Method (CHSP): graph-based BERT architecture
that makes use of both node and text embeddings. Graph-BERT illustration source: (Zhang et al., 2020), BERT
illustration source (Devlin et al., 2019). The input data is described in §3.1. §4.1 describes the choice of graph
embedding algorithm. §4.2 explains the projection of embeddings from graph space to BERT space. § explains how
BERT was used to predict candidates from the projected embeddings. §4.4 explains of the multi-token candidate
generation algorithm. Finally §4.5 lists post-processing filters applied on the list of generated candidates.

Table 1: Graph embeddings comparison on the tree representation task.

Embeddings P@1 P@2 P@5 P@10 R@1 R@2 R@5 R@10

Inductive

Graph-BERT directed (node reconstruction) 0.127 0.099 0.064 0.041 0.127 0.113 0.150 0.182
GraphBERT directed (graph recovery) 0.190 0.163 0.115 0.073 0.190 0.182 0.260 0.314
Graph-BERT undirected (node reconstruction) 0.166 0.142 0.107 0.070 0.160 0.166 0.273 0.349
Graph-BERT undirected (graph recovery) 0.164 0.140 0.100 0.062 0.164 0.153 0.227 0.268
GCN 0.021 0.024 0.028 0.030 0.021 0.033 0.073 0.137
GAT 0.018 0.016 0.014 0.011 0.008 0.021 0.068 0.099

Non-inductive

Node2vec directed root2leaf 0.227 0.217 0.212 0.181 0.227 0.241 0.368 0.509
Node2vec directed leaf2root 0.451 0.359 0.244 0.173 0.451 0.470 0.563 0.674
Node2vec undirected 0.988 0.807 0.515 0.321 0.988 0.987 0.988 0.990
Poincare directed 0.769 0.671 0.464 0.297 0.769 0.818 0.882 0.910
Poincare undirected 0.716 0.618 0.434 0.283 0.716 0.727 0.804 0.862
TADW 0.006 0.005 0.005 0.004 0.006 0.006 0.008 0.010

learns low-dimensional representations for nodes in
a graph through the use of random walks. However,
as we will further see, good coverage of hyponyms
in the nearest neighbour list does not guarantee
high performance on hyponym prediction.

4.2 Space Transformation

In order to project graph embeddings into BERT
embedding space, we use a simple multilayer per-
ceptron (MLP). The architecture and training pro-
cess are described in Appendix A.2.

BERT embeddings are contextualized. There-

fore, for learning projection from graph space into
BERT, the target words cannot be simply embedded
as is because their representation will differ in var-
ious contexts. In order to generate contextualized
embeddings we use a SemCor dataset (Langone
et al., 2004). It consists of 352 texts from Brown
Corpus (Kucera and Francis, 1967), which is an
electronic collection of text samples in English lan-
guage. SemCor contains manually annotated sen-
tences where words are matched with according
synsets. We adopt SemCor 3.0, which was automat-
ically created from SemCor 1.6 by mapping senses
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from WordNet 1.6 to WordNet 3.0. We extract
embeddings of annotated words and use as con-
textualized target synset embeddings for learning
projection.

4.3 BERT Masked Language Modelling
Prediction

We use bert_base_uncased pre-trained configura-
tion of BERT to embed a structure “[MASK] is
a {parent}” where “{parent}” is a lemma of a hy-
pernym whose hyponyms are to be predicted. In
the following parts we will refer to this structure
as input context. The choice of the structure was
not random. To begin with, we have evaluated
three different context constructions suggested in
(Hanna and Mareček, 2021): 1. “[MASK] is a/an
{parent}”; 2. “My favourite {parent} is a [MASK]”;
3. “{parent} such as a [MASK]” . The scores for the
amount of true hyponyms in a list of predicted can-
didates are presented in the first three lines of Table
2 and Table 3, accordingly. The Precision@10
scores indicate that the best results were produced
by the first prompt, which proved to be the most
stable among the three, and it was used in all CHSP
configurations. These experiments are also repur-
posed as three baselines.

Furthermore, we create three settings with dif-
ferent approaches to incorporation of graph embed-
ding into the language model prediction:

• pure-BERT prediction: embedding of
“[MASK]” token is left as is;

• replaced prediction: embedding of “[MASK]”
token is replaced by projected graph embed-
ding;

• mixed (or contextualized) prediction: embed-
ding of “[MASK]” token is averaged with pro-
jected graph embedding.

The replacement can happen at three different
stages: after first layer of BERT encoder, after sixth
(middle) or after twelfth (last). In the first two cases
space transformation learns to project graph em-
beddings into intermediate hidden states and after
replacement the hidden states are passed through
remaining encoder layers. The replacement strate-
gies are illustrated in Fig. 3. Thus, by performing
this process, we combine textual and graph modali-
ties in order to improve candidate prediction at the
certain place of the taxonomy.

4.4 Multi-token Prediction
For the experiments with single- and multi-
token prediction we adopt a condBERT (De-
mentieva et al., 2021) multi-token generation
mechanism. In addition to “[MASK] is a
{parent}”, “[MASK][MASK] is a {parent}” or
“[MASK][MASK][MASK] is a {parent}” sen-
tences are used. The tokens are generated progres-
sively using beam search while each multi-token
sequence is scored by the harmonic mean of the
probabilities of its tokens. The beam search process
is illustrated in Fig. 4. The algorithm generates 1-,
2- and 3-token predictions, which are merged into a
final candidates list sorted according to their scores.
The detailed description of the multi-token candi-
date generation algorithm is given in the Appendix
A.3.

4.5 Post-processing
In order to eliminate noise from the predictions
generated by the BERT language model, we apply
several filters on the generated set of new words.
First, we remove all predictions containing non-
alphabetical symbols as well as stop-words from
Stopwords Corpus (Porter, 1980) in NLTK library1.
The multi-token generation case requires further
post-processing: merging word-pieces and discard-
ing candidates where all tokens start with “##”.

Furthermore, we check merged candidates for
containing permutations of same sets of words and
eliminate the repeating ones with lower scores. For
example, if there are two multi-token candidates
“apple pie” and “pie apple”, the one less-probable
one is going to be discarded. Finally, the whole list
of merged candidates is checked for duplicates and
sorted by their scores.

5 Baselines

In our experiments we are using three baselines:
1. fastText (nearest neighbours); 2. BERT (parent
embeddings on inference); 3. three patterns from
(Hanna and Mareček, 2021; Schick and Schütze,
2019) .

5.1 fastText (nearest neighbours)
The first baseline uses 300-dimensional fastText
(Bojanowski et al., 2017) English embeddings pre-
trained on Common Crawl and Wikipedia. Hy-
pernym embeddings are computed as an average
of all lemmas embeddings. Furthermore, nearest

1https://www.nltk.org/

15



Layer 1

Layer 2

Layer 12

...

projected graph emb
replace/mean

BERT
Encoder

[MASK] is a {parent}

Layer 12

...

projected graph emb
replace/mean

BERT
Encoder

[MASK] is a {parent}

Layer 7

Layer 6

...

Layer 1 Layer 1

Layer 12

...

projected graph emb

BERT
Encoder

[MASK] is a {parent}

replace/mean

Figure 3: Illustration of replacement approaches. The projected graph embedding is inserted after (a) 1st BERT
encoder layer, (b) 6th BERT encoder layer, (c) 12th BERT encoder layer. The “replace/mean” denote the replacement
strategy: the projected embedding either replaces according hidden representation of “[MASK]” token, or averaged
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Figure 4: Beam search for multi-token generation. In this figure 3-token case is illustrated. In our research we also
use 2-token case which is generated in a similar manner.

neighbours of the resulting vectors are retrieved
and scored as hyponym predictions. Our approach
can be seen as a reverse of the method from (Nik-
ishina et al., 2020a). In a single-token evaluation
case multi-token hyponyms are dropped from the
list of gold hyponyms (see Section 3.2).

5.2 BERT (parent embeddings on inference)

The second baseline uses BERT to encode each
hypernym lemma and decode it back in a single-
or multi-token setting. Predictions for each parent
lemma are aggregated and evaluated. This method
is loosely motivated by the idea of lexical substi-
tution (Anwar et al., 2020), which goal is to find
meaning-preserving alternatives to a particular tar-
get word in its context. However, with this baseline
we wanted to evaluate BERT’s ability to predict
hyponyms in a contextless setting.

5.3 Pattern Comparison

The last baseline is based on the approach described
in these two publications: (Hanna and Mareček,
2021; Schick and Schütze, 2019). They propose
a variety of constructions for prompting BERT
in order to identify its linguistic capabilities and
test its ability to capture semantic properties of
words. Both works use the similar set of construc-
tions, however, only (Hanna and Mareček, 2021)
compare them against each other in order to iden-
tify the most efficient ones. According to their
evaluations we have selected three best patterns:
“[MASK] is a/an {parent}”, “My favourite {parent}
is a [MASK]”, “{parent} such as a [MASK]”. The
constructions were encoded with BERT and then
decoded in single- and multi-token settings with
“[MASK]” predictions treated as new candidate hy-
ponyms.
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Table 2: Prediction scores for single-token hyponyms generation for different source graph embeddings and
replacement strategies (x100).

Method Context Replaced MRR@5 MRR@10 MRR@20 P@1 P@5 P@10

Pattern comparison (Hanna and Mareček, 2021)
“[MASK] is a {parent}” Yes No 2.461 2.704 3.091 1.546 1.289 1.057
“My favourite {parent} is a [MASK]” Yes No 0.554 0.863 1.001 0.000 0.464 0.490
“A {parent} such as a [MASK]” Yes No 0.168 0.193 0.235 0.000 0.155 0.103

BERT (parent embedding on inference) No No 1.003 1.083 1.203 0.940 0.251 0.188
fastText (nearest neighbours) No No 2.400 3.500 4.000 0.130 1.839 2.100

CHSP (Graph-BERT) Yes Mix 7.229 8.037 8.624 3.608 3.247 2.474

Table 3: Prediction scores for multi-token hyponyms generation for different source graph embeddings and
replacement strategies (x100).

Method Context Replaced MRR@5 MRR@10 MRR@20 P@1 P@5 P@10

Pattern comparison (Hanna and Mareček, 2021)
“[MASK] is a {parent}” Yes No 0.930 1.027 1.177 0.600 0.460 0.370
“My favourite {parent} is a [MASK]” Yes No 0.425 0.693 0.844 0.000 0.361 0.438
“A {parent} such as a [MASK]” Yes No 0.051 0.137 0.137 0.000 0.052 0.077

BERT (parent embedding on inference) No No 0.320 0.345 0.390 0.300 0.080 0.060
fastText (nearest neighbours) No - 1.860 2.673 3.069 0.100 1.420 1.620

CHSP (Graph-BERT) Yes Yes 2.150 2.281 2.378 1.600 0.740 0.530

6 Experiments

Our experiments can be categorised by following
features: source graph embeddings, usage of con-
text structure, replacement layer and replacement
strategy. This section is divided into two parts. The
first subsection compares various combinations of
CHSP configurations. The second subsection ana-
lyzes performance of the best CHSP configurations
against the baselines.

6.1 Graph Embeddings Comparison

Tables 5 and 6 compare single-token and multi-
token hyponym predictions for methods with differ-
ent source embeddings, replacement strategies and
replacement layers. We observe that in single-token
case for both node2vec and Graph-BERT the best
replacement point is after the last (12th) BERT en-
coder layer with first and sixth being close seconds.
We hypothesise that the reason is that, when inject-
ing the projected graph embedding at earlier stages,
remaining encoder layers dilute information incor-
porated in the embedding, thus deflecting from
the right answers. In the case of single-token gen-
eration, Graph-BERT with the replacement point
is after the last layer is a clear winning strategy
among all the combinations. On the contrary, for
multi-token generation significantly better scores
were obtained by replacement after 6th layer. We

suggest that this replacement strategy helped to
diversify generated subwords and produce more
meaningful results.

In general, “mixing” replacement strategy pro-
duces better results for the last-layer replacement
strategy, because it allows incorporation of a con-
text information encoded in a final hidden state of
“[MASK]” token. However, there are some cases
when the context actually diverts the method from
the real answer (see Section 7). The complete re-
placement showed better scores in 1st and 6th layer
replacement, because this strategy already incorpo-
rates a lot of context in the “[MASK]” embedding
while passing it through remaining layers of the
encoder, and “mixing” replacement reduces the in-
fluence of projected embedding too much. To sum
up, both replacement strategies are important and
none can be deemed winning as there is a clear
pattern of where to apply each of them.

We can observe that node2vec did not perform
as well as was expected judging from the graph em-
bedding comparison. In many cases of single-token
generation, words synonymous to the hypernym
were predicted, instead of hyponyms. The reason
for the low scores on node2vec embeddings might
be explained by the fact that the Graph-BERT em-
beddings are easier to transform to the BERT vector
space. Another hypothesis is that the performance
on hyponym prediction does not guarantee high
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scores on predicting hyponyms for the taxonomy
enrichment.

6.2 Overall Comparison

Tables 2 and 3 contain the overall scores for dif-
ferent hyponym prediction methods. We can see
that our approach significantly outperforms other
methods on single token setup, however, it fails
on predicting multi-token candidates. We observe
that the patterns from (Hanna and Mareček, 2021;
Schick and Schütze, 2019) show results are mostly
far from the top ones. This happened because the
context encapsulated in the patterns in general con-
tains little information. We also see that our method
outperforms the BERT (parent embedding on infer-
ence) baseline (which is a simple prediction of en-
coded parent synset) and a simple approach on fast-
Text nearest neighbours candidates. Even though
the results for multi-token predictions are better for
the fastText baseline, we still consider our method
to be the most effective, as fastText is also not ca-
pable to predict multi-token candidates and yields
to our method in the single token setup.

For all setups, the multi-token generation did not
result in improvement of the scores. This can be
explained by the flawed nature of our multi-token
sampler and suggests major stream of future work.

7 Error Analysis

We can categorise common errors into several
groups: failing to differentiate the real meaning
of the hypernym, prediction of synonymical/same
domain words instead of hyponyms, weakness of
multi-token generator.

The first type of errors is related to incorrect
recognition of a rare meaning of a synset and mis-
taking of it for a more common one. For example,
for hypernym “depression.n.10” (pushing down)
the correct prediction would be “click”. However,
almost all results are medical related predictions,
e.g., headache, coma, schizophrenia.

An example of the second type of errors might
be predictions of multi-token pipeline with Graph-
BERT embeddings for “jazz_musician.n.01” hyper-
nym. While the correct answer is “syncopator”, top
produced predictions are “singer”, “dj”, which ob-
viously come from the same music-related domain.

For multi-token Node2vec we observed a lot of
cases where one strong word was produced and
further multi-token hypothesis would retain this
first word and simply permute other different words.

Table 4: Example on Graph-BERT embeddings for the
node “beverage.n.01” (single-token generation).

beverage.n.01
Gold hyponyms: alcoholic drink, oenomel, fruit crush, cooler,
alcoholic beverage, hot chocolate, fizz, ade, milk, inebriant,
cocoa, drinking chocolate, drinking water, tea, java, mixer, re-
fresher, tea-like drink, alcohol, coffee, fruit drink, ginger beer,
wish-wash, potion, soft drink, near beer, smoothie, chocolate,
cyder, intoxicant, fruit juice, cider, mate, hydromel

pure BERT replaced mixed

1 beer milk coffee
2 coffee drink milk
3 alcohol coffee drink
4 water butter tea
5 cola pot chocolate
6 tea whisky butter
7 wine tea beer
8 milk turkey whisky
9 chocolate chocolate brandy

10 rum brandy water

Example output for test hypernym “suburb.n.01”:
suburb, suburb suburbs, suburbs, suburb suburban,
suburb suburbs suburban, etc.

Because of the weak multi-token decoding mech-
anism, many predictions failed. For example, none
of the setups managed to produce adequate hy-
ponyms for “berry.n.01”, because all correct an-
swers are multi-token in BERT vocabulary.

All in all, the results are diverse an controver-
sial. For instance, Table 9 demonstrates that graph
information from node2vec is confusing for the
model. According to Tables 4 and 7, Graph-BERT
improves the ranking of the results. However, none
of the models handles multi-token prediction: the
only case where the model manages to predict the
correct answer is presented in Table 8.

For instance, the model can generate candidates
that are correct but they are not yet included to the
taxonomy. In this case, the evaluation system will
still mark them as incorrect. Therefore, as future
work we plan not only improve current methods
but also perform human evaluation of the results.

Another reason for the absolute low scores is the
way the test set was generated. While in (Cho et al.,
2020) the data is selected from the well-known
domains like “pets”, “food”, “sport”, our test set is
generated randomly and thus comprises rare terms,
which may be harder to process. At the same time,
simple examples like “beverage” or “meal” gain
better scores. As future work we want to tackle the
problem of rare terms.
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8 Conclusion

In this work, we presented a novel candidate-free
task formulation for taxonomy enrichment. The
contribution is three-fold: task proposal, accord-
ing dataset and test of multi-modal approach. We
performed a computational study of various meth-
ods using knowledge from BERT. We compared
different graph-based embeddings on the task and
projected them to the BERT vector space. Then
we identified the best position for the projected
graph embedding to be injected to the BERT model.
The results demonstrate that incorporation of graph
embedding is beneficial in the task of hyponym
prediction using BERT. Nevertheless, the BERT ar-
chitecture does not allow us to easily operate with
multi-token words and the pipeline accumulates
errors in each component. This may be room for
improvement for generative models like GPT or T5
and their prompt-tuning.

All in all, the proposed task is proven to be very
challenging paving the way for future research.
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A Appendix

A.1 Hyperparameters for training graph
embedding models

In this subsection we are listing the hyperparame-
ters for training of graph embedding models. Un-
listed parameters were set to default values.

Graph-BERT was initialized with fastText raw
textual features (each node – average of according
synset’s lemmas). It was trained for 200 epochs
on the node attribute reconstruction task, and the
process continued for 200 more epochs on on the
graph structure recovery task. The learning rate
was set to 1e-3 and subgraph size to 5, and the
resulting vectors were 300-dimensional.

Node2vec was trained to generate embeddings of
same dimensionality, with 30 nodes in each random
walk and 200 walks per node.

A.2 Space transformation MLP details
The MLP consists of three hidden layers
(source_embs × 1024, 1024 × 512, 512 ×
target_embs) with exponential linear unit (ELU)
activation. During training we used AdamW
(Loshchilov and Hutter, 2017) optimizerFor the
objective function we used a sum of cosine embed-
ding loss between a model output and a target and
a negated cosine similarity between a model output
and a random negative example (any entity from
the dataset that is not a target).

L = L+ − L−
L+ = 1− cos (y, ŷ)

L− = max (0, cos (yneg, ŷ)) ,

(1)

where y – target embedding, ŷ – predicted embed-
ding, yneg – negative example. The projection layer
was trained for 500 epochs with batch size 64 and
1e-4 learning rate.

A.3 Multi-token generation algorithm details
The pseudocode for multi-token prediction is given
in Algorithm 1. It is split into two functions:
multi_tok_generate() and predict_candidates(). We
are going to provide line-by-line explanation for
each of them.

The multi_tok_generate() function takes as in-
put the name of a parent synset, projected graph
embedding, layer of replacement for the incorpo-
ration of the embedding and the replacement strat-
egy. Line 2 generates tokens for the context con-
struction “[MASK] is a {parent}”, and line 3 en-

codes them with incorporation of projected em-
bedding according to the scheme. Furthermore,
the tokens and the hidden states are passed to the
predict_candidates() function. It also takes the po-
sition of “[MASK]” token, which in this context
prompt is 0. Finally, predict_candidates() returns
a sorted list of tuples (candidate, score), where
each candidate – predicted hyponym, and score
harmonic mean of scores for each token in the
multi-token sequence.

The predict_candidates() function starts with
saving the embedding of the “[MASK]” token
that incorporates graph information (line 2). Fur-
thermore, in the line 3 of the Algorithm 1 the
single-token candidates are predicted. Function
extract_mask_preds() (line 3) separates the pre-
dictions of hyponyms from the generated sen-
tences. For example, sentence “[MASK] is a claim”
was predicted into “dibs is a claim”. Then ex-
tract_mask_preds() extracts the predicted hyponym
“dibs” and returns it as a candidate paired with its
score. Next, multi-token candidates of lengths 2
and 3 are generated (line 6). It is done with a beam
search (line 7), which is illustrated schematically
in Fig. 4. The beam_search() takes as input the
tokenized sentence, position of a mask, saved em-
bedding of a mask and a maximum length of the
multi-token sequence. The beam search starts with
insertion of one or two (according to the maxi-
mum length) additional mask tokens in the token
sequence. Furthermore, the masks are predicted
iteratively while maintaining best sequences as in
a classical beam search algorithm.

The beam search generation ends when the max-
imum sequence length of the multi-token predic-
tion is reached. The top hypotheses sentences as
well as their scores are returned. Next, in the
line 8 candidate hyponyms are extracted with ex-
tract_mask_preds() and together with scores are
saved. Finally, multi- and single- token predictions
are merged together and sorted by scores (line 10).
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Algorithm 1 Algorithm of multi-token generation with BERT.
Inputs: name of parent synset parent, graph embedding of according masked child node projected into
BERT space proj_emb, layer of replacement l_num, replacement strategy repl_strategy
Outputs: sorted list final_res that consists of tuples (candidate, score).
1: function MULTI_TOK_GENERATE(parent, proj_emb, l_num, repl_strategy)
2: tokens← tokenize(“[MASK] is a {parent}”)
3: hidden_states← BERT. encode(tokens, proj_emb, repl_strategy, l_num)
4: final_res← predict_candidates(hidden_states, tokens,mask_pos = 0)
5: return final_res
6: end function
7:
1: function PREDICT_CANDIDATES(hidden_states, tokens,mask_pos)
2: mask_hidden_state← hidden_states[mask_pos]
3: single_tokens, single_scores← pred_single_mask(BERT, hidden_states,mask_pos)
4: f_preds, f_scores← extract_mask_preds(single_tokens, single_scores)
5: multi_preds,multi_scores← [], []
6: for seq_len ∈ [2, 3] do
7: new_tokens, new_scores←

← beam_search(tokens,mask_pos,mask_hidden_state, seq_len)
8: m_p,m_s← extract_mask_preds(new_tokens, new_scores)
9: multi_preds.append(m_p)

10: multi_scores.append(m_s)
11: end for
12: final_res← merge_sort_results(f_preds, f_scores,multi_preds,multi_scores)
13: return final_res
14: end function

Table 5: CHSP prediction scores for single-token hyponyms generation for different source graph embeddings,
replacement strategies and substitution layer (x100).

Graph embeddings Context Replaced Layer MRR@5 MRR@10 MRR@20 P@1 P@5 P@10

Node2vec Yes

Yes 1st 0.975 1.831 2.252 0.000 0.670 1.186
Mix 1st 2.328 2.685 2.903 1.546 1.186 1.005
Yes 6th 3.316 3.799 4.070 1.031 1.804 1.340
Mix 6th 2.414 3.079 3.391 1.289 1.289 1.469
Yes 12th 2.436 3.185 3.486 1.289 1.082 1.160
Mix 12th 3.329 4.073 4.597 1.031 1.649 1.675

Graph-BERT Yes

Yes 1st 4.502 4.995 5.371 3.093 1.598 1.340
Mix 1st 1.448 1.813 2.033 0.773 0.876 0.979
Yes 6th 5.503 6.216 6.453 3.093 2.371 2.010
Mix 6th 2.981 3.500 3.836 1.546 1.649 1.495
Yes 12th 5.215 5.674 6.027 3.093 2.113 1.598
Mix 12th 7.229 8.037 8.624 3.608 3.247 2.474

Table 6: CHSP prediction scores for multi-token hyponyms generation for different source graph embeddings,
replacement strategies and substitution layer (x100).

Graph embeddings Context Replaced Layer MRR@5 MRR@10 MRR@20 P@1 P@5 P@10

Node2vec Yes

Yes 1st 0.945 1.231 1.395 0.515 0.515 0.515
Mix 1st 0.287 0.374 0.492 0.000 0.206 0.180
Yes 6th 0.587 0.674 0.732 0.200 0.300 0.210
Mix 6th 1.924 2.073 2.193 1.200 0.740 0.550
Yes 12th 0.520 0.534 0.586 0.500 0.120 0.070
Mix 12th 0.453 0.534 0.610 0.400 0.120 0.110

Graph-BERT Yes

Yes 1st 1.908 2.054 2.149 1.400 0.680 0.500
Mix 1st 1.350 1.522 1.625 0.800 0.600 0.500
Yes 6th 2.150 2.281 2.378 1.600 0.740 0.530
Mix 6th 1.468 1.694 1.806 0.700 0.700 0.560
Yes 12th 1.278 1.312 1.368 1.200 0.340 0.190
Mix 12th 1.767 1.899 2.071 1.400 0.540 0.390
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Table 7: Example on Graph-BERT embeddings for the
node “meal.n.01” (multi-token generation)

meal.n.01
Gold hyponyms: nosh-up, tea, snack, breakfast, supper,

brunch, tiffin, lunch, refection, mess, ploughman’s lunch, deje-
uner, feast, spread, afternoon tea, picnic, dinner, square meal,
luncheon, teatime, banquet, bite, buffet, potluck, collation

pure BERT replaced mixed

1 life breakfast breakfast
2 food breakfast lunch breakfast lunch
3 dinner lunch lunch
4 lunch breakfast dinner breakfast dinner
5 breakfast breakfast lunch dinner breakfast lunch dinner
6 everything lunch dinner lunch dinner
7 love breakfast dining dinner
8 tomorrow breakfast meals breakfast meal
9 today breakfast meal breakfast lunch meal

10 nothing breakfast lunch dining breakfast meals

Table 8: Example on node2vec embeddings for the node
“stock.n.01” (multi-token generation).

stock.n.01
Gold hyponyms: capital stock, treasury stock, quarter
stock, preference shares, growth stock, preferred stock, no-
par-value stock, voting stock, common shares, authorized
shares, hot stock, ordinary shares, authorized stock, float,
reacquired stock, common stock, no-par stock, common
stock equivalent, treasury shares, preferred shares, hot is-
sue, control stock, watered stock

pure BERT replaced mixed

1 stock capital capital
2 one capital cash capital cash
3 c capital investment capital investment
4 b capital financing capital money
5 today capital funds capital financial
6 x capital financial capital equity
7 gold capital income capital stock
8 everything capital funding capital financing
9 life capital revenue capital funds

10 r capital crop capital leverage

Table 9: Example on node2vec embeddings for the node
“citrus.n.01” (single-token generation)

citrus.n.01
Gold hyponyms: citrange, citron, grapefruit, kumquat, lemon,
lime, mandarin, orange, pomelo

pure BERT replaced mixed

1 fruit date date
2 one year tree
3 rose horse year
4 another turkey snow
5 citrus dates horse
6 cherry tree turkey
7 orange snow dates
8 tomato calendar winner
9 mine winner grass

10 wood loser trees
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Abstract

A Knowledge Graph (KG) is the directed graph-
ical representation of entities and relations in
the real world. KG can be applied in di-
verse Natural Language Processing (NLP) tasks
where knowledge is required. The need to
scale up and complete KG automatically yields
Knowledge Graph Embedding (KGE), a shal-
low machine learning model that is suffering
from memory and training time consumption
issues. To mitigate the computational load, we
propose a parameter-sharing method, i.e., using
conjugate parameters for complex numbers em-
ployed in KGE models. Our method improves
memory efficiency by 2x in relation embed-
ding while achieving comparable performance
to the state-of-the-art non-conjugate models,
with faster, or at least comparable, training
time. We demonstrated the generalizability of
our method on two best-performing KGE mod-
els 5⋆E (Nayyeri et al., 2021) and ComplEx
(Trouillon et al., 2016) on five benchmark
datasets.

1 Introduction

A Knowledge Graph (KG) is a representation
of confident information in the real world and
employed in diverse Natural Language Processing
(NLP) applications, e.g., recommender system,
question answering, and text generation. A
triple in the form of (head, relation, tail) is
widely used as the representation of elements in
the KG instead of raw text for scalability. Cite
(clinician, synset_domain_topic_of, psychology)
as an example, clinician and psychology
is the head and tail entity respectively, and
synset_domain_topic_of is the relation of the
head entity pointing to the tail entity.

Knowledge Graph Embedding (KGE) models
are designed for automatic link prediction. Rela-
tions in KG have multiple categories, e.g., sym-
metry, antisymmetry, inversion, and hierarchical.
Missing links indicate incomplete ties between en-

tities and are a common phenomenon as finding the
missed connections is labor-intensive work.

The theoretical space complexity of KGE mod-
els are often O(nede+nrdr), which is proportional
to the number of KG elements, i.e. entities ne and
relations nr, and embedding dimension de, dr re-
spectively. Scaling a KG is problematic as ne, nr

can go up to millions; also because KGE models
are often shallow machine learning models com-
posed of simple operations, e.g., matrix multiplica-
tion. Caution that a shallow model needs a large
dimension size d to depict the data feature, yield-
ing the issue of the drastic increase of embedding
parameters (Dettmers et al., 2018).

KGE models represented using complex num-
bers have state-of-the-art performance, while they
demand high memory costs. E.g., if using one
of the best models ComplEx (Trouillon et al.,
2016) to create embedding for the benchmark
dataset FB15K whose ne = 14, 951, nr = 1, 345,
and the best-performing dimensionalities de =
4000, dr = 4000, will result in the parameter size
of 65, 184, 000. Considering the data type 64-bit in-
teger (signed), who has a size of 8 bytes in PyTorch,
the memory cost will be 65, 184, 000 × 8 ≈ 497
MB. A KG for real-world application could have a
much larger size, e.g., IBM’s KG contains entities
> 100 million and relations > 5 billion, which is
actively in use and continually growing (Noy et al.,
2019), would need > 148 TB memory to do link
prediction task.

Inspired by the improved performance of com-
plex number representation and Non-Euclidean
models where transformation parameters attempt to
interact rather than be independent, we intuited the
idea of sharing parameters for memory efficiency.

We demonstrate a parameter-sharing method
for complex numbers employed in KGE models.
Specifically, our method formulates conjugate pa-
rameters in appropriate dimensions of the transfor-
mation functions to reduce relation parameters. By
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using our method, models can reduce their space
complexity to O(nede + nrdr/2), which means
the relation embedding size is half the original
model. In the second place, using conjugate pa-
rameters may help save training time, especially
on the datasets who have more parameter patterns.
Further, our method can be easily applied to various
complex number represented models.

We verified our method on two best-performing
KGE models, i.e., ComplEx (Trouillon et al.,
2016) and 5⋆E (Nayyeri et al., 2021). The experi-
ments were conducted on five benchmark datasets,
i.e., FB15K-237, WN18RR, YAGO3-10, FB15K,
and WN18, by which we empirically show that
our method reserves the models’ ability to achieve
state-of-the-art results. We also see 31% training
time saved on average for 5⋆E in addition to the
memory. Our method is implemented in PyTorch1

and the code with hyperparameter settings2 are
available online.

2 Related Works

We describe the categorizations of KGE models
according to the representation method and the
vector space that inspired our idea.

Representation Method Real and complex num-
ber representations are used to quantify entities and
relations.

Translation approaches including TransE (Bor-
des et al., 2013) and its variants (Ji et al., 2015; Lin
et al., 2015) describe embeddings using real num-
ber representation. Although these simple models
cost fewer parameters, they can only encode two or
three relation patterns, e.g., TransE cannot encode
symmetric relations.
ComplEx (Trouillon et al., 2016) creates embed-

ding with complex number representation, which
can handle a wider variety of relations than using
only real numbers, among them symmetric and an-
tisymmetric relations (Trouillon et al., 2016). 5⋆E
(Nayyeri et al., 2021) utilizes Möbius transforma-
tion, a projective geometric function that supports
multiple simultaneous transformations in complex
number representation and can embed entities in
much lower ranks.

Vector Space Euclidean and Non-Euclidean
spaces are practiced for the calculation of triple
plausibility.

1https://pytorch.org/
2github.com/xincanfeng/dimension

Factorization models such as RESCAL (Nickel
et al., 2011) and DistMult (Yang et al., 2014)
employ element-wise multiplication in Euclidean
space. Correspondingly, the plausibility of a triple
is measured according to the angle of transformed
head and tail entities.
MuRP (Balazevic et al., 2019) minimizes hy-

perbolic distances other than Euclidean. It needs
fewer parameters than its Euclidean analog. ATTH
(Chami et al., 2020) leverages trainable hyperbolic
curvatures for each relation to simultaneously cap-
ture logical patterns and hierarchies. Compared
with Euclidean, the Hyperbolic models can save
more structures using variational curvatures in dif-
ferent areas to depict hierarchical relations.

Relational Constrain on Parameters Replacing
real number with complex number representation
enables the imaginary part to have an effect on the
real part parameters, the boosted performance of
which indicates the hidden relation among param-
eter. Using hyperbolic space other than Euclidean
enables the distances or angles at different posi-
tions to vary, the increased accuracy hints us to
add various constraints on parameters. Learning
from the work by Hayashi and Shimbo (2017), the
potential of improving representations through con-
jugate symmetric constraint is revealed. Therefore,
we hypothesize the efficiency of relational parame-
ters and propose a parameter-sharing method using
conjugate numbers.

3 Method

Complex number employed in current KGE mod-
els enforces multiplicative constraint on represen-
tations; our method further adds conjugate con-
straint within the parameters. Note that we don’t
reduce the dimensions of the parameters, instead,
we share the dimensions.

We economize 50% of the memory in relation
embedding by sharing half of the parameters in
the conjugate form. Our approach is at least com-
parable in accuracy to the baselines. In addition,
our method reduces calculation in the regulariza-
tion process, e.g., for the 5⋆ϵ model, 31% of train-
ing time is saved on average for five benchmark
datasets.

3.1 Preliminaries

Link prediction task inquires if a triple (h, r, t) con-
structed by existing head and tail entities h, t ∈ Vde
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and relations r ∈ Vdr (Vd is a d-dimensional vec-
tor space) is true or not. In KGE models, the re-
lations are often represented as the transformation
function ϑ that maps a head entity into a tail entity
which are described as vectors in corresponding
space, i.e., ϑ(h) = t. Then, the score function f :
Vde ×Vdr ×Vde → R returns the plausibility p of
constructing a true triple: f(h, r, t) = p(ϑ(h), t).
a, b, c, d ∈ C denote the parameters in the rela-

tion embedding matrices. x ∈ C is the parameter
of the entity embedding matrices. ai, xi are the
parameters of the submatrices of [a] and [x] respec-
tively. Re(z) is the real part of the complex number
z, z is the complex conjugate of z.

ComplEx This is the first and one of the best-
performing complex models in Euclidean space.
Trouillon et al. (2016) demonstrated that complex
number multiplication could capture antisymmet-
ric relations while retaining the efficiency of the
dot product, i.e., linearity in both space and time
complexity. Balancing between model expressive-
ness and parameter size is also discussed as the
keystone of KGE. However, targeting SOTA is still
computational-expensive because Trouillon et al.
(2016) didn’t solve the performance deterioration
problem when reducing parameters directly.

Performance deterioration can be severe when-
ever the KG needs to be expanded because the
mispredicted links could lead to further misinfor-
mation. Hence we should always endeavour to
adopt the best-performing embedding size in do-
ing link prediction task, even though it could be
hundreds of TB.

To obtain the best results, ComplEx needs em-
bedding size of rank = 2000 on dataset FB15K-
237, WN18RR, FB15K, WN18, and rank = 1000
on dataset YAGO3-10. rank denotes the vector
dimension of a single-functional parameter. Each
entity and relation in this model needs 2 × rank
parameters, representing real and imaginary part,
respectively.

In this model, relations are represented as the
real part of low-rank matrix

[
a
]
, which act as

weights on each entity dimension x, followed by a
projection onto the real subspace. The transforma-
tion of ComplEx is

x →
[
a
]
x → ax. (1)

5⋆E This is a novel model applying complex
numbers in Non-Euclidean space. Nayyeri et al.
(2021) tackled the problem of multiple subgraph

structures in the neighborhood, e.g., combinations
of path and loop structures. Unlike the ComplEx
model, they replaced the dot product with the
Möbius function which has several favorable theo-
retical properties. This model subsumes ComplEx
in that it embeds entities in much lower ranks, i.e.,
about 25% or even smaller to achieve the state-of-
the-art performance. However, 5⋆E is inferior to
ComplEx in that it needs almost the same large
size of relation parameters to do much more sophis-
ticated calculation.

Following the hyperparameter search range of
Nayyeri et al. (2021), the embedding sizes we
tested for 5⋆E to obtain the best result are rank =
500 for all datasets. Each entity needs 2 × rank
parameters, and each relation needs 8× rank pa-
rameters that function differently.

In this model, relations are represented as[
a b
c d

]
. The transformation function ϑ of 5⋆E

is

x →
[
x
1

]
→

[
a b
c d

] [
x
1

]
→ ax+ b

cx+ d
. (2)

Möbius function ϑ is capable of representing var-
ious relations simultaneously because it combines
five subsequent transformations: ϑ = ϑ4 ◦ϑ3 ◦ϑ2 ◦
ϑ1, where ϑ1 = x+ d

c is describing translation by
d
c , ϑ2 = 1

x is describing inversion and reflection
w.r.t. real axis, ϑ3 = bc−ad

c2
x is describing homo-

thety and rotation, and ϑ4 = x + a
c is describing

translation by a
c .

3.2 Method Formulation
Let

[
a1 a2

]
denotes the relation embedding ma-

trix. Our method constrains half of the parameters
a2 using the complex conjugate of the other half
a1, i.e., a2 = a1; it is model-dependent to spec-
ify which parameters are suitable for conjugation.
We formulated our method on above two baseline
models.

Complϵx By using our method, the original
model ComplEx is adapted to the parameter-
sharing model Complϵx, where relations are rep-
resented as the real part of low-rank matrices with
conjugate parameters. Specifically, we set the orig-
inal square relation embedding matrices

[
a1 a2

]

to be half the normal parameters and the other half
their conjugation, i.e.,

[
a1 a1

]
. In this model,

since each parameter is functioning equally, the
positions of the conjugate parameters can be set
randomly.
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(a) Transformed entities by ComplEx (left) and Complϵx
(right). In the left graph, a black point describes a trans-
formed entity, and the vector values of a point are unrelated
in each dimension. While in the right graph, half of the value
zi, i ∈ [1, d/2] of a vector z1, z2, ..., zd that is describing a
point are constrained as the other half zi, i ∈ [d/2+1, d] corre-
spondingly. The linear constrain zi = aixi + biyi is illustrated
in the right graph.

(b) Transformed entities by 5⋆E (left) and 5⋆ϵn (right). Note
that we illustrate the negative conjugated model instead of
the positive conjugated one for simplicity in plotting. Blue
traces are the original entities and their projections in the Non-
Euclidean space. Green traces are the multiple copies of the
blue traces under iterations of the Möbius transformation. Red
traces are the inverse of green traces. Apparently, the right
graph has much neater geometric properties.

Figure 1: Transformed entities illustrated in 3D

5⋆ϵ Our method transforms the original model
5⋆E into the parameter-sharing model 5⋆ϵ, where
relations are represented as the real part of low-
rank matrices using conjugate parameters. Specifi-
cally, we set the original square relation embedding

matrices
[
a b
c d

]
to be half the normal parameters

and the other half their conjugate parameters, i.e.,[
a b

b a

]
. In this model, parameters play distinct

roles at different positions, and the best conjuga-
tion positions are the principal and secondary diag-
onal positions. Note that experiments showed that,
the following negative conjugation method, i.e.,[
a b

−b a

]
, achieves similar performance as above.

Although the negative conjugation on this model is
equivalent to restricting the original Möbius func-
tion to the unitary Möbius transformation, our ap-
proach is much more general to a variety of repre-
sentations.

3.3 Transformation Analysis

Complϵx Let a2 = a1, then the transformation
of conjugate model Complϵx is

[
x1 x2

]
→

[
a1 a1

] [
x1 x2

]
→

[
a1x1 a1x2

]
.

(3)
We can see that the resulted relation embedding is
constrained to

[
a1 a1

]
other than

[
a1 a2

]
; the

predicted tail entity is constrained to
[
a1x1 a1x2

]

instead of
[
a1x1 a2x2

]
in original model, which

does not narrow the rang of relation or tail embed-
ding since the a1, x2 can be any value. Further,
since tail entities also act as head entities, we can

say that the range of both the entities and relations
are not constrained.

5⋆ϵ Let c = b, d = a, then the transformation of
conjugate model 5⋆ϵ is

x →
[
x
1

]
→

[
a b

b a

] [
x
1

]
→ ax+ b

bx+ a
. (4)

The five subsequent transformations turn into:
ϑ1 = x+ a

b
which depicts translation by a

b
, ϑ2 =

1
x

which depicts inversion and reflection w.r.t. real
axis, ϑ3 = bb−aa

b
2 x which depicts homothety and

rotation, and ϑ4 = x+ a
b

which depicts translation
by a

b
. We can see that, although the relation pa-

rameters are constrained comparing to the original
model, the five sub-transformations are reserved in
this conjugate model.

Characteristics For this reason, we consider our
conjugate models retain expressiveness in function
level for various relation patterns compared to their
original counterparts. The difference between orig-
inal models and our conjugate models is that, the
latter ones have more linear constrain in its value of
each embedding parameter, as illustrated in Figure
1.

3.4 Reduced Calculation

Sharing half of the parameters also reduces the
computation for the regularization terms into half,
where each parameter of relation is squared to the
sum. For example, the original calculation r21 + r22
is turned into r21×2 in both baseline models, where
r1, r2 denote the real or imaginary part of a com-
plex number, and in which r1 represents the shared
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Dataset #Training #Validation #Test Ent Rel Exa
FB15K-237 272,115 17,535 20,466 14,541 237 544,230
WN18RR 86,835 3,034 3,134 40,943 11 173,670
YAGO3-10 1,079,040 5,000 5,000 123,188 37 2,158,080
FB15K 483,142 50,000 59,071 14,951 1,345 966,284
WN18 141,442 5,000 5,000 40,943 18 282,884

Table 1: Datasets statistics. #: Split in terms of number of triples; Ent: Entities; Rel: Relations; Exa: Examples.

parameter. However, the final time consumption
depends on multiple aspects, such as formulation
and coding, thus is not necessarily reduced.

4 Experiments

4.1 Experimental Setup

Metrics We followed the standard evaluation pro-
tocal for KGE models. T : the rank set of truth, ri:
the rank position r of the first true entity for the
i-th query. We computed two rank-based metrics:
(i) Mean Reciprocal Rank (MRR), which computes
the arithmetic mean of reciprocal ranks of all true
entities from the ranked list of answers to queries
T , and (ii) Hits@N (N = 1, 3, 10), which counts
the true entities I and calculate their proportion in
the truth T in top N sorted predicted answers list.

MRR =
1

T

T∑

i=1

1

ri
(5)

Hits@N =
1

T

∑

r∈T,r≤N

I (6)

We also use additional metric Time (sec-
onds/epoch) to measure how many seconds each
training epoch costs to demonstrate the time saved
by our method. To do this, we conducted all exper-
iments using the same GPUs. GeForce GTX 1080
Ti is used for all datasets except for the largest
dataset YAGO3-10 who needs a larger GPU and
we used Tesla V100S-PCIE-32GB for it.

Datasets We evaluated our method on five widely
used benchmark datasets (See Table 1). FB15K
(Bordes et al., 2013) is a subset of Freebase, the
contents of which are general facts. WN18 (Bordes
et al., 2013) is a subset of Wordnet, a database that
features lexical relations between words. YAGO3-
10 (Dettmers et al., 2018) is the largest common
dataset, which mostly describes attributes of per-
sons, and contains entities associated with at least
ten different relations.

As was first noted by Toutanova and Chen
(2015), FB15K and WN18 suffer from test leak-
age through inverse relations, e.g., the test set fre-
quently contains triples such as (s, hyponym, o)
while the training set contains its inverse
(o, hypernym, s). To create a dataset without this
property, they introduced FB15K-237, a subset
of FB15K where inverse relations are removed.
WN18RR was created for the same reason by
Dettmers et al. (2018).

We adopted all of the five datasets for compre-
hensive comparison of models.

Hyperparameter Settings We explored the in-
fluence of hyperparameter settings to our method.
To do this, we used the best hyperparameter set-
tings for the original models (marked as ∇ or no
mark), and applied the same settings on our con-
jugate models and ablation models. We adopted
the best hyperparameter settings for ComplEx pro-
vided by Nayyeri et al. (2021), and fine-tuned the
best hyperparameters ourselves for 5⋆E since there
was no published best hyperparameter settings for
this model at the time we did the experiments. We
also fine-tuned the best hyperparameters for one of
our conjugate model 5⋆ϵ (noted as ♢) to explore
the upper bound.

We selected the hyperparameters based on the
MRR on the validation set. Our grid search
range refered to but was larger than Nayyeri et al.
(2021). The optional optimizers are {Adagrad,
Adam, SGD}. The range of embedding dimensions
are {100, 500} with learning rates range in {1E-02,
5E-02, 1E-01}. The batch sizes attempted range in
{100, 500, 1000, 2000}. Regularization coefficients
are tested among {2.5E-03, 5E-03, 1E-02, 5E-02,
1E-01, 5E-01}.

5 Results

5.1 Main Results and Analysis

The main experimental results are shown in Table
2 and Table 3. The numbers with boldface indicate
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Model Time MRR H@1 H@3 H@10
ComplEx 42±8 0.366±4e-4 0.271 0.402 0.558
Complϵx 46±11 0.363±5e-4 0.268 0.400 0.555
5⋆E 18±3 0.350±8e-4 0.257 0.386 0.538
5⋆ϵ∇ 14±4 0.353±7e-4 0.259 0.390 0.541
5⋆ϵ♢ 17±9 0.354±8e-4 0.259 0.391 0.544

(a) FB15K-237
Model Time MRR H@1 H@3 H@10
ComplEx 139±21 0.488±1e-3 0.442 0.503 0.579
Complϵx 146±45 0.475±9e-4 0.433 0.488 0.558
5⋆E 16±1 0.490±5e-4 0.444 0.506 0.587
5⋆ϵ∇ 11±1 0.493±8e-4 0.442 0.512 0.588
5⋆ϵ♢ - - - - -

(b) WN18RR
Model Time MRR H@1 H@3 H@10
ComplEx 370±2 0.577±1e-3 0.502 0.622 0.712
Complϵx 371±2 0.574±2e-3 0.500 0.618 0.707
5⋆E 415±2 0.574±2e-3 0.502 0.617 0.701
5⋆ϵ∇ 297±1 0.576±2e-3 0.505 0.619 0.702
5⋆ϵ♢ - - - - -

(c) YAGO3-10

Table 2: Link prediction results on FB15K-237,
WN18RR, YAGO3-10 datasets. Time, MRR and H@n
are presented as mean (± standard deviation).

the best results among all the models.
We mainly tested whether the conjugate mod-

els perform consistent with their original counter-
parts, especially whether they can achieve the same
state-of-the-art results. We conducted one set of
experiments using the best hyperparameters of the
original models (marked as ∇ or no mark), and the
other set of experiments tuning the hyperparam-
eters for one of our conjugate model (marked as
♢).

The results show that both Complϵx and 5⋆ϵ
consistently achieve results comparable to their
original models on the datasets without test set leak-
age, including the largest dataset, i.e., YAGO3-10;
and obtain the same optimal accuracies as the orig-
inal models on all datasets with possibly-required
fine-tuning. From the perspective of training time,
we see 5⋆ϵ spends 31% less time on average for all
datasets; and both conjugate models perform sub-
stantially best in training time on datasets FB15K,
who have the most relations.

Complϵx Under the best hyperparameter set-
tings of the original model, the performance
of Complϵx are consistently comparable with
ComplEx on all five datasets. We speculate the
reason for the consistent but tiny performance drop
might come from the computation precision, but
we will leave it as our future studies.

Model Time MRR H@1 H@3 H@10
ComplEx 346±124 0.855±1e-3 0.823 0.874 0.910
Complϵx 293±16 0.855±1e-3 0.827 0.871 0.907
5⋆E 42±9 0.812±1e-3 0.767 0.840 0.889
5⋆ϵ∇ 26±0 0.794±2e-3 0.743 0.827 0.882
5⋆ϵ♢ 29±5 0.813±2e-3 0.766 0.844 0.894

(a) FB15K
Model Time MRR H@1 H@3 H@10
ComplEx 57±3 0.951±3e-4 0.944 0.954 0.961
Complϵx 58±5 0.950±3e-4 0.945 0.953 0.960
5⋆E 43±6 0.952±5e-4 0.946 0.955 0.962
5⋆ϵ∇ 29±6 0.949±6e-4 0.944 0.953 0.959
5⋆ϵ♢ 26±2 0.952±3e-4 0.947 0.955 0.962

(b) WN18

Table 3: Link prediction results on FB15K and WN18
datasets. Instructions for this table are the same as those
in Table 2.

Although our method reduces the computation,
applying the method on this model requires split-
ting and concatenating matrices to keep the shape
of outputs which incurs additional time-consuming
operations. Consequently, the total time cost is not
reduced much. However, training time on dataset
FB15K, who has the most relations, becomes very
stable.

Overall results imply our conjugate model
Complϵx is at least comparative with its baseline
model ComplEx.

5⋆ϵ Under the best hyperparameter settings of
the original 5⋆E, the conjugate 5⋆ϵ∇ consistently
achieve competitive results on the datasets FB15K-
237, WN18RR and YAGO3-10. The tiny but
consistent accuracy enhancement on these three
datasets is probably caused by similar program-
ming artifacts as observed in ComplEx.

We hypothesize that the accuracy fluctuation of
5⋆ϵ∇ on FB15K and WN18 is caused by the test
leakage issue which makes the model sensitive to
its hyperparameter setting. Because the only dif-
ference of these two datasets comparing to their
subsets FB15K-237 and WN18RR is the 81% and
94% inverse relations (Toutanova and Chen, 2015),
i.e., (s, hyponym, o) and (o, hypernym, s) in the
training set and the test set respectively, which is
known as test leakage. Note that the accuracy fluc-
tuation was simply solved by fine-tuning the hyper-
parameters (See results marked as 5⋆ϵ♢).

Notice that in Table 2, we didn’t report the fine-
tuned results of 5⋆ϵ♢ on datasets WN18RR and
YAGO3-10, because the results abtained with the
original settings ∇ is already the best.
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Model Time MRR H@1 H@3 H@10
5⋆ϵ∇ 14±4 0.353±7e-4 0.259 0.390 0.541
5⋆ϵn 13±2 0.353±8e-4 0.259 0.389 0.541
5⋆Er 16±0 0.326±1e-3 0.238 0.357 0.505
5⋆ϵv 13±1 0.264±4e-4 0.192 0.288 0.404
5⋆ϵh 12±0 0.301±4e-4 0.221 0.329 0.458

(a) FB15K-237
Model Time MRR H@1 H@3 H@10
5⋆ϵ∇ 11±1 0.493±8e-4 0.442 0.512 0.588
5⋆ϵn 14±3 0.485±1e-3 0.432 0.506 0.589
5⋆Er 16±0 0.410±3e-3 0.391 0.417 0.447
5⋆ϵv 12±5 0.026±2e-4 0.015 0.025 0.045
5⋆ϵh 14±3 0.026±3e-4 0.016 0.025 0.046

(b) WN18RR
Model Time MRR H@1 H@3 H@10
5⋆ϵ∇ 297±1 0.576±2e-3 0.505 0.619 0.702
5⋆ϵn 298±1 0.574±1e-3 0.502 0.618 0.701
5⋆Er 416±2 0.569±2e-3 0.499 0.611 0.695
5⋆ϵv 297±1 0.562±8e-4 0.488 0.607 0.695
5⋆ϵh 298±1 0.546±1e-3 0.471 0.592 0.680

(c) YAGO3-10

Table 4: Ablation studies on FB15K-237, WN18RR,
YAGO3-10 datasets. Instructions for this table are the
same as those in Table 2.

Training time in this model was reduced by 22%,
31%, 28%, 38% and 33% on each dataset respec-
tively, and 31% on average. 5⋆E has eight param-
eter matrices in the coding. By using our method,
the parameter matrices are directly reduced to four
with no additional coding operations, which makes
the significant saved training time.

Above results mean our conjugate model 5⋆ϵ
exceeds the baseline model 5⋆E in all respect of
accuracy, memory-efficiency and time footprint.

5.2 Ablation Studies

We did two kinds of ablation studies. The results
are shown in Table 4 and Table 5. We know the
reduced calculation is mainly in the regularization
process because we only use half of the parameters.
Thus we experimented where the regularization
term is only half of the parameters on the original
model (See results for 5⋆Er) to explore whether
the effect of our method is similar to the reduced
parameters regularization.

Then we experimented with conjugations in dif-
ferent positions to explore how the models per-
form differently. We set negative conjugation
c = −b, d = a in model 5⋆ϵn, where half of the
conjugate parameters are using negative conjuga-
tion instead of positive conjugation; we set vertical

Model Time MRR H@1 H@3 H@10
5⋆ϵ∇ 26±0 0.794±2e-3 0.743 0.827 0.882
5⋆ϵn 31±12 0.799±2e-3 0.750 0.831 0.883
5⋆Er 37±1 0.807±3e-3 0.760 0.838 0.888
5⋆ϵv 31±7 0.801±8e-4 0.753 0.833 0.885
5⋆ϵh 28±2 0.787±2e-3 0.735 0.822 0.877

(a) FB15K
Model Time MRR H@1 H@3 H@10
5⋆ϵ∇ 29±6 0.949±6e-4 0.944 0.953 0.959
5⋆ϵn 26±0 0.952±3e-4 0.946 0.955 0.962
5⋆Er 40±0 0.943±9e-4 0.935 0.950 0.954
5⋆ϵv 31±11 0.892±2e-3 0.836 0.944 0.958
5⋆ϵh 26±0 0.822±2e-3 0.719 0.920 0.949

(b) WN18

Table 5: Ablation studies on FB15K and WN18 datasets.
Instructions for this table are the same as those in Table
2.

conjugation c = a, d = b in model 5⋆ϵv, where
parameters are conjugated in their vertical direc-
tion instead of the diagonal direction; and we let
b = a, d = c in model 5⋆ϵh, the horizontal con-
jugation, where parameters are conjugated in their
horizontal direction.

The studies show that, first, by comparing the
accuracy of 5⋆ϵ and 5⋆Er, we know that reducing
parameters in the regularization process hurts the
accuracy significantly, which indicates our conju-
gation method indeedly reserves model’s ability
even when the parameters are reduced. Second, the
negative conjugate model 5⋆ϵn performs as well as
5⋆ϵ. Last but not least, conjugate method should
choose suitable positions, e.g., 5⋆ϵv and 5⋆ϵh do
not perform as well.

5.3 Statistical Methods

To clarify the difference between original models
and their conjugate models, we took the highest
mean as the best result, with the standard devi-
ation as a secondary judgement, and ultimately
two-sample t-tests (See Table 6 in Appendix) are
conducted to decide whether two similar results can
be considered statistically equivalent and which is
the best.

The two-sample t-test estimates if two popula-
tion means are equal. Here we use the t-test to
judge if the Time or MRR means of two models
are equal. We set significance level α = 0.05, and
the null hypothesis assumed that the two data sam-
ples are from normal distributions with unknown
and unequal variances. (h, p) means the result h
and p-value of the hypothesis test. h = 1, 0. h = 1
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means rejection to the null hypothesis at the sig-
nificance level α. h = 0 indicates the failure to
reject the null hypothesis at the significance level
α. p ∈ [0, 1] is a probability of observing a test
statistic as extreme as, or more extreme than, the
observed value under the null hypothesis. A small
p value suggests suspicion on the validity of the
null hypothesis.

To prepare data for the t-tests, experiments
on ComplEx, Complϵx, 5⋆E, 5⋆ϵ∇, 5⋆ϵ♢ and
5⋆ϵn are conducted 17 times each. Apart from
that, the 5⋆Er, 5⋆ϵv, 5⋆ϵh apparently perform
worse than the former six models, thus the t-tests
are not needed and their experiments are conducted
5 times each.

Most of our t-tests were done among the orig-
inal model and its conjugate models as the dis-
tribution differs significantly if the base model is
different. However, since the accuracies among
different models are similar on the YAGO3-10 and
WN18 datasets, we did several supplementary t-
tests (indicated in italics). The supplementary t-
tests showed that the distributions are different in-
deed when based on different original models even
though they appear to be similar. On the contrary,
there exist similar distributions among the results
distribution of the original model and its conjugate
model.

5.4 Advantages of Parameter Sharing

Approching for the best accuracy in link predic-
tion task has the trade off of misinformation effect
or inevitable high memory and time costs. Our
parameter-sharing method by using half conjugate
parameters is very easy to apply and can help con-
trol these costs, and potentially no trade off.

The original ComplEx and 5⋆E each has their
own strength in the perspective of accuracy on dif-
ferent datasets; while ComplEx costs much more
memory and time than 5⋆E when compared under
similar accuracy.

Our conjugate models consume less memory
and time, and not inferior to the original models in
accuracy, which shows that our parameter-sharing
method makes a complex number represented KGE
model superior to itself.

6 Conclusions

We propose using shared conjugate parameters for
transformations, which suffices to accurately repre-
sent the structures of the KG.

Our method can help scaling up KG with less
carbon footprints easily: first, it reduces parame-
ter size and consumes less or at least comparable
training time while achieving consistent accuracy
as the non-conjugate model, including reaching
state-of-the-art results; second, it is easily general-
izable across various complex number represented
models.

7 Future Work

We would like to deal with the interpretation of the
linear constrain of our method. For example, to ex-
plore the effect of this method on different relation
patterns. Moreover, many KG applications like the
work done by Hongwimol et al. (2021) regard vi-
sual appeal as important, where appropriate visuals
can better convey the points of the data and facil-
itate user interaction. We can see that the vector
representations of transformed entities using this
method have more substantial geometric constrains
(See transformed entities illustrated in Figure 1).
We want to explore if our method can obtain better
KG visualization.
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A Two-sample t-test
Time t-test (h, p)

ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
ComplEx - (0, 2e-1) - - - -
Complϵx - - - - - -
5⋆E - - - (1, 8e-3) (0, 6e-1) (1, 4e-5)
5⋆ϵ∇ - - - - (0, 4e-1) (0, 4e-1)
5⋆ϵ♢ - - - - - (0, 2e-1)
5⋆ϵn - - - - - -

MRR t-test (h, p)
ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
- (1, 8e-17) - - - -
- - - - - -
- - - (1, 1e-12) (1, 1e-14) (1, 1e-10)
- - - - (1, 6e-3) (1, 1e-2)
- - - - - (1, 7e-6)
- - - - - -

(a) FB15K-237
Time t-test (h, p)

ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
ComplEx - (0, 6e-1) - - - -
Complϵx - - - - - -
5⋆E - - - (1, 4e-11) - (1, 6e-3)
5⋆ϵ∇ - - - - - (1, 2e-2)
5⋆ϵ♢ - - - - - -
5⋆ϵn - - - - - -

MRR t-test (h, p)
ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
- (1, 3e-28) - - - -
- - - - - -
- - - (1, 9e-11) - (1, 2e-15)
- - - - - (1, 4e-21)
- - - - - -
- - - - - -

(b) WN18RR
Time t-test (h, p)

ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
ComplEx - (0, 4e-1) - - - -
Complϵx - - - - - -
5⋆E - - - (1, 5e-47) - (1, 1e-46)
5⋆ϵ∇ - - - - - (0, 7e-1)
5⋆ϵ♢ - - - - - -
5⋆ϵn - - - - - -

MRR t-test (h, p)
ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
- (1, 3e-6) (1, 2e-7) (1, 7e-3) - (1, 3e-8)
- - - - - -
- - (1, 5e-4) - (0, 6e-1)
- - - - - (1, 3e-4)
- - - - - -
- - - - - -

(c) YAGO3-10
Time t-test (h, p)

ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
ComplEx - (0, 1e-1) - - - -
Complϵx - - - - - -
5⋆E - - - (1, 2e-6) (1, 3e-5) (1, 8e-3)
5⋆ϵ∇ - - - - (1, 3e-2) (0, 1e-1)
5⋆ϵ♢ - - - - - (0, 5e-1)
5⋆ϵn - - - - - -

MRR t-test (h, p)
ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
- (0, 8e-2) - - - -
- - - - - -
- - - (1, 2e-21) (1, 2e-2) (1, 6e-21)
- - - - (1, 1e-23) (1, 3e-9)
- - - - - (1, 3e-22)
- - - - - -

(d) FB15K
Time t-test (h, p)

ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
ComplEx - (0, 5e-1) - - - -
Complϵx - - - - - -
5⋆E - - - (1, 1e-7) (1, 4e-9) (1, 6e-9)
5⋆ϵ∇ - - - - (0, 2e-1) (0, 8e-2)
5⋆ϵ♢ - - - - - (0, 1e-1)
5⋆ϵn - - - - - -

MRR t-test (h, p)
ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
- (0, 8e-2) - - (1, 1e-17) (1, 1e-13)
- - - - (1, 5e-21) (1, 2e-16)
- - (1, 3e-14) (1, 5e-5) (0, 2e-1)
- - - - (1, 4e-15) (1, 5e-14)
- - - - - (1, 3e-5)
- - - - - -

(e) WN18

Table 6: t-test (h, p) of Time and MRR on FB15K-237, WN18RR, YAGO3-10, FB15K and WN18 datasets.
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Abstract

The present paper introduces an ongoing re-
search which aims to detect interpretable adjec-
tival senses from monolingual corpora applying
an unsupervised WSI approach. According to
our expectations the findings of our investiga-
tion are going to contribute to the work of lexi-
cographers, linguists and also facilitate the cre-
ation of benchmarks with semantic information
for the NLP community. For doing so, we set
up four criteria to distinguish between senses.
We experiment with a graphical approach to
model our criteria and then perform a detailed,
linguistically motivated manual evaluation of
the results.

1 Introduction

The objective of this ongoing research is to model
human intuition regarding meaning distinctions,
and anchor it to observable data. Its importance is
given by the fact that according to several authors
(eg. Véronis, 2003; Kuti et al., 2010) human in-
tuition on sense distinctions varies greatly among
individuals, which in turn has a serious effect on
lexicography, lexical semantics and NLP, as well.
It goes without saying in the lexicographic com-
munity that in spite of scrupulous corpus-based
investigations, monolingual dictionaries greatly
vary with regard to their macro- and microstruc-
ture (Adamska-Sałaciak, 2006). The same problem
arises in the field of NLP: the sense inventories or
knowledge-bases exhibit a great variance regarding
how fine-grained meaning distinctions they apply.
Although lexical semantics in linguistics and word
sense induction in NLP are widely studied fields
(cf. Geeraerts, 2015; Amrami and Goldberg, 2019;
Wiedemann et al., 2019), to our knowledge there is
still no agreement on how the meaning space of a
word should be partitioned to obtain well-motivated
senses. For instance, Pustejovsky (1995, p. 32) in-
troduces a very fine-grained meaning distinction as-
serting that “adjectives such as good have multiple

meanings depending on what they are modifying:
good car, good meal, good knife”. However, he
also adds that good may be conceived of merely “as
a positive evaluation of the nominal head it is mod-
ifying.” Accordingly, the present experiment has
two main objectives: first, we aim to come up with
a definition that is able to provide necessary crite-
ria to distinguish between senses. This definition
should enable us to anchor meaning distinctions to
not only a set of contexts, but conceptual categories
as well. Secondly, we aim to model this definition
via an unsupervised approach that is able to grasp
this definition to minimize the role of human in-
trospection in meaning distinction. We think that
our approach is quite promising as one of the main
drawbacks of unsupervised models is their poor in-
terpretability, as pointed out by Camacho-Collados
and Pilehvar (2018). On top of that, in their sur-
vey they tied graphical models to knowledge-based
semantic representations, which implies that unsu-
pervised graph-based WSI is underrepresented in
the field.

The usual conception of meaning starts from
meaning identity: the definition of synonymy (two
expressions are synonymous iff they are inter-
changeable in every context preserving the original
meaning) has a long tradition going back at least
to Frege (1892), and all the senses that are not syn-
onyms are considered to be different senses. The
subsequent research tends to accept this chain of
thoughts. However, in the present discussion we
put it in the other way: as opposed to Frege and
his followers, we do not give a definition for syn-
onymy, but give one to distinguish between mean-
ings. This choice is motivated by the fact that
the notion of synonymy is intimately tied to truth-
conditions, which are notoriously missing from
pure distributional semantics. That is why it is so
hard to detect true synonyms solely on distribu-
tional grounds. And indeed, automatically detected
synonym-classes tend to cover also tight seman-
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tic classes, such as names of nations, colors, even
antonyms exhibiting very similar distributional be-
havior. Starting from the presupposition that at-
tributive adjectives can be characterized in a rather
simple feature space – constituted only by the fol-
lowing nouns – in the present research we confine
ourselves to the investigation of the semantic prop-
erties of attributive adjectives. The paper is struc-
tured as follows: in section 2 our hypotheses are
presented, section 3 describes our methodology,
in section 4 we present our validation techniques,
while section 5 focuses on the evaluation of our
results. We conclude with a summary in section 6.

2 Criteria for meaning distinction

In what follows, we describe the applied criteria,
which were implemented in the next phase. Con-
trary to the usual procedure of definition, instead
of searching an identity criteria to “give the neces-
sary and sufficient conditions for a to be identical
to b when a and b are Ks” (cf. Carrara and Gia-
retta, 2004), we search for necessary and sufficient
conditions to discriminate between a and b. That
is, instead of modeling synonymy, we strive to
grasp when the target word surely conveys differ-
ent meanings on distributional grounds. For doing
so, we introduce the notion of near-synonymy (cf.
Ploux and Victorri, 1998) – a relaxed version of
synonymy: two words are near-synonyms if they
are interchangeable in a restricted set of contexts
so that they preserve the meaning of the original
sentence.1 Moreover, in accordance with our orig-
inal purpose (i.e. meaning distinction), we also
consider the members of tight semantic classes to
be near-synonyms, inasmuch various tight seman-
tic classes denote different senses of a word, even
though they do not preserve the truth value.2

According to our hypothesis two senses have to
be differentiated iff:

1. There is (at least) one near-synonym for each
sense of the adjective.

2. There is a set of context-nouns which form
grammatical constructions with both the orig-
inal adjective and with the near-synonym.

3. The two sets of context-nouns characterizing
the different senses are non-overlapping sets.

1For instance, finom (’fine’) and lágy (’soft’) are synonyms
before nouns related to music, such as the Hungarian counter-
parts of ’music’, ’rhythm’, ’melody’, etc.

2For example, fekete (’black’) may belong to two different
near-synonymy sets: one containing surnames and the other
containing names of colors.

4. The non-overlapping set of nouns form a se-
mantic category “reflecting the sub-selectional
properties of adjectives” (Pustejovsky, 1995).

Example 1 is intended to further illustrate the
above criteria, using the automatically extracted
two senses of the adjective napfényes (’sunny’).
As can be seen, there is a near-synonym for both
senses: napsütéses (’sunshiny’) for the first one
and napsütötte (’sunlit’) for the second one. The
nouns listed below the adjectives are the ones
that form grammatical constructions with the
near-synonyms: napfényes/napsütéses vasárnap
(’sunny/sunshiny Sunday’), napfényes/napsütéses
nap (’sunny/sunshiny day’), etc., and
napfényes/napsütötte terület (’sunny/sunlit
area’), napfényes/napsütötte terasz (’sunny/sunlit
terrace’), etc. However, the two sets of nouns
do not overlap: there is no napsütéses terasz
(’sunshiny terrace’) or napsütötte nap (’sunlit
day’), and the same goes for all adjective-noun
pairs where the noun comes from the context noun
set of the other sense. Finally, the nouns that match
the above criteria form a semantic category: time
periods with the first sense, and areas, places with
the second.

(1) Sense 1: napfényes ’sunny’, napsütéses
’sunshiny’
Nouns of sense 1: vasárnap ’Sunday’, nap
’day’

Sense 2: napfényes ’sunny’, napsütötte ’sun-
lit’
Nouns of sense 2: terület ’area’, sziget ’is-
land’, oldal ’side’, terasz ’terrace’

We wish to examine to what extent the above
conditions are necessary and sufficient to differen-
tiate between meanings. For doing so, in Section 3
an unsupervised word sense induction experiment
on Hungarian monolingual data will be described
using cliques of target words and their contexts to
retrieve senses. The workflow conceptually com-
prises two main stages: i) the detection of near-
synonymy classes for a given adjective, ii) discrim-
inating between the various meanings of the given
adjective by the extraction of the relevant context
nouns.

3 Method

Our methodology is based on Ah-Pine and Jacquet
(2009), as far as meaning distinctions are mod-
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eled via cliques. However, there are two main
differences: first, instead of named entities we fo-
cused on adjectival meanings. As overproduction
of cliques is much less pronounced in this case,
clustering becomes an unnecessary step. However,
the resulting cliques need to be validated in terms
of the following nouns, possibly along with the sub-
categorization patterns of the adjectives. Secondly,
adjectives are represented with static dense embed-
dings instead of frequency based sparse vectors.

3.1 Input data

The adjectives of our interest were selected on the
basis of the 180 million word Hungarian National
Corpus (Váradi, 2002). Although the frequency
list contains adjectives with various case suffixes,
we took only nominative adjectives into consid-
eration, presuming that the adjective is always in
nominative in the Adj + Noun constructions.

3.2 Representations

3.2.1 Representation of adjectives
As opposed to Ah-Pine and Jacquet (2009), in-
stead of count vectors we decided to use static
word embeddings to represent adjectives. Our
choice was motivated by Baroni et al. (2014), who
presented a systematic comparison of traditional
“context-counting” vectors (eg. Turney and Pantel,
2010; Clark, 2015) and the more recent “context-
predicting” ones (eg. Bengio et al., 2003; Mikolov
et al., 2013a) on a set of various standard lexical
semantic benchmarks. Their findings show that
the predictive models achieve an impressive over-
all performance, beating count vectors in all tasks.
Therefore, a word2vec language model (Mikolov
et al., 2013a,b) was trained on the first 999 file
(21GB raw texts) of a Hungarian language cor-
pus, the Webcorpus 2.0 (Nemeskey, 2020) contain-
ing the normalized version of the original texts,
cc. 170M sentences3. 300-dimension vectors were
trained using the Gensim Python package (Rehurek
and Sojka, 2011) to perform CBoW training with
a 6k window size and a minimum frequency of
3. Since Hungarian is a highly inflective language
and we trained embeddings on raw texts, this is
not a pure bag-of-words model, as the abbrevia-
tion CBoW would imply. Our choice of input data

3As the evaluation of the model trained on the whole Web-
corpus 2.0 (cc. 591.4M sentences) yielded only a slight im-
provement on the Hungarian translation of the Google Anal-
ogy Test Set (Makrai, 2015), this smaller model was used in
our experiment.

was based on the presupposition that morphosyn-
tactic information may contribute to the charac-
terization of adjectival meanings. This hypothe-
sis is in accordance with the findings of Novák
and Novák (2018), who investigated the perfor-
mance of various Hungarian static word embed-
dings in a word similarity task. Their experiment
concludes that adjectival senses are best repre-
sented via embeddings trained on surface forms
of words. Roughly 8,5M word forms were as-
signed embeddings as the result of our training.
The trained LMs are available on GitHub: https:
//github.com/nytud/w2v_models.

3.2.2 Representation of semantic similarity
In our graph-based representation of adjectives,
vertex-labeled undirected graphs were generated.
Vertices and their labels represent the adjectives,
while the edges (or their lack) denote whether there
is a semantic similarity relation between two adjec-
tives (or not). This structure encodes some basic
intuitions about meaning similarity:

(1) ’Undirectedness’ guarantees the symmetric na-
ture of meaning similarity: if a meaning M is
similar to meaning M ′, then the reverse is also
true.

(2) Since every adjective is similar to itself, there
is a self-loop at every node of the graph.

3.2.3 Representing near-synonyms as cliques
Meaning is grasped through the notion of near-
synonymy. Following Ah-Pine and Jacquet (2009),
near-synonyms which exhibit “very similar” dis-
tributional behavior, are grasped by cliques in the
graph: that is, we search for those maximally con-
nected subgraphs. Now the nodes in the clique
represent a set of adjectives with “very similar” dis-
tributional behavior.

3.2.4 Representing meaning-discrimination as
shared cliques

This approach, on the one hand, makes possible
the detection of multiple near-synonymy classes
comprising a common adjectival lexeme, where the
corresponding cliques represent differing sense can-
didates. In addition, ideally, it also enables mean-
ing discrimination based on explicit surface data,
inasmuch all the resulting cliques are anchored to
the contexts in which each element of the adjectival
clique may occur.

Therefore, according to our hypothesis, an adjec-
tive has multiple meanings if it belongs to multiple
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cliques, and the cliques are characterized by non-
overlapping sets of context nouns.

3.3 Extraction of cliques

First a similarity matrix was created (Asim) con-
taining adjectives as rows and columns. For doing
so, a suitable similarity measure was applied to
fill in the cells of Asim. That is, Asim(i, j) =
sim(ai, aj), where ai and aj denote the word2vec
representations of adjectives from the selected vo-
cabulary. The usual cosine similarity was calcu-
lated. That is:

simcos(v1, v2) =
v1 · v2

||v1|||v2||
(1)

In the second step Asim similarity matrix was
converted into an adjacency matrix Aa based on
suitable cutting heuristics indicating whether the
corresponding adjectives are semantically similar
or not. Here a K cut-off parameter was set.

As a result, in this step A′
a symmetric square

matrix is generated containing boolean values. A′
a

adjacency matrix can be conceived of as a graph
representation of the adjectives. Note that the use
of cosine similarity guarantees that A′

a matrix is
symmetric. Due to the reflexive nature of ’similar-
ity’ all the diagonal values of A′

a equal to 1.
In the last phase cliques were retrieved from the

graph represented by the adjacency matrix to grasp
adjectival near-synonymy classes.

3.4 Retrieving context nouns

In this phase adjectival cliques are validated by
retrieving the set of nouns they may co-occur with.
According to our expectation, different senses of an
adjective are characterized by the different sets of
nouns they co-occur with. These non-overlapping
sets provide explicit information on the context of
meaning discrimination. A characteristic set of
nouns is found as follows:

1. We collect all the nouns an adjective co-occurs
with; we do this for all adjectives in a clique. This
step was performed on the basis of a 91.4 million-
token subcorpus of the Hungarian Gigaword Cor-
pus (Oravecz et al., 2014) compiled specifically
for the present experiment. During the compila-
tion process we aimed at preserving the original
proportion of the genres, thus, every domain of
HGC was included in the new corpus: newspapers,
literature, scientific, official, personal and spoken
language. Accordingly, our corpus was made up of

30.5m, 6.5 m, 11.6m, 8.8m, 28m and 6.6m tokens,
respectively.

2. We compute the intersection of the above
sets: those are the nouns that co-occur with each
adjective of a clique. If at least one such noun exist
for a clique, then we consider the given clique as a
potential meaning candidate.

3. We repeat step 1 and step 2 for each clique a
given adjective belongs to. This results in a set of
nouns for each clique.

4. Finally, we take these sets and omit the in-
tersections: we keep only the nouns for a clique
which are exclusive to the given clique; they do not
appear in the sets of the other cliques. Example (2)
shows the cliques of the adjective cinikus ‘cynical’.
The nouns listed below the cliques are those shared
by all members of the clique. Nouns in bold are
the ones specific to the clique. These are the nouns
indicating the specific meanings, therefore, we kept
them for further evaluation.
(2) cinikus ’cynical’

Clique 1: ostoba ’silly’, cinikus ’cynical’,
demagóg ’demagogic’
Nouns: dolog ’thing’, kérdés ’question’, lépés
’move’, mód ’way’, szöveg ’text’

Clique 2: ostoba ’silly’, cinikus ’cynical’, ar-
cátlan ’impudent’
Nouns: dolog ’thing’, ember ’person’, kérdés
’question’, lépés ’move’, mód ’way’

Our presumption is that the resulting sets of
nouns are the ones specific to the given cliques:
they capture the given sense of the adjective that is
shared among the other adjectives of the clique.

3.5 Evaluation
Finally, the results were evaluated according to dif-
ferent parameter settings. Since, to our knowledge,
there is no similar database available for Hungarian,
a qualitative evaluation was performed.

The main objective of the evaluation phase was
twofold. On the one hand we aimed to verify our
basic hypothesis, according to which the proposed
techniques are able to provide a solid methodologi-
cal background to discriminate between meanings.
On the other hand, we also had the intention to cat-
alogue the automatically retrieved adjectival senses
with their salient context nouns and their perceived
semantic categories, if possible. For doing so, first
a coarse-grained evaluation was performed focus-
ing on the main semantic properties of the auto-
matically retrieved adjectival cliques. This was

38



followed by a fine-grained evaluation phase where
we concentrated on the context nouns.

3.6 Parameter setting
Three parameters were identified as having a seri-
ous impact on the results.

(i) The frequency of adjectives in the Hungarian
National Corpus

(ii) The K cut-off parameter

(iii) The minimum frequency count of the nouns
in the clique-validation step

The frequency of the adjectives
This parameter had to be taken into account to en-
sure that the word2vec representations were trained
on sufficient amount of data.
The impact of K cut-off value
Interestingly, we found that the value of the K
cut-off parameter has a serious impact not only
on the number of the resulting cliques but also on
the semantic field to which they belong to. For
instance, in the case of adjectives occurring at least
200 times, K = 0.9 yielded only a handful of re-
sults: only 8 adjectives were assigned to more than
one clique and only two cliques were validated
by nouns. The retrieved cliques refer to numbers,
months and days exclusively, therefore, they are
not very interesting from a sense discrimination
perspective. On the other hand, with the same pa-
rameter settings, but with a lower similarity cut-off
value (K = 0.7)4 we had 187 different adjectives
belonging to multiple cliques, where all cliques are
validated and discriminated by at least one follow-
ing noun. Setting K to 0.7 resulted in 3847 single
nodes and 1085 node pairs with one edge leaving
only 1110 adjectives to possibly belong to multi-
ple cliques. The high proportion of single nodes
clearly implies that the K cut-off value should be
set to a lower value.
The effect of the frequency count of the following
noun
The minimum frequency count of the validating
nouns (Freqn) also had to be taken into consid-
eration. Two settings were tested (FreqADJ =
200,K = 0.7). In the first setting a clique was con-
sidered valid if there was at least 1 noun occurring

4Our findings meet with the results of Veremyev et al.
(2019). They constructed semantic networks based on
word2vec representations of words with various thresholds
and found that the threshold 0.7 resulted in the smallest, most
compact cliques (largest clique size equaled to 245 and to 14,
for the threshold 0.5 and 0.7, respectively).

at least 5 times with every element of the clique
(Freqn ≥ 5). Validating only a handful of cliques,
this threshold value was deemed to be too high. To
keep the coverage as high as possible, the value of
Freqn was set to 2. This change clearly improved
the coverage, yielding 446 adjectives belonging to
multiple cliques – out of the 6042 adjectives occur-
ring at least 200 times in our input corpus with a
word2vec representation.

In the rest of this section the results of the quali-
tative evaluation of these cliques will be presented
(FreqADJ = 200,K = 0.7, Freqn = 2 ).

4 Relevant senses

In the present section we introduce some linguistic
consideration that had to be taken into account dur-
ing the evaluation phase to detect distinct classes
of attributive modification.

4.1 Productivity

Distinct meanings may come from different
sources. It is common to differentiate between
collocational and more productive uses of an ex-
pression. In the course of the present research
productivity is interpreted as a scale. On the one
end of this scale there are collocations where both
the adjective and the noun are fixed. In this case
the meaning of the construction is yielded in a fully
non-compositional way: neither component can
be substituted with a near-synonym preserving the
original meaning of the expression (eg. fehér zaj
’white noise’ or fekete doboz ’black box’).

Albeit collocations are possible sources of ad-
ditional meanings, we are more interested in
‘semi-compositional’ constructions in the present
WSI task, where compositionality operates on
a restricted set of adjectives or nouns. For
example, fehér/szürke/fekete gazdaság (literally
’white/gray/black economy’)5 are not considered
collocations in the strict sense, since the restricted
set of colors denotes a new dimension of meaning
in the context of the noun gazdaság (’economy’)
(i.e. the extent to which a sector of economy is
monitored and taxed). That is, one step further
from collocations on the ’productivity scale’ more
interesting instances emerge, for example, ékes (’or-
nate’) means tipikus (’typical’) before a restricted

5Here, as opposed to the meaning of the English expression
(’health related goods and services’), the Hungarian counter-
part of ‘white economy’ refers to the monitored and taxed
sectors of economy.
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set of nouns (példa ’example’ and képviselő ’repre-
sentative’).
4.2 Subcategorization
And indeed, the most interesting cases are those
where the nouns form one or more semantic classes
allowing the adjectives in the cliques to be syn-
onyms in those semantically restricted contexts. In
these cases the adjective subcategorizes the subse-
quent nouns (cf. Pustejovsky, 1995). For example,
the different meanings of könnyű (’easy’), komoly
(’serious’), szép (’nice’), éles (’sharp’), finom (’fine,
delicate’), all can be discriminated on the basis of
a set of synonym adjectives along with their se-
mantically constrained nominal contexts. For ex-
ample könnyű (’easy’) has different meanings in
the context of nouns referring to physical objects
(’a lightweight bag’), nouns referring to clothes (’a
light clothing’), foods (’a light lunch’), and before
nouns like ’answer’, ’task’, ’solution’ (’an easy
answer/task/solution’).

The size of the semantically constrained nom-
inal sets may vary: on the other end of the scale
there are really productive uses of adjectives that
are still important for our purposes. For instance,
the retrieved cliques imply that vidám ’merry’ and
szomorú ’sad’ have different meanings when modi-
fying nouns denoting humans and when modifying
nouns referring to time periods. According to the
cliques, we can say both szomorú [időszak, év, nap]
(’sad [period, year, day]’) and gyászos [időszak,
év, nap] (’mournful [period, year, day]’) but there
is neither bánatos [időszak, év, nap] (’sorrowful
[period, year, day]’), nor gyászos [lány, ember]
(’mournful [girl, human]’).
(3) Clique 1: szomorú ’sad’, gyászos ’mournful’

Nouns: időszak ’period’, year ’év’, nap ’day’
Clique 2: szomorú ’sad’, bánatos ’sorrowful’
Nouns: lány ’girl’, ember ’human’

The adjective vidám ’merry’ exhibits rather simi-
lar behavior to szomorú ’sad’ from this perspective.
(4) Clique 1: vidám ’merry’, derűs ’bright’

Nouns: perc ’minute’, nap ’day’, hétvége
’weekend’

Clique 2: vidám ’merry’, jókedvű ’cheerful’
Nouns: fiú ’boy’, delfin ’dolphin’

As opposed to humans (and dolphins), periods
of time cannot be jókedvű, and in tandem with
this, derűs fiú and derűs delfin are not well-formed
constructions in Hungarian6.

6Interestingly, this is a well-known example in the lexical

5 Evaluation

5.1 Coarse-grained classification of adjectival
cliques

Tight semantic classes
One problem we had to face during the evalu-

ation phase is that not all adjectives were equally
relevant from a meaning discrimination perspective.
For example, dates and measures did not exhibit
any interesting properties in most cases, even if
they were assigned to multiple cliques. Instead,
adjectives from these tight semantic classes tended
to belong to multiple cliques with the very same
meaning. According to our hypothesis, due to their
varying sizes and varying distances between the el-
ements, the adjectives belonging to tight semantic
classes cannot be grouped into one clique in a co-
herent way, no matter what the parameter setting is.
Another reason to disregard adjectives from tight
semantic classes is that their lexical meaning seems
to be rather straightforward not allowing for poly-
semy, except for a handful of more complex ones
(eg. fekete ’black’, fehér ’white’, szürke ’gray’).
For instance, hétfői (’of.Monday’) was grouped
under two different cliques:

(5) Clique 1: hétfői ’of.Monday’, pénteki
’of.Friday’, szombati ’of.Saturday’,vasárnapi
’of.Sunday’

Clique 2: hétfői ’of.Monday’, tegnapi
’of.yesterday’, keddi ’of.Tuesday’, csütörtöki
’of.Thursday’, szerdai ’of.Wednesday’, szom-
bati ’of.Saturday’, pénteki ’of.Friday’

In the case of numerals, dates, names of colors,
units of measurements and various national curren-
cies the nouns did not supply enough evidence to
accept the meaning discrimination indicated by the
cliques.
Named entities

Another class of adjectives was made up of
named entities, primarily countries, cities and sur-
names. In spite of the rather striking results, they
were not considered in the present investigation,
since our main focus is on lexical meaning here,
while the clique-membership of NEs tend to reflect
factual knowledge rather than lexical meaning. For
instance, egri (related to the city of Eger) was as-
signed to two cliques [egri, soproni, veszprémi]
(related to the cities of Eger, Sopron and Veszprém,

semantic research concerning English. As Pustejovsky (1995,
p. 48) notes "[...] sad and happy are able to predicate of both
individuals [...] as well as event denoting nouns".
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respectively) indicating viticultural areas, whereas
the other clique [egri, esztergomi] (related to the
cities of Eger and Esztergom, respectively) are re-
ferring to archdioceses.

One interesting finding of the manual evaluation
was that the 6k window size word2vec represen-
tation was rather efficient in the detection of tight
semantic classes and cliques of named entities: out
of the 446 adjectives 99 belonged to some types of
named entities, 28 adjectives were terms of mea-
surements, while 11 adjectives assigned to at least
two cliques referred to numerals.
Emotive intensifiers

We found that emotive intensifiers tend to group
in cliques not conveying separate meanings. For
example:

(6) Clique 1: borzalmas ’terrible’, iszonyatos
’terrific’, rettenetes ’awful’
Nouns: szenvedés ’suffering’, kép ’picture’,
körülmény ’circumstance’

Clique 2: borzalmas ’terrible’, félelmetes
’dreadful’, rettenetes ’awful’, szörnyű
’horrible’
Nouns: látvány ’spectacle’, nap ’day’, érzés
’feeling’

Clique 3: borzalmas ’terrible’, borzasztó
’terrifying’, rettenetes ’awful’, szörnyű
’horrible’, rémes ’fearful’
Nouns: emlék ’memory’, élmény ’experience’

While the cliques imply that negative emotive
intensifiers form a coherent semantic class among
adjectives, neither the cliques nor the following
nouns do not supply enough evidence to discrimi-
nate between the meaning of cliques.
nagy ’great’

The adjective nagy (‘great’) and related notions,
such as óriási (‘huge’), hatalmas (‘large’), etc, are
posing another problem: here the abstraction step
is quite easy to make along the various dimensions,
therefore, in this case, lumping the sub-meanings
indicated by the cliques may be a motivated choice.
For example, óriási belongs to two different cliques
characterized by plenty of nouns:

(7) Clique 1: óriasi ‘huge’, nagy ‘great’, hatal-
mas ‘large’
Nouns: mosoly ‘smile’, oroszlán ‘lion’,
roham ‘attack’, piramis ‘piramid’, etc.

Clique 2: óriási ‘huge’, komoly ‘serious’
Nouns: kaland ‘adventure’, konkurencia
‘concurrence’, kérdés ‘question’, lemaradás
‘lag’, marketing ’marketing’, infláció ‘infla-
tion’, etc.

However, although komoly (‘serious’) cannot be
used as a synonym of ‘huge’ before the elements
of the first clique (eg. komoly mosoly ’a serious
smile’ ̸= óriási mosoly ’a huge smile’ and komoly
oroszlán ’a serious lion’ ̸= óriási oroszlán ’a gi-
ant lion’), someone may claim that – in certain
contexts at least – óriási and komoly conveys the
same meaning at a certain level of abstraction. We
confine ourselves only to make a notice on this phe-
nomenon in the present paper and do not want to
take a definite stance on this question.

5.2 Fine-grained evaluation of cliques
After excluding the irrelevant cases (cc. 240 adjec-
tives altogether), a detailed evaluation took place
aiming to create an adjectival database, where each
sense is well-motivated and is characterized by
the set of the context nouns. We also investigated
whether these nouns can help humans to form con-
cepts. For doing so, we went through on the result-
ing cliques manually. Maximum five context nouns
were included into our database and we strove to
select the salient context nouns for the given sense.
We followed the procedure below:

1. The word2vec representations of the context
nouns were used. They were generated as
described in subsection 3.1.

2. The noun vectors were clustered using a hier-
archic agglomerative algorithm to find subcat-
egorization patterns.

For instance, we had mindennapi (’common’)
assigned to two cliques: dendograms in Figure
1 and Figure 2 depict the clusters of the context
nouns. On the one hand, the respective near-
synonyms are rather enlightening with regards to
the two senses of the adjective, one of them be-
ing ’normal’ or ’ordinary’ while the other referring
to regular, everyday activities. Based on the fig-
ures we can conclude that for example language-
related things, such as szóhasználat (’word usage’),
nyelvhasználat (’language use’) are rather com-
mon or ordinary things than periodical ones; while
gyakorlás (’practice’) or testmozgás (’exercise’)
are regular, everyday activities and not necessarily
common or ordinary ones. Therefore, the branches
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Figure 1: The clusters of the context nouns of the adjectival clique [mindennapi ’common’, hétköznapi ’normal’]

Figure 2: The clusters of the context nouns of the adjectival clique [mindennapi ’common’, mindennapos ’everyday’]

of the dendogram indicate the semantic classes of
nouns the adjectival senses subcategorize.

As a result, out of the 446 adjectives with the
given parameter setting, 53 adjectives were as-
signed to multiple cliques: to 118 cliques alto-
gether. The list is available on GitHub: https:
//github.com/nytud/HuWiC. The qualita-
tive evaluation yielded surprisingly insightful re-
sults in many cases, which may be not accessed
with an introspective or even with a corpus-based
methodology. Therefore, in spite of the low cov-
erage we think that the research discussed here
definitively worth pursuing in the future.

6 Conclusion and future work

The present paper describes an ongoing research,
which intends to apply an unsupervised WSI ap-
proach to detect interpretable senses from monolin-
gual corpora to contribute to the work of lexicogra-

phers, linguists and facilitate the creation of related
benchmarks for the NLP community. For doing so,
we came up with 4 necessary criteria to distinguish
between senses, which were implemented in the
next step. Finally, a detailed evaluation of the sense
distinctions was performed yielding the conclusion
that although the coverage definitively needs to be
improved, in many cases the attained senses were
surprisingly insightful supplying interpretable and
intuitively not obvious sense distinction. However,
during the evaluation it turned out that belonging to
multiple near-synonymy classes is only a necessary
but not sufficient condition for meaning discrimi-
nation, as adjectives may have collocate nouns or
subcategorizate multiple sets of nouns in a single
clique (see the case of könnyű ’easy’ in subsection
4.2). Since this method does not rely on any exter-
nal knowledge base, it should be suitable for any
low- or medium-resourced language.
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Abstract
Unsupervised extractive document summariza-
tion aims to extract salient sentences from a
document without requiring a labelled corpus.
In existing graph-based methods, vertex and
edge weights are usually created by calculat-
ing sentence similarities. In this paper, we de-
velop a Graph-Based Unsupervised Summa-
rization(GUSUM) method for extractive text
summarization based on the principle of in-
cluding the most important sentences while ex-
cluding sentences with similar meanings in the
summary. We modify traditional graph rank-
ing algorithms with recent sentence embedding
models and sentence features and modify how
sentence centrality is computed. We first define
the sentence feature scores represented at the
vertices, indicating the importance of each sen-
tence in the document. After this stage, we use
Sentence-BERT for obtaining sentence embed-
dings to better capture the sentence meaning. In
this way, we define the edges of a graph where
semantic similarities are represented. Next we
create an undirected graph that includes sen-
tence significance and similarities between sen-
tences. In the last stage, we determine the most
important sentences in the document with the
ranking method we suggested on the graph cre-
ated. Experiments on CNN/Daily Mail, New
York Times, arXiv, and PubMed datasets show
our approach achieves high performance on un-
supervised graph-based summarization when
evaluated both automatically and by humans.

1 Introduction

Text summarization is the process of compressing
a long text into a shorter version while preserv-
ing key information and significance of the con-
tent. Researchers have examined two summariza-
tion models as extractive and abstractive sum-
marization (Nenkova et al., 2011). Extractive sum-
marization creates summaries by extracting text
from source documents, whereas abstractive sum-
marization rewrites documents by paraphrasing or
deleting some words or phrases.

Modern text summarization approaches focus on
supervised neural networks, which adapt sequence-
to-sequence translation, reinforcement learning
and large-scale pre-training techniques. These
approaches have accomplished favourable results
thanks to the availability of large-scale datasets
(Nallapati et al., 2016; Cheng and Lapata, 2016;
Gehrmann et al., 2018; Liu and Lapata, 2019; Wang
et al., 2020). Nevertheless, a major limitation of
those supervised methods is that their success is
strongly reliant on the availability of large training
corpora with human-generated high-quality sum-
maries which are both expensive to produce and
difficult to obtain. We focus on unsupervised sum-
marization in this study, where we simply need
unlabeled documents.

The fundamental issue with unsupervised sum-
marizing is determining which sentences in a doc-
ument are important. Graph-based algorithms, in
which each vertex is a sentence and the weights
of the edges are measured by sentence similarity,
are the most prevalent approaches among these
studies. The relevance of each sentence is then esti-
mated using a graph ranking approach. A vertex’s
centrality is often measured using graph-based
ranking algorithms such as PageRank (Brin and
Page, 1998) to decide which sentence to include in
the summary.

We observe that the importance of the sentences
in the document should be emphasized in addition
to the semantic similarity of the sentences in the
summary. Accordingly, we suggest in this study
that the centrality measure can be enhanced in two
significant ways. First, we define an initial score
that specifies the importance of the sentence that
each vertex represents. Second, we use Sentence-
BERT (Reimers and Gurevych, 2019) which is a
modification of the pre-trained BERT network (De-
vlin et al., 2019) that uses Siamese and triplet net-
work structures to derive semantically meaningful
sentence embeddings to better capture the sentence
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meaning and calculate sentence similarity.
In this paper, we propose a novel ap-

proach, GUSUM (as shorthand for Graph-Based
Unsupervised Summarization) which is a simple
and powerful approach to improving graph-based
unsupervised extractive text summarization. We
evaluate the GUSUM on the CNN/Daily Mail and
New York Times short document summarization
datasets and arXiv and PubMed long document
summarization datasets. For graph-based summa-
rization tasks, pre-trained embeddings are generally
used only for measuring sentence similarities in
graph-based summarization systems. However, this
situation causes the importance of the sentences
in the document to be ignored. In our approach,
we applied a ranking method that combines sen-
tence similarities and sentence features to calculate
sentence centrality. Our experiments show that
better results are obtained by creating weighted
graphs in which the main features of the sentence
are represented in the ordering stage based on sen-
tence centrality. Our code is available at https:
//github.com/tubagokhan/GUSUM

2 Related Work

The proposed method is based on graph-based,
unsupervised extractive text summarization tech-
niques. In this section, we introduce work on graph-
based summarization, unsupervised summarization
and pre-training.

2.1 Graph-Based Unsupervised
Summarization

The majority of summarization methods rely on
labeled datasets containing documents that match
pre-prepared summaries. Compared to supervised
models, unsupervised models only need unlabeled
documents during training. Most unsupervised ex-
tractive models are graph-based (Carbonell and
Goldstein, 1998; Erkan and Radev, 2004; Mihalcea
and Tarau, 2004; Zheng and Lapata, 2019; Xu et al.,
2020; Liang et al., 2021; Liu et al., 2021). Among
the representative examples of early work in infer-
ential summarization, the study by Carbonell and
Goldstein (1998) includes the Maximum-Marginal
Relevance (MMR) principle of selecting sentences
based on both the relevance and diversity of the
selected sentences and the PageRank (Brin and
Page, 1998) scores of the sentences in sentence sim-
ilarity graphs. TEXTRANK (Mihalcea and Tarau,
2004) interprets sentences in a document as nodes

in an undirected graph, with edge weights based
on sentence occurrence similarity. The final rank-
ing scores for sentences are then determined using
graph-based ranking algorithms such as PageRank.
Similarly, Erkan and Radev (2004) provided ex-
tractive summaries by scoring sentences with the
LEXRANK approach, they calculated the impor-
tance of sentences in representative graphs based
on the measurement of eigenvector centrality.

Recently, researchers have continued to develop
graph-based methods. Zheng and Lapata (2019)
created a directed graph using BERT (Devlin et al.,
2019) to calculate sentence similarities. The im-
portance score of a sentence is the weighted sum
of all its outer edges, where weights for edges be-
tween the current sentence and preceding sentences
are negative. In the directed graph that Zheng and
Lapata (2019) created, the edges represent the rel-
ative position of the sentences in the document.
In our study, we represented sentence similarities
at the edges from a completely different point of
view. We also showed vertexes by blending the
features of the sentences such as the position of
the sentence. Thus, we created graphs that provide
greater semantic integrity. Xu et al. (2020) design
two summarization tasks related to pre-training
tasks to improve sentence representation. Then
they proposed a rank method that combines atten-
tion weight with reconstruction loss to measure the
centrality of sentences. Liang et al. (2021) pro-
posed a facet-sensitive centrality-based model. It
aims to measure the relationship between the sum-
mary and the document by calculating a similarity
score between the summary sentences and the docu-
ment for each candidate summary. Liu et al. (2021)
published a graph-based single-document unsuper-
vised extractive method that constructs a Distance-
Augmented Sentence Graph from a document that
enables the model to perform more fine-grained
modeling of sentences and better characterize the
original document structures.

2.2 Pre-trained Language Models

Pre-trained language models have been shown to
make significant progress in a variety of NLP tasks.
These models are based on the concept of word
embeddings (Pennington et al., 2014), but they go
even further by pre-training a sentence encoder on
a large unlabeled corpus. Bidirectional Encoder
Representations from Transformers (BERT) (De-
vlin et al., 2019), one of the state-of-art language
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Figure 1: The complete pipeline of the proposed method.

models, is trained with a masked language model
and a next-sentence-predicting task. Pre-trained
language models have recently become popular for
improving performance in language comprehen-
sion tasks. Recent research (Liu and Lapata, 2019;
Bae et al., 2019) has shown that using pre-trained
language models to extractive summarization mod-
els, such as BERT, is quite advantageous. As for
the extractive summarization task, it provides the
powerful sentence embeddings and the contextu-
alized information among sentences (Zhong et al.,
2019), which have been proven to be critical to
extractive summarization.

3 Methodology

In this section, we describe our unsupervised sum-
marization method GUSUM. The system is com-
posed of four main steps: first, we calculate sen-
tence features for defining vertex weight; second,
we produce sentence embeddings by Sentence-
BERT to measure sentence similarities; next, we
create a graph by comparing all the pairs of sen-
tence embeddings obtained; finally, we rank the
sentences by their degree centrality in this graph.
Figure 1 gives an overview of the whole proposed
method.

3.1 Computing Sentence Features

In traditional embedding-based systems, sentence
features are transformed into dense vector repre-
sentation. These features are attributes that attempt
to represent the data used for their task (Suanmali
et al., 2009).

Unlike traditional methods, GUSUM uses sen-
tence features to determine the initial rank of the

vertex in the generated graphs rather than vector-
izing them. GUSUM focuses on four features for
each sentence based on Shirwandhar and Kulkarni
(2018). After the scores for each sentence were
determined, the sum of the scores was assigned
by taking the weight of the vertex representing the
sentence.

Sentence length: This feature is useful for fil-
tering out short phrases commonly found in news
articles, such as dates and author names. Short
sentences do not contain much information and are
not expected to belong to the summary. To find the
important sentence based on its length, the feature
score is calculated using 1:

Scoref1(Si) =
No.Word inSi

No.Word inLongest Sentence
(1)

Sentence position: On the basis of sentence po-
sition, its relevance is known. The first and the last
sentence of a document are typically important and
involve maximum information. Position feature is
calculated using 2:

Scoref2(Si) =

{
1 if the first or last sentence
N−P
N

if others

(2)

where, N is the total number of sentences and P is
the position of the sentence.

Proper nouns: Usually, the sentence that con-
tains more proper nouns is an important one and
it is most probably included in the document sum-
mary. The score for this feature is calculated as the
ratio of the number of proper nouns in a sentence
over the sentence length using a POS tagger as in
3.

Scoref3(Si) =
No. Proper Noun inSi

LengthSi
(3)
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Numerical token: The number of numerical to-
kens that present in the sentence is another feature
that shows the importance of the sentence in the
document and is calculated with 4:

Scoref4(Si) =
num_numerici

LengthSi
(4)

where, num_numerici is the total number of
numerical tokens in sentence i.

3.2 Computing Sentence Embeddings
The first step in our pipeline is to generate a list
of sentences from the compilation text. After ex-
tracting the sentences, the next step is to produce
the sentence embedding of each sentence using
Sentence-BERT (Reimers and Gurevych, 2019).
Sentence-BERT is a modification of the pre-trained
BERT (Devlin et al., 2019) network that uses
Siamese and triplet network structures to derive
semantically meaningful sentence embeddings that
can be compared using vector similarity methods.

The proposed approach uses Sentence-BERT1

embeddings to represent sentences as fixed-size
vectors. Thus, all sentences and the source is
mapped in the same semantic space and taken as
inputs to the system.

3.3 Generation of the Sentence Graph
In our unsupervised graph-based extractive summa-
rization approach, the document is represented as
a graph, where each node represents a sentence in
the input document.

Given a document D, it contains a set of sen-
tences (s1, s2, ..., sn). Graph-based algorithms
treats D as a graph G = (V ;E). V =
(v1, v2, ..., vn) is the vertex set where vi is the rep-
resentation of sentence si. E is the edge set, which
is an n × n matrix. Each = ei,j ∈ E denotes the
weight between vertex vi and vj .

In graph-based summarization methods, central-
ity is used to select the most salient sentence to
construct summaries through ranking. Centrality
of a node measures its importance within a graph.
The key idea of graph-based ranking is to calculate
the centrality score of each sentence (or vertex).
Traditionally, this score is measured by ranking
algorithms (Mihalcea and Tarau, 2004; Erkan and
Radev, 2004) based on PageRank (Brin and Page,
1998). The sentences with the top score are ex-
tracted as a summary. The undirected graph al-
gorithm computes the sentence centrality score as

1https://www.sbert.net/

follows:

Centrality(si) =

N∑

j=1

eji (5)

After obtaining the centrality score for each sen-
tence, sentences are sorted in reverse order and the
top ranked are included in the summary. GUSUM
includes the vertex weights of the sentence graph
in the calculation of the centrality. Thus, as a first
step, the initial rank values of the sentence graph
are determined.

The second step to build the sentence graph is
to generate the edges that represent semantic sen-
tence similarities. Cosine similarity can be used as
a measure to find similarity between sentences of
the graph. In this step, all the pairwise Cosine sim-
ilarities are gathered in a matrix. Cosine similarity
is defined as:

Cosine Similarity =

∑N
i=1 AiBi√∑N

i=1 A
2
i

√∑N
i=1 B

2
i

(6)

(where Ai and Bi are the components of vector A
and B respectively)

Let D = (s1; s2; ...; sn) be a document. We
produced using sentence feature scores, V =
(v1, v2, ..., vn) is the vertex set where vi is the rep-
resentation of sentence si. (e1; e2; ...; en) is a set of
vectors , where ei is the sentence embedding of si.
Its edges are weighted according to the cosine sim-
ilarities of the corresponding sentence embeddings.
Next, we compute the matrix A with 7:

A[i, j] = Cosine Similarity(ei; ej) (7)

Thus, matrix A can be interpreted as the adja-
cency matrix of an undirected weighted complete
graph.

3.4 Ranking and Summary Selection
We propose a variation of weighted undirected
graph-based ranking in this section. Based on the
idea that the most important sentence in a document
is the sentence most similar to all other sentences
according to the similarity metric, we modify Equa-
tion 5 to include the vertex weights. As a conse-
quence, we define the importance rank for each
sentence as follows:

Rank(si) = v[i] ∗
n∑

j=1

A[i, j] (8)

where v is the corresponding feature score for
si, ei and ej are the corresponding Sentence-BERT
sentence embedding for si and sj .
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We finally rank and select sentences with Equa-
tion 9. The number of sentences in the summary is
represented by the k value.

summary = topK({Rank(si))}i=1,...,n (9)

where the top-ranked k sentences will be ex-
tracted as summary.

4 Experimental Setup

In this section we assess the performance of
GUSUM on the document summarization task. We
first introduce the datasets that we used, then give
our pre-processing and implementation details.

4.1 Summarization Datasets
CNN/DM dataset contains 93k articles from CNN,
and 220k articles from Daily Mail newspapers,
which uses their associated highlights as reference
summaries (Hermann et al., 2015). We use the test
set which includes 11490 documents provided by
hugging face version 3.0.02 (See et al., 2017).

NYT dataset contains over 1.8 million articles
written and published by the New York Times be-
tween January 1, 1987 and June 19, 2007 and sum-
maries are written by library scientists. Different
from CNN/DM, salient sentences are distributed
evenly in each article. We use The New York Times
Annotated Corpus provided by the Linguistic Data
Consortium3 (Sandhaus, 2008). We filter out doc-
uments whose summaries are between January 1,
2007 and June 19, 2007 and documents whose
length of summaries are shorter than 50 tokens and
finally retain 6508 documents (Zheng and Lapata,
2019) .

PubMed & arXiv datasets are two long docu-
ments datasets of scientific papers. The datasets
are obtained from arXiv and PubMed OpenAccess
repositories. The summaries are created from the
documents. PubMed contains 215k and arXiv con-
tains 113k documents. We use test sets which
includes 6658 documents for PubMed and 6440
documents for arXiv provided by hugging face4.

4.2 Implementation Details
In GUSUM, during the pre-processing stage,
NLTK (Natural Language Toolkit)(Bird and Loper,

2https://huggingface.co/datasets/cnn_
dailymail

3https://catalog.ldc.upenn.edu/
LDC2008T19

4https://www.tensorflow.org/datasets/
catalog/scientific_papers

Datasets #docs

avg.
doc.
length
(word)

avg.
doc.
length
(sent.)

avg.
sum.
length
(word)

avg.
sum.
length
(sent.)

CNN/DM 11490 773.22 33.36 57.75 3.79
NYT 6508 1109.10 32.17 96.31 1.18
PubMed 6658 3142.92 101.60 208.02 7.58
arXiv 6440 6446.10 250.36 166.72 6.22

Table 1: Statistic of our CNN/DM , NYT, PubMed and
arXiv datasets

2004) was used to collect corpus statistics and pro-
cess documents using methods such as sentence
segmentation, word tokenization, Part of Speech
(POS) tagging and using regular expressions to re-
move parenthesis and some characters.

In the process of creating the graph, we first
applied Equations 1, 2, 3 and 4 to calculate sen-
tence feature scores and defined the sums of the
obtained values as vertex weights. Next, we cal-
culated the edge weights representing the sentence
similarities. For each dataset, we used the publicly
released Sentence-BERT model roberta-base-nli-
stsb-mean-tokens 5 to initialize our sentence em-
beddings. The bert-base-nli-mean-tokens6 model
was also tested in our experiments. However, the
roberta-base-nli-stsb-mean-tokens showed slightly
higher performance (see Table 6). Alternative mod-
els that can be applied in our method are listed on
Github7. In this manner, the model maps sentences
and paragraphs to a 768-dimensional dense vector
space.

In our experiments, Cosine distance and Eu-
clidean distance were tested to measure the dis-
tances between sentence embedding vectors. How-
ever, it was observed that higher performance was
obtained with the Cosine similarity (see Equation
6) method of Sentence-BERT (see Table 6). The
scores obtained as a result of similarity measure
were assigned as the edge weight of the graph.

In the last stage, we ranked the sentences using
Equation 5 and determined the three most impor-
tant sentences that should be included in the sum-
mary. Table 2 presents a sample golden reference
summary and the summary created by GUSUM.

5https://huggingface.
co/sentence-transformers/
roberta-base-nli-stsb-mean-tokens

6https://huggingface.
co/sentence-transformers/
bert-base-nli-mean-tokens

7https://github.com/tubagokhan/GUSUM/
blob/main/QAforHumanEvaluation.json
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Gold-standard Reference
Food and Drug Administration has not found rat poison in pet food that has been killing cats and dogs, but it has found
melamine, chemical commonly used to make plastic cutlery that is also used in fertilizer. Mationwide pet food recall ,
which has involved wet foods all manufactured by Menu Foods and sold under variety of brand names is expanded to
include one brand of dry cat food made by Hills Pet Nutrition. brand was found to have been made with batch of wheat
gluten shipped to US from China that FDA says was laced with melamine
GUSUM
The Food and Drug Administration said yesterday that it had not found rat poison in pet food that has been killing animals,
but that it had found melamine, a chemical commonly used to make plastic cutlery that is also used in fertilizer. Scientists
found melamine, which is used as a slow-release fertilizer in Asia, in the urine of cats sickened by the recalled pet foods
made by Menu Foods, officials said at a news conference. The recalled pet food has been blamed for at least 16 deaths of
pets. Additionally, F. D. A. officials said that they did not believe the contaminated wheat gluten had entered the human
food supply, but that they were testing all wheat gluten imported from China for melamine.

Table 2: An example summary generated by GUSUM compared with gold-standard summary

5 Results

5.1 Automated evaluation

ROUGE (Lin and Hovy, 2003) was used to as-
sess the quality of summaries from different mod-
els. We report the full length F1 based ROUGE-1,
ROUGE-2, ROUGE-L on both CNN/DM, NYT,
PubMed and arXiv datasets. The py-rouge pack-
age8 is used to calculate these ROUGE scores.

Table 3 and Table 4 summarize our results on
the CNN/DM and NYT short document dataset
and arXiv and PubMed long document datasets
respectively. The first blocks present the results
of strong unsupervised baselines LEAD-3, TEX-
TRANK (Mihalcea and Tarau, 2004)), LEXRANK
(Erkan and Radev, 2004) previous unsupervised
graph-based methods. LEAD-3 simply selects the
first three sentences as the summary for each doc-
ument. TEXTRANK (Mihalcea and Tarau, 2004)
displays a document as a graph with sentences
as nodes and edge weights using sentence simi-
larity and bases PageRank (Brin and Page, 1998)
when selecting the best scores. LEXRANK (Erkan
and Radev, 2004) also calculates the significance
of sentences in representative graphs based on a
measure of eigenvector centrality (based on node
centrality). The second blocks shows recent su-
pervised methods. For supervised extractive mod-
els, we compare with PTR-GEN (See et al., 2017),
REFRESH (Narayan et al., 2018a), BertEx (Liu
and Lapata, 2019) , Discourse-aware (Cohan et al.,
2018), SummaRuNNer (Nallapati et al., 2017) and
GlobalLocalCont (Xiao and Carenini, 2019). The
third blocks includes recent state-of-the-art unsu-
pervised graph-based methods for document sum-
marization. PACSUM (Zheng and Lapata, 2019),
FAR (Liang et al., 2021), STAS (Xu et al., 2020)

8https://pypi.org/project/py-rouge/

and Liu et al. (2021) are detailed in Section 2. The
last blocks in Table 3 and Table 4 reports results of
our method, GUSUM.

As can be seen in Table 3, GUSUM achieves
the highest ROUGE F1 score, compared to all
other graph-based unsupervised methods on both
CNN/DM and NYT datasets. From the results, we
can see that our method outperforms all strong base-
lines in the first block. Furthermore, our method
achieves better results than PACSUM and FAR on
both datasets. When we compare our method with
STAS, our method produces better results, except
for the F-1 R-2 metric on CNN/DM. The success
of GUSUM can be seen when the latest state-of-
the-art unsupervised graph-based method by Liu et
al. (2021) and GUSUM is compared. Moreover, it
is seen in Table 4, GUSUM also performed very
well on arXiv and PubMed long document datasets.
Especially F1 R-L provides very high results com-
pared to all other studies.

5.2 Human evaluation

In addition to the Rouge metric, we also evaluated
the system output via human judgments. In the ex-
periment, we evaluated the extent to which our ap-
proach retained important information in the docu-
ment, following a question-answer (QA) paradigm
used to evaluate the summary quality and text com-
pression (Narayan et al., 2018b).

We created a set of questions based on the
assumption that gold-standard summaries highlight
the most important content of the document. Then,
we examined whether participants could answer
these questions simply by reading the system sum-
maries without accessing the article. We created 71
questions from 20 randomly selected documents
for the CNN/DM datasets and 59 questions from 18
randomly selected documents for the NYT dataset.
We wrote multiple fact-based question-answer
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CNN/DM NYT
Method R-1 R-2 R-L R-1 R-2 R-L
LEAD-3 40.49 17.66 36.75 35.50 17.20 32.00
TEXTRANK (Mihalcea and Tarau, 2004) 33.85 13.61 30.14 33.24 14.74 29.92
LEXRANK (Erkan and Radev, 2004) 34.68 12.82 31.12 30.75 10.49 26.58
PTR-GEN (See et al., 2017) 39.50 17.30 36.40 42.70 22.10 38.00
REFRESH (Narayan et al., 2018a) 41.30 18.40 35.70 41.30 22.00 37.80
BertExt (Liu and Lapata, 2019) 43.25 20.24 39.63 - - -
PACSUM (Zheng and Lapata, 2019) 40.70 17.80 36.90 41.40 21.70 37.50
FAR (Liang et al., 2021) 40.83 17.85 36.91 41.61 21.88 37.59
STAS (Xu et al., 2020) 40.90 18.02 37.21 41.46 21.80 37.57
Liu et al. (Liu et al., 2021) 41.60 18.50 37.80 42.20 21.80 38.20
GUSUM 43.40 17.02 42.38 43.64 22.01 37.90

Table 3: Test set results on the CNN/DM and NYT datasets using ROUGE F1. Results are taken from (Liang et al.,
2021)

arXiv PubMed
Method R-1 R-2 R-L R-1 R-2 R-L
LEAD-3 33.66 8.94 22.19 35.63 12.28 25.17
TEXTRANK (Mihalcea and Tarau, 2004) 24.38 10.57 22.18 38.66 15.87 34.53
LEXRANK (Erkan and Radev, 2004) 33.85 10.73 28.99 39.19 13.89 34.59
PTR-GEN (See et al., 2017) 32.06 9.04 25.16 35.86 10.22 29.69
Discourse-aware (Cohan et al., 2018) 35.80 11.05 31.80 38.93 15.37 35.21
SummaRuNNer (Nallapati et al., 2017) 42.81 16.52 28.23 43.89 18.78 30.36
GlobalLocalCont (Xiao and Carenini, 2019) 43.62 17.36 29.14 44.85 19.70 31.43
PACSUM (Zheng and Lapata, 2019) 39.33 12.19 34.18 39.79 14.00 36.09
FAR (Liang et al., 2021) 40.92 13.75 35.56 41.98 15.66 37.58
GUSUM 40.98 11.76 39.49 44.98 16.26 43.98

Table 4: Test set results on the arXiv and PubMed datasets using ROUGE F1.Results are taken from (Liang et al.,
2021)

Method CNN/DM NYT
Score % Score %

LEAD-3 54.75 77.11 42.00 71.19
TEXTRANK 56.38 79.40 39.50 66.95
GUSUM 57.00 80.28 46.25 78.39

Table 5: Results of QA-based evaluation on CNN/DM,
NYT. We compute a system’s final score as the average
of all question scores.

pairs for each gold summary. Our Question and
Answer set is available at https://github.
com/tubagokhan/GUSUM/blob/main/
QAforHumanEvaluation.json.

We compared GUSUM against LEAD-3 and
TEXTRANK on CNN/DM and NYT. We used the
same scoring mechanism from Ziheng and Lapata
(2019), a correct answer was marked with a score
of one, partially correct answers with a score of
0.5, and zero otherwise. The final score for a sys-
tem is the average of all its question scores. Four
fluent English speakers answered the questions for
each summary. The participants were chosen from
university volunteers who gave their consent to
contribute to the study.

The results of our QA evaluation are shown in
Table 5. Based on summaries generated by LEAD-

3 participants can answer 77.11% and 71.19% re-
spectively CNN/DM and NYT of questions cor-
rectly. Summaries produced by TEXTRANK have
79.40% and 66.95% scores. When the scores of
GUSUM are compared with the scores of the other
two systems, the high performance of GUSUM
is seen. The main reason for GUSUM’s slightly
higher performance in CNN/DM dataset compared
to NYT is thought to be the use of human-generated
gold summaries in NYT. Another possibility is
that the summaries created from the CNN/DM
dataset are shorter and users can focus more. It
is thought that the participants have a leaning to
become distracted with the longer summaries in
the NYT dataset compared to CNN/DM.

5.3 Ablation Study

In order to access the contribution of three com-
ponents of GUSUM, we remove or change each
component of them and report ablation study re-
sults in Table 6. Since short and long documents
have different structures, separate experiments are
carried out. In Table 6, the results of the NYT
dataset in the first block and the PubMed dataset in
the second block are presented.
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NYT
R-1 R-2 R-L

GUSUM 43.64 22.01 37.90
-Removed All Sentence Features 36.63 14.91 30.58
-bert-base-nli-mean-tokens 43.28 21.73 37.48
-Eucludian Distance 35.35 16.43 31.10

PubMed
GUSUM 44.98 16.26 43.98
-Removed All Sentence Features 44.08 15.53 43.32
-bert-base-nli-mean-tokens 44.27 15.66 43.36
-Eucludian Distance 37.77 11.29 37.40

Table 6: Ablation study results on NYT and PubMed
datasets using ROUGE F1.

We can observe that sentence feature scoring is
critical to GUSUM’s performance, mainly on NYT.
When all sentence features are eliminated, the per-
formance of GUSUM drops sharply. In another
experiment, we replaced the roberta-base-nli-stsb-
mean-tokens model with the bert-base-nli-mean-
tokens model in both datasets and discovered just
a minor difference in performance. In our last ex-
periment, we changed the method of measuring the
similarity of sentence embeddings to generate the
graph. When we employ the Euclidean method,
there is a dramatic decrease in the performance of
GUSUM.

6 Discussion

There are two basic stages in document summa-
rization: (1) Identification of the most salient sen-
tences in the document, (2) Removal of similar
sentences from the summary. Generally in graph-
based approaches, graphs are created based on only
sentence similarity, and then the most salient sen-
tences are selected. On the contrary, in GUSUM
we included these two basic steps in our approach.
Along with the semantic similarity, we also em-
bedded the attributes of the sentences in our graph.
Furthermore, GUSUM advocates the idea that the
most important sentence in a document is the sen-
tence most similar to the others. For this reason, the
total similarity value for each sentence is evaluated
in the ranking stage. The experimental results of
GUSUM, which is a simple and effective method
based on these ideas, prove the validity of our ideas.

As seen in the experimental results, GUSUM
showed high performance on all datasets. How-
ever, the limitation of GUSUM is that sentence
features scoring does not have a significant impact
on long documents as can be see in Table 6. The
main reason for this situation is that the ranking
algorithm we use in long documents produces re-

sults that are very close to each other. Therefore,
we argue that for long documents, sentence feature
scores should be enriched by including thematic
word, sentence centrality, title similarity, the simi-
larity to the first sentence, cue-phrases, term weight
scores, etc. Moreover, adding section segmentation
for long document summarization can significantly
improve performance.

The most difficult part of this study is the eval-
uation stage. Evaluating the performance of sum-
marization systems poses a problem for many re-
searchers (Schluter, 2017). It is a known fact by
researchers that human evaluation is the best sum-
mary performance evaluation method. For this
reason, we included human evaluation as a per-
formance evaluation method in our study. How-
ever, what we noticed in our study is that the ques-
tions used for human evaluation based on the QA
paradigm in other studies published to date have
not been shared by the researchers. As a result of
this situation, researchers prepare their own ques-
tions and the results cannot be compared with the
literature. As a solution to this problem, we publish
the questions and answers that we prepared from
the CNN/DM and NYT datasets based on the QA
paradigm for use in future studies (See 5.2).

7 Conclusions and Future Works

In this paper, we have proposed a graph-based
single-document unsupervised extractive summa-
rization method. We revisited traditional graph-
based ranking algorithms and refined how sentence
centrality is computed. We defined values indicat-
ing the importance of the sentences in the docu-
ment for the node weights in the graphs and we
built graphs with undirected edges by employing
Sentence-BERT to better capture sentence simi-
larity. Experimental results on four summariza-
tion benchmark datasets demonstrated that our
method outperforms other recently proposed ex-
tractive graph-based unsupervised methods and
achieves performance comparable to many state-
of-the-art supervised approaches which shows the
effectiveness of our method.

In the future, we would like to remove the lim-
itations that would increase the performance of
GUSUM in long document summarization with
the ideas introduced in this study and explore the
performance of GUSUM in multi-document sum-
marization.
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Abstract

This paper studies the problem of injecting fac-
tual knowledge into large pre-trained language
models. We train adapter modules on parts
of the ConceptNet knowledge graph using the
masked language modeling objective and eval-
uate the success of the method by a series of
probing experiments on the LAMA probe. Mean
P@K curves for different configurations indi-
cate that the technique is effective, increasing
the performance on subsets of the LAMA probe
for large values of k by adding as little as 2.1%
additional parameters to the original models.

1 Introduction

Large pre-trained language models (PLMs) are dif-
ficult to interpret due to their complexity and large
parameter size. This can partly be explained by
the nature of popular training regimens, such as
the masked language modelling objective, which
encodes distributional knowledge. Such regimens
have proven effective for a range of downstream
NLP tasks, but they also make it difficult to deter-
mine and validate the origin of whatever knowledge
the models end up with.

Consequently, there have been multiple efforts
to integrate structured information into PLMs (Pe-
ters et al., 2019; Yasunaga et al., 2021; Kaur et al.,
2022). This has not only been motivated by the
promise of better interpretability, but also the ob-
servation that there exist scenarios where we would
want to stress information that might not be so eas-
ily encoded by modelling long range dependencies
between fragments of text. This includes knowl-
edge intensive tasks where employing the correct
factual knowledge is crucial, for example within
the medical domain (Zhang et al., 2021) and ques-
tion answering (Zhang et al., 2022). At the same
time, there exist multiple structured sources that at-
tempt to capture factual knowledge. These sources
range from domain specific knowledge graphs for

medical information (Shi et al., 2017), common-
sense graphs like Yago or ConceptNet (Suchanek
et al., 2007; Speer et al., 2017), to lexico-semantic
networks like WordNet (Miller, 1995).

In this paper, we attempt to inject the structured
information found in the ConceptNet knowledge
graph (Speer et al., 2017) into pre-trained language
models. The injection is done by training relatively
small neural networks, known as adapter modules
(Houlsby et al., 2019; Pfeiffer et al., 2020), on
subject—predicate—object triples. As in Lauscher
et al. (2020), we extract the triples using a random
walk procedure and then translate them into natu-
ral language so that we can use masked language
modeling as the training objective. The resulting
adapters are injected into all layers of two popular
pre-trained language models: BERT base (Devlin
et al., 2019) and ROBERTA base (Liu et al., 2019).
Our code and data is made publicly available1.

For the injection to be deemed effective, we ar-
gue that the adapter-injected models must be able to
use the knowledge gained from the adapter training
together with what the models learned during their
initial pre-training. In order to quantitatively assess
this, we evaluate our models in a zero-shot set-
ting on the ConceptNet subset of the LAMA probe
(Petroni et al., 2019). As ConceptNet is the source
for both our training corpus and the LAMA probe,
we can better measure how much of the factual
knowledge seen during adapter training the models
can be expected to recall.

2 Related work

Combining structured information with language
models is a standing problem in NLP. One approach
to overcome this has been to combine knowledge
graphs with PLMs, augmenting the distributional
knowledge encoded in the models with the struc-
tured information found in the graphs (Sun et al.,

1https://github.com/SondreWold/
adapters-mlm-injection
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Figure 1: Left: how adapters are injected into each trans-
former layer. Right: the components of each adapter
module. Figure from Houlsby et al. (2019).

2021; Liu et al., 2020; Wang et al., 2021). Within
this approach, we find several uses of adapters.
First introduced for NLP by Houlsby et al. (2019),
and popularized by the AdapterHub framework
Pfeiffer et al. (2020), adapters are small neural net-
works injected into larger, often pre-trained models.
During training the original model weights are kept
static, and only the set of newly introduced weights
from the adapter are adjusted. Figure 1 illustrates
the architecture proposed by Houlsby et al. (2019)
and how it is injected into a transformer layer.

The methodology in this paper is inspired by
Lauscher et al. (2020), who inject commonsense in-
formation and world knowledge into BERT by using
such adapter modules. As in our work, the adapters
train with the masked language modeling objective
over subject—predicate—object triples from the
ConceptNet graph, but they are evaluated on the
GLUE benchmark (Wang et al., 2018). Although
the result are inconclusive for most of the tasks in
GLUE, the injected models perform better than their
base model counterparts on the world knowledge
and commonsense categories of the diagnostic set.

A similar approach is taken by Wang et al.
(2021). Their K-DAPTER model has one adapter for
factual knowledge, trained on aligned text triplets
from Wikipedia and Wikidata, and one for linguis-
tic knowledge, obtained via dependency parsing.
Results on knowledge-driven tasks, including re-
lation classification, entity typing, and question
answering, show that this setup improves perfor-
mance, and furthermore, that K-ADAPTER captures
more versatile knowledge than ROBERTA.

In a more domain specific context, Meng et al.

(2021) use adapter modules to infuse a large
biomedical knowledge graph into an underlying
BERT model. By partitioning the large graph into
smaller sub-graphs, which are then fed into dis-
tinct adapter modules and fused using a mixture
layer that combine the knowledge from all the
adapters using an attention layer, they achieve a
new state-of-the-art performance on five domain
specific datasets.

3 Experiments

Following Lauscher et al. (2020), we use the
same configuration for our adapter modules as in
Houlsby et al. (2019). We set the size of the adapter
modules to 64, which implies a reduction factor of
12 from the original transformer layer size of 768
in BERTBASE. This increases the total amount of
parameters by 2.1%. We use GELU (Hendrycks
and Gimpel, 2020) as the activation function in-
side the adapters, and the Adam optimizer from
(Kingma and Ba, 2017). We set the learning rate to
1e-4 with 10.000 warm-up steps and weight decay
factor of 0.01. We allow the adapter to train for
100.000 optimization steps while freezing all the
original transformer weights. The adapters are im-
plemented using the adapter-transformers
library (Pfeiffer et al., 2020). Throughout the re-
mainder of this paper, the resulting configuration
is referred to as CNHOULSBY 100K in figures and as
the Houlsby configuration in text.

The adapters train on the same subset of
ConceptNet as in Lauscher et al. (2020). As
this study was named Retrograph, we refer
to this particular set of predicate types as the
Retrograph predicate set. The predicates in this
set are: ANTONYMOF, SYNONYMOF, ISA and
MANNEROF. Subject—predicate—object triplets
with one of these predicates in their middle
position are extracted through a random traversal
procedure2 and then subsequently chained so that
we get blocks of text in natural language on the
following format:

possible is a synonym of possibility.
possibility is a concept.
concept is a synonym of conception.
conception is a synonym of fertilization.
fertilization is a enrichment.
enrichment is a gift.

2Details on this traversal procedure can be found in
Lauscher et al. (2020) or in appendix A.
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The corpus is processed using masked language
modeling (MLM), parsed line for line with a MLM
probability of 0.15, as in the original BERT paper
(Devlin et al., 2019). We also experiment by train-
ing on the corpus by a maximum sequence length
instead of line by line training. However, this did
not affect the performance of the models in any
significant way.

3.1 Evaluation

We evaluate our injected models on the Concept-
Net split of the LAMA (LAnguage Model Analysis)
probe (Petroni et al., 2019), which allows for test-
ing of the factual and commonsense knowledge of
language models. Facts are presented as fill-in-the-
blank cloze statements, e.g: "Ibsen was born in
[MASK] in the year 1828", and models are ranked
based on how highly it ranks the ground truth to-
ken. All models are evaluated in a zero-shot set-
ting, using the same prediction head as in their
pre-training.

As we train our adapter modules on Concept-
Net and also evaluate on the ConceptNet split from
LAMA, it is important to note that what we test here
is not the model’s ability to generalize on unseen
data in the traditional sense, but whether or not
they are able to reproduce the factual information
extracted from the knowledge graph during adapter
training. The phrasing of the cloze statements in
LAMA is not the same as in the training corpus
for the adapters, although fairly similar. For ex-
ample, one sentence in LAMA derived from the
source triple communicating hasSubevent
knowledge is presented in the probe as Commu-
nicating is for gaining [MASK], while the same
triple would be phrased as communication has
subevent knowledge in the training corpus for the
adapters. This makes it possible to control the de-
gree of overlap between instances of factual knowl-
edge in the training corpus and the concepts at the
object position in the statements from LAMA. The
degree of overlap is numerically specified in the
discussion of each result.

3.1.1 Evaluation metric
Following Petroni et al. (2019), we use mean pre-
cision at different values of k as the evaluation
metric over the LAMA resource. Normally, as in
information retrieval, we calculate the precision
of a retrieved collection as the number of relevant
documents proportionate to the total number of re-
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Figure 2: Mean P@k curve for base models and the
Houlsby adapter configuration. Base 10 log scale for
the X axis. a) shows the result for all the predicates in
the ConceptNet split of LAMA while b) shows results
for the "ISA" predicate only

trieved documents. Here, however, we only have
one true positive for collections of all sizes. Thus,
the mean precision at various values for k is equal
to the whether or not the correct word is a member
of the set of predictions of size k. If k = 100, we
return a precision of 1 if the correct word is one of
the top 100 predictions.

4 Results

Figure 2 shows the mean P@K curves for two lan-
guage models, with and without an adapter. Part
(a) of the figure shows the result over all the predi-
cate types present in the ConceptNet split of LAMA

(N = 29774). The injection of the adapter mod-
ule decreases the performance of both BERT and
ROBERTA for all values of k. However, the cor-
pus with the Retrograph predicate set that adapters
trained on only includes one of these types. Hence,
there is little similarity between the two sets, and
the reproduction of factual knowledge cannot be
expected here. This also indicate that training on
one set of predicate types does not improve the
reproduction of facts on others.

Part (b) of figure 2, on the other hand, shows
the same models and adapters, but with the probe
restricted only to the ISA predicate type — which
is then present both in the training corpus and in the
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Figure 3: The result of different training configurations
on the ConceptNet split of LAMA (Petroni et al., 2019).
The two models, in dark blue and orange, use BERTBASE

as the root model and the Houlsby configuration for
their adapter, but are trained on different predicate sets
of the ConceptNet graph. The gray line represents a
BERT model without any adapter training.

probe. In the corpus from Lauscher et al. (2020),
triples with this predicate type make up 23% of the
total corpus (N = 69843).

Since both resources are extracted from Con-
ceptNet, we check the overlap between the masked
tokens in the object position in LAMA and the ob-
ject position in the triplets in the training set for
the adapters. The actual percentage will depend on
the random walk procedure, but for the sets used in
figure 2 there is a 5.7% overlap between concepts.
That is, approximately five percent of the concepts
from LAMA that the models are expected to predict
are also in the training corpus in some form, either
with the same predicate type as in the probe, ISA,
or one of the others in the Retrograph set.

Despite this, the injected models perform consis-
tently better. As this performance gain is achieved
by adding only 2.1% additional parameters to the
original model, and without adjusting the original
weights at all, we interpret the results as an indi-
cation that this method of knowledge injection is
effective.

5 Changing the predicate set

In order to further probe the effectiveness of the
proposed method, we introduce a new corpus (N =
99603 triples) — distilled with the same random
walk procedure, but over a new set of predicate
types, namely the same set of predicate types found
in the ConceptNet split of LAMA. By intuition, if
the method is effective, the injected models should

score higher on average over all these predicate
types than their non-injected counterparts. A list of
these predicate types can be found in appendix A.

Figure 3 compares the result of the injected mod-
els trained over our predicate set with that of the
Retrograph set and a plain BERT model for differ-
ent values of k. As can be seen from the P@K
curves, models trained over our predicate set im-
prove the performance on the full ConceptNet split
of the LAMA (N= 29774) probe by up to 6.39%
for BERT at large values of k. For k=1, where the
model must guess the correct masked object "at first
try", we see little difference. Compared to the Ret-
rograph set, which has fewer predicate types, the
difference in performance indicate that predicate
type specificity is important (e.g subgraph quality).
For this comparison, the overlap between the train-
ing corpus for the adapters and the full ConceptNet
split of LAMA is 36% on the object level, meaning
that roughly one third of the concepts were seen
during training in some form.

This provides some evidence for the success of
the knowledge injection. Models are able to re-
produce factual knowledge when queried over the
LAMA probe, even though the phrasing of the ques-
tions in LAMA is different than the strict triplet-
style of the training corpus.

6 Conclusion and Future Work

Combining structured information and large pre-
trained language models is a standing problem in
NLP research. In this work, we show that training
adapter modules on triplets extracted from Con-
ceptNet using masked language modeling can help
language models reproduce factual knowledge. Ex-
periments on the ConceptNet split of the LAMA

probe show that our adapter-injected models per-
form better in a zero-shot setting than non-injected
models, having seen only a third of the relevant fac-
tual knowledge during pre-training in some form,
encoded into only 2.1% of the total parameters of
the total model. Future work should investigate
how this type of knowledge injection can augment
language models on other types of tasks, such as
language generation, multiple choice questions or
natural language inference, which would require
more fine-grained annotations of downstream tasks
targeted at some form of knowledge.
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A Appendix

The ConceptNet split of the LAMA probe includes
the following predicate types:

atLocation, capableOf, causes, causesDe-
sire, desires, hasA, hasPrerequisite, hasProperty,
hasSubevent, isA, locatedNear, madeOf, motivated-
ByGoal, partOf, receivesAction, usedFor.

A.1 Random walk procedure
Retrograph uses the weighted random walk
algorithm from NODE2VEC (Grover and
Leskovec, 2016) in order to extract the
subject--predicate--object triples
from ConceptNet. The pseudocode from the
original publication on this algorithm is presented
below. The alias method refers to a way of
sampling from a discrete probability distribution.3

Algorithm 1 The random walk procedure from
Lauscher et al. (2020)

1: procedure NODE2VECWALK(Graph G’ = (V,
E, π), Start node u, Length l)

2: Inititalizewalkto[u]
3: for walk_iter = 1 to l do
4: curr = walk[−1]
5: Vcurr = GetNeighbors(curr,G′)
6: s = AliasSample(Vcurr, π)
7: Appendstowalk

return walk

3https://lips.cs.princeton.edu/
the-alias-method-efficient-sampling-with-many-discrete-outcomes/
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Abstract

Predicting user behavior is essential for a large
number of applications including recommender
and dialog systems, and more broadly in do-
mains such as healthcare, education, and eco-
nomics. In this paper, we show that we can
effectively predict donation behavior by using
text-aware graph models, building upon graphs
that connect user behaviors and their interests.
Using a university donation dataset, we show
that the graph representation significantly im-
proves over learning from textual representa-
tions. Moreover, we show how incorporating
implicit information inferred from text associ-
ated with the graph entities brings additional
improvements. Our results demonstrate the role
played by text-aware graph representations in
predicting donation behavior.

1 Introduction

Understanding and predicting user behavior from
their digital traces is important for many applica-
tions, such as recommender systems (Resnick and
Varian, 1997), information filtering (Belkin and
Croft, 1992), or dialogue agents (Mazare et al.,
2018), as well as numerous behavioral interven-
tions in healthcare, education, economics, and
more. Prior research efforts have modeled user
interests for predicting future behavior such as pur-
chases (Pradel et al., 2011) or click-through likeli-
hood (Qin et al., 2020), using signals like engage-
ment with social media content or purchase history.

Traditional approaches to user behavior predic-
tion use machine learning models that make use
of input features in a linear fashion. These mod-
els, including the more advanced neural network
architectures, assume that individual data samples
are provided one at a time and independent of one
another. Example user modeling approaches in-
clude using recurrent neural networks to encode
the behavioral history of each user (Zhang et al.,
2014) or linearly aggregating different parts of a

user’s background and behavior, such as their de-
mographics and online posting patterns (Xu et al.,
2020). Such approaches do not take full advantage
of the relations between entities; for instance, two
products in one’s purchase history may be differ-
ent but still be related to one another; or two users
may have interests that are seemingly diverse, but
which have some degree of similarity. Richer input
representations that incorporate such relations can
improve the performance of downstream machine
learning models used to predict user behavior.

Graph models are a prominent way of represent-
ing relational information between entities. In par-
ticular, knowledge graphs have been used widely in
the context of recommender systems. For example,
one can construct a knowledge graph consisting of
clothing brands and items and retrieve the most rel-
evant or similar items to recommend to a user based
on their most recent clothing purchase (Wang et al.,
2019; Palumbo et al., 2018). Further, interactions
between users and entities can also be included
in the graph, such as clicks or purchases. Such a
graph and its resulting node embeddings can bet-
ter capture the relations between entities that arise
from the aggregate behaviors of all the users.

However, these relations still only come from
explicitly observed interactions like someone click-
ing on one entity and then also purchasing an-
other entity, or multiple people co-clicking or co-
purchasing the same entity. In many contexts, the
resulting knowledge graph is sparse, as there is an
absence of many co-occurring user-entity interac-
tions due to factors such as a very large number of
entities, or users having on average a very low num-
ber of interactions. As such, the learning models
applied on these sparse graphs can be lacking.

In this paper, we explore user behavior predic-
tion by using text-aware graph representations in
the context of university alumni donations. We
model alumni donation behavior through text and
graph-based representations and evaluate our meth-
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ods by predicting how likely a potential alumnus
will donate to specific charitable funds. We con-
duct our experiments using the history of donations
and university engagement newsletters of a large
Midwest public university.

We start by building a graph representation of
alumni and associated entities, such as academic
majors, university funds, and articles in engage-
ment newsletters. Alumni actions, such as donating
to a fund or clicking on an article in an engagement
newsletter, are represented as edges connecting an
alumnus node with a fund or article node. Node
embedding representations derived from this graph
are thus capturing how different funds or engage-
ment articles are related with respect to the alumni
who donated to or clicked on them. We then use
this graph to predict the likelihood of an alumnus
to donate to a given charitable fund.

Specifically, our paper makes the following two
main research contributions. First, we propose a
graph framework to represent and predict user be-
havior, and show that it improves significantly over
a linear representation that does not incorporate
relational information. Second, we show how this
graph representation can be further enriched with
implicit links drawn using semantic connections
between the textual information associated with the
graph entities, leading to additional performance
improvements in user behavior prediction. Overall,
through experiments on a large alumni donations
dataset, we demonstrate the effectiveness of using
graph representations enhanced with implicit infor-
mation for the purpose of user behavior prediction.

2 Related Work

2.1 Combining Graphs and Text

Graph models and knowledge bases are commonly
used in a wide range of tasks. However, given the
nature of dealing with discrete entities and rela-
tions, they can suffer from incomplete coverage or
difficulty reasoning over entity relationships.

Advancements in representation learning on
graphs have proven helpful in predictive tasks, such
as link prediction (Wang et al., 2014), node clas-
sification (Cai et al., 2018), and node retrieval or
recommendation (Zhao et al., 2015; Li et al., 2016).
Many methods build embedding representations
of graph nodes (Goyal and Ferrara, 2018) derived
from the graph’s link structure, using adjacency
matrix factorization methods (Tang et al., 2015) or
random walks (Grover and Leskovec, 2016).

Work has also been done towards creating text-
aware graph embedding models. Methods in-
clude representing an entity through a text embed-
ding of the entity name (Socher et al., 2013) and
jointly learning embeddings for entities and words
(Toutanova et al., 2015; Xiao et al., 2017).

In our work, we leverage node embedding meth-
ods to build continuous vector representations of
university alumni and charitable funds, and show
that they improve over text-based representations.

2.2 Predicting User Behavior

Much research has focused on predicting future
user behavior based on user characteristics or prior
behavior. Types of predicted behavior span a wide
spectrum, including what online content someone
will consume (Yin et al., 2014), what types of ev-
eryday activities someone does (Wilson and Mihal-
cea, 2020), and whether someone will persistent in
personal improvement (Dong et al., 2021).

In the space of charitable giving, much prior
work has targeted identifying factors behind why
people choose to make monetary contributions.
These factors include socio-demographic and per-
sonality characteristics such as age, level of educa-
tion, income, agreeableness, and empathy (Bekkers,
2010; Snipes et al., 2010; Shier and Handy, 2012;
Kitchen, 1992). In our context of university do-
nations, prior work has looked at predicting how
likely it is for an alumnus to donate a substantial
amount of money based on their educational and
professional background (Dong et al., 2020). While
this shed light on signals of individual capacity and
general inclination to donate, this did not look at
which specific causes donors choose to give to.

There is substantially less insight into which spe-
cific charitable causes donors are likely to choose.
Studies have primarily focused on giving among
one or two types of charities, such as secular and
religious causes (Helms and Thornton, 2012), or
international and national causes (Rajan et al.,
2009; Micklewright and Schnepf, 2009). These
are mainly based on surveys (Breeze, 2013) asking
people to recount their recent donations and de-
scribe personal dispositions such as values (Sned-
don et al., 2020), empathy (Neumayr and Handy,
2019), and beliefs about the cause (Bachke et al.,
2014). Most such studies are limited in the number
of donors, donations, and charities observed.

In our work, we model donor behavior and do-
nation choices using a large dataset of donations to

61



Entity type Number

Alumni 5883
Funds 1644
Articles 283
Majors 251

Table 1: Statistics of entities in the alumni donation
dataset.

different causes, connected with known histories
of donor interactions with engagement efforts that
indicate personal interests.

3 University Alumni Dataset

We conduct our experiments on a dataset of alumni
information maintained by a large, public univer-
sity in the Midwestern region of the United States.
Each alumnus is tied to their educational history;
we primarily use their major during their highest
level of study at the university. The language used
in the data is English.

We focus on those who have donated any amount
back to their alma mater and who have also en-
gaged with engineering alumni online newsletters,
which are typically distributed by email on a reg-
ular basis. We have 2 years of newsletter content
from January 2018 to March 2020, accompanied
by the interaction history of alumni. The interac-
tion history consists of when and how many times
a click occurred, as well as what article was specif-
ically clicked in the newsletter.

Likewise, we also have a history of donations
that individual alumni have made to various causes
at the university. Given our focus on those who
have engaged with newsletters, the corresponding
history of donations for these alumni span between
January 2015 to June 2020. We show statistics
about entities in our dataset in Table 1.

3.1 Donation Funds

At this university, alumni typically donate to funds
with designated purposes. For instance, the “Engi-
neering Student Emergency Fund" supports emer-
gency needs related to the well-being of Engineer-
ing students. They have a title and an optional tex-
tual description of the fund’s purpose. Examples of
funds and their descriptions are shown in Table 2.
We see that fund descriptions can range from short
and generic to lengthier and more detailed. Simi-
larly, titles can also range in their descriptiveness

of the fund’s purpose.
The set of all funds span different schools and

countless initiatives. In our work, we consider only
the 1644 funds (Tab. 1) that have been donated to
by people who have clicked on engineering alumni
engagement newsletters.

3.2 Engagement Newsletters

The university under consideration sends online
newsletters to their alumni on a regular basis. These
newsletters contain university news, such as stu-
dent accomplishments, novel research findings, and
alumni events. They consist of links to articles with
an accompanying graphic and a short summary.

User actions are recorded, such as clicking on
a particular article within the newsletter. Engage-
ment with a newsletter is indicative of what alumni
are interested in beyond their formal studies. For
instance, a computer science graduate may primar-
ily read articles about the solar car racing team or
the university’s efforts to lower its carbon footprint,
showing that this alumnus has personal interests in
sustainability. This would not necessarily be ap-
parent in their educational or employment history.
Therefore, we utilize user interaction with engage-
ment newsletters to model personal user interests.
There are 283 articles in our dataset (Tab. 1), drawn
from 49 total newsletters.

4 Representing Alumni and Funds

We aim to represent each alumnus primarily with
their clicks. As seen in the previous section, every
article linked within a newsletter has an accompa-
nying short preview or summary that is displayed
in the newsletter. Since this is what alumni initially
see and what prompts their clicks, we use this text
in our experiments, rather than the full article text.

4.1 Text Representation

Prior work has successfully represented entities in
a graph as the average of the word vectors corre-
sponding to its name (Socher et al., 2013). We
therefore also encode our entities using word vec-
tors. We represent an alumnus as their history of
newsletter article clicks, which indicates their inter-
ests. We construct an alumnus embedding that is
the averaged GloVe embedding of all newsletter ar-
ticle summaries that they have clicked on. We first
compute an average GloVe embedding for each
article snippet and then average over all of the arti-
cle snippet embeddings to get the overall alumnus
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Fund Name Fund Description

Engineering Diversity, Equity,
and Inclusion Initiatives

This fund helps provide a vibrant and inclusive climate, which leverages
our strengths, broadens our perspectives and paves the way for innovation.

Engineering Student Emer-
gency Fund

This expendable fund supports the emergency needs related to the health,
safety and well-being of our Engineering students, especially during the
current coronavirus pandemic.

Jane Doe Dance Scholarship
Fund

This endowment provides scholarship support for undergraduate dance
majors.

Table 2: Examples of funds and descriptions.

embedding. Similarly, we represent a fund using
the average GloVe embedding of the words in the
fund’s name, department, and description.

4.2 Graph Representation

We construct a graph to encapsulate the connec-
tions between alumni, alumni majors, funds, and
newsletter articles. Each unique alumnus, major,
fund, and newsletter article are nodes in the graph.
We include an edge between an alumnus and a fund
if they have donated to it, weighted by the value of
the total amount of donations they’ve given to this
fund. We also connect an alumnus to a newslet-
ter article if they have clicked on it, with the edge
weighted by the number of clicks the person made.
Funds included in the graph are only those associ-
ated with donations in the training set of our exper-
iments. All newsletter clicks made by alumni are
included, as was done in the text-only setting.

We then use a graph representation learning
method to create embedding representations of the
nodes. Specifically, we use the node2vec model
proposed by (Grover and Leskovec, 2016). We also
conducted experiments using LINE (Tang et al.,
2015), but found that they yielded similar results,
and therefore we only show results for node2vec.

4.2.1 Similarity Edges
While the explicit connections between entities
through actions such as clicking and donating can
contain a lot of information, there can still be addi-
tional connections made with additional info. Since
it’s unlikely that many alumni donate and click on
exactly the same funds and articles, it may be diffi-
cult to capture all relations between them based on
alumni behavior alone. For instance, two articles
may contain very similar content but not have many
overlapping clicks due to the sparseness of click
data. Given the graph we have currently, the graph

Graph edge type Number

Alumni - Fund Edges 15,604
Alumni - Article Edges 20,184
Alumni - Major Edges 7,625
Fund - Fund Edges 72,136
Article - Article Edges 3,020

Table 3: Statistics of the graph derived from alumni
clicks and donations, enhanced with implicit textual
similarity edges.

embedding model likely would not capture that
the articles are similar based only on clicks. Sim-
ilarly, two funds may be similar in their purpose
and descriptions but have few overlapping donors,
resulting in embeddings that do not capture their
relevance to each other.

To better capture these relations among articles
and funds, respectively, we propose the addition
of similarity edges. The addition of the proposed
edges can add these relevance connections that we
know inherently exist. This can allow the graph
to encode that two funds are related even in the
absence of explicit evidence, such as someone do-
nating to both funds or two people clicking on the
same article and donating to the same fund.

In preliminary experiments, we found that con-
necting all pairs of entities weighted by similarity
results in lower performance embeddings, as well
as much longer training times. We suspect this is
due to adding too much noise to the representation
through extraneous connections.

To minimize this, we only add edges if the sim-
ilarity is above a certain threshold. We also give
every such edge an equal weight of 1. For every
pair of articles, we compute the cosine similarity
between their average GloVe embeddings and add
an edge between the corresponding nodes if their

63



similarity is above 0.7. We do the same for every
pair of funds, adding an edge if the similarity is
above 0.8. We choose these thresholds empirically
by looking at the distribution of similarities for all
pairs of articles and funds, respectively, approx-
imately keeping the upper quartile of similarity
values. We give the numbers of different types of
edges in the resulting graph in Table 3.

4.3 Analysis: Similarity between Alumni and
Newsletter Articles

To gain further insights into the donor behavior
graph model, we perform an analysis of the re-
lationships between alumni and funds using their
graph representations. We would expect the embed-
dings for alumni to be more similar to the embed-
dings of funds that they are more likely to donate
to. This graph could then be used for querying for
relevant entities. For instance, we could find the
top funds that may be of interest to an alum.

To examine this, we compute the cosine similar-
ity between pairs of alumni and funds where the
alumnus has donated to the fund, and compare with
pairs where the alumnus did not donate to the fund.
We use node2vec embeddings based on the graph
that has all similar edges incorporated. Further, we
ensure that the model is not simply remembering
known donations in this analysis by focusing on the
subset of donations that occur in 2020 and remov-
ing links between alumni and funds corresponding
to these donations from the graph, no matter which
year the donation was made during. This way, we
are looking at similarity of alumni and funds that
are known to be related, but that the model does not
explicitly have knowledge about; their similarity
therefore comes solely from other alumni behavior
and semantic connections. We show the distribu-
tion of similarities in Figure 1. Using a two-sided
T-test, we calculate the statistical significance be-
tween the donation and non-donation samples of
similarity values; we designate those with a signifi-
cance level of p < 0.1.

Notably, we see that the GloVe-based similari-
ties do not distinguish well between alumnus-fund
pairs where a donation occurred and where a dona-
tion did not occur. In fact, the non-donation pairs
actually have higher similarity than the donation
pairs. This implies that it is not sufficient to use
only textual semantic similarity between alumni
and funds for determining donation interest.

However, we see significantly higher similarities

Figure 1: Distribution of similarities between pairs of
alumni and funds where alumni have either donated to
the fund or not. We show distributions of embedding
cosine similarity based on text-only GloVe features and
node2vec graph features with and without the addition
of similarity edges. Statistical significance is determined
using a two-sided T-test, and designated with a star (*)
if p < 0.1.

between alumni and funds that they have donated
to than between negative samples of alumni and
funds when using graph embeddings. Further, this
is more pronounced when similarity edges are in-
cluded in the graph, yielding greater separation
between pairs who have and have not donated, re-
spectively. This shows that the graph embeddings
are indeed encoding alumni behavior and interest.

5 Predicting User Behavior

We have seen that the alumni behavior graph model
encapsulates relationships between entities in the
resulting embedding space. We evaluate the alumni
behavior graph model for downstream predictive
use in the context of donation prediction. We con-
struct a task where we predict whether an alumnus
is likely to donate to a particular fund, showing that
we can distinguish which funds someone is likely
to donate to.

5.1 Experimental Setup
We focus on alumni who have both clicked on
newsletter articles and have made donations. We
conduct our experiments on this set of alumni,
along with the funds that they have donated to, their
majors (only as graph nodes), and the newsletter
articles they have clicked on. We look at all pairs
of alumni and the particular funds they’ve donated
to as data samples. Donations made prior to the
beginning of 2020 are considered training data and
donations made in 2020 are test data. Splitting our
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Alumnus-Fund Pairs # Train # Test

Complete 19,882 3,236
Unique 18,888 3,058

Table 4: Number of samples in the training and test
sets of our task. The training samples are donations that
were made prior to 2020. The test samples are donations
made in 2020.

data by time reflects the real task that universities
face, where we know an alumnus’ history and want
to predict their future donation behavior.

Funds that do not appear prior to 2020 are not
included, as our graph representation models are
based solely on the training data and would not be
able to produce a representation for a previously
unseen entity. Similarly, alumni who only appear
in 2020 would be excluded from the experiments
as they have no prior history and therefore would
have no corresponding representation features.

We then use negative sampling to construct sam-
ple pairs where the alumnus has not donated to
the fund. The training set includes an equal num-
ber of such negative samples to obtain a balanced
dataset. When looking at accuracy, a balanced test
set can better show the model’s performance. We
therefore also balance the test set. To construct a
negative sample, we randomly select an alumnus
and a fund from those considered in our dataset.
Then, we check if the alumnus-fund pair appears
as a positive sample in the corresponding data split
and keep the pair if it does not appear.

Donation prediction with unique alumnus-
fund pairs. We also conduct experiments in a
modified setting where we predict the donation in-
terests of alumni without knowledge of their past
donations to the same funds they’ve donated to in
2020. We remove all alumnus-fund pairs from the
training set that occur in the test set, which corre-
sponds to removing past donations that are identical
to ones in 2020. Other prior donations that alumni
have made are kept. This is a more difficult task, as
prior donations to a fund can be highly indicative
of future donations to the same fund. Therefore,
we must rely more on alumni background and the
implicit relationships between different funds as
well as between newsletter articles and funds.

5.2 Classification

We train a logistic regression classifier to predict
whether an alumnus has donated to a given fund

in 2020, based on the described data. As classi-
fication model input, we concatenate the feature
representations for the alumnus and fund in a given
pair. When using text-only representations, we con-
catenate the averaged GloVe embeddings derived
from text corresponding to the alumnus and the
fund in a pair, respectively (Sec. 4.1). Similarly,
when we use graph-based representations, we con-
catenate the node2vec embeddings of the nodes
corresponding to the alumnus and the fund in a
pair, respectively (Sec. 4.2).

There are funds that receive thousands of do-
nations while others receive far fewer individual
donations. This can be due to the fund being very
general, such as a general scholarship fund, or a
popular interest, such as a sports-related fund. On
the other hand, funds with more specific or niche
subjects may receive fewer donations. Such large
data imbalances can lead predictive models to sim-
ply memorize the most frequently occurring funds,
rather than using the embedded features to make
more complex connections between alumni and
funds. We empirically find that less than 1% of
the funds we consider have received over 200 do-
nations. Therefore, we downsample the number of
unique donations each fund has to 200 samples.

Although we implement this downsampling,
there are likely still funds or types of funds that are
inherently more popular. For instance, funds sup-
porting certain sports draw many donations from
alumni of diverse backgrounds. For these types of
funds, the alumnus-fund fit may not be as crucial
for predicting whether someone will donate; classi-
fication models are likely to capture this. Therefore,
we also predict donations where we use only fea-
tures representing the fund, excluding all alumni
features. Comparison with this setting can show
whether pairwise alumnus-fund fit is indeed useful.

6 Results

We compare the use of text-only GloVe features
and graph-based node2vec features in our experi-
ments to evaluate the benefit of our alumni behavior
graph model. Further, we evaluate our graph repre-
sentations both when enhanced with text similarity-
based edges and without to show the effects of
this adding this implicit information to the graph.
We show our alumni donation interest prediction
results in Table 5.

In the results, we see that the graph embedding
features generally perform better than the text-only
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Complete Donation Pairs Unique Donation Pairs
Features Fund Only Alumni + Fund Fund Only Alumni + Fund

Text-only 0.782 0.784 0.799 0.798

Graph representations 0.781 0.812 0.791 0.778
+ article sim edges 0.774 0.817 0.789 0.778
+ fund sim edges 0.804 0.846 0.816 0.824
+ article and fund sim edges 0.798 0.841 0.816 0.830

All (GloVe + node2vec w/ all edges) 0.824 0.856 0.848 0.855

Table 5: Results from the donation behavior prediction task. Left: Training set contains the complete prior donation
history of alumni in test set. Right: Donations made in 2020, in the test set, are removed from the training set.
Italicized values designate the highest performance for a given feature type and experimental setting. Bold values
designate the highest performance in the experimental setting overall.

features. This is in line with our hypothesis, since
the text only contains information about the seman-
tic content, but nothing about how it is related to
any other entities. Further, such relations would be
difficult for the machine learning model to pick up
through the prediction task, as alumni generally do
not individually donate to many funds and there is
likely little overlap between different people. This
sparsity of connections are typical in many recom-
mendation systems contexts. Our framework of
encoding user behavior into a graph could there-
fore be applied to other types of downstream tasks
that aim to predict future behavior.

We see that adding implicit edges derived from
the textual content of the funds and articles gen-
erally improves performance over only having ex-
plicit action edges that designate donations and
clicks. Similarity links between articles are more
helpful when we have knowledge of an alumnus’
entire prior donation history.

Accuracy based on using only fund features is
much higher than random, showing that the model
is indeed learning trends in which types of funds,
in terms of content and theme, are generally more
well-received. We know the classifier isn’t sim-
ply picking up on specific popular funds, since we
downsampled frequently occurring funds.

Notably, when we use both features from alumni
and funds, we generally see better performance,
especially when using graph features and with fund
edges added. This shows that the prediction model
is capturing learning relationships between alumni
and funds, and how compatible a given alumnus is
as a potential donor for a fund.

When we use only unique donation pairs, we
see that the results remain largely comparable with

using complete donation pairs. However, the per-
formance is lower than with the use of complete
donation pairs when using only features derived
from alumni, showing that the complete donation
pairs prediction model learned more about dona-
tion trends of specific alumni whereas the unique
donation pairs model has to understand more of the
implicit relatedness between funds and articles.

Finally, we see that combining text-only GloVe
features with graph-based node2vec features yields
the highest performance. This implies that there is
still use in having both the semantic content of the
entities and their relational information, and that
they are complementary to each other.

Qualitative Analysis
For a qualitative analysis, we use the node2vec
model that includes all similarity edges, built from
the training data with unique donations. We an-
alyze how the model is able to retrieve relevant
alumni and funds for a given alum.

Retrieving relevant funds. In Table 6, we show
examples of funds that alumni have previously do-
nated to and the funds that the model determined
to have the highest cosine similarity. In the first
example, the model retrieves funds that are related
to the medical field and supporting research and ed-
ucation in the fields, which matches well with the
alum’s actual prior donations to funds supporting
student scholarships and an endowed professorship.
The second and third examples similarly show that
the given alum’s previous donations and most simi-
lar funds share common themes of aerospace engi-
neering and natural history, respectively.

Retrieving relevant alumni. In Table 7, we
show examples of click and donation activities of
alumni and their highest (cosine) similarity alumni
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Prior Donations Top 3 Similar Funds (Similarity Score)

Engineering General Scholarship Fund Professorship in Gastroenterology and Hepatology Fund (0.40)
Professorship in Rheumatology Gastroenterology Nurse Education Fund (0.36)

Gastroenterology Education and Research Fund (0.32)

Aerospace Engineering Support Aerospace Engineering Junior Faculty Support Fund (0.47)
Aerospace Engineering Centennial Fund Aerospace Graduate Research Excellence Fellowship (0.42)

Aerospace Graduate Teaching Award and Scholarship (0.38)

Iconic Mastodons Movement Fund Mammoth Museum Exhibit Fund (0.44)
Majungasaurus Exhibit Fund Museum of Natural History Discretionary Fund (0.42)

Museum of Natural History Membership (0.39)

Table 6: Prior donations made by a given alumnus the top 3 most similar funds with respect to the alum, determined
by embedding cosine similarity. To preserve anonymity, we remove all names and specific details from fund titles.
Text of the fund descriptions are not shown for brevity.

Alum’s Prior Donations and Clicks Nearest Alum’s Donations and Clicks

F: Engineering General Scholarship Fund F: Engineering General Scholarship Fund
F: Mechanical Engineering Special Gifts Fund F: Mechanical Engineering Special Gifts Fund
A: A high altitude long endurance aircraft A: Second place finish for the solar car team

A: 3D printing 100 times faster with light

F: Engineering Entrepreneurship Fund F: Engineering Dean’s Discretionary Fund
F: Engineering Faculty Scholar Award A: Driverless future
A: Autonomous car preventing traffic jams A: Solar car test
A: Nobel Prize nomination for powerful laser pulse A: Smart wearables improving elderly mobility

Table 7: Examples of the most similar alumnus for a given alum. To preserve anonymity, we do not show names
and remove all identifying information within fund descriptions and article titles. We show the donations and clicks
made by the alumni. F - Fund; A - Article

neighbors. In the first example, the chosen alum’s
donations and clicks are related to mechanical en-
gineering. The most similar alumnus has also do-
nated to mechanical engineering funds and clicked
on mechanical engineering-related articles, which
shows that nearest alumni neighbors’ interests and
behaviors match well with the chosen alumni. Like-
wise, the alumnus in the second example and their
most similar alumnus both share interest in au-
tonomous vehicles and research advancements.

7 Conclusion

In this work, we explored the use of text-aware
graph representations for user behavior predic-
tion. Using a large dataset consisting of university
alumni donations and their interests as expressed
through click-throughs on a university newsletter,
we showed that the use of a graph framework to ex-
plicitly encode the relations between user behaviors
and user interests leads to significant improvements

over simple linear representations.
Moreover, we showed how further improve-

ments can be obtained by enhancing the graph with
implicit links inferred from the semantic distance
between graph entities’ associated textual data. Our
results demonstrate the role played by graph repre-
sentations using explicit and implicit relations for
the prediction of user behavior.

Future work can expand upon our results and ex-
plore how textual semantic links behave with differ-
ent datasets with heterogeneous graph algorithms,
as well as in larger-scale data settings combined
with transformer-based algorithms.
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Abstract
This paper focuses on the task of word sense
disambiguation (WSD) on lexicographic exam-
ples relying on the French Lexical Network
(fr-LN). For this purpose, we exploit the lexical
and relational properties of the network, that
we integrated in a feedforward neural WSD
model on top of pretrained French BERT em-
beddings. We provide a comparative study with
various models and further show the impact of
our approach regarding polysemic units.

1 Introduction

Word sense disambiguation is a long-standing re-
search field in NLP investigating supervised, unsu-
pervised, knowledge-based and mixed approaches
(Navigli, 2009). Lexical resources have always
played a crucial role not only serving as sense in-
ventories, but also as sources of information to help
the disambiguation process (a.o. Wilks and Steven-
son (1998)). In particular, the structure and lexical
content of lexical networks have been successfully
exploited for this task with graph-based algorithms
(a.o. Agirre et al. (2006)).

With the deep learning revolution, supervised
approaches relying on neural networks and pre-
trained word embeddings have quickly gained pop-
ularity. In such framework, WSD is often seen as a
token classification task, where tokens are assigned
a sense label among an exist set of senses. Classical
supervised models are built on a MultiLayer Per-
ceptron (MLP) for predicting a sense label for the
target tokens (Raganato et al., 2017) and lately the
use of pretrained contextualized word embedding
has become standard (ex. Vial et al. (2019)).

Such supervised systems are dependent on sense-
annotated datasets that tend to have limited cover-
age due to the manual annotation cost. Further-
more, in these systems, rare senses are often dis-
advantaged towards more frequent ones. To tackle
this problem, more and more research works pro-
pose approaches integrating lexical network knowl-

edge to such models. Several strategies have been
proposed: either integrating lexical knowledge –
e.g. glosses (Huang et al., 2019) –, or integrating
structural properties – e.g. use of graph-based algo-
rithms such as Personalized PageRank (El Sheikh
et al., 2021), use of hyperonym/hyponym/synonym
relations in a lexical network to compress the sense
tagset and then make the labeling task easier (Vial
et al., 2019) –. Other models such as EWISE (Ku-
mar et al., 2019) and EWISER (Bevilacqua and
Navigli, 2020) enhance the WSD system with ex-
plicit and implicit knowledge using graph structure
information from lexical knowledge networks and
existing sense embeddings.

In this paper, we are interested in adapting the
EWISER model to specific lexical data: the data
from the French Lexical Network (fr-LN, Polguère
(2014)) and its derived database of lexicographical
usage examples (DBLE-LN-fr). In particular, we
exploited the linguistic richness of its relation types,
by integrating trainable weighted relations. Our
system gets better or comparable results than the
original system.

This paper is organized as follows. Section 2
presents our dataset and its particularities. Sec-
tion 3 introduces the model and its adaptations.
Sections 4 and 5 are respectively devoted to intro-
ducing the experimental setup and discussing and
comparing the results.

2 The French Lexical Network and its
database of lexicographical examples

2.1 A linguistically-rich lexical network
Lexical networks used as lexical knowledge in NLP
are generally variants of WordNet (Miller, 1995).
In this paper, we rely on the French lexical net-
work fr-LN1, which is under construction. It is
based on the model of lexical systems (Polguère,

1The data are available on the ORTOLANG
platform: https://hdl.handle.net/11403/
lexical-system-fr/v2.1
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2014) and is in line with the research projects con-
ducted in the framework of Explanatory and Com-
binatorial Lexicology (Mel’čuk, 2006). It contains
among others syntagmatic, paradigmatic, copoly-
semic and phraseological relations. The complete
fr-LN contains 29,220 word senses and 80,036 re-
lations between them. In this paper, we focus only
on the 62,641 paradigmatic and syntagmatic links,
which are standardized using the system of 686
distinct Meaning-Text lexical functions (LFs) (Pol-
guère, 2007). Table 1 shows statistics on fr-LN.
It differs from WordNet (WN) in several dimen-
sions: WN has much larger coverage, contains few
relation types that are mainly paradigmatic rela-
tions and is built on synset nodes. fr-LN relations
mainly involve senses of different part-of-speech
tags, whereas WN relations quasi-exclusively in-
volve nodes of the same part-of-speech. For in-
stance, less than 6% of the relations involving verbs
are between two verbs. WN and fr-LN have com-
parable polysemy rates. Contrary to WN, fr-LN
does not include glosses and the lexicographic defi-
nitions are still prototypical. An interesting feature
of fr-LN is that relations are associated manually
crafted semantic weights (three possible values: 0,
1 and 2) depending to what extent the semantic
content of the source node includes the semantic
content of the target one.

Graph #Word Senses #Lemmas #LF-Arcs #LFs
Complete 29,220 18,400 62,641 686
Verbs-only 5,237 2,559 9,854 399
Nouns-only 14,044 8,639 21,580 501

Table 1: Statistics on the fr-LN network.

2.2 The DBLE-LN-Fr database of
lexicographical examples

The fr-LN lexical network comes with lexicograph-
ical usage examples for each word sense, that have
been gathered in the DBLE-LN-Fr database2. The
examples come from three main sources: Frantext3,
FrWaC (Baroni et al., 2009), the Est-Républicain
newspaper corpus (ATILF and CLLE, 2020). They
have been selected because they display interesting
use cases for distinguishing meanings. They should
enable speakers to appropriate the lexicographic
descriptions of the lexical units they illustrate. Cou-
pled with these descriptions, they provide all the

2The data are available on the ORTOLANG
platform: https://hdl.handle.net/11403/
examples-ls-fr/v2

3https://www.frantext.fr

information needed to use correctly each lexical
unit described.

Corpus #examples #targets #Word Senses #Lemmas
Complete 31,131 51,347 27,343 17,161
Verbs-only 8,169 9,428 5,141 2,483
Nouns-only 19,644 27,105 13,601 8,131

Table 2: DBLE-LN-fr dataset. # targets stands for the
number of occurrences of target words in the dataset.

Each example contains from one to eleven occur-
rences of lexical entities present in the fr-LN. These
occurrences are marked and associated with the
part-of-speech tag of the lexical entity and a link to
visualize the lexical entity in the spiderlex web ap-
plication4. For this work, we selected the examples
which contain an occurrence of verb/noun word
senses, excluding the examples that contain an oc-
currence of a verb/noun that is itself included in an
occurrence of a multiword unit (locution, idioms,
etc.). The table (2) synthesizes the composition
of the resulting corpora. Figure 2 (resp. Figure 3)
represents a subgraph for the lemma ping-pong
from the lexical network fr-LN with all lexical
function relations (resp. with relations with nouns
only).

3 A model integrating graph knowledge

The proposed model is a variant of EWISER
(Bevilacqua and Navigli, 2020) that we adapted
using some specific features of fr-LN, namely the
richness of its relation types, and the semantic
weights associated to relations (cf. section 2).
EWISER can be seen as a token classification sys-
tem. It takes as input a sequence of words that feeds
a BERT layer. For each target word, a feedforward
module is then applied to predict its sense label
given the input sequence. The exact modelling
is depicted by the equation 1 taken and derived
directly from the original paper5.

H0 = BatchNorm(B)

H1 = swish(H0W + b)

Q = H1AT + H1

(1)

In the above equation, B corresponds to the
sum of the last four BERT hidden layer, which

4https://spiderlex.atilf.fr/
5We removed from the original paper the use of exter-

nal preexisting semantic embeddings as our aim was to rely
entirely on the database of lexicographic examples and the
French lexical network to evaluate their impact on the WSD
task.
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is given as input to a 2-layer feedforward to com-
pute the logits H1. This output is encoded with
graph information from the lexical network using A
which is the corresponding adjacency matrix. Each
node corresponds to a possible word sense in the
training dataset. In the original EWISER paper,
matrix A encodes hypernym and hyponyms rela-
tions from Wordnet, whereas in our case it encodes
paradigmatic and syntagmatic relations from fr-LN.
The parameters of A may be frozen or trainable
(Bevilacqua and Navigli, 2020).

In this paper, we use two strategies to compute
the elements ai,j of A relying on some features
of fr-LN. Every node pair (i, j) have a set Si,j of
present relations between i and j. Each relation
r has a weight w(r), and ai,j is the sum of the
weights of the relations between i and j: ai,j =∑

r∈Si,j
w(r).

We consider two weighing schemes for every
relation r: (1) w(r) = 1, the element ai,j being the
cardinality of Si,j [STRUCT]; (2) w(r) = sr + 1
where sr ∈ 0, 1, 2 is the semantic weight of r, ai,j
determining to what extent the semantic content of
i is included in the one of j [SEM]. The STRUCT
strategy is taken from (Bevilacqua and Navigli,
2020), whereas SEM is a contribution of this paper.

For each weighting scheme, we experimented
three settings: (a) the element ai,j is frozen, (b)
ai,j is trainable, (c) w(r) is trainable, the weight of
each relation being learnt from the training dataset.
The setting (c) is a proposal of this paper, whereas
(a) and (b) are taken from (Bevilacqua and Navigli,
2020).

4 Experimental Setup

4.1 Dataset

As stated in section 2, we experiment our models
on the database of lexicographic examples DBLE-
LN-fr built on the French lexical network Fr-LN
(Polguère, 2014) focusing on nouns and verbs.

We performed a strategy-based data splitting us-
ing the following rules :

1. If the lemma has only one sense, we keep it in
the train set, in order to prevent from having
straightforward cases in the evaluation;

2. All lemma in test/dev should be in train;

3. Unseen senses can be in test/dev;

4. The distribution of senses between train and
test/dev is proportional;

5. Any example with multiple senses to disam-
biguate should be in the same data split.

4.2 Baselines

We compare our variants of EWISER with vari-
ous standard baselines. These include Most/Least
Frequent Sense per lemma (MFS/LFS) baseline; a
random sense (RS) baseline; a cosine-based similar-
ity of the sense representations from BERT-based
language model as (Barycenter) baseline (Le et al.,
2020) and H1 representation (refer eqn 1) as MLP
baseline.

4.3 Implementation

We used contextual embeddings of two French lan-
guage models namely, FlauBERT (Le et al., 2020)
and CamemBERT (Martin et al., 2020). We use
hidden layer size of 3000 and 8000 by rough es-
timate of number of unique lemmas in the verb
and noun corpora respectively. We use Adam opti-
mizer with learning rate 0.001 as a common setting
for both sets of experiments. We use negative log
likelihood (NLL) as our loss function. For each
experiment, we used the following decoding strat-
egy selecting the most probable sense among the
possible senses for the target word in the fr-LN
sense inventory. The code of this implementation is
available on GitHub (https://github.com/
ATILF-UMR7118/GraphWSD).

System VERB NOUN
Dev Test Dev Test

MFS 0.1145 0.1427 0.2026 0.2016
LFS 0.1178 0.1091 0.1973 0.1939
RS 0.1578 0.1654 0.2444 0.2357

BARYC. 0.3189 0.3178 0.5390 0.5454
MLP 0.2648 0.2822 0.5091 0.5163

STRUCT 0.3513 0.3751 0.5061 0.5171
STRUCT∗ 0.3502 0.3708 0.5521 0.5615
STRUCT∗∗ 0.3372 0.347 0.5444 0.5516

SEM 0.3416 0.3676 0.5260 0.5309
SEM∗ 0.3556 0.3546 0.5379 0.5362
SEM∗∗ 0.3610 0.3838 0.5103 0.5274

Table 3: WSD results on DBLE-LN-fr. STRUCT and
SEM are the two strategies to compute A matrix. By
default, ai,j are frozen. ∗ indicates that ai,j is trainable.
∗∗ indicates that the relation weights w are trainable.

5 Results and discussion

To evaluate our models, we used the accuracy of the
system predictions, i.e. the percentage of correct
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Figure 1: Polysemic performance analysis on dev set; x-axis: sense-count and y-axis : accuracy

predictions. The system was preliminary tuned on
the dev dataset. The MLP-baseline obtained better
performances using the CamemBERT embeddings,
whereas the Barycenter performances were better
using FlauBERT.

5.1 Global system performances

Table 3 shows results on both dev and test sets
for all experimented systems both for nouns and
verbs. Results are consistent across test and dev
sets. MFS/LFS baselines results are on par with the
random baseline, due to the uniform distribution
of senses in our dataset coming from the use of
lexicographic examples instead of standard anno-
tated texts on which MFS is traditionally quite high.
It is also worth noting that the simple Barycenter
baseline consistently outperforms the MLP base-
line. Our experiments consolidate the results of
Bevilacqua and Navigli (2020), showing the inte-
gration of lexical network knowledge systemati-
cally tends to improve the WSD performances. Re-
garding the two strategies to compute the A matrix,
SEM weights tend to perform better than STRUCT
weights for verbs, whereas this is the other way
around for nouns. In both cases, the use of train-
able weights is favourable. The better performance
of SEM for verbs can be attributed to the #LF-Arcs
– #Lemma ratio (refer Table:1) which is more for
verbs (3.85) than nouns (2.49) implying the seman-
tic richness of the verb subgraph.

Overall, WSD on our dataset for French verbs
is harder than for nouns (1/3 vs. 1/2 accuracy).
We compared these results using those obtained
for other French datasets. In particular, we applied
the barycenter baseline on the French SemEval

data (FSE) for verbs (Segonne et al., 2019) and on
the FLUE benchmark for nouns (Le et al., 2020)
to get a rough comparison (though datasets are
quite different): for nouns, we reach comparable
results (0.5353 accuracy), whereas the difference is
quite large for verbs (0.5034 accuracy). One may
partly explain this by the way annotated verbs were
selected: medium frequency and medium rate of
polysemy.

5.2 Analysis by degree of polysemy
Figure 1 shows the performance comparison for
the different models in our experimental setup for
disambiguating polysemic lemmas with respect to
the number of senses per lemma. We observe that
our proposed models tend to more effectively dis-
ambiguate polysemic lemmas with more than three-
four senses than the MLP baseline (with some ex-
ceptions), showing the interest of using lexical net-
work knowledge for those cases. For instance, for
the verb aller (to go), our models predicted 8 dis-
tinct senses out of the 13 expected, while MLP
baseline predicted 4 senses only.

6 Conclusion

We presented a preliminary study of various
word sense disambiguation systems on the French
dataset, DBLE-LN-fr-V2. We proposed a weighted
training model in order to incorporate the richness
of lexical and semantic information from the fr-
LN network effectively and showed comparable
performance to state of the art systems.

A first path of future research would be to en-
hance the scarcity of A matrix: e.g. adding neigh-
bors of various POS, or including transitive clo-
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sures of relations. We would like to explore the
incorporation of sense embeddings using various
graph representation learning algorithms. Further-
more, we would like to experiment tagset compres-
sion like in (Vial et al., 2019).
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Figure 2: Extract of the fr-LN subgraph around the sense ping-pong#I.1. Only Lexical Function (LF) links are
provided. The thickness of the lines reflects the semantic weight of the relation between two senses.
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Figure 3: Extract of the fr-LN subgraph around the sense ping-pong#I.1. Only nouns and Lexical Function (LF)
links are provided. The thickness of the lines reflects the semantic weight of the relation between two senses.
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Abstract

We present RuDSI, a new benchmark for word
sense induction (WSI) in Russian. The dataset
was created using manual annotation and semi-
automatic clustering of Word Usage Graphs
(WUGs). Unlike prior WSI datasets for Rus-
sian, RuDSI is completely data-driven (based
on texts from Russian National Corpus), with
no external word senses imposed on annota-
tors. Depending on the parameters of graph
clustering, different derivative datasets can be
produced from raw annotation. We report the
performance that several baseline WSI meth-
ods obtain on RuDSI and discuss possibilities
for improving these scores.

1 Introduction

Word sense induction (WSI) is among the most
challenging problems in computational linguistics.
The difficulty lies not only in the character of the
task itself but also in the lack of datasets prop-
erly designed for it. We have developed such a
dataset for the Russian language by means of man-
ual annotation and clustering of the obtained senses.
We dub it Russian Data-driven Sense Induction
dataset (RuDSI)1. Its annotation was based on so-
called Word Usage Graphs (WUGs), where word
usages in context are nodes connected by edges
with weights corresponding to semantic proximity
(Schlechtweg et al., 2020). This workflow has been
already used to create diachronic semantic change
datasets for Russian (Rodina and Kutuzov, 2020;
Kutuzov and Pivovarova, 2021), but it is the first
time it is employed for designing synchronic WSI
benchmarks.

Graphs representing semantic relations between
word usages were crucial for the creation of RuDSI.
Communities or clusters induced from these graphs
correspond to lexical senses; the number and com-
position of clusters for each word depends not only

1https://github.com/kategavrishina/
RuDSI

on human annotation, but also on the particular
clustering procedure. Since we provide raw anno-
tators’ judgments, other researchers can apply their
preferred graph processing techniques and obtain
slightly different sense assignments.

The rest of the paper is organized as follows.
In Section 2, we talk about the WSI datasets cre-
ated earlier and their limitations. In Section 3, we
present and analyze RuDSI and describe our anno-
tation workflow. In Section 4, we show how graph
clustering parameters affect the dataset. Section 5
reports the performance of several baseline WSI
methods. In Section 6, we describe to whom and
how RuDSI will be useful.2

2 Related work

In this section, we give a brief overview of word
sense induction datasets for English developed as
a part of SemEval competition, take a look at
RUSSE’18 dataset and discuss the approaches to-
wards WSI dataset creation.

2.1 SemEval datasets

Existing sense-annotated corpora like SemCor
(Miller et al., 1993) allow for building compet-
itive word sense disambiguation (WSD) models
since they provide sufficient amount of training
data. However, the major problem of such sources
is the fact that word sense inventories vary depend-
ing on text domain and time period. Thus, WSD
models are never universal. To solve this issue,
word sense induction task was created. WSI sys-
tems aim to infer word senses from the given cor-
pus.

In 2010, a WSI dataset was introduced during
the SemEval competition (Manandhar et al., 2010).
Compared to SemEval 2007 (Agirre and Soroa,
2007), it was more balanced in terms of nouns and

2This research was supported in part through computa-
tional resources of HPC facilities at HSE University (Kostenet-
skiy et al., 2021).
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verbs distribution (50 verbs and 50 nouns in En-
glish). The main difference was in the evaluation
procedure. The authors assumed that although WSI
task is unsupervised, evaluating the methods on un-
seen test set of contexts would be more realistic.
Different metrics for the clustering quality evalu-
ation were inspected (V-measure, paired F-score)
and all of them turned to be biased by number of
senses predicted by WSI algorithms.

In 2013, another task setting was suggested by
Jurgens and Klapaftis (2013). They claimed that
there are contexts where multiple sense tags might
be used. Therefore, the setup required predicting
the weighted distribution of word senses for each
context, i.e., perform graded word sense induction.
To evaluate this task, two novel measures were
introduced: fuzzy B-Cubed and fuzzy normalized
mutual information. We should emphasize that our
RuDSI dataset is aimed to test systems for non-
graded word sense induction, although it could be
transformed into graded setup (see Section 3.3).

2.2 Russian WSI datasets

Despite the fact that word sense induction task was
well-developed for English, there were no manually
annotated data for Russian until recently. In the
last years, the interest to WSI and WSD tasks in
Russian has increased due to the appearance of the
first Russian WSI dataset. It was created as a part
of RUSSE-18 shared task (Panchenko et al., 2018)
and contains three subsets:

1. wiki-wiki (automatically extracted examples
and senses from Wikipedia articles, mainly
homonyms and homographs)

2. bts-rnc (examples from the Russian National
Corpus (RNC), labeled with senses from the
‘Big Explanatory dictionary’)

3. active-dict (examples and senses from the
‘Active dictionary of the Russian language’
by Yuri Apresjan (Apresjan, 2014))

The training sections contained a total of about
17 thousand contexts. The key metric for the com-
petition was Adjusted Rand Index (ARI) score (Hu-
bert and Arabie, 1985). The Rand Index calculates
the similarity between two clusterings by counting
object pairs that were assigned the same or different
clusters in golden labeling and in predictions. ARI
adds adjustment for chance and gives score close

to 0 for random labeling and 1 for identical clus-
terings. When the clustering is worse than random,
ARI is negative.

2.3 Limitations of previous datasets
Unfortunately, RUSSE-18 shared task data has a
number of significant limitations. Linguistically, it
includes homonyms, polysemous words and homo-
graphs, which does not correspond to the original
WSI task setting: inducing senses of lexemes with
the same set of word forms. In addition, some
of the contexts in RUSSE-18 are noisy: there are
cases where the target word is actually a root of a
composite or a derivation (e.g., ‘луковица’ bulb
is suggested as one of the words in context set for
target word ‘лук’ onion/bow). The key issue is that
word sense cannot be induced in these cases since
derivations are mostly non-compositional and do
not necessarily maintain the ambiguity relations
of parent word. Finally, none of the target words
of RUSSE-18 are monosemous, hence the dataset
does not test WSI systems for polysemy detection,
which is a critical issue in terms of developing a
universal algorithm.

All the datasets for both Russian and English
SemEval discussed above were automatically or
manually tagged with dictionary-based sense inven-
tories. We believe that it might be more realistic
to derive word sense inventories for WSI pipelines
evaluation not from linguistic sources, but directly
from corpora, since the sets of senses vary in dif-
ferent corpora and domains (Kilgarriff, 1997).

2.4 Graph-based WSI datasets
A possible solution comes from combining word-
in-context disambiguation and graph clustering.
Conceptualization of semantic relationships as
graphs empowered the approaches that represent
the ambiguous lexeme as a central node in graph
where nodes are the words and edge weights rep-
resent the measure of association between those
words. Hope and Keller (2013) suggests calculat-
ing edge weights as a frequency measure for word
co-occurrence similarity: the more similar are the
contexts of the node lexemes, the higher will be
the edge weight bridging them. Such co-occurence
graphs are calculated automatically. The similarity
networks are afterwards clustered to induce word
senses (Hope and Keller, 2013; Sherstuk, 2020).

McCarthy et al. (2016) highlighted the problem
of using fixed sets of senses for word sense in-
ventory representation. Graphs used in the paper
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were derived from word in context disambiguation
annotation. They suggested treating annotators’
judgements as graph edges and investigated differ-
ent clusterability measures of such graphs.

Graph clustering has been successfully em-
ployed in annotating datasets for semantic change
detection task (Schlechtweg et al., 2020, 2021).
The annotation process is essentially word-in-
context disambiguation: the annotators have to
decide whether a pair of sentences represent the
same target word sense or not. The annotation
forms a word usage graph combining the uses
from each pair of word contexts, where the nodes
are the contexts themselves (sentences), and edges
are weighted with the medians of annotators’ judg-
ments for a particular pair. Then, using correlation
clustering, the graph is separated into clusters (com-
munities of nodes) that correspond to the senses.
The method is simple yet quite efficient as the an-
notators do not assign sense labels directly and
the resulting clusters represent a set of data-driven
senses3. Such a method does not only represent the
relations between word usages, but also allows for
choosing the granularity of the final word sense in-
ventory. Moreover, the resulting senses are derived
from data and not biased by lexicographic infor-
mation; also, the number of clusters is determined
automatically (Schlechtweg et al., 2021).

3 RuDSI dataset

3.1 Target words selection

To create RuDSI, it was first necessary to select
a limited number of target words for further man-
ual annotation. As we aimed at having words of
different degree of polysemy presented in the final
dataset, we extracted the total number of senses
for each word in three distinct resources: Russian
National Corpus (RNC)4, representative collection
of texts in Russian with linguistic annotation; Wik-
tionary5, web-based free dictionary; and RuWord-
Net(Loukachevitch et al., 2016), a thesaurus of the
Russian language created in the format of English
WordNet (Miller, 1995). All non-noun words were
discarded from this set.

3As opposed to dictionary-based senses, since the obtained
senses are not taken from any resources, they are the result of
automatic clustering.

4https://ruscorpora.ru; in particular, we used
the RNC semantic markup (Rahilina et al., 2009) which in-
cludes parts of speech and semantic classes for a large number
of lexemes (for example, fruit/food for the word ‘apricot’).

5http://www.wiktionary.org

Since the purpose of the annotation was to cre-
ate a dataset with a balanced number of mono-
and polysemous lexemes, we selected eight most
frequent words (according to the dictionary by Lya-
shevskaya and Sharov (2009)) in each of three
groups: words with one sense, words with 2-4
senses (moderately polysemous), words with five
or more senses (highly polysemous). The value of
eight was chosen because of our limitations on the
volume of annotation. The final number of senses
was calculated as the average6 between RNC, Wik-
tionary and RuWordNet for each target word. Note
that we did not consider these values as any sort of
a gold standard, and they did not affect our human
judgements in any way: annotators were not aware
about the polysemy groups which the target words
belonged to.

Thus, 24 target nouns were prepared for the an-
notation. For each word from the resulting set, 35
sentences containing this word were randomly sam-
pled from the RNC. Next, annotators were given
pairs of these sentences to estimate the relatedness
of target word senses between each element in the
pair.

3.2 Annotation

The annotation was performed using the DURel
web service7, which allows to annotate pairs of
contexts for each word from the loaded sample.
At each step of the annotation, a human is offered
a pair of sentences to judge. For each pair, the
columns ‘Sentence 1’ and ‘Sentence 2’ are pre-
sented with contexts containing the target word,
which is highlighted in bold. The task is to assess
how close in meaning the occurrences of the target
word are in the two presented sentences on the scale
from 1 (Unrelated) to 4 (Identical). The scores of
2 (Distantly Related) and 3 (Closely Related) are
more subjective. In general, the 2 rating is for the
uses that have different senses, but are somewhat
related, and the 3 rating is for the cases when two
uses have the same sense with some variation. So, a
score of 1 is implied in the following example with
the target word ‘сторона’ which is presented in
the Figure 2, indicating that there is no connection
between the senses (direct and figurative meaning
of the lexeme):

6The average was preferable to minimum and maximum,
since they would give more weight to one of the resources: in
Wiktionary, words usually have few senses (1-2), but in RNC,
same words can have a lot more senses (6 on average).

7https://durel.ims.uni-stuttgart.de
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(1) a. ‘При этом важны не только масшта-
бы производства, но и его качествен-
ная сторона, то есть эффективное
управление активами...’ (the meaning
of ‘component, element’)
At the same time, not only the scale of pro-
duction is important, but also its qualita-
tive side, that is, effective asset manage-
ment...

b. ‘Так, донеся государю императору
Александру о занятии Реймса, полки
разошлись на пространстве от города
вёрст до тридцати на квартиры в раз-
ные стороны.’ (the meaning of ‘space,
direction’)
So, having informed the Emperor Alexan-
der about the occupation of Reims, the reg-
iments dispersed in the space from the city
to thirty versts to apartments in different
directions.

The next example presents the case of two uses
with identical senses for the word ‘день’ (day)
requiring the score of 4:

(2) a. ‘Вещи не были еще расставлены, ра-
мы были частью без стекол, частью с
остатками расколотых, и (был дожд-
ливый день) с потолка текло.’
Things were not yet arranged, the window
frames were partly without glass, partly
with the remains of splintered ones, and (it
was a rainy day) the ceiling was flowing.

b. ‘Каждый день с раннего утра до обе-
да и с обеда до вечера я занят был
работою или в доме, или в саду, или
в огороде’
Every day, from early morning to lunch
and from lunch to evening, I was busy
working either in the house, or in the gar-
den, or in the vegetable garden.

For each of the 24 words, as mentioned earlier,
35 sentences were sampled from the RNC. The
DURel platform automatically generated random
sentence pairs, and at the first stage of our workflow,
180 pairs were annotated for each target word8. As
a result, 24 separate word usage graphs with 35
nodes each were obtained.

8Annotation was performed by a subset of the authors of
the article as native Russian speakers.

3.3 Aggregation of senses via graph clustering

Clustering of the sentences obtained as a result of
the annotation for each lexeme was performed us-
ing the pipeline from (Schlechtweg et al., 2021)
based on the variation of correlation clustering
(Bansal et al., 2004; Schlechtweg et al., 2020). The
DURel relatedness scale from 1 to 4 was derived
from continuum of semantic proximity (Blank,
1997): Homonymy - Proximity - Context Variance
- Identity. Based on the continuum, the authors
rescaled the annotators’ judgements for clusteriza-
tion to represent the idea of usage pairs with 1 and
2 scores belonging to different senses, and with 3
and 4 scores — to the same sense. For this pur-
pose they created the threshold parameter which
was used to calculate the resulting edge weight:
W ′(e) = W (e) − threshold, and equated it to
2.5 (e.g., a score of 1 became -1.5). The division
into clusters is based on the similarity between the
target word senses within the sentences in a pair:
clustering algorithm minimizes the sum of positive
edge weights (3 and 4 scores in the original) across
clusters and the sum of negative edge weights (1
and 2 scores) within clusters. Correlation clustering
yields only one cluster label for a node (sentence),
but by replacing it with a fuzzy graph clustering
algorithm like the one in (Peng et al., 2021), it
is possible to come up with a graded variation of
RuDSI.

As a result of clustering, sense clusters were
obtained, which contain examples for each target
word, labeled with sense number and connected by
edges (the edge weight depends on the number and
values of annotators’ judgements).

After the first round of annotation, we analyzed
the number of uncompared clusters — those clus-
ters whose sentences have never been compared
in the process of annotation. The existence of un-
compared clusters indicates that the graph is not
connected enough. We decided that for the five
words with the number of uncompared clusters ex-
ceeding the average (2.75) additional annotation is
required. After the second annotation round (60 ex-
tra pairs of sentences for each of five words) there
were still four words left for which the number of
uncompared clusters has remained almost the same
and still exceeded the average number. For these
words, sentences from the corresponding clusters
were manually selected, organized into pairs and
annotated following our regular workflow. After all
the annotation rounds, the number of uncompared
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clusters is not more than two for any target word,
and the average number of annotated sentence pairs
per word is 215.

Initially, we got a large number of singleton clus-
ters (1.13 on average across words). These are
clusters containing only one node (context, usage
example). They may appear when the target word
is used in a specific context, for example, in an
idiomatic expression. Singleton clusters are prob-
lematic, since in these cases it is difficult to tell
legitimate exotic senses from clustering errors. We
planned to filter them out in one of the following
ways: not to consider examples from singleton clus-
ters or to attach singleton examples to the largest
cluster of a particular word, reducing the total num-
ber of senses. However, after reviewing the clusters
manually, we noticed that in some lexemes single-
ton clusters can be aggregated with a larger one,
but not with the largest one, and in other lexemes
singleton clusters, on the contrary, express a very
specific idiomatic expression that can neither be at-
tached to another cluster nor removed from the sam-
ple without loss of representative power. So, we
decided to leave the singleton clusters untouched
and did not filter them out.

Figure 1 shows the distribution of the number of
senses for the target words yielded by the annota-
tion procedure (per-word numbers can be found in
the Appendix). As can be seen, most words tend to
end up having 3-5 senses.

Figure 1: Word distribution by the number of senses
obtained in RuDSI.

3.4 Important statistics
Based on the results of clustering, we computed
some statistics presented in this subsection. In par-
ticular, the ratios of words by the number of senses
was calculated. As it turned out, RuDSI contains
8.3% of monosemous words, 62.5% of words with

2-4 senses (moderately polysemous), and 29.2%
of words with five or more senses (highly polyse-
mous). Note that these values are different from the
original percentages obtained from our linguistics
sources. This is expected, since our senses are fully
data-driven.

It was also interesting to consider the correla-
tion of these ‘data-driven’ sense numbers and the
degree of lexical polysemy yielded by the RNC,
Wiktionary and RuWordNet, on which we relied
during the selection of the target words. The Table
1 shows Spearman correlation between the number
of clusters in the RuDSI word usage graphs and the
number of senses in the sources mentioned above.
‘Mean number of senses’ is the average between the
RNC, Wiktionary and RuWordNet. All the correla-
tions are strong and significant at p = 0.05: that is,
the resulting clusters based on data-driven sense in-
duction roughly correspond to sense numbers from
external linguistic sources.

Source Spearman ρ p value
RNC 0.84 0.000
Wiktionary 0.43 0.034
RuWordNet 0.73 0.000
Mean number of senses 0.90 0.000

Table 1: Correlation of the word sense numbers between
RuDSI and other resources.

In addition, we calculated the Spearman correla-
tion between the number of senses in RuDSI and
the target word frequencies from the Lyashevskaya
and Sharov (2009) dictionary (based on the RNC).
Its value is 0.53 (p = 0.007). Therefore, the num-
ber of word senses in RuDSI is significantly corre-
lated with word frequencies in the RNC. This is ex-
pected, since it is known that frequent words tend
to be more polysemous (Zipf, 1945; Hernández-
Fernández et al., 2016). It also means than in many
cases it is possible to predict the number of RuDSI
senses for a word by looking at its RNC frequency.

3.5 Format and technical details
As a result of the steps described above, each ex-
ample sentence (usage) for each target word was
assigned an index of the cluster to which it be-
longs. We aggregated this data in order to com-
pile a dataset in a format similar to RUSSE-18
(Panchenko et al., 2018). The structure of the
RuDSI dataset is presented in the Table 2: word,
context (sentence), positions of the word in the con-
text and the gold identifier of the cluster (sense).
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word context positions sense_id
‘тысяча’ ‘...тысяча пятьсот запорожцев...’ 76-82 0
‘тысяча’ ‘...вмещает 12 тысяч зрителей.’ 34-39 0
‘тысяча’ ‘...около 5 тыс. вагонов...’ 49-52 0
‘тысяча’ ‘...ну, сотни тысяч.’ 34-39 0
‘тысяча’ ‘...на пытки тысячи ни в чем...’ 28-34 1

Table 2: RuDSI dataset sample for the word ‘тысяча’
(thousand).

We encourage evaluating state-of-the-art WSI
approaches with RuDSI, this is why it was impor-
tant for the texts in the dataset to not exceed 512
tokens in length. The maximum sequence length is
always added to the Transformers architecture mod-
els due to the attention layers, which are quadrati-
cally scaled with increasing sequence length. 512
tokens is the popular maximum sequence length,
which was first specified in BERT. The only sen-
tence in RuDSI (out of 840) which has been longer
than this value has been truncated to 512 tokens.

4 Robustness of clustering

In order to verify the stability of clustering algo-
rithm we experimented with changing the default
hyperparameters and analyzed the resulting data
in comparison with the default sense clusters pre-
sented in RuDSI. In the pipeline (Schlechtweg
et al., 2021), there were two parameters that could
affect the obtained clusters: the threshold used to
rescale the annotators’ judgements and the number
of clustering iterations. The threshold parameter
was previously described in 3.3: it affects the re-
sulting weights on the graph edges. Originally,
the threshold was 2.5 causing 1 and 2 scores (‘Un-
related’ and ‘Distantly Related’) to transform to
negative values, and 3 and 4 scores (‘Closely Re-
lated’ and ‘Identical’) to remain positive to repre-
sent the contrast between different senses and the
same sense of the word. We reviewed two other
options: the threshold equaled to 1.5 (so that a
score of 1 became negative (-0.5) and contrasted
with 2, 3 and 4 scores that were matched to 0.5,
1.5 and 2.5 respectively) and equaled to 3.5 (1, 2
and 3 scores were opposed to a score of 4; only the
sentences marked us ‘Identical’ were considered as
containing the same sense of the word).

The number of clustering iterations (‘iters’ pa-
rameter) stands for the number of passes through
the same graph given that the input graph is the
result of the previous iteration. Each pass performs
the clustering algorithm and minimizes the loss of

the obtained clusters.
In Table 3, are presented the mean and standard

deviation of ARI score among words between the
default clustering and clusterings with modified hy-
perparameters. We can conclude that the number
of iterations does not greatly affect the resulting
clusters, even as a result of a single iteration (‘iters’
= 1) approximately the same clustering is obtained.
However the threshold parameter strongly influ-
ences the obtained clusters as it reforms the original
idea of similarity of different judgements during
the annotation.

iters threshold Mean ARI SD ARI
5 2.5 – –

5 1.5 0.12 0.29
5 3.5 0.27 0.26

1 2.5 0.95 0.13
3 2.5 0.95 0.10
4 2.5 0.95 0.11
6 2.5 0.94 0.13

Table 3: Similarity (by ARI) of the default RuDSI clus-
tering and clusterings obtained by changing hyperpa-
rameters. ‘SD’ stands for standard deviation.

We also examined the change in the number of
singleton clusters depending on clustering hyper-
parameters. Similarly, the threshold parameter has
a much stronger effect than the number of itera-
tions. The threshold of 1.5 causes merging of most
senses into one cluster (sense) and separation of the
minimal number of singleton clusters (0.13 on aver-
age). In turn, the threshold of 3.5 generates division
into a larger number of clusters most of which are
singleton clusters (6.33 on average). Notably, the
iterations parameter is inversely proportional to the
number of singleton clusters: the more iterations,
the more singleton clusters are attached to larger
clusters (the more senses are considered the same).
A summary of singleton clusters analysis can be
found in Table 4.

5 Baseline WSI methods performance

In this section, we show how the existing WSI
methods perform on RuDSI. We deliberately did
not experiment with the state-of-the-art lexical sub-
stitution method (Amrami and Goldberg, 2019).
The goal is to report the results of the baseline
approaches, leaving more advanced methods for
future research.
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iters threshold # Singletons SD
5 2.5 1.13 0.74

5 1.5 0.13 0.45
5 3.5 6.33 4.43

1 2.5 1.21 0.83
3 2.5 1.13 0.8
4 2.5 1.13 0.95
6 2.5 1.08 0.88

Table 4: Statistics for singleton clusters in the default
RuDSI clustering and clusterings obtained by changing
hyperparameters. ‘Singletons’ is the average number
of singleton clusters among words. ‘SD’ stands for
standard deviation.

5.1 Naive baselines

Two naive baselines were implemented for WSI
problem solution, namely assignment of the same
sense for all target words, and a random choice of
two senses for each target word.

5.2 Birch

Next, we applied more advanced embedding-based
approaches. One of the methods top-rated in
the RUSSE-18 shared task is static embeddings
clustering (Panchenko et al., 2018). After testing
different clustering algorithms, we settled on
Birch (Zhang et al., 1996), which provided the
best results. We used the following pipeline:
first, we calculated sentence embeddings as
an average over word embeddings for each
context, second, all embeddings within each target
context were divided into two clusters. For word
embedding extraction we used ruwikiruscorpora-
func_upos_skipgram_300_5_2019 Word2Vec
model trained on RNC and Wikipedia from the
RusVectores web service (Kutuzov and Kuzmenko,
2017).

5.3 Jamsic

Jamsic method was also included in the list of
the best systems in the RUSSE-18 shared task de-
scription paper (Panchenko et al., 2018). Using
the Word2Vec model specified above, the nearest
neighbor for each target word is extracted. The
embedding of this word represents the first sense of
the target word. Then this embedding is subtracted
from the embedding of the target word and the em-
bedding of the second sense is obtained. Finally,
we get an average embedding for each sentence

and determine to which sense it is closer by cosine
similarity. This method works with one word sense
and its nearest one, so it always distributes contexts
into only two senses.

5.4 Egvi
This is a relatively new approach that has success-
fully proved itself in solving the WSI problem for
different languages. For this method, we used Rus-
sian sense inventories pre-generated by processing
ego graphs (Logacheva et al., 2020), and for each
target word we received an average embedding
of each sense from sense inventories. For word
embeddings, we used the same ruwikiruscorpora-
func_upos_skipgram_300_5_2019 model. Then
we removed the target word from RuDSI contexts,
received average word embeddings and clustered
them with the KMeans algorithm, passing embed-
dings of values from sense inventories as cluster
centers. The parameter of number of clusters for
each target word was equal to number of senses in
sense inventories for this word.

5.5 BERT KMeans
BERT-based embeddings proved to be efficient in
solving RUSSE-18 too (Slapoguzov et al., 2021).
We took the sbert_large_nlu_ru model9 as a fea-
ture extractor and used token embeddings from its
last layer. For calculating the representation of
words split during tokenization, mean pooling was
used. Word vectors were clustered by the KMeans
algorithm into two senses.

We also tried to do KMeans clustering of BERT
embeddings by taking the number of clusters from
Egvi sense inventories.

5.6 Results
The mean and standard deviation of ARI score
among words are presented in Table 5. The ARI
metric takes into account randomness when cluster-
ing, so the ARI of the Random sense method is 0.0.
The approaches that became the best in the RUSSE-
18 shared task do not gain values higher than 0.05
on RuDSI. The simplest One sense baseline is bet-
ter than BERT clustering. Arguably, the low BERT
results are caused by the number of clusters param-
eter of the KMeans algorithm, which was equal to
2, while only two target words (out of 24) actually
had two senses. Egvi algorithm proved to be the
best. This method was based on the pre-generated

9https://huggingface.co/sberbank-ai/
sbert_large_nlu_ru
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sense inventories, in which the number of senses
often was identical to RuDSI, so it worked better
than BERT KMeans. The number of Egvi senses
improved the quality of clustering of BERT embed-
dings, but not enough to exceed the native Egvi.

For comparison, the table shows the results of
the methods on the RUSSE-18 dataset. Due to a
number of limitations described earlier, a wiki-wiki
dataset was taken for comparison. It is noticeable
that the values of the ARI metric for the basic meth-
ods on wiki-wiki are much higher.

We also found no correlation between the den-
sity of the word graph and the values of the ARI
metric, with the exception of the Jamsic method,
for which the correlation results are significant at a
significance level of p = 0.05.

Method RuDSI RUSSE

Mean ARI SD ARI Mean ARI SD ARI

One sense 0.08 0.28 0.00 0.00
Random sense 0.00 0.00 0.01 0.00
Birch 0.03 0.14 0.93 0.10
Jamsic 0.04 0.10 0.58 0.47
BERT KMeans 0.03 0.14 0.85 0.06
BERT KMeans + Egvi 0.08 0.31 0.64 0.31
Egvi 0.17 0.22 0.59 0.16

Table 5: Performance of WSI methods on RuDSI and
RUSSE. ‘SD’ stands for standard deviation.

6 Intended RuDSI audience

Our vision is that RuDSI might be of use for three
different communities.

1. Researchers analyzing NLP systems in terms
their WSD and WSI abilities for Russian. It
is especially important for evaluating contex-
tualized language models trained on large-
scale corpora using deep neural architectures,
from RNNs to Transformers and beyond. Rus-
sianSuperGLUE benchmark (Shavrina et al.,
2020) already includes the RUSSE dataset
(cast as a binary classification task). We be-
lieve RuDSI might be a useful addition, repre-
senting a more difficult task related to lexical
senses. As was shown in 5, it cannot be solved
with trivial baselines (Iazykova et al., 2021),
which makes it an interesting NLP challenge.

2. Graph theory researchers and all those inter-
ested in applications of graphs to real world
tasks. Word usage graphs we are providing

are representative of contextual semantic sim-
ilarity judgments by humans. These graphs
can be processed and clustered in different
ways, yielding different ‘views’ of Russian
word sense inventories. In addition, the prop-
erties of word usage graphs themselves can
bring new insights for both graph theory and
Russian linguistics.

3. Finally, our work on RuDSI is a part of a
larger project of implementing WSI features
into the RNC web interface. RuDSI is based
on RNC data, so it will be used to evaluate
various WSI solutions and choose the best one.
Thus, it is going to be directly or indirectly
used by the large RNC audience, consisting
of both linguists and general population.

7 Conclusion

We have presented RuDSI, a novel graph-based
word sense induction dataset for Russian, obtained
by clustering word usage graphs produced by hu-
man annotation. It includes words with different
degrees of polysemy (monosemous, moderately
polysemous and highly polysemous words). The
sense inventories are generated in a completely
data-driven way as well. Importantly, depending
on what graph processing workflow is used, slightly
different datasets can be produced from the same
raw RuDSI human judgments.

We report the RuDSI performance for only the
simplest and most basic approaches to WSI, so a
possible future work would be to apply some more
advanced methods to it. Also we have considered
only nouns, so it would be interesting to experi-
ment with other parts of speech as well (this will
require a new round of annotation). Since most
of the target words in RuDSI have 3-5 senses, the
addition of highly polysemous words may become
another future improvement. In addition, it would
be beneficial to extend the list of contexts for each
word, however extra annotation would be required.
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Figure 2: Example of the word ‘сторона’ (side, direction) annotation in the DURel interface.

Figure 3: Word usage graph for the word ‘голова’ (head) as a result of clustering (four clusters, marked with node
color).
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Word One sense Random sense Birch Jamsic BERT KMeans Egvi BERT KMeans + Egvi № of clusters

‘Бог’ (God) 0.00 -0.02 -0.04 0.13 -0.04 -0.04 0.01 3
‘Время’ (time) 0.00 -0.03 0.02 0.00 -0.07 -0.01 -0.04 6
‘Год’ (year) 0.00 0.06 -0.03 0.01 -0.02 -0.04 0.13 3
‘Голова’ (head) 0.00 -0.03 0.51 -0.02 0.20 0.61 -0.02 4
‘Город’ (city) 0.00 -0.01 -0.03 0.01 -0.01 1.00 0.00 2
‘Государство’ (state) -0.06 0.02 -0.04 -0.06 -0.05 -0.04 -0.05 3
‘Дело’ (business) 0.00 0.03 -0.01 0.00 0.01 0.02 0.08 11
‘День’ (day) 0.00 0.11 -0.05 0.08 -0.02 -0.05 0.00 5
‘Друг’ (friend) 0.00 -0.02 0.25 -0.04 -0.09 0.12 -0.01 3
‘Жена’ (wife) 0.00 -0.03 0.00 -0.03 -0.04 0.00 0.0 2
‘Женщина’ (woman) 1.00 0.00 0.00 0.00 0.00 1.00 1.0 1
‘Жизнь’ (life) 0.00 0.00 0.33 -0.01 -0.13 -0.04 0.04 4
‘Лицо’ (face) 0.00 -0.02 0.05 0.50 0.39 0.00 0.61 3
‘Место’ (place) 0.00 0.05 -0.10 0.09 0.01 -0.04 -0.02 4
‘Мир’ (world) 0.00 -0.01 0.13 0.14 0.04 0.20 0.00 5
‘Ночь’ (night) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1
‘Работа’ (work) 0.00 -0.01 -0.04 -0.04 -0.04 0.15 0.05 5
‘Результат’ (result) 0.00 0.01 -0.07 0.04 0.01 0.63 -0.03 2
‘Рука’ (hand) 0.00 0.00 -0.08 0.06 0.38 0.16 0.05 3
‘Сила’ (power) 0.00 -0.01 -0.02 -0.02 0.22 -0.02 0.04 6
‘Слово’ (word) 0.00 -0.03 0.01 0.01 0.19 0.00 0.00 3
‘Сторона’ (side) 0.00 -0.01 -0.04 0.21 0.30 0.41 0.20 5
‘Тысяча’ (thousand) 0.00 0.00 -0.08 -0.01 -0.05 -0.04 -0.01 3
‘Человек’ (human) 0.00 0.00 -0.04 -0.06 -0.00 0.00 0.00 3

Table 6: Detailed performance of WSI methods.
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Abstract
Proactively identifying misinformation spread-
ers is an important step towards mitigating
the impact of fake news on our society. Al-
though the news domain is subject to rapid
changes over time, the temporal dynamics of
the spreaders’ language and network have not
been explored yet. In this paper, we analyze
the users’ time-evolving semantic similarities
and social interactions and show that such pat-
terns can, on their own, indicate misinforma-
tion spreading. Building on these observations,
we propose a dynamic graph-based framework
that leverages the dynamic nature of the users’
network for detecting fake news spreaders. We
validate our design choice through qualitative
analysis and demonstrate the contributions of
our model’s components through a series of
exploratory and ablative experiments on two
datasets.

1 Introduction

With the popularity of social media platforms con-
stantly increasing, the dissemination of false on-
line information becomes a major hurdle, having
catastrophic effects on our society (McKay and
Tenove, 2021). It is essential to address this issue
early on; to efficiently and rapidly identify misin-
formation spreaders and spurious accounts which
are likely to propagate posts from unreliable news
sources. To this end, we introduce an early warn-
ing model that distinguishes authors who have re-
peatedly shared news from unreliable sources in
the past, from those that share news from reliable
sources. We use the terms ‘misinformation spread-
ers’ and ‘real news spreaders’ for each user class,
respectively. In this paper, the term misinformation
is used as an umbrella term that covers misinforma-
tion, disinformation, partisan news and satirical
content. Figure 1 depicts examples of the posting
activity for each user class.

Recently, significant attention has garnered to-
wards graph representational learning methods (Wu

et al., 2021) due to their advances in various NLP
domains. Kim and Ko (2021) use a graph-based ap-
proach to model the semantic relationship between
sentences in a document for fake news detection.
Rath et al. (2021) apply graph neural networks
to explore the social network of misinformation
spreaders and show that interpersonal trust plays
a significant role in differentiating them from real
news spreaders. Such graph approaches are able to
model user-to-user relationships and therefore pro-
vide a promising underexplored research direction
for identifying misinformation spreaders.

The impact of time on fake news prediction
has made the task even more challenging, as the
content-based differences of news sources change
due to the highly dynamic nature of the news topics
(Horne et al., 2019). Most of the fake news detec-
tion methods that use static features need to be con-
tinuously updated with new annotated data to stay
relevant (Kwon et al., 2017). We argue that this hy-
pothesis can be generalized for detecting misinfor-
mation spreaders. Similarly to feature-based meth-
ods, existing graph modeling approaches are not
specifically designed for learning the time-evolving
similarities of the users’ interactions. Addressing
these limitations of existing research, we propose
an approach accounting for the temporal dynamics
of user-to-user relationships instead. We introduce
a model that extracts features from users’ content
similarities and social interactions and models the
temporal evolution of these connections in order
to identify misinformation spreaders. In addition,
our study aims to answer the following research
questions:
RQ1: Do the users’ semantic similarities and
social interactions fluctuate over time?
RQ2: Are temporal relationships indicative of
misinformation spreading behavior?

For the first exploration, we formulate the prob-
lem as a binary classification task, with a potential
for a more fine-grained approach in the future. We
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Figure 1: Examples of the user classes.

first build dynamic linguistic and social graphs,
which are constructed based on the users’ posting
behaviour within consecutive time-windows. Sub-
sequently, the generated temporal graph represen-
tations are treated as a sequence of features for the
final classification. To the best of our knowledge,
dynamic graph modelling has not been utilized
for identifying misinformation spreaders in other
works. We conduct a series of exploratory analyses
in the user-to-user relationships. Through abla-
tive experiments, we show the effectiveness of our
model’s components for profiling misinformation
spreaders. Our contributions are as follows:
• We provide a comprehensive qualitative and

quantitative analysis of the users’ temporal se-
mantic and social similarities and investigate the
different types of dynamic graph connections.

• We develop a dynamic graph neural network
framework for (a) predicting the users’ future
misinformation spreading behavior, (b) predict-
ing the behavior of unseen users, and (c) pre-
dicting misinformation spreading behavior in a
zero-shot scenario.

• We show that our proposed dynamic framework
outperforms the baseline content-based models
as well as the static graph model.

• We release our code to encourage future research.

2 Background and Related Work

While user profiling approaches have been investi-
gated for various tasks, it wasn’t until after the PAN
2020 competition (Bevendorff et al., 2020) that the
problem of misinformation spreaders identification
gained the attention of the research community.
Most recent studies are focused on analyzing emo-
tional signals (Giachanou et al., 2021), personality
and linguistic patterns (Mu and Aletras, 2020; Gi-

achanou et al., 2020). These methods rely on the
assumption that the content, and therefore the fea-
tures that are extracted, remains constant over time.
While static linguistic patterns have proven to be
useful features for misinformation spreader detec-
tion, none of the current methods explore temporal
aspects of their behavior. Our model utilizes the
users’ contextualized content embeddings as user
(node) representations and simultaneously lever-
ages their content similarities over time and social
interactions dynamically (via edges in the temporal
graph).

In the context of user modelling, graph repre-
sentational learning approaches (Kipf and Welling,
2016; Veličković et al., 2018; Chami et al., 2019)
have made significant advances in enhancing NLP
models for various tasks (Mishra et al., 2019;
Chopra et al., 2020; Sawhney et al., 2021; Kacu-
paj et al., 2021; Plepi and Flek, 2021). Rath et al.
(2020, 2021) identified misinformation spreaders
by extracting features from a network that is built
based on interpersonal trust metrics. Despite their
success, a limitation of the existing approaches is
that they do not account for the temporal dynamics
of the semantic and social connections.

We argue that the users’ characteristics and in-
teractions change dynamically over time due to the
dynamic nature of the news cycle, therefore tempo-
ral graphs are more suitable to model the evolution
of the user-to-user relationships (Wu et al., 2021).
Our hypothesis, inspired by Bahns et al. (2017),
is that both the social and the content similarity
patterns of misinformation spreaders differ from
those of other users.

The concept of temporal graphs has been around
for some years (Rossi et al., 2020; Seo et al., 2016;
Han et al., 2014) with numerous applications (Guo
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et al., 2019; Li et al., 2018; Yan et al., 2018). The
most relevant to our work is the model proposed by
Sawhney et al. (2020), leveraging signals from fi-
nancial data, social media, and inter-stock relation-
ships via a graph neural network in a hierarchical
temporal fashion. We draw inspiration from these
approaches and propose a dynamic temporal graph
for misinformation spreader detection.

3 Datasets

FACTOID Dataset (Reddit). We utilized the
FACTOID dataset published by (Sakketou et al.,
2022), which includes a sufficient amount of user
history, and, more importantly, simultaneous infor-
mation on the users’ social behavior (Pardo et al.,
2020). To the best of our knowledge, this is the
only dataset that contains a sufficient amount of
social connections to build dense temporal graphs.
FACTOID contains a total of 3.3M posts authored
by 4.1K users, with 73.8% of the users being “real
news spreaders” while the rest 26.2% being misin-
formation spreaders, determined by the factuality
of the news sources they link to. The data cov-
ers the period before and after the US elections
(from January 2020 to April 2021), making it an
ideal dataset for investigating temporal relation-
ships since this time period includes significant
events regarding the political scene.

Twitter Dataset. To generalize our content simi-
larity dynamics findings, we utilize in addition the
Twitter dataset released by Mu and Aletras (2020).
Since the dataset contained the labels and the user
IDs, we re-crawled the users’ posting history. After
filtering the users whose handles were deleted or
had insufficient data, the resulting dataset contained
3.5K users and 2.6M posts with roughly 40:60 class
distribution of fake and real news spreaders respec-
tively. Since there are practically no social interac-
tions between the users in this dataset, we report
results only with the semantic similarity graphs.
We split the dataset into train (70%), development
(20%) and test (10%) as in the original paper.

FACTOID Twitter

Total number of posts 3,354,450 2,626,176
Total number of users 4,150 3,541
# of misinformation spreaders 3,064 1,455
# of real news spreaders 1,086 2,086

Table 1: Summary of dataset statistics for FACTOID
and Twitter.

4 Temporal Graph Construction

4.1 Encoding Users

Each user ui is associated with a posting historyHi.
We partition the complete posting time period in
equal discrete time frames τ , containing the users’
posts that were posted within these time frames.

User2Vec. We adopt User2Vec (Amir et al.,
2016) to compute each user’s representation Eiτ ∈
R200 based on their corresponding historical posts
within the time frame τ , by optimizing the condi-
tional probability of texts given the author.

UBERT. In addition, we use Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019) to en-
code each user’s individual historical posts, and
we obtain each user’s temporal historical encoding
Eiτ ∈ R768 by averaging over the posting history
length within a corresponding time frame τ .

4.2 Individual Graph construction

We model the user’s temporal relationships by con-
structing a sequence of graphs G1,G2, . . . ,GT cor-
responding to each time frame τ . Each graph Gτ
is comprised by a set of user nodes Vτ that have
posted at least once within the time frame τ and a
set of edges Eτ between these users. We construct
the following types of graphs.

Semantic graph. The user embeddings Eiτ rep-
resent each user’s context within the time period
τ . Users with semantically similar content are
close in the vector space (Reimers and Gurevych,
2019) since they have similar context encoding.
To construct the users’ semantic graphs Gsemτ =
(Vτ , Esemτ ), we calculate all the pairwise cosine
similarities between the users’ embeddings within
a time period τ ; cos(Eiτ , E

j
τ ). We form connec-

tions between two users only if their cosine simi-
larity is above a high threshold θ, representing the
semantic similarity between two users.

Social graph. On Reddit, users engage in various
discussions with their peers. Social science argues
that like-minded people tend to interact more with
each other (Bahns et al., 2017), therefore, for the
FACTOID dataset, we are able to construct the so-
cial graph Gsocτ = (Vτ , Esocτ ) in a way that captures
the users’ social interactions with each other. We
define as social interaction the replies and men-
tions in a post thread. For each thread of posts,
we connect all the chain of replies to the root (i.e.
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the original post) of the conversation and all men-
tions/replies to each other. Next, these post connec-
tions are translated to user connections in the social
graph (Appendix A.2). In the Twitter dataset, the
social connections are too few therefore we were
unable to build dense temporal graphs.

4.3 Temporal Analysis of Graphs

To answer the RQ1, we wish to monitor the tem-
poral evolution of the users’ semantic similarities
and social interactions between different groups
of users over time and associate those temporal
fluctuations to the political landscape. We group
the users by their credibility label (misinforma-
tion spreaders, real news spreaders) and define
three different edge types: (1) edges between mis-
information spreaders (‘m2m’), (2) edges between
real news spreader (‘r2r’) and (3) edges between
misinformation spreaders and real news spreaders
(‘m2r’). We partition the users’ total posting pe-
riod (from the start of January 2020 until the end
of April 2021) to 16 monthly time periods, and
we compute the connections’ percentage within
each time period for all edge types. The connec-
tions’ percentage can be interpreted as the normal-
ized edge count of a particular edge type during a
time period τ (see Appendix A.4 for more details).
For the temporal semantic graphs, an increase in
this metric essentially shows an increase in the
language usage similarity between different user
groups. Correspondingly, for the social graphs, an
increase would show that two user groups engage
in discourse and share opinions in a thread.
Can we detect different temporal relationship pat-
terns depending on the users’ credibility?

Figure 2 depicts the connections’ percentage on
the semantic graph and the social graph. For both
graphs, we can observe that the ‘m2r’ connections
percentage is consistently the lowest for all time
periods, indicating that on an aggregate level, mis-
information spreaders and real news spreaders do
not have as much context similarity to each other
and avoid socially interacting with each other. On
the other hand, misinformation spreaders seem to
be more densely connected with each other and
tend to exchange information regularly.
How do the users’ temporal semantic and social re-
lationships fluctuate based on the political scene?

Interestingly, we observe peaks in the connec-
tions’ percentage during January 2020 (event 1),
November 2020 (event 2) and January 2021 (event

Date Event Description

Feb 5 Trump is acquitted on the charges of abuse of
power and obstruction of Congress. (event 1)

Aug 11 Joe Biden chooses Senator Kamala Harris
(D-CA) as his running mate

Nov 3 2020 United States elections (event 2)

Jan 6 US Capitol is attacked by supporters of
Trump (event 3)

Table 2: Major political events1. These events are ref-
erenced in Figure 2.
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Figure 2: Connection percentage of per month for the
semantic (left) and social graphs (right). The events
shown in this Figure correspond to the events men-
tioned in Table 2.

3) for both graphs. The percentage fluctuations are
more obvious in the semantic graph compared to
the social graph, this is the first indication that the
temporal context similarities might be more useful
for the model compared to the social interactions.
We provide a list of pivotal political events in Ta-
ble 2 which evidently explain the increase in the
connections’ percentage and provide an intuition
behind the users’ behavior.

5 Neural Network Design

5.1 Graph Neural Network Layer
We utilize three different types of Graph Neural
Network (GNN) layers in order to demonstrate the
robustness and predictability of the users’ connec-
tions. The input to the GNN layer is a set of user
embeddings Eiτ for each time frame τ . The GNN
layer is shared across the time frames and produces
new representations Ẽiτ which are learned by uti-
lizing either the semantic or social graphs.

Graph Convolutional Neural Network. To em-
bed the nodes in our graph, we employ Graph
Convolutional Networks (GCN) (Kipf and Welling,
2016). GCN is a commonly used, powerful graph
embedding method that encodes both local graph
structure and features of the nodes, by using a layer-
wise propagation rule.
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Figure 3: Overview of the proposed framework. We first obtain the user embeddings for each time frame and
construct the temporal graphs. Next, we feed the graphs to a GNN to extract neighbourhood features. For each user,
we use a GRU with temporal attention to compute an overall representation of the user, which is finally forwarded
to a classification layer.

Graph Attention Network. As users have a dif-
ferent influence on one another, we need to focus
on users that have more relevant connections with
higher influence. To model the importance of the
influences of the neighbourhood to a node, we use
Graph Attention Networks (GAT) (Veličković et al.,
2018). GAT attends to the neighborhood of each
user and assigns an importance score to the con-
nections that contribute more to the detection of
misinformation spreaders.

Hyperbolic Graph Convolutional Neural Net-
works. Research has shown that GCNs often
do not generalize well to hierarchical, tree-like
networks such as the social graphs constructed
from social media threads (Chen et al., 2012b),
since they operate in the Euclidean space. Build-
ing on the scale-free nature of the users’ social
graphs, we utilize Hyperbolic Graph Neural Net-
works (HGCN) (Chami et al., 2019) which employ
graph convolutions in the hyperbolic space as op-
posed to the standard graph convolutions. The
HGCN layer projects the user embeddings in the
hyperbolic space to minimize distortions and learn
better representations.

5.2 Temporal Neural Network Layer

Temporal Encoding. We investigate the users’
behavior over a long time-period, and we wish to
encode the dynamic changes between the users’
interactions over time. We argue that simply com-
pressing the users’ semantic and social connections
into one static graph, would introduce too much
noise and the information regarding the temporal
fluctuations of the semantic and social relationships
would be lost. To this end, we model the sequential
dependencies through time for each user, with a
Gated Recurrent Unit (GRU) (Cho et al., 2014).
The GRU encodes the dynamic user graph repre-
sentations across the time axis, producing hidden
states for each time frame τ .

Temporal Attention and Network Optimiza-
tion. The GRU models the sequential dependen-
cies of the temporal graph user representation, how-
ever during the long time span of the users’ posting
activity, certain socio-political events, such the elec-
tion seasons, the release date of a new vaccine, etc.,
may cause the outburst of misinformation spread-
ing. Therefore, we wish to model the contributions
of these important time periods to the users’ overall
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representation. To this end, we employ an attention
mechanism (Bahdanau et al., 2016) to compute an
overall representation for the user with adaptive
weights over the aggregated GRU hidden states.

We formulate the author profiling problem as
a binary classification task to predict the class yi

of the user, where yi ∈ {misinformation spreader,
real news spreader}. The overall learned repre-
sentations for each user are forwarded into a linear
layer, and we use cross-entropy loss to calculate the
difference between the true and predicted labels.

6 Experimental Setup

To answer the RQ2, we need to investigate the
reliability of the temporal semantic and social con-
nections as features for identifying misinformation
spreaders in various scenarios.

Predicting future user behavior. We analyze
whether the past user behavior, represented through
temporal graphs, can be used to predict their future
user behavior. To this end, we use the whole set
of users in the training, validation and test, but
each set contains data from different time periods.
Specifically, the training set consists of 8 months
(Jan-Aug 20’), and the validation (Sep-Dec 20’)
and test sets (Jan-Apr 21’) 4 months each, resulting
in a consecutive 50:25:25 time split of the user’s
posting history. This stands for both datasets since
they were collected around the same time period.
We provide a visual depiction of this split in Ap-
pendix A.5 in Figure 8a.

Generalizing to unseen users. We examine
which types of relationships have the ability to
generalize to unseen users. In this setup we uti-
lize a user split, where we divide the users into a
train:validation:test sets of ratio 70:10:20 using all
of their posting history. This split is also visually
depicted in Appendix A.5 in Figure 8b.

Performance on unseen users in the future.
We also aim to test whether the temporal graph
features generalize on both unseen users and fu-
ture content, to this end we utilize the mixed split.
We split the users into a train:validation:test sets of
ratio 70:10:20, where the train set contains users
who have posted the first half (Jan-Aug 20’) of the
whole time period, while the validation and test
sets contain a different set of users who post on
the second half (Sep 20’-Apr 21’). With this setup,
we evidently demonstrate the reliability of the pro-
posed model of detecting misinformation spreaders

on unseen data. A visual depiction of this split is
provided in Appendix A.5 in Figure 8c.

7 Experimental Results

7.1 Performance results

Feature baselines First, we compare the pro-
posed model to simple, yet strong content-based
baselines by utilizing interpretable classifiers; Sup-
port Vector Machines (SVM), Logistic Regression
(LR), and Random Forest (RF) using the following
features:
ngrams: While word ngrams are considered as
simple features, they have been used successfully
in the past for identifying misinformation spread-
ers (Vogel and Meghana, 2020). In this case, we
utilized the word bi-grams.
statistical-emotional (StEm): We employ a feature
vector (n = 22) with standard statistical linguistic
variables (such as min, max, average number of
tokens and characters, lexical diversity, etc.) (Buda
and Bolonyai, 2020; Pardo et al., 2020). Addi-
tionally, we added 8 emotional dimensions to this
baseline feature (Fersini et al., 2020; Mohammad
and Turney, 2013).
UBERT: We use the SBERT embeddings of the
documents averaged over the whole time frame as
feature vectors.
U2V: We also utilized the User2Vec embeddings
to represent the users as feature vectors.

Table 3 shows the accuracy results of the base-
line models compared to the dynamic graph models
on the FACTOID and Twitter datasets. Note that
we utilized both the social and the semantic graph
and two initialization methods for the FACTOID
dataset - in this table we report the best performing
variant (for all variants see Table 4). For the Twit-
ter dataset, we experiment only with the semantic
graph since there are no social connections between
users, and we obtained the temporal graphs with
UBERT. We observe that all the proposed mod-
els significantly outperform all baseline models for
both datasets. For the FACTOID dataset, the best
performing dynamic graph model showed higher
macro F1-score compared to the baseline models in
all splits, which was on average 10.47% higher on
the time split, 15.3% on the user split and 14.08%
on the mixed split. For the Twitter dataset, the best
performing dynamic graph model showed on aver-
age 8% better performance on the time split, 10.8%
on the user split and 16.8% on the mixed split.

The results on both datasets validate our claim
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FACTOID Twitter
Time Split User Split Mixed Split Time Split User Split Mixed Split

SVM LR RF SVM LR RF SVM LR RF SVM LR RF SVM LR RF SVM LR RF
ngrams 43.6 56.4 55.4 43.4 58.4 59.5 42.5 42.5 57.6 73.9 75.2 76.9 61.7 65.5 66.6 52.37 42.6 64.81
StEm 52.5 51.6 56.8 49.1 54.9 60.6 54.1 52.1 60.3 61.4 60.8 70.2 59.4 57.3 63.9 43.0 43.5 63.6
UBERT 42.5 47.9 56.1 53.9 58.6 49.7 42.3 45.7 54 62.6 77.3 71.9 64.1 64.7 64.3 36.2 59.4 65.8
U2V 47.6 52.1 61.3 50.2 55.1 56.5 46.4 53.0 59.6 - - - - - - - - -
DyGAT 64.56∗ 63.59 63.22 78.2∗ 67.30 69.2∗

DyGCN 64.18 65.75 64.23∗ 66.9 65.60 66.1
DyHGCN 64.24 66.75∗ 58.58 67.7 73.90∗ 65.3

Table 3: Baseline experimental results on the FACTOID and Twitter datasets. Bold indicates the best macro
F1-score. All results are in percentages. We show that the DyGNN framework outperforms all baselines for each
split in both datasets. The results with the asterisk (∗) are statistically significant based on the Wilcoxon signed
rank test (p = 0.001) compared to all the baseline methods.

Semantic Social
Time User Mixed Time User Mixed

U
B

E
R

T DyGAT 64.56∗ 57.26 60.46 62.91 61.66 63.12
DyGCN 63.57 58.67 61.60 64.18 61.08 59.44
DyHGCN 55.39 66.75 55.25 56.38 62.02 58.58

U
2V

DyGAT 63.03 63.59 62.88 63.50 63.01 63.22∗

DyGCN 62.28 65.75 64.23∗ 62.76 64.21 61.35
DyHGCN 42.51 42.52 47.39 64.24∗ 66.09∗ 56.10

Table 4: Comparative analysis of two embedding
methods for semantic graph construction and DyGNN
initialization (social graph). Reported macro F1-score
for the FACTOID dataset. All results are in percent-
ages. Bold indicates best result. The results with the
asterisk (∗) are statistically significant based on the
Wilcoxon signed rank test (p = 0.001) compared to
the second best performing method.

that the specific language features become quickly
outdated, while temporal semantic similarities and
social interactions are more robust and constitute a
better tool for (a) predicting future behavior (time
split), (b) predicting the behavior of unseen users
(user split), and (c) identifying misinformation
spreaders on unseen data (mixed split).

Comparison of dynamic graph models. Ta-
ble 4 shows the performance results on the three dif-
ferent experimental setups (see Appendix A.6.1 for
more detailed results). We analyze the results of the
dynamic graph models, based on the utilized graph
type (semantic and social), initialization method
(UBERT and User2Vec) and graph neural network
type (GAT, GCN and HGCN).
Comparing graph types. We observe that the
model obtains a slightly better performance by uti-
lizing the semantic similarity graphs compared to
utilizing the social graphs for all three setups. Fig-
ure 2 shows that the percentage of temporal connec-
tions is higher, and fluctuates more, on the semantic

graphs compared to the social graphs. This may
represent users sharing similar opinionated news re-
garding the same event, with patterns changing for
a new event, while social connections stay similar.
Comparing initialization methods. When UBERT
and User2Vec are used in the social graphs, they
simply act as initialization vectors, since the so-
cial graph construction does not depend on the
embedding method. When the models use the so-
cial graphs, User2Vec initialization produces better
results than UBERT in all setups, despite its lower
dimensionality. This performance is expected since
User2Vec yields better results than UBERT when
it is utilized as a baseline method (Table 3).

The semantic similarity graphs, on the other
hand, differ when constructed with UBERT or with
User2Vec. In the time split evaluation setup, the
semantic graph model achieves the best perfor-
mance with UBERT, while in the mixed split, the
best performance is obtained with User2Vec. This
is likely due to UBERT particular suitability for
capturing meaningful user similarities even with a
small amount of user history, since SBERT (from
which we obtain UBERT) is tailored for produc-
ing sentence embeddings comparable using cosine-
similarity. User2Vec requires a significant amount
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Semantic Social
Time User Mixed Time User Mixed

DyGNN 64.56∗ 66.75 64.23∗ 64.24∗ 66.09∗ 63.22∗

no temporal 55.14 53.53 60.24 62.64 59.37 56.54
no attention 62.27 66.78∗ 61.97 61.01 64.51 56.32

Table 5: Ablation study - temporal dynamics. In
this study we remove the temporal component (keeping
simple “static” GNN approach) and the attention. Re-
sults show that both components play a significant role
to the model’s performance. Bold indicates the best
macro F1-score. All results are in percentages. The
results with the asterisk (∗) are statistically significant
based on the Wilcoxon signed rank test (p = 0.001).

of documents in order to obtain high-quality user
representations however, it leads to a stronger gen-
eralizability on unseen data.
Comparing dynamic graph neural networks. We
observe that the hyperbolic DyHGCN obtains the
best performing results in 3/6 combinations of split
and graph type. However, it performs poorly when
it utilizes the User2Vec semantic graphs. Figure
4 shows the average hyperbolicity of the dynamic
graphs for each month. As is known, high hy-
perbolicity values indicate a tree-like structure of
the network Chen et al. (2012a); Aparicio et al.
(2015). Due to the lower posting activity during the
last months, and thus higher sparsity of the topics
represented by one user, users are more dissimi-
lar, resulting in fewer edges. This in turn leads to
lower hyperbolicity during this time period, which
explains the DyHGCN’s poor performance with
User2Vec semantic graphs. The social graph shows
high hyperbolicity for all months, therefore Dy-
HCGN achieves superior performance when utiliz-
ing the social graphs. DyGAT and DyGCN obtain
the best performance once, but in contrast to Dy-
HGCN, they both achieve results within a certain
range which is neither too low nor too high.
Discussion. In conclusion, based this comparative
analysis, dynamic semantic similarity graphs lead
to better results than dynamic social graphs, and
given a large amount of user history, User2Vec is
preferred for constructing these. In addition, the
use of DyHGCN is recommended only when the
hyperbolicity of the graph is high, alternatively,
DyGAT or DyGCN provide comparable results.

7.2 Ablation Study - Temporal Components

We perform an ablation study on the components
of the best performing dynamic graph model to
demonstrate the effect of each layer on the overall
performance, namely the temporal attention and

the temporal graphs:
No attention. We remove the temporal attention
layer from our dynamic graph model. Intuitively,
this component should focus on the time periods
with high misinformation spreading activity and
highest differences between user groups.
No temporal dynamics. We average each user’s
representations across all time frames to obtain a
single user representation, and remove the dynamic
part of our model by merging all the graphs con-
structed for every discrete time frame. Specifically,
we construct a single graph that includes all the
user connections from all time periods and replace
the GRU layer, with a linear layer. This model cap-
tures the overall semantic and social interactions
of the users over their whole posting timeline, and
could also be considered as a graph-based baseline.

Table 5 shows the ablative results over the com-
ponents of the best performing dynamic graph mod-
els for all setups. We observe that removing the
temporal information has a significant detrimental
effect on the performance in all cases, which is on
average 7.53%. This demonstrates the strong pre-
dictive power of temporal patterns in semantic and
social relationships for identifying misinformation
spreaders and validates our proposed framework
for dynamically modeling the users’ semantic and
social graphs. In addition, except for the seman-
tic graph on the user split, adding the temporal
attention over the users’ timeline increases signifi-
cantly the performance, reinforcing our hypothesis
that the similarity of language use during important
socio-political events is strongly indicative of mis-
information spreading. We have seen that for the
semantic graph using the user split, the attention
weights through different time slots are the same.
Due to this reason, the overall user representation
is just a simple average of the GRU states. One rea-
son why this is happening, is because the temporal
attention is not capturing temporal patterns of the
users, that can generalize to unseen ones.

7.3 Error Analysis
We conducted an analysis of users that consistently
get the same prediction by at least half of the GNN
models. We identify two groups of users; consis-
tently correctly classified, and consistently misclas-
sified. The following error analysis is based on the
results obtained on the FACTOID dataset on the
user split, however similar results were observed
for the rest of the splits.

Approximately 72% of the consistently misclas-
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sified users are misinformation spreaders, which
can be attributed to the class imbalance decreasing
the recall.

It is harder to identify users that are borderline
fake news spreaders. Table 6 shows, for the cor-
rectly classified and misclassified fake news (FNS)
and real news spreaders (RNS), the average number
of fake and real news posts, average science and
factual level provided in Sakketou et al. (2022) and
the average no. of months of active posting. The
science level of each user ∈ [−1, 1] is the normal-
ized weighted average of non-scientific (-1) and
scientific (1) articles and the factual level ∈ [−3, 3]
is the normalized weighted average factuality of
the news domains, manually labeled by journalists
from very low (-3) to very high (3). 2

fake
posts

real
posts

science
level

factual
level

activity
(months)

correctly
classified

FNS 9.66 39.45 0.13 0.59 12.99
RNS 0.29 9.95 0.70 1.76 12.57

mis-
classified

FNS 3.76 22.88 0.16 0.83 11.21
RNS 0.60 22.67 0.42 1.59 12.37

Table 6: Error analysis. Correctly classified fake
news spreaders (FNS) post more often than misclassi-
fied ones, and post more consistently over time.

As we can see, the misclassified FNS have
posted a considerably lower number of fake news
on average compared to the correctly classified
FNS. While they also posted a lower number of
real news posts, their (annotated) factual level is
quite high - the source quality plays a role. For
the correctly classified FNS, high number of real
news combined with low factual level indicates
that the real news sources these users are posting
are borderline credible - their credibility level is
only ‘mostly factual’(+1), whereas the credibility
level of the fake news sources is from ‘low’(-2)
to ‘very low’(-3). The correctly classified RNS
tend to post significantly more scientific articles
and articles with higher factuality on average than
the misclassified RNS. Overall, correctly classified
users of both classes post more consistently over
the months compared to the misclassified users.

Since our data heuristics might include wrongly
labeled posts and, by extension, users, we manu-
ally labeled 210 posts of consistently misclassified

2When embedding the users, we erased the URLs from
the text, so that no information about the number of links,
or the names of the domains was leaked in the user embed-
dings, therefore none of the models could have had any prior
knowledge of these factors.

Mislabeled as fake news
(...) These pieces rely on discredited sources who have ped-
dled debunked theories about Dominion’s supposed ties to
Venezuela (...) These statements are completely false and have
no basis in fact. (...) [link to non-credible source posting fake
news]

Mislabeled as real news
The CCP (Chinese Communist Party) controls Google from
within. Change my mind. [link to credible source posting real
news]

Table 7: Mislabeled news posts.

users. In this small sample we found that approx-
imately 14% of the posts were wrongly labeled,
however less than 1% of the users would obtain
a different label because of these posts. We show
two examples of mislabeled posts in Table 7.

8 Conclusion

In this study we proposed a dynamic graph neural
network framework that generates temporal graph
representations from the users’ semantic similari-
ties and social interactions through time.

Our extensive experiments and ablation study
demonstrated that the temporal graphs are more
efficient than content-based models or simple static
graphs for predicting (a) the future misinforma-
tion spreading behavior, (b) the behavior of unseen
users, and (c) misinformation spreading behavior
in a zero-shot scenario. These results indicate that
a model utilizing temporal user relationships is
more robust and more efficient for misinformation
spreader detection compared to topic-sensitive or
time-agnostic models, e.g. talking about Trump
doesn’t make one a misinformation spreader and it
is quite normal near election time.

Through exploratory experiments, we analyzed
the various aspects of the framework in order to
provide an insight into its usability. These experi-
ments showed that dynamic semantic similarities
lead to better results than the social ones. The abla-
tion study on the components of the model revealed
that the temporal modelling of the users’ seman-
tic similarities and social interactions significantly
contributes to identifying misinformation spread-
ers effectively. Our error analysis indicated that
the misclassified fake news spreaders tend to post
a very low number of fake news posts and a high
number of real news posts from highly credible
sources. Yet, the proposed framework is applicable
as a human moderator-assistance tool for identify-
ing users that post fake news more consistently.
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Ethical Considerations and Limitations

Ethical considerations. The ability to automati-
cally approximate personal characteristics of online
users in order to improve natural language classi-
fication algorithms requires us to consider a range
of ethical concerns. Use of any user data for per-
sonalization shall be transparent, and limited to
the given purpose (Hewson and Buchanan, 2013).
Any user-augmented classification efforts risk in-
voking stereotyping and essentialism, as the algo-
rithm labels people as misinformation spreaders
or not. Such stereotypes can cause harm even if
they are accurate on average differences (Rudman
and Glick, 2012). These can be emphasized by the
semblance of objectivity created by the use of an
algorithm (Koolen and van Cranenburgh, 2017).

We acknowledge that our research could be used
in order to identify gullible individuals that are
susceptible to fake news, which enables malicious
parties to promote their propaganda. However, the
intended use of this research is to limit the misin-
formation spread by addressing this problem at its
origin, therefore our data and the code implementa-
tion provided in this work, should only be used for
research purposes.

Other limitations. Automatically labelled
datasets should be utilized with caution since
they might include wrongly labeled posts and, by
extension, wrongly labeled users. For example,
a number of posts contained multiple links from
mixed sources (credible and non-credible). In
this paper, we utilized the same labeling method
of such posts as Sakketou et al. (2022), where
a post is considered misinformation when there
is at least one non-credible news source cited.
This includes cases where the number of real
news sources overcomes the number of fake news
sources within one post. We argue that the ratio of
the non-credible to credible news sources posted
in one post should be considered as a labeling
threshold instead. More specifically, if more than
half the sources within one post are non-credible,
only then should it be labeled as misinformation.

We acknowledge that there is a very thin line

separating real news spreaders and misinformation
spreaders, however in future works a new class
of “potential misinformation spreaders” could be
introduced for the users that are on the fence.
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A Appendix

A.1 Dataset
A.1.1 Analysis of the linguistic differences
To get an intuition for the actual linguistic differ-
ences between the two user groups of misinfor-
mation spreaders and real news spreaders, we ex-
tracted the learned token weights from the SVM
model in order to study the predictiveness of the
tokens for each class (Guyon et al., 2002). The
most predictive tokens are shown in Table 8. It
can be seen that there’s a tendency for misinforma-
tion spreaders to reference politically left-leaning
groups as “liber”, “dem”, “left” or “blm” (referring
to the Black Lives Matter movement), while real
news spreaders use the terms “fascist” and “repub-
lican” with higher frequency.

Label Tokens

Misinformation
Spreaders

china, video, come, offici, blm, corrupt,
media, away, liber, order, new, trump’s,
seem, wrong, kill, left, dem, riot

Fact Checkers
public, first, week, understand, trial,
fascist, republican, war, one, forced-birth,
health, pleas, power, let, shock, view, service

Table 8: Top-ranked tokens for each label.

A.2 Social graph construction
Figure 5 shows the transformation of the thread
structure into a social graph.

Figure 5: Transforming a post/reply tree in social me-
dia into a social graph network.

A.3 Temporal Analysis of Nodes
Centrality. Figure 6 depicts the graph centrality
normalized by the number of posts. This metric
helps in identifying important nodes in a graph. We
can see that, in the linguistic graph, the centrality of
the misinformation spreaders and real news spread-
ers follows a similar pattern but fluctuates a lot over
time. Interestingly, there’s an obvious increase in
the centrality of both classes during August, right
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Figure 6: Approximated (k=1000) graph centrality nor-
malized by post amount calculated for all time spans
for the semantic (left) and social (right) graph.

after former President Trump announced the pos-
sibility of postponing the US elections (see Table
2). This increase is more obvious in the misinfor-
mation spreaders, meaning that they are discussing
a particular topic more extensively compared to
the real news spreaders. In the social graph, we
observe a great difference in the values of cen-
trality between misinformation spreaders and real
news spreaders. This metric shows that misinfor-
mation spreaders are gathered in the center of the
graph, while real news spreaders are in the periph-
ery of the graph and are not that densely connected
to each other. This essentially indicates that mis-
information spreaders form a densely connected
“community” and marginalize real news spreaders.
The centrality of the misinformation spreaders de-
creases over time, while in the case of real news
spreaders it fluctuates but still stays within a spe-
cific range. This apparent dynamically changing
behavior of the nodes supports our choice of tem-
poral modelling of the graphs.

Homophily. In Figure 7, we show the amount of
homophily observed for both semantic and social
graphs, which is defined as the percentage of edges
that connect users with the same label. Interest-
ingly, we observe that in the semantic graph the
homophily follows different patterns in misinfor-
mation spreaders and real news spreaders, and it
is fluctuating over time. In the social graph, the
misinformation spreaders have consistently higher
homophily than real news spreaders, which means
that they tend to interact and exchange opinions
more with each other compared to real news spread-
ers. These results complement the edge analysis
from Section 4.3 which shows that users from the
same credibility group tend to socially interact
more with each other, which is more apparent in
misinformation spreaders.
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Figure 7: Amount of homophily observed through time
for both semantic (left) and social graph (right).

A.4 Connections’ percentage

We define the connections’ percentage of a certain
edge type as ρedge type = r

(τ)
edge type/R

(τ)
edge type, where

r
(τ)
edge type is the number of edges (of that edge type)

that exist between two users during the time period
τ and R(τ)

edge type is the number of all possible con-
nections (of that edge type) at the time period τ ,
computed as follows:

R
(τ)
m2m = N (τ)

m (N (τ)
m − 1)/2

R
(τ)
r2r = N (τ)

r (N (τ)
r − 1)/2

R
(τ)
m2r = (N (τ)

m +N (τ)
r )(N (τ)

m +N (τ)
r − 1)/2

where N
(τ)
m is the number of misinformation

spreaders and N
(τ)
r is the number of real news

spreaders that have posted at least one post at time
period τ .

A.5 Training Setup

We use the pretrained model
‘all-mpnet-base-v2’ from SBERT3,
which achieved the best performance on various
challenging similarity datasets (Cer et al., 2017).
This model has max length set to 512, uses mean
pooling and has the output dimension db = 768.
The users’ historical representations are obtained
as described in Section 4.1 For each post in the
user history, we masked the links so that the cosine
similarity is not attributed based on the links. We
run experiments with δ ∈ 15, 30, 60, 360 (δ is
the number of days spanned by each that each
time period τ ). In each sample, we randomly
sample n ∈ 200, 400, 800, 1200 users, and we
build a subgraph of those users for each discrete
time window. In the semantic graph, we connect
users with each other based on the hyperparameter
θ ∈ [0, 1] (as defined in Section 4.2). We find

3https://www.sbert.net/docs/pretrained_models.

html

(a) Time split. Splitting the time periods in order to predict
future user behavior.

(b) User split. Splitting the users in order to predict the
behavior of unseen users.

(c) Mixed split. Splitting the users and the time periods in
order to predict the behavior of unseen users in the future.

Figure 8: Visual demonstration of the (a) Time split, (b)
User split and (c) Mixed split.

out that our model works best with the following
hyperparameters: n = 200, δ = 30, θ = 0.8. For
the models initialized with User2Vec embeddings,
we use the dimensions dg = 100 for our graph
layer and dr = 50 for our GRU sequential layer.
On the other hand, for the models initialized
with UBERT embeddings we use the dimensions
dg = 256 for our graph layer and dr = 128 for our
GRU sequential layer. We use Adam optimizer
(Kingma and Ba, 2015) with learning rate 5e− 5,
weight decay 1e− 2, and train the model for 100
epochs using early stopping with patience 20 on
the validation set. We run each experiment with
5 random seeds and report the mean result on
the test set in Tables 3, 4 and 5. DyGAT model
using User2Vec embeddings as initialization has
116K parameters, while DyGCN and DyHGCN
have 55K parameters. On the other hand, DyGAT
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Semantic graph
Time Split User Split Mixed Split

F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall

U
B

E
R

T DyGAT 49.64 45.09 55.22 33.44 40.46 28.49 43.18 40.09 46.77
DyGCN 46.55 45.52 47.63 36.8 41.06 33.33 44.44 41.9 47.31
DyHGCN 45.97 34.3 69.65 52.45 48.2 57.53 44.81 33.88 66.13

U
2V

DyGAT 47.85 42.89 54.11 42.86 54.1 35.48 44.44 45.98 43.01
DyGCN 41.47 49.56 35.65 52.09 45.9 60.22 49.77 44.17 56.99
DyHGCN 0 0 0 0 0 0 10.38 42.31 5.91

Table 9: Reported F1-score, Precision and Recall on the fake news spreader class for the FACTOID dataset utilizing
the semantic graph. All results are in percentages. Bold indicates the best macro F1-score on both classes.

Social graph
Time Split User Split Mixed Split

F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall

U
B

E
R

T DyGAT 47.14 43.07 52.05 41.42 46.05 37.63 46.43 44.17 48.92
DyGCN 44.97 51.28 40.04 39.5 47.37 33.87 39.89 40 39.78
DyHGCN 47.39 35.25 72.29 51.99 40.18 73.66 32.71 53.01 23.66

U
2V

DyGAT 57.24 41.84 90.61 43.24 48.98 38.71 48.36 42.92 55.38
DyGCN 41.85 51.54 35.23 48.9 44.84 53.76 44.05 41.63 46.77
DyHGCN 46.74 47.74 45.78 54.47 45.07 68.82 46.21 34.78 68.82

Table 10: Reported F1-score, Precision and Recall on the fake news spreader class for the FACTOID dataset
utilizing the social graph. All results are in percentages. Bold indicates the best macro F1-score on both classes.

using UBERT embeddings as initialization has 1M
parameters, while DyGCN and DyHGCN have
427K parameters. Our experiments for each model
take around 1 hour to run on NVIDIA A100-PCIE
40GB GPU. Our implementation, the annotated
dataset, and the results are publicly available to
facilitate reproducibility and reuse.

A.6 Detailed Experimental Results

A.6.1 Comparison of the graph types

Tables 9 and 10 show the F1-score, Precision and
Recall on the fake news spreader class for the
FACTOID dataset utilizing the semantic and so-
cial graphs respectively. Given the same combi-
nation of setups, i.e different splits, GNN and em-
bedding initialization, we qualitatively compared
the results obtained by utilizing the semantic and
social graphs. We report the findings regarding the
cases with the best macro F1-scores (in bold).

In the time split, for the DyGAT+UBERT model,
we observed that the results are not significantly
different when comparing the utilization of seman-
tic and social graphs. In the same split, for the
DyHGCN+User2Vec model, we note that 24.99%
of the users were classified differently by the se-
mantic and social models, this difference is ex-

pected since the difference between the F1-scores
obtained by each graph type is more than 20%.
When the semantic graph is utilized, we observe
that DyHGCN+User2Vec fails to recognize any of
the misinformation speaders, however it achieves
an impressively high performance with the social
graph. This result is justified due to the low hyper-
bolicity values of the semantic User2Vec graph as
mentioned in Section 7.1.

In the user split, for the DyHGCN+UBERT
model, we note that 32.54% of the users were clas-
sified differently from the semantic and social mod-
els, even though the difference between their macro
F1-scores is only 4%. By utilizing the semantic
graph, the model yields to a worse Recall for the
fake news spreader class, but higher Recall for the
real news spreader class. In the same split, for the
DyHGCN+User2Vec model, we note that 39.72%
of the users were classified differently, however
this difference is expected since the F1-scores ob-
tained by the semantic and social models have more
than 20% difference between them. Once more we
observe a staggering difference between the F1-
scores obtained from semantic and social models,
with the social model achieving the highest score.

In the mixed split, for the DyGCN+User2Vec
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model, we note that 27.55% of the users were clas-
sified differently. We observe that the model ob-
tains higher recall on the fake news spreader class
when the semantic relationships are utilized, in-
stead of the social ones. In the same split, for the
DyHGCN+UBERT model, we observe that 7.82%
of the users were calculated differently. By uti-
lizing the social graph, the model achieves higher
Recall on the fake news spreader class.
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Abstract

The Shared Task on Natural Language Premise
Selection (NLPS) asks participants to retrieve
the set of premises that are most likely to be use-
ful for proving a given mathematical statement
from a supporting knowledge base. While pre-
vious editions of the TextGraphs shared tasks
series targeted multi-hop inference for expla-
nation regeneration in the context of science
questions (Thayaparan et al., 2021; Jansen and
Ustalov, 2020, 2019), NLPS aims to assess the
ability of state-of-the-art approaches to operate
on a mixture of natural and mathematical lan-
guage and model complex multi-hop reasoning
dependencies between statements. To this end,
this edition of the shared task makes use of a
large set of approximately 21k mathematical
statements extracted from the PS-ProofWiki
dataset (Ferreira and Freitas, 2020a). In this
summary paper, we present the results of the
1st edition of the NLPS task, providing a de-
scription of the evaluation data, and the partic-
ipating systems. Additionally, we perform a
detailed analysis of the results, evaluating vari-
ous aspects involved in mathematical language
processing and multi-hop inference. The best-
performing system achieved a MAP of 15.39,
improving the performance of a TF-IDF base-
line by approximately 3.0 MAP.1

1 Introduction

The articulation of mathematical language repre-
sents a core feature of human intelligence, requir-
ing complex reasoning capabilities and abstraction
as well as a correct evaluation of the semantics
of mathematical structures and its internal com-
ponents (Greiner-Petter et al., 2019). Moreover,
mathematical language consists in a combination
of words and symbols, which act following dif-
ferent rules and alphabets, but preserving, at the
same time, mutual dependencies that are necessary

1Data and code available online: https:
//github.com/ai-systems/tg2022task_
premise_retrieval.

Figure 1: Given a mathematical statement s, that
requires a mathematical proof, and a collection of
premises P , the task of Natural Language Premise Se-
lection (NLPS) consists in retrieving the premises in P
that are most likely to be useful for proving s (Ferreira
and Freitas, 2020a).

for the comprehension of mathematical discourse
(Ganesalingam, 2013).

These features provide a unique set of opportu-
nities for the evaluation of state-of-the-art models
in Natural Language Processing (NLP) (Ferreira
and Freitas, 2020a,b; Welleck et al., 2021). To en-
courage new lines of research at the intersection
of natural language and mathematics, we propose
the 1st Shared Task on Natural Language Premise
Selection (NLPS).

The NLPS task asks participants to retrieve the
premises that are most likely to be useful for prov-
ing a given mathematical statement from a support-
ing knowledge base (see Figure 1). Specifically,
NLPS is designed to assess the capabilities and be-
haviours of state-of-the-art approaches in dealing
with a mixture of natural language and mathemati-
cal text along with the modelling of complex multi-
hop dependencies between statements. To this end,
this edition of the shared task makes use of a large
set of approximately 21k mathematical statements
extracted from the PS-ProofWiki dataset (Ferreira
and Freitas, 2020a).

In this summary paper, we present the results of
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the 1st edition of the Natural Language Premise
Selection task, providing a detailed description of
the evaluation data, and the participating systems.
Moreover, we perform a detailed analysis of the be-
haviour of the participating systems, evaluating var-
ious aspects involved in mathematical language pro-
cessing (i.e., the ability to deal with an increasing
number of mathematical elements) and multi-hop
inference. The best performing system achieved
a MAP of 15.39, improving the performance of a
TF-IDF baseline by approximately 3.0 MAP, while
still leaving a large space for future improvements.

2 Natural Language Premise Selection

Given a mathematical statement s that requires a
mathematical proof, and a collection (or a knowl-
edge base) of premises P = {p1, p2, . . . , pNp},
with size Np, the task of Natural Language
Premise Selection (NLPS) consists in retrieving
the premises in P that are most likely to be useful
for proving s.

A mathematical statement can be a definition,
an axiom, a theorem, a lemma, a corollary or a
conjecture. Premises are composed of universal
truths and accepted truths. Definitions and axioms
are universal truths since the mathematical commu-
nity accepts them without proof. Accepted truths
include statements that need a proof before being
adopted. Theorems, lemmas and corollaries are
such types of statements. These statements were,
at some point, framed as a conjecture before they
were proven. As such, they can be grounded on past
mathematical discoveries, referencing their own
supporting premises (i.e., the background knowl-
edge that was used to prove the conjecture). This
network structure of available premises can be used
as a foundation in order to predict new ones. The
relationship between these statements can be lever-
aged to build models that can better perform infer-
ence for mathematical text (Ferreira and Freitas,
2020b,a).

The NLPS task can be particularly challenging
for existing Information Retrieval systems since
it requires the ability to process both natural lan-
guage and mathematical text (Ferreira and Freitas,
2020a; Ferreira et al., 2022). Moreover, as shown
in the example in Figure 2, the retrieval of certain
premises necessitates complex multi-hop inference
(Ferreira and Freitas, 2020b).

Statement Type Data Split

KB Train Dev Test All (Unique)

Definitions 7,077 0 0 0 7,077
Lemmas 252 134 70 69 252
Corollaries 161 113 57 57 275
Theorems 8,715 5,272 2,652 2,636 14,003

Total 16,205 5,519 2,778 2,763 21,746

Table 1: Types of mathematical statements present in
PS-ProofWiki. The table shows the number divided by
the data split. The last columns shows the total unique
entries for each mathematical type.

3 Training and Evaluation Data

PS-ProofWiki (Ferreira and Freitas, 2020a) has a
total of 21,746 different entries, composed of defini-
tions, lemmas, corollaries and theorems, as shown
in Table 1. Note that only the Knowledge Base
contains definitions since definitions do not contain
proofs and, consequently, do not have premises.
However, definitions are often used as premises
playing a fundamental role in the NLPS task. There
also exists an intersection between the KB and the
training set. Accordingly, we include the last col-
umn to account for all unique entries in the dataset.

Figure 3 presents a histogram with the frequency
of the different number of premises. We can ob-
serve that the statements usually have a small num-
ber of premises, with 9, 640 (Around 87% of the
entries in the Train/Dev/Test set) statements con-
taining between one and five premises. The highest
number of premises for one theorem is 72.

Similarly, the histogram in Figure 4 shows the
frequency of the dependencies between statements,
reporting how many times each statement is used as
a premise. A total of 4,236 statements is connected
to between one and three dependants. On aver-
age, the statements contain a total of 289 symbols
(characters and mathematical symbols).

The dataset provides a specific semantic mod-
elling challenge for natural language processing as
it requires specific tokenisation and the modelling
of specific discourse structures tailored towards
mathematical text, such as encoding mathemati-
cal elements along with natural language, and en-
coding the relationship between conjectures and
premises.

4 System Descriptions and Performance

Following the previous editions of the TextGraphs
Shared Tasks on Multi-Hop Inference for Explana-
tion Regeneration (Thayaparan et al., 2021; Jansen
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Figure 2: Example of premises requiring multi-hop inference.

Figure 3: Distribution of the number of premises in
the ProofWiki corpus. Log transformation is applied to
facilitate visualisation for the y axis.

and Ustalov, 2020, 2019), we frame Natural Lan-
guage Premise Selection (NLPS) as a ranking
problem. To this end, the participating systems
have been evaluated using Mean Average Precision
(MAP) at K, with K = 500. Specifically, the top
500 premises retrieved for supporting a given math-
ematical statement are compared against the gold
premises in the corpus via MAP.

The competition has been organised on Co-
daLab (Pavao et al., 2022),2 with a total of four
teams submitting their solutions to the leaderboard
(Tran et al., 2022; Trust et al., 2022; Kovriguina
et al., 2022; Dastgheib and Asgari, 2022). Table 2

2https://codalab.lisn.upsaclay.fr/
competitions/5692

Figure 4: Number of times a statement is referred as
a premise. Log transformation is applied to facilitate
visualisation for the y axis.

presents the overall results of the evaluation phase
(test-set). In general, the shared task attracted a
diverse set of submissions adopting methods span-
ning from state-of-the-art Transformers (Vaswani
et al., 2017) to lexical-based approaches. All the
participating systems improved the performance of
a TF-IDF baseline, with the best performing sys-
tem (IJS) achieving a MAP score of 15.39. How-
ever, the relatively low performances of the sys-
tems demonstrate that the task is still challenging
for existing models, leaving large space for future
improvements.

Here, we summarize the key features of the mod-
els proposed by the participating teams:
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Team Name MAP

IJS (Tran et al., 2022) 15.39
UNLPS (Trust et al., 2022) 15.16
Kamivao (Kovriguina et al., 2022) 14.60
langml (Dastgheib and Asgari, 2022) 14.14

TF-IDF baseline 12.28

Table 2: Overall results of the 1st Shared Task on Natu-
ral Language Premise Selection (NLPS).

TF-IDF baseline. The shared task data distribu-
tion included a baseline that employs a term fre-
quency model (TF-IDF) (see, e.g. Manning et al.,
2008, Ch. 6). Specifically, the TF-IDF baseline
employs sparse vector representations in combina-
tion with cosine similarity to estimate how likely a
given premise in the knowledge base supports the
mathematical statements provided as input. This
baseline achieves a MAP score of 12.28.

IJS (Tran et al., 2022). The team investigates the
task of NLPS evaluating the impact of Transformer-
based contextual representations along with several
similarity metrics for retrieval. Specifically, the au-
thors propose a systematic evaluation of different
pre-trained Sentence-Transformers (Reimers and
Gurevych, 2019) using a bi-encoder architecture.
In order to rank the premises, the authors extract
the contextual representation from different Trans-
formers, computing the similarity scores to rank
how likely the sentences in the supporting knowl-
edge base are to be a part of the set of premises
for a given mathematical statement. The authors
observe that the best performance are obtained via
RoBERTa large (Liu et al., 2019) and Manhattan
distance achieving a MAP score of 15.39.

UNLPS (Trust et al., 2022). Similar to
IIJS, the team explore the usage of Sentence-
Transformers (Reimers and Gurevych, 2019), em-
ploying a bi-encoder architecture for addressing the
NLPS task. The team does not rely on fine-tuning
techniques but, instead, adopts pre-trained Trans-
formers to retrieve the most relevant premises via
a cosine similarity score. The team demonstrated
that employing the Sentence-Transformer SMPNet
model, which internally adopts a pre-trained MP-
Net (Song et al., 2020), yields a MAP score of
15.16.

Kamivao (Kovriguina et al., 2022). The team
proposes an approach based on a mixture of dense

retrieval and prompt-based methodology. Specifi-
cally, the proposed model combines a bi-encoder
based on a pre-trained Sentence-Transformer
(Reimers and Gurevych, 2019) (BERT (Devlin
et al., 2019) and MathBERT (Peng et al., 2021))
with a GPT3 model (Brown et al., 2020) which is
instructed to re-rank a set of candidate premises.
In the first stage, the model uses bi-encoders and
cosine similarity to retrieve a list of potentially
relevant premises, while in the re-ranking stage,
the authors adopt a prompt-based methodology to
construct specific instructions for GPT-3. This ap-
proach achieves a MAP score of 14.60.

Iangml (Dastgheib and Asgari, 2022). The
team proposes a method that relies on keywords
extraction and matching to select relevant premises.
The proposed approach employs a keyword extrac-
tor (Campos et al., 2020) to generate up to 20 key-
words for each sentence. The team proposes and
evaluates a range of similarity functions based on
the extracted keyworkds through the generation of
sparse embeddings. The embeddings are generated
using the fastText model (Joulin et al., 2017). The
scoring functions are then applied to re-rank the
top 500 premises retrieved by the TF-IDF base-
line. Their experiments show that the Jacardian
similarity scoring function yields the best MAP
performance of 14.14.

5 Detailed Analysis

In order to better evaluate and characterise the be-
haviour of the proposed systems beyond the ag-
gregated MAP score, we carried out an additional
analysis by partitioning the set of mathematical
statements according to different categories.

Specifically, we categorise the statements in the
test-set according to the total number of occurring
mathematical elements (e.g., equations, variables,
etc.) and the total number of gold premises. In par-
ticular, these categories allow for the evaluation of
the behaviour of the systems when (a) dealing with
a mixture of natural language and mathematical
text and (b) retrieving premises that require multi-
hop inference. The larger the number of premises
supporting a given mathematical statement, in fact,
the higher the number of inference steps that are
likely to be required in the NLPS task.

The results of this analysis are reported in Table
3 and Table 4.
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Team Name Overall 0–5 5–10 10–20 20+

IJS 15.39 13.89 17.37 13.95 9.36
UNLPS 15.16 13.53 17.43 14.03 10.08
Kamivao 14.60 13.58 16.07 13.73 7.46
langml 14.14 12.24 16.20 13.86 7.62

TF-IDF baseline 12.28 11.27 13.29 11.70 7.15

Table 3: MAP score by number of mathematical elements in a mathematical statement.

Team Name Overall 0–5 5–10 10–20 20+

IJS 15.39 15.96 13.37 10.92 5.89
UNLPS 15.16 15.67 13.33 10.57 5.40
Kamivao 14.60 15.05 12.84 10.03 6.76
langml 14.14 14.45 12.95 10.86 8.02

TF-IDF baseline 12.28 12.64 11.47 8.93 7.84

Table 4: MAP score by number of gold premises supporting a mathematical statement.

5.1 Number of Mathematical Elements

In order to count the number of mathematical el-
ements in a given statement, we create apposite
regular expressions leveraging the special charac-
ters used to write equations in LaTeX (e.g., “$”).
Subsequently, we recompute the performance of
the systems, grouping the statements in the test-set
by the number of occurring mathematical elements
(see Table 3).

Overall, the analysis reveals that the perfor-
mances significantly decrease for all the partici-
pating systems, including the TF-IDF baseline. In
addition, we observe that the second system in the
overall ranking (UNLPS) is actually the most ro-
bust when dealing with an increasing number of
mathematical elements. Since IJS and UNLPS em-
ploy a similar architecture based on pre-trained
Sentence-Transformers (Reimers and Gurevych,
2019), the difference in results might be attributed
to the specific model adopted in the experiments.
UNLPS, in fact, adopts a pre-trained MPNet (Song
et al., 2020) while IJS uses RoBERTa-large (Liu
et al., 2019). At the same time, the overall decrease
in performance confirms that additional work is
still required to make Transformer-based represen-
tations able to deal with a mixture of natural lan-
guage and mathematical text (Ferreira et al., 2022).

5.2 Number of Gold Premises

We perform a similar analysis by grouping the
mathematical statements in the test-set according

to the number of gold supporting premises. In
this case, we assume that the larger the number of
premises, the higher the probability of systems re-
quired to perform multi-hop inference for address-
ing the NLPS task (see Table 4).

Overall, a similar trend can be observed when
investigating the behaviours of the systems on state-
ments requiring an increasing number of support-
ing premises. The results in Table 4, in fact, show
that the performances substantially decrease as the
number of gold premises increases, with compa-
rable MAP scores across different systems when
considering a number of premises varying from
5 to 20. Surprisingly, when considering state-
ments with more than 20 premises, we observe
an almost entirely inverse ranking in the leader-
bord, with Iangml becoming the best perform-
ing system, outperforming more complex models
based on Transformers. Moreover, we observe
that with 20+ premises the top 3 participating sys-
tems achieve worse performance than the TF-IDF
baseline. These results indicate that pre-trained
Transformers are still not robust on multi-hop in-
ference in this context, and might suffer from a
phenomenon of semantic drift similar to what pre-
viously observed in scientific explanation regener-
ation tasks (Jansen and Ustalov, 2019; Valentino
et al., 2022, 2021).
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6 Related Work

Mathematical Language Processing. Several
areas of research apply Natural Language Process-
ing for domain-specific tasks, Mathematics being
one of these areas. One crucial task in this field
is solving mathematical word problems, where the
goal is to provide the answer to a mathematical
problem written in natural language (Zhang et al.,
2020; Kushman et al., 2014; Ran et al., 2019).
These problems are usually self-contained and are
structured in a didactic and straightforward manner,
not containing complex mathematical expressions.

Some contributions focus on the representation
of mathematical text and mathematical elements.
Zinn (2004) proposes a representation for mathe-
matical proofs using Discourse Representation The-
ory. Similarly, Ganesalingam (2013) introduces a
grammar for representing informal mathematical
text, while Pease et al. (2017) presents this style
of text using Argumentation Theory. Such explicit
representations are relevant for representing the
reasoning process behind mathematical thinking.
However, it is still not possible to accurately extract
these representations at scale. Representations of
mathematical elements are often used in the con-
text of Mathematical Information Retrieval, used,
for example, for obtaining a particular equation
or expression, given a specific query. Tangent-
CFT (Mansouri et al., 2019) is an embedding model
that uses the subparts an expression or equation,
to represent its meaning. This type of representa-
tion (Fraser et al., 2018; Zanibbi et al., 2016) often
removes the expression for its original discourse,
losing the textual context that can help to find a
semantic representation. In this work, we focus on
creating a representation that can integrate both of
these aspects, natural language and mathematical
elements. Similar to our work, Yuan et al. (2020)
uses self-attention for mathematical elements in
order to generate headlines for mathematical ques-
tions. Other relevant tasks for NLP applied to Math-
ematics include typing variables according to its
surrounding text (Stathopoulos et al., 2018), obtain-
ing the units of mathematical elements (Schubotz
et al., 2016) and generating equations on a given
topic (Yasunaga and Lafferty, 2019).

Premise Selection. Premise selection is a well-
defined task in the field of Automated Theorem
Proving (ATP), where proofs are encoded using
a formal logical representation. Given a set of

premises P , and a new conjecture c, premise selec-
tion aims to predict those premises from P that will
most likely lead to an automatically constructed
proof of c, where P and c are both written using
a formal language. (Alemi et al., 2016) is one of
the first models to use Deep Learning for premise
selection in ATPs. Ferreira and Freitas (2020a)
proposed an adaptation of this task, focusing on
mathematical text written in natural language. A
model based on Graph Neural Networks has been
previously introduced for this task (Ferreira and
Freitas, 2020b), however, the authors do not take
into account the differences between mathematical
and natural language terms, representing all state-
ments homogeneously. The premise selection task
can also be seen as an explanation reconstruction
task, where premises are considered explanations
for mathematical proofs.

Multi-Hop Natural Language Inference. The
proposed NLPS task is related to previous work
on Multi-Hop Inference and Explanation Regen-
eration as the set of premises retrieved by a given
model can be interpreted as an explanation support-
ing the mathematical statement provided as input
(Thayaparan et al., 2020; Xie et al., 2020; Valentino
et al., 2022). Previous editions of the shared tasks
series have focused on evaluating multi-hop infer-
ence in the context of science question answer-
ing (Thayaparan et al., 2021; Jansen and Ustalov,
2020, 2019). In this work, instead, we aim to assess
the multi-hop inference capabilities of NLP mod-
els in a context requiring the articulation of both
natural language and mathematical expressions.

7 Conclusion

Our shared task on Natural Language Premise Se-
lection (NLPS) attracted a total of four partici-
pating teams, allowing for the evaluation of a di-
verse set of solutions ranging from Transformers
to lexical-based approaches. The participating sys-
tems have all contributed to improving the perfor-
mance of a TF-IDF baseline. The best-performing
team, IJS, presented an approach based on pre-
trained Sentence-Transformers, which has been
shown to achieve a MAP score of 15.39. Given the
challenges involved in the task, supported by the
relatively low performance of state-of-the-art ap-
proaches, we hope this work will encourage future
research in the field, exploring NLPS as a bench-
mark for testing complex inference capabilities and
exploring the limit of AI and NLP models.
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Abstract

Natural Language Premise Selection (NLPS)
is a mathematical Natural Language Process-
ing (NLP) task that retrieves a set of use-
ful relevant premises to support the end-
user finding the proof for a particular state-
ment. In this paper, we evaluate the impact
of Transformer-based contextual information
and different fundamental similarity scores to-
wards NLPS. The results demonstrate that the
contextual representation is better at captur-
ing meaningful information despite not be-
ing pretrained on mathematical background
in comparison with the statistical approach
(e.g., the TF-IDF) with a boost of around
3.00% MAP@500. Our code is publicly avail-
able at https://github.com/honghanhh/premise-
selection.
Keywords: Premise selection, NLPS, contex-
tual information, Transformers.

1 Introduction

Natural Language Premise Selection (NLPS) (Fer-
reira and Freitas, 2020a), inspired by the field of
Automated Theorem Proving, is a mathematical
NLP task that retrieves a set of useful relevant
premises. Given a mathematical statement writ-
ten in natural language as the input, NLPS systems
predict the relevant premises that could support
an end-user finding a proof for that mathematical
statement.

Mathematically, NLPS task can be defined as:

Definition 1.1. Given a new mathematical state-
ment s, that requires a mathematical proof, and a
collection (or a knowledge base) of premises P =
p1, p2,. . . , pNp, with size Np, retrieve the premises
in P that are most likely to be useful for proving s.

The premises often include supporting defini-
tions and propositions, which can act as expla-
nations for the proof process. Figure 1 presents
examples of 2 premises that support a given mathe-
matical statement or theorem.

Figure 1: Example premises supporting a given theorem
(Ferreira and Freitas, 2020a).

Most of the existing systems focus on manual
feature engineering or statistical approaches to ex-
tract meaningful mathematical knowledge, with
one exception being the study by Ferreira and Fre-
itas (2020b), where they tackle the task by employ-
ing Deep Convolutional Graph Neural Networks
(DCGNN) on graph representations. The state of
the art models for NLP such as BERT (Devlin et al.,
2016) are not fully explored under the assumption
that they do not encode the intricate mathemati-
cal background knowledge needed to reason over
mathematical discourse.

The 1st Shared Task on Natural Language
Premise Selection (Valentino et al., 2022), or-
ganized as part of the TextGraphs 2022 work-
shop, presented one of the first opportunities to
systematically compare different approaches to-
wards a NLPS task in an Information Retrieval set-
ting, by adopting PS-ProofWiki (Premise Selection-
ProofWiki) dataset (Ferreira and Freitas, 2020a).
This dataset can be considered as the baseline cor-
pus for our specific shared task.

The contributions of this paper can be sum-
marised as follows:

• An empirical evaluation of several contextual
representations relying on Transformer-based
language models;
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• Evaluation of the performance of different
similarity scores, including Cosine, Euclidean,
and Manhattan score on the NLPS task.

This paper is organised as follows: Section
2 presents the related work in premise selection.
Next, we introduce our methodology, experimen-
tal setup and evaluation metrics in Section 3. The
corresponding results are presented in Section 4.
Finally, we conclude our work and suggest future
directions in Section 5.

2 Related work

In this section, we present the related research in
NLP applied to the NLPS task in the domain of
Automated Theorem Proving.

The research was first introduced by Alama et al.
(2014), who employed corpus analysis and kernel-
based methods, in order to showcase the usefulness
of automatic premise selection systems for proving
the conjectures in the field of Automated Theo-
rem Proving (ATP). Few years later, Irving et al.
(2016) proposed a neural deepmath-deep sequence
architecture for premise selection using formal
statements from the Mizar corpus, which solved
67.90% of the conjectures present in the Mathemat-
ical Mizar Library. Other machine learning based
approaches have also been investigated for the task
at hand (e.g. KNN (Gauthier and Kaliszyk, 2015),
Random Forest (Färber and Kaliszyk, 2015), to
mention a few).

Similar to the previous research, (Ferreira and
Freitas, 2021) formulate this problem as a pair-
wise relevance classification problem and present
STAR, a cross-modal representation for mathemati-
cal statements with two layers of self-attention, one
for each language modality present in the mathe-
matical text.

Recently, Ferreira and Freitas (2020a) intro-
duced a new systematic formulation of the task
under the name Natural Language Premise Selec-
tion (NLPS) and published a new evaluation cor-
pus called NL-PS. They propose two baseline ap-
proaches, using TF-IDF and PV-DBOW (Le and
Mikolov, 2014). Additionally, they also suggested
to model the task as a pairwise relevance classifi-
cation problem and tackled it by employing neu-
ral contextual representations, namely BERT and
SciBERT (Beltagy et al., 2019).

While the previous work focused on capturing
either content (local) or structural dependencies

(global) across natural language mathematical state-
ments, Ferreira and Freitas (2020b) were the first
to consider NLPS as a link prediction problem us-
ing Deep Convolutional Graph Neural Networks
(DCGNN), with the aim of capturing both local and
global information. Their study demonstrates the
capability of graph embeddings to capture struc-
tural and content elements of mathematical state-
ments.

3 Methodology

3.1 Data
The experiments are conducted on PS-ProofWiki
(so-called Premise Selection-ProofWiki) dataset
(Ferreira and Freitas, 2020a), which contains 3 sub-
sets: training set, development set, and test set.
Each mentioned subset includes a list of mathemat-
ical statements and their relevant premises. The
number of instances in each subset are presented in
Table 1. Besides, there is a knowledge base support-
ing these statements, which contains approximately
16,205 premises.

Subsets Amount

Training set 5,519
Development set 2,778

Test set 2,763

Table 1: The number of examples in PS-ProofWiki’s
subsets.

Initially, the dataset was used for evaluating se-
mantic representations (e.g., textual entailment and
inference for mathematics (Ferreira and Freitas,
2020a), embeddings (Ferreira and Freitas, 2021),
or mathematical discourse (Ferreira et al., 2022)).
Regarding our research, we adopt the dataset for
NLPS task with the aim to retrieve the set of rele-
vant premises for a given statement in the test set by
ranking the sentences contained in the supporting
knowledge base.

3.2 Methods
Our research focuses on the impact of contextual in-
formation from Transformer-based language mod-
els compared with the statistical approaches (base-
lines) towards NLPS task. For simplification and
better comparison, we extract contextual represen-
tations from different Transformer-based language
models and compute several similarity scores to
rank how likely the sentences in the knowledge
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base are a part of the set of premises for a given
mathematical statement. The overall workflow is
presented in Figure 2.

We employ several Transformer-based models,
including PatentSBERTa (Bekamiri et al., 2022)
(PatentSBERTa), T5-Large (Raffel et al., 2020) (gtr-
t5-large and sentence-t5-large), RoBERTA-Large
(Liu et al., 2019) (all_datasets_v3_roberta-large),
Mpnet-Base (Song et al., 2020) (all-mpnet-base-
v2 and all-mpnet-base-v_outcome_sim), MiniLM
(Wang et al., 2020) (all-MiniLM-L6-v2 and ll-
MiniLM-L12-v2). The models were obtained from
the Hugging Face library1 and were chosen accord-
ing to the number of downloads and likes criteria.

Note that all the chosen models share the same
pretraining purpose: they aim to train sentence
embedding models on very large textual datasets
using a self-supervised learning objective. As sen-
tence Transformer models, they map the sentences
and paragraphs to a dense vector space. Thus, we
encoded the statements and premises into vector
representations and then used different similarity
metrics to calculate the similarity between a spe-
cific premise and the corresponding statement. The
obtained similarity scores are afterwards used for
ranking the premises in a descending order. We
keep top 500 most relevant premises for each state-
ment. We compare three similarity metrics, namely
Cosine, Euclidean, and Manhattan similarity. All
the experiments have been ran on a A100-PCIE-
40GB GPU.

3.3 Evaluation metrics

For each model, we retrieve the top 500 premises
from the knowledge base that support a given
statement. We use Mean Average Precision at K
(MAP@K) with K = 500 for the evaluation. This
evaluation metric has also been used in the related
work (Ferreira and Freitas, 2020a), thus our results
are directly comparable to the state of the art meth-
ods.

4 Results

In this Section, we evaluate the suitability of dif-
ferent contextual representations of premises from
the knowledge base for retrieving the top relevant
premises for a given statement in the test set. We
also compare the obtained results with the results
of the shared task baseline (Valentino et al., 2022).

1https://huggingface.co/

Table 2 presents the performance of con-
textual representations extracted from different
Transformer-based pretrained language models us-
ing Cosine similarity as the similarity metric. The
shared task baseline to which we compare our ap-
proaches uses a simple term frequency model (TF-
IDF) to rank how likely the sentences (premises) in
the knowledge base are a part of the set of premises
for a given mathematical statement.

Representation MAP@500

sentence-t5-large 0.134110
gtr-t5-large 0.139367

all-mpnet-base-v_outcome_sim 0.144706
PatentSBERTa 0.146141

all-MiniLM-L6-v2 0.146995
all-mpnet-base-v2 0.151724

all-MiniLM-L12-v2 0.152427
all_datasets_v3_roberta-large 0.153897

Baseline 0.122800

Table 2: Performance of different representations on the
test data using Cosine similarity score.

The results demonstrate that by employing
Transformer-based models we can outperform the
statistical baseline by a relatively large margin in
terms of the MAP@500 evaluation metric. The
best contextual representation for the task at hand
was obtained by employing the large version of
RoBERTa. Using this model, we can improve on
the baseline performance by 3.11 percentage points.
All tested contextual representations manage to
outperform the baseline, with the performance im-
provement ranging from about 1.00 to 3.00 percent-
age points in terms of MAP@500. This indicates
that contextual representations from Transformer-
based language models are capable of encoding
meaningful information from intricate mathemati-
cal background knowledge despite not being pre-
trained on domain-specific mathematical texts.

Similarity score MAP@500

Cosine 0.153897
Euclidean 0.153896
Manhattan 0.153902

Table 3: Similarity score performance on the test data
using RoBERTa embeddings

.
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Figure 2: Our general workflow.

Using the contextual representations obtained
from our best model, i.e. the large version of
RoBERTa, we also evaluate three different simi-
larity scores used for measuring similarity between
premise and statement representations, namely Co-
sine, Euclidean, and Manhattan similarities. The re-
sults presented in Table 3 show that Manhattan sim-
ilarity works slightly better than the other two simi-
larity measures, although the difference is marginal
in terms of MAP@500.

Teams MAP@500 Ranking

IJS 0.1539 1
PaulTrust 0.1516 2
kamivao 0.1460 3
langml 0.1414 4

Organizers 0.1228 5

Table 4: Ranking on the shared task leaderboard.

Table 4 presents comparison between our pro-
posed approach and the approaches proposed by
other teams participating in the shared task in terms
of rank and MAP@500. As can be seen, our system
outperforms all others. Regarding the reproducibil-
ity and complexity, our approach uses a simple
paradigm that is easy to reproduce and scale to
large knowledge bases, but nevertheless offers a
relatively efficient retrieval of premises.

5 Conclusion

In this paper, we have investigated the performance
of contextual representations towards the task of
Natural Language Premise Selection. We also eval-
uated the impact of different similarity scores. By
using the contextual information obtained from the
pretrained Transformer-based models in order to
obtain premise and statement representations, we
manage to outperform the baseline statistical ap-
proach using TF-IDF (the baseline) by a decent
margin of around 3 percentage points in terms of

MAP@500. These findings serve as a good ini-
tiative to explore the potential of using language
models’ for the NLPS task further. We also showed
that by using the Manhattan distance for measuring
similarity between representations, we can improve
the performance by a small margin.

There remains a lot of room for improvement. In
the future, we would like to investigate the effect of
different mathematical representations on the per-
formance of the model, e.g., by feeding the model
graph representations. Combinations of contextual
and graph representations will also be explored.
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Abstract

This paper describes our system for the sub-
mission to the TextGraphs 2022 shared task at
COLING 2022: Natural Language Premise Se-
lection (NLPS) from mathematical texts. The
task of NLPS regards selecting mathematical
statements called premises in a knowledge base
written in natural language and mathematical
formulae that are most likely to be used to
achieve a particular mathematical proof. We
formulated this solution as an unsupervised se-
mantic similarity task by first obtaining con-
textualized embeddings of both the premises
and mathematical proofs using sentence trans-
formers. We then obtained the cosine simi-
larity between these embeddings and then se-
lected premises with the highest cosine scores
as the most probable. Our system improves
over the baseline system that uses bag of words
models based on term frequency inverse docu-
ment frequency in terms of mean average pre-
cision (MAP) by about 23.5% (0.1516 versus
0.1228).

1 Introduction

Deep learning methods have achieved state of the
art performance across several natural language
processing (NLP) tasks in a wide variety of appli-
cations in several fields. Despite the importance
of the field of mathematics and its contribution
to scientific discovery, the application of NLP to
mathematical text is still under-explored (Ferreira
and Freitas, 2020a).

The task of natural language premise selection in
mathematical text is a novel application of NLP in
the field of mathematics. It involves selecting math-
ematical statements (premises) which are written
in natural language and mathematical formulae that
are most likely to be useful in proving a given con-
jecture or mathematical proof from a knowledge
base.

More formally, given a set of premises P and
a new conjecture c, all written in a combination

of free text and mathematical formulae, Natural
Language Premise Selection (NLPS) aims to select
premises from P that will be helpful in proving a
conjecture or proof c (Ferreira and Freitas, 2021).
This is not a trivial task since it involves compre-
hending mathematical text, which in turn requires
understanding of distinctive structure, discourse,
and dependencies within text.

Computational approaches have been proposed
to solve this task. For example, Ferreira (2021)
used a graph neural network trained in a super-
vised learning approach to extract the most rele-
vant premises (Ferreira and Freitas, 2020b). In this
work we formulate the Natural Language Premise
Selection task as an unsupervised semantic similar-
ity task by retrieving premises that have a higher
cosine similarity score with the given conjecture or
proof of interest. A straightforward way to solve
the task would have been to encode the premises
and conjectures using word embeddings, and then
perform cosine similarity to obtain the most rele-
vant premises as those with the highest cosine score.
However, this naive approach requires that both
sentences are fed into the neural network, which
causes a massive computational overhead. Addi-
tionally, for better performance fine tuning or pre-
training the models on downstream sentence pairs
may be necessary (Devlin et al., 2019), and that is
computationally expensive.

In this work, we propose to use SMPNet (Sen-
tence Masked and Permuted Language Model-
ing), a computationally efficient and effective sen-
tence transformer, which is a modification of the
pre-trained MPNet (Song et al., 2020a) that uses
Siamese and triplet network structure to derive se-
mantically meaningful sentence embeddings that
were used for this task. MPNet (Song et al., 2020a)
is a variant of transformer models (Vaswani et al.,
2017) that leverages the advantages of BERT (Bidi-
rectional Encoder Representations from Transform-
ers) (Devlin et al., 2019) and XLNet (Yang et al.,
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2019) (Generalized Autoregressive Pretraining for
Language Understanding) while avoiding their lim-
itations.

2 Related work

2.1 Natural Language Premise Selection

The applications of natural language processing to
mathematical text is still an under-explored area de-
spite its great potential. The following are some of
the key previous work on natural language premise
selection. (Ferreira and Freitas, 2020b) formulates
the task of premise selection from mathematical
text as a link prediction problem using a deep con-
volution neural network. (Ferreira and Freitas,
2021) proposes a cross-model attention to learn
mathematical text for natural language premise se-
lection.

Our work is different from the previous ap-
proaches in that we focus on unsupervised learning
approach using sentence transformers based on MP-
Net. This is an attempt to circumvent the labeling
issue, which is a hard one for mathematical text,
as well as improve the performance of the baseline
methods mentioned.

2.2 Text Representation

Text data in most cases need to be converted into
numerical values to be able to perform any mean-
ingful machine learning operations. The form in
which text is encoded directly influences the per-
formance of models on downstream tasks. The
traditional way to represent text is count-based ap-
proaches (bag of words). Bag of words approaches
(Ramos et al., 2003) represent text based on the
frequency of occurrence of terms in a document.
The challenges with these approaches is that they
sometimes do not capture any notion of similarity
among semantically related words.

Static word embedding approaches that repre-
sent words as outputs of a neural network, such as
word2vec (Mikolov et al., 2013) improved word
representations since it was very easy to retrieve
the most semantically related words for a given
target word. The key weakness of these approaches
is that the context in which the word is used is not
captured. That means that a word has the same vec-
tor representation regardless the context in which
it is used.

Contextualized language representations (Peters
et al., 2018; Devlin et al., 2019) captures the con-
text in which words are used improving perfor-

mance on downstream tasks. The challenges with
naive contextualized representations is that they are
are not adapted for semantic similarity tasks.

Sentence embeddings (Reimers and Gurevych,
2019) modify contextualized embeddings by com-
bining word embeddings in a sentence through a
pooling strategy. They are additionally pre-trained
and fine-tuned on a large corpus of sentence pairs
making them ideal for semantic similarity tasks.

3 Methodology

Consider a knowledge base K from which we re-
trieve a collection of N mathematical premises
P = {p1, ..., pN} written in natural language. We
would like to retrieve the premises P in K that are
most likely to be useful in proving a mathematical
statement or conjecture c ∈ {c1, ...cM}. We for-
mulate this task as a semantic similarity task by
retrieving premises P in K that were semantically
close to a given statement or conjecture c.

3.1 Embedding Construction

The organizers of the shared task on Natural
Language Premise Selection released a baseline
method alongside the data, which uses a term-
frequency inverse document frequency (TF-IDF)
model to find the semantically related premises
from a knowledge base given a mathematical con-
jecture, which is used to compare with our method.

3.1.1 Bag of words Baseline (TF-IDF)

TF-IDF (Term Frequency Inverse Document fre-
quency) is a combination of two word statistics:
term frequency, which is a measure of how many
times a word appears in a document and Inverse
Document frequency (IDF), which is a measure of
whether a term is common in a given document
(Ramos et al., 2003).

3.1.2 BERT

BERT (Devlin et al., 2019) is a transformer
model(Vaswani et al., 2017) that was pre-trained
in a bi-directional context with two objectives:
masked language modeling and next sentence pre-
diction using the bookcorpus (800 million words)
and English wikipedia (2,500 million words). Ad-
ditionally, the trained model can be fine-tuned for
downstream tasks. Word embeddings are extracted
from the last layers of the network.
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3.1.3 SBERT
SBERT (Sentence-BERT) (Reimers and Gurevych,
2019) is a modification of the pre-trained BERT net-
works using Siamese and triplet networks, which
make it able to derive semantically meaningful sen-
tence embeddings. This model was trained using
Stanford Natural Language Inference(SNLI) and
Multi-Genre Natural Language Inference (MNLI)
datasets. SNLI contained 570, 000 annotated sen-
tence pairs and MNLI contained 430000 annotated
sentence pairs.

3.1.4 SMPNet
SPMNet is a sentence transformer that uses a pre-
trained MPNet model and fine-tuned on a large and
diverse dataset of 1 billion sentence pairs using a
contrastive learning objective. In our experiments,
we particularly used the version named "all-mpnet-
base-v2" which maps sentences and paragraphs to
a 768 dimensional dense vector space (Reimers and
Gurevych, 2019).

The contextualized representations of the
premises and mathematical statements were ob-
tained using sentence embeddings with SPMNet
(Reimers and Gurevych, 2019). Let the obtained
sentence embeddings for mathematical premises
be PE and those for conjectures be CE .

3.2 Premise Selection
To identify the most important premises given a
mathematical conjecture, we calculate the cosine
similarity between the embeddings of the mathe-
matical conjectures CE and those of the mathemat-
ical premises PE as follows:

CosineSimilarity(PE , CE) =
PE ∗ CE

||PE]|| ∗ ||CE ||
(1)

To retrieve the most important premises from
knowledge base K for proving a conjecture C, we
rank the premises according to the cosine simi-
larity scores and select those premises that had
the highest cosine similarity scores with the given
mathematical conjectures

4 Experiments and Results

4.1 Datasets
The dataset used for experiments in this paper
was provided by the organizers of the shared task
on Natural Language Premise Selection organized
at TextGraphs-16, a workshop on Graph theory

and natural language processing at EMNLP 2022
(Valentino et al., 2022).

The dataset is composed of a training set (5, 519
instances), a development set (2, 778 instances),
and a test set (2, 763 instances), each including
a list of mathematical statements and their rele-
vant premises. The knowledge base supporting
these statements contains approximately 16, 205
premises (Valentino et al., 2022).

4.2 Evaluation and Experimental setup

Our proposed model was compared with the bag
of words baseline and other models using Mean
Average Precision (MAP). MAP is computed as
follows:

MAP =

∑N
i=1AvgP (Si)

N
(2)

where N is the total number of statements, Si is
the i−th mathematical statements and AvgP (Si)
is the average precision. The test set was hosted on
codalab (Valentino et al., 2022) by the organizers
of the shared task.

We used Sentence-Transformers library 1

(Reimers and Gurevych, 2019) for computing
sentence embedding for SBERT and SMPNet,
bag of words baseline was implemented using
sklearn package 2 (Pedregosa et al., 2011) and
BERT word embeddings were obtained using
the huggingface 3 library (Wolf et al., 2019).
Our code used for the experiments can be found
on https://github.com/TrustPaul/
Premise-selection-coling.git

4.3 Discussion

Table 1 shows the results of our proposed approach
(SPMNet) and the baseline models. Our approach
(SPMNet) achieves mean average precision (MAP)
of 0.151638 which is about 23% above the base-
line comparison method of bag of words, which
achieved MAP of 0.1228.

Additionally, we performed experimental com-
parison with SBERT, which is also a sentence trans-
former but with BERT as an underlying transformer.
Experiment results from the Table 1 reveal that
SBERT also outperforms the baseline bag-of-words
model but is outperformed by SMPNet. We hypoth-
esize that this is due to the impact of the underlying

1https://www.sbert.net/
2https://scikit-learn.org/
3https://huggingface.co/
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Model Mean Average Precision (MAP)
TF-IDF (Baseline) 0.1228
BERT Word Embedding 0.1109
Sentence BERT 0.1465
Sentence MPNet (Ours) 0.1516

Table 1: Mean average Precision (MAP) for models used in our experiments. TF-IDF stands for Term Frequency-
Inverse Document Frequency which is a bag of words baseline, BERT stands for Bidirectional Encoder Representa-
tions from Transformers and MPNet represents Masked and Permuted Pre-training for Language Understanding

transformer model used to generate sentence em-
beddings, since MPNet is often a better performing
model compared to BERT and also because SPM-
Net was fine-tuned on a larger dataset compared
SBERT (1 billion sentence pairs versus 570, 000
sentence pairs)(Song et al., 2020b).

Contrary to our expectations, naive word embed-
dings obtained by BERT are outperformed even by
the bag-of-words baseline model. This re-enforces
the role played by the pre-training procedure and
domain specific data employed in sentence trans-
formers for semantic similarity tasks (Reimers and
Gurevych, 2019).

5 Conclusion

In this work, we introduce an approach (SPMnet)
for natural language premise selection, which is a
task that involves finding the relevant theorems, ax-
ioms and definitions in natural language mathemati-
cal texts. Our proposed approach uses sentence em-
beddings based on the state-of-the-art transformer
MPNet (Masked and Permuted Language Model-
ing) generating high quality embeddings that we
used for retrieving the most important premises
for a given mathematical conjecture. The results
from our experiment show that the proposed ap-
proach (SPMNet) outperforms the baseline method
(TF-IDF) by 0.028838 in mean average precision
(MAP) which is a 23.5% improvement.
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Abstract

Extraction of supportive premises for a mathe-
matical problem can contribute to profound suc-
cess in improving automatic reasoning systems.
One bottleneck in automated theorem proving
is the lack of a proper semantic information
retrieval system for mathematical texts. In this
paper, we show the effect of keyword extrac-
tion in the natural language premise selection
(NLPS) shared task proposed in TextGraph-16
that seeks to select the most relevant sentences
supporting a given mathematical statement.

1 Introduction

A mathematical statement requires a collection of
appropriate definitions, previously proved state-
ments, and inference rules to be proved. The au-
tomatic reasoning field deals with computing sys-
tems automating proof procedures and proof check-
ing. One of the considerations in implementing
automatic deduction and artificial intelligence ap-
proaches is restricting the proof search space and
preventing the automatic prover from pursuing un-
fruitful reasoning paths. A dual aspect of search is
looking for previous results that could be useful in
proof completion (Portoraro, 2021).

Premise selection was initially introduced in
(Blanchette et al., 2016) as a task to select a part of
a formal library that improves the chance that an
automatic prover can prove a mathematical conjec-
ture. In (Irving et al., 2016), neural network-based
premise selectors were applied for the first time,
and (Ferreira and Freitas, 2021) reformulated the
problem as a pairwise relevance classification prob-
lem.

Similar challenges in mathematical context have
been proposed, such as ARQMATH (Zanibbi et al.,
2020) seeking an answers retriever and ranker for a
given mathematical question. An answer retriever
system mainly needs to consider mathematical text
similarities. However, the premise selector task

also requires a mathematical concept understanding
component.

In this study, we work on the shared-task intro-
duced by the 16th Workshop on Graph-Based Nat-
ural Language Processing (Valentino et al., 2022)
on natural language premise selection. In this task,
the teams are given a collection of mathematical
statements in natural language and the goal is to re-
trieve supportive premises from a knowledge-base
that can prove certain statements.

In this study we look into the effectiveness of
keyword extraction in selecting premises for prov-
ing each statement outperforms the TF-IDF-based
baseline.

2 Approach

2.1 Data Description
The dataset used in this task is a collection of math-
ematical statements and their premises extracted
from ProofWiki, available in (Ferreira and Freitas,
2020). Each statement in the dataset is expressed
in natural language, and the formulas are in LATEX
format. An overview of the dataset can be found in
Table 1. The collection contains 21614, statements
spanning 1227949, tokens in total.

2.2 Preprocessing
For data cleaning, we perform specific preprocess-
ing steps, e.g., removing LATEXcommands such as
begin that describe a part of a formula in the sen-
tence from the texts of statements. We perform
this step to avoid their extractions as keywords in
the next part of the pipeline. Then using an au-
tomatic keyword extractor (Campos et al., 2020),
we generate up to 20 keywords for each sentence.
Table 1 provides sample keywords for an example
statement.
Embedding. To compare the semantic and con-
text similarity of keywords, we also produce all
keywords embeddings using fastText embedding
pretrained on Wikipedia (Joulin et al., 2016).

124



Train Dev Test Knowledge Base
Instance
Number 5519 2778 2763 16205

Statement
Example

Let Qn = ⟨aj⟩0≤ j≤n be a geometric sequence of length n consisting of
positive integers only. Let a1 and an be coprime. Then the jth term of Qn

is given by: aj = qjpn−j

Premise
Example

Let ⟨xn⟩ be a geometric sequence in R defined as
xn = arn for n = 0, 1, 2, 3, . . .

The parameter: r ∈ R : r ̸= 0 is called the common ratio of ⟨xn⟩.
Statement Keywords Premise Keywords

sequence,
length,
consisting,
geometric,
positive,
integers,
coprime,
term

sequence,
defined,
geometric,
parameter,
called,
common,
ratio

Table 1: Overview of available dataset for retrieving supportive premises along with an example statement and one
of its premises with their respective extracted keywords.

2.3 Retrieval Approach
The retrieval system should assign a score between
the statements and their candidate premises. For
sentences S1, S2 in dataset (coming from statement
or premises) we extract the keyword sets KS1,
and KS2 respectively. We define our suggested
schemes for scoring as follows:

1. Keyword Jaccardian Similarity. The inter-
section cardinality over union cardinality of
extracted keywords from the statement and
the candidate premise:

Score(KS1,KS2) =
|KS1 ∩KS2|
|KS1 ∪KS2|

2. Keyword Affecting Relevance Score. We
measure the affecting relevance scores of key-
words in the intersection keywords set:

Score(KS1,KS2) =∑
ki∈KS1∩KS2

(1− ri1)× (1− ri2)

where ri1 and ri2 are keyword scores for key-
word ki in the sentences S1 and S2 respec-
tively.

3. Keyword Embedding Similarity. Sum of co-
sine similarity of embeddings in two keyword
sets:

Score(KS1,KS2) =∑
k1∈KS1,k2∈KS2

cos-sim(k1, k2)

We select the premises with maximum scores as
the ultimate premise for each statement.

2.4 Evaluation

The systems are supposed to rank the sentences in
the knowledge base premises for a given mathe-
matical statement. We evaluate our NLPS system
using Mean Average Precision (MAP) for 500 top
premises retrieved from the knowledge base and
introduced the term frequency (TF-IDF) model as
a baseline.

3 Results

The results achieved using methods described in the
previous section compared to the baseline score are
presented in Table 2. Keyword-based approaches
performed reasonably well in retrieving premises
for given mathematical statements and outper-
formed the TF-IDF-based baseline. However, the
embedding-based approach did not achieve compet-
itive performance. One reason can be the ambiguity
in the fixed embeddings as fastText.

4 Conclusions

In this paper, we checked the effectiveness of key-
word extraction of mathematical statements for
premise selection shared task NLPS and considered
three keyword scoring schemas. Given statements,
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Method Dev Test
Base line 0.1239 0.1228
Jaccardian Sim. 0.1364 0.1414
Affected Rel. 0.1256 0.129
Embedding Sim. 0.0539 0.05

Table 2: Mean Average Precision (MAP) socre for of
our proposed methods in comparison with the tf-idf
baseline.

we scored the keywords extracted for each state-
ment and selected supportive sentences. Results
show that keywords of statements can be effectively
used in selecting relevant premises.
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Abstract
Automated theorem proving can benefit a lot
from methods employed in natural language
processing, knowledge graphs and information
retrieval: this non-trivial task combines formal
languages understanding, reasoning, similar-
ity search. We tackle this task by enhancing
semantic similarity ranking with prompt engi-
neering, which has become a new paradigm in
natural language understanding. None of our
approaches requires additional training. De-
spite encouraging results reported by prompt
engineering approaches for a range of NLP
tasks, for the premise selection task vanilla re-
ranking by prompting GPT-3 doesn’t outper-
form semantic similarity ranking with SBERT,
but merging of the both rankings shows better
results.

1 Introduction

The recently proposed task of Natural Language
Premise Selection for mathematical statements
(Ferreira and Freitas, 2020a) follows in line with
tasks such as Mathematical Information Retrieval
(Líška et al., 2011) and Mathematical Formula Un-
derstanding (e.g. (Peng et al., 2021)). Those tasks
share the common objective to improve the process-
ing and understanding of mathematical statements,
which are a significant part of scientific informa-
tion. On the other hand, with the advent of the
attention mechanism (Vaswani et al., 2017) pre-
trained and fine-tuned Transformers, such as BERT
(see (Devlin et al., 2018)), GPT-3 ((Brown et al.,
2020b)) etc. were able to improve state of the art
results for many Natural Language Task. In this
short paper we investigate the use of Transform-
ers for the Natural Language Premise Selection in
the context of mathematical statements within the
1st Shared Task Natural Language Premise Selec-
tion at TextGraphs2022 Workshop(Valentino et al.,
2022). We propose embedding the knowledge base
with a BERT style transformer to obtain dense em-
bedding of the statement in the knowledge base.

By computing similarity of a given statement with
the knowledge base we then obtain relevant can-
didates from the knowledge base that can be fed
into a large Language model, such as GPT-3, to
rank the candidates according to their importance
to the given statement. We look at two structurally
different transformers to compute the embeddings.
1. Sentence BERT (Reimers and Gurevych, 2019)
and 2. MathBERT (Peng et al., 2021). The final
ranking of the premises is done with GPT-3 using
the OpenAI playground. As this approach does not
require further training of the Transformer models
and only uses the inherent knowledge it falls under
the regime of Zero-shot Learning.

2 Related work

Transformer Models are large and deep neural
network based on the attention mechanism (see
(Vaswani et al., 2017)) that where pretrained orig-
inally with general Language Processing and Un-
derstanding tasks in mind (see (Vaswani et al.,
2017), (Devlin et al., 2018), (Brown et al., 2020b),
(Reimers and Gurevych, 2019)). Recently Trans-
formers have been applied to tasks apart from Nat-
ural Language Processing and Generation. Models
designed specifically for mathematical task can be
found in (Shen et al., 2021) and (Peng et al., 2021).

Premise Selection (Ferreira and Freitas, 2020a)
can be viewed as a precursor for Automated Theo-
rem Proving (Alama et al., 2014). Automated The-
orem Proving has a long history (Anderson, 1973)
and is recently being tackled with approaches using
Deep Neural Networks (e.g. (Ferreira and Freitas,
2020b), (Irving et al., 2016) and also (Polu and
Sutskever, 2020)).

The approach in this paper is inspired by RETRO
(Borgeaud et al., 2021) – a model that is able to
reference a large knowledge base to solve general
language tasks, by using a transformer on top of
a frozen BERT retriever – and recent successes in
prompt engineering for very large Language Mod-
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els (Brown et al., 2020b).

3 Dataset Description

The organizers provide a dataset 1 with a tf-idf
baseline (Valentino et al., 2022). Provided data
consist of training, validation and test sets and a
knowledge base. Each sample in the training and
development sets includes id, theorem text and list
of relevant premise id’s. Texts of theorems and
premises are represented in LATEX markup. Dataset
statistics are shown in Table 1. The knowledge
base comprises 16205 premises.

4 Approach description

The central approach, which we have designed and
evaluated for the premise selection task is leverag-
ing prompting methods for re-ranking. Overall
idea of it is to generate a primary ranking and fur-
ther improve it by prompting generative language
model with an instruction and top-k candidates
from the primary ranking.

Prompt-based learning in a new paradigm in nat-
ural language processing. "Unlike traditional super-
vised learning, which trains a model to take in an
input x and predict an output y as P (y|x), prompt-
based learning is based on language models that
model the probability of text directly"(Liu et al.,
2021). During prompt-based learning the original
input x is modified using a template into a textual
string prompt x′ that has some unfilled slots (i.e.,
for model’s answer), and then the language model
is used for generating sequence completing the tem-
plate. Due to multitasking abilities of generative
language models to perform well on a wide range
of tasks, there has appeared a bunch of prompt
engineering approaches (prompt sharing, decom-
position, noising, etc.), i.e. authors of the survey
in (Liu et al., 2021) propose a typology including
above 50 approaches.

For the primary ranking we have implemented
two unsupervised approaches without model fine-
tuning on train or validation sets: first uses sen-
tence transformers (see Section 4.1) and second
one uses MathBERT2 (see Section 4.2) for embed-
ding premise and theorems. Both approaches score
premises by computing cosine similarity between
the text of premise and text of theorem.

1https://github.com/ai-systems/
tg2022task_premise_retrieval

2https://huggingface.co/tbs17/MathBERT

For re-ranking with prompt engineering we cre-
ate prompts containing top-10 candidates from
primary ranking and feed them to the GPT-3
model(Brown et al., 2020a) via OpenAI Play-
ground3, model text-davinci-002. Details of the
approach are provided in sec. 4.3 and Appendix.

4.1 Ranking with Sentence Transformers

Sentence transformers (Sentence-BERT, SBERT)
is an approach proposed in (Reimers and Gurevych,
2019) with implementation available at Gitlab4.
It is "a modification of the pretrained BERT net-
work that uses siamese and triplet network struc-
tures to derive semantically meaningful sentence
embeddings that can be compared using cosine-
similarity"(Reimers and Gurevych, 2019). Au-
thors of SBERT add a pooling operation to the
output of BERT / RoBERTa to derive a fixed sized
sentence embedding and experiment with three
pooling strategies: using the output of the CLS-
token,computing the mean of all output vectors
(MEAN-strategy), and computing a max-over-time
of the output vectors (MAX-strategy). In our exper-
iments we used the default MEAN configuration.

During encoding of the texts of premises and
theorems maximal length of input sequence was
set to 90 tokens, that affect less than 10% of the-
orems in input data (see Table 1). Cosine similar-
ity was computing using the built-in function in
sentence transformers library5. This approach par-
ticipated in evaluation phase and was ranked third
among the shared task approaches (see Table 2,
name Ranking-SBERT).

4.2 Ranking with MathBERT

There are a couple of Transformer models pre-
trained on Mathematical Text. Most notably
MathBERT-EDU (Shen et al., 2021) and Math-
BERT (Peng et al., 2021). While the first is con-
structed for General NLP Tasks in Mathematics
Education the latter focuses on Mathematical For-
mula Understanding. With MathBERT the authors
include two pretraining tasks specifically designed
to 1. relate a formula to its surrounding context
(called Context Correspondence Prediction) and
2. relate parts of a formula to each other (Masked
Substructure Prediction). Thus MathBERT is par-

3https://beta.openai.com/playground
4https://github.com/UKPLab/

sentence-transformers
5https://www.sbert.net/docs/package_

reference/util.html
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Split Train Validation Test
number of samples 8,438 2,779 2,712
average number of tokens per sample 42,65 42,81 43,01
long samples (>90 tokens) ratio 0,06 0,06 0,07

Table 1: Statistics of the training, validation, and test sets.

ticularly suitable to produce embeddings of the
Knowledge base. Unfortunately The weights and
source code are not available at the time of writing
this article. We therefore experiment with embed-
dings computed using MathBERT-EDU.

Following the embedding of the knowledge base
and the given statement we compute the similarity
with FAISS (Johnson et al., 2019).

4.3 Re-ranking SBERT with Prompting
GPT-3

This approach combines better performing
Ranking-SBERT with Prompting GPT-3. The
overall pipeline is shown in Fig. 1 We select top-10
candidates and design two prompt templates
(see Appendix). Prompt template a) instructs
the model to rank the premises by its relevance
with the instruction Rank premise IDs in the
Knowledge by its relevance for the theorem. IDs
of the most relevant premises appear first. and
Prompt template b) asks the model to select the
most relevant premise ID: Select most relevant
premise ID for the given theorem. None of the
prompt templates includes a "helping" example.
Both prompts performed reasonable in manual
experiments, but Prompt template a) was chosen
for implementation as the one with a higher
possible impact on primary ranking.

5 Experiments

GPT-like models, despite impressive performance
on many NLP tasks under the zero-shot and few-
shot setup, are not capable of long-term memory.
During re-ranking, the model may favor last seen
premises and "forget" the relevant ones, that were
presented (ranked) first in the original ranking.

We have implemented three simple experiments
to estimate how the order of the premises in the
prompt influences the GPT-3 generated ranking.
Results are provided in Table2.

Experiment 1. Favoring the "last seen
premise". In this experiment, we checked, whether
GPT-3 favours "last seen" (and, probably, irrele-
vant) premise in the end of the prompt to more

relevant ones in the middle of the prompt. For this
reason, premises with ranks 1 and 2 were swapped
in the ranking obtained from GPT-3. Since the
Mean Average Precision (MAP) decreased, it is
possible to say, that GPT-3 at least relies on the
meaning of premises while re-ranking.

Experiment 2A. "Forgetting" a relevant
premise. In this experiment, the premise id with
rank 1 in Ranking-SBERT was moved closer to
the ranking head in GPT-3 ranking (to rank 3). It
slightly improved the GPT-3 ranking, but hasn’t
outperformed Ranking-SBERT approach.

Experiment 2B. "Forgetting" a relevant
premise. In this experiment, a merged ranking
was created by inserting the premise with rank
1 from Ranking-SBERT, to the re-ranked results
from GPT-3. This has resulted in major improve-
ment and has shown, that GPT-3 struggles with
memorizing relevant information and tends to in-
crease the rank of relevant premises, if they appear
at the beginning of a long sequence.

6 Results and Error Analysis

Results of approaches, described in Section 4,
are summarized in Table 2. For single rank-
ings, best results were shown by Ranking-SBERT.
Re-ranking SBERT with Prompting GPT-3 ap-
proach performed slightly worse. However, merg-
ing these two rankings has led to the improved
result (see Experiment 2B).

The results in the table steer towards the actively
discussed question, have large language models
(not only GPT-like) actually learned to do reason-
ing, or have they only memorized training exam-
ples (Li et al., 2021; Si et al., 2020), see also 6, 7.
Despite its game-changing performance for many
NLP tasks, GPT-3 doesn’t outperform SBERT for
the natural language premise selection task, where
reasoning based on a large knowledge base is re-
quired.

6https://jens-lehmann.org/blog/
neural-language-models/

7https://lambdalabs.com/blog/
demystifying-gpt-3/
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Figure 1: Premise Re-ranking with Prompts Template Design

Approach /Accuracy Train Validation Test Phase
Ranking-SBERT n/a n/a 0,1460 evaluation
Ranking-MathBERT-EDU n/a n/a 0.0609 post-competition
Re-ranking SBERT with Prompting GPT-3 n/a n/a 0,1423 evaluation
Experiment 1. Favouring last seen item n/a n/a 0,1262 post-competition
Experiment 2A. Merged ranking n/a n/a 0,1450 post-competition
Experiment 2B. Merged ranking n/a n/a 0,1497 post-competition

Table 2: Approaches performance and experiments

Moreover, analysis of the GPT-3 generation out-
put shows that the model occasionally repeated
premise ids, omitted premise ids or "hallucinated"
ids with comparable length during generation (total
16,5% of all premises). This erroneous output was
not taken into account during re-ranking: it means,
that for each sample there is a different portion of
premises, re-ranked by GPT-3.

Prompt design should be implemented care-
fully, because GPT-3 tends to rely on the order
of premises in the prompt, as well as on its mean-
ing. Although the model doesn’t really favor the
last seen information in the prompt, it suffers from
forgetting relevant information, if it was presented
at the beginning of the prompt. This can be han-
dled, for example by randomly shuffling elements
subjected to re-ranking by GPT-3.

Overall, re-ranking by prompting generative lan-
guage models, in a vanilla setup, does not improve
similarity-based ranking, although merging these
two rankings brings a better result.

7 Limitations and Future Work

While the approach presented here requires concep-
tually low resources compared to fine-tuning to the
given training data, the use of GPT-3 comes with
a significant cost (with the most capable model
costing up to $0.02 for 1000 tokens). Furthermore,
mathematical formulas are non-typical input for

training general language models and hence tok-
enization might be less accurate thus also reduc-
ing the capability of the transformer models used
for pre-ranking as they come with a maximum se-
quence length (512 for SBERT, MathBERT-EDU
and MathBERT).

Performance of the proposed similarity ranking
and prompt engineering approach, and available
results from the shared task leaderboard show, that
automated theorem proving is a hard task for NLU
methods. LATEXmarkup remains a hard type of
input for encoders, that could possibly be over-
come by using language models that have been
pre-trained on LATEX(e.g. MathBERT) or input-
agnostic models, such as Perceiver. Furthermore,
transformation of formulas into typesetting invari-
ant representations should be investigated. Espe-
cially the representation of formulas as Operator
Trees or translation to natural language might be
beneficial in combination with general Language
Models.
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Parameter name Value
max_new_tokens 300
temperature 0.7
top_p 1
openai_frequency_penalty 0.0
openai_ presence_penalty 0.0
openai_stop_sequences [ ]
n_responses 1

Table 3: GPT-3 Model parameters.

A Appendix

A.1 Experiment details and Parameters
The parameters for OpenAIs GPT-3 model in the
OpenAI API have been chosen according to Table 3.
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