
Proceedings of TextGraphs-16: Graph-based Methods for Natural Language Processing, pages 25–34
October 16, 2022.

25

Sharing Parameter by Conjugation for Knowledge Graph Embeddings
in Complex Space

Xincan Feng†‡, Zhi Qu†, Yuchang Cheng‡, Taro Watanabe†, Nobuhiro Yugami‡

†Natural Language Processing Laboratory, Nara Institute of Science and Technology
‡Multilingual Knowledge Computing Laboratory, Fujitsu Ltd.

{feng.xincan.fy2, qu.zhi.pv5, taro}@is.naist.jp
{cheng.yuchang, yugami}@fujitsu.com

Abstract

A Knowledge Graph (KG) is the directed graph-
ical representation of entities and relations in
the real world. KG can be applied in di-
verse Natural Language Processing (NLP) tasks
where knowledge is required. The need to
scale up and complete KG automatically yields
Knowledge Graph Embedding (KGE), a shal-
low machine learning model that is suffering
from memory and training time consumption
issues. To mitigate the computational load, we
propose a parameter-sharing method, i.e., using
conjugate parameters for complex numbers em-
ployed in KGE models. Our method improves
memory efficiency by 2x in relation embed-
ding while achieving comparable performance
to the state-of-the-art non-conjugate models,
with faster, or at least comparable, training
time. We demonstrated the generalizability of
our method on two best-performing KGE mod-
els 5⋆E (Nayyeri et al., 2021) and ComplEx
(Trouillon et al., 2016) on five benchmark
datasets.

1 Introduction

A Knowledge Graph (KG) is a representation
of confident information in the real world and
employed in diverse Natural Language Processing
(NLP) applications, e.g., recommender system,
question answering, and text generation. A
triple in the form of (head, relation, tail) is
widely used as the representation of elements in
the KG instead of raw text for scalability. Cite
(clinician, synset_domain_topic_of, psychology)
as an example, clinician and psychology
is the head and tail entity respectively, and
synset_domain_topic_of is the relation of the
head entity pointing to the tail entity.

Knowledge Graph Embedding (KGE) models
are designed for automatic link prediction. Rela-
tions in KG have multiple categories, e.g., sym-
metry, antisymmetry, inversion, and hierarchical.
Missing links indicate incomplete ties between en-

tities and are a common phenomenon as finding the
missed connections is labor-intensive work.

The theoretical space complexity of KGE mod-
els are often O(nede+nrdr), which is proportional
to the number of KG elements, i.e. entities ne and
relations nr, and embedding dimension de, dr re-
spectively. Scaling a KG is problematic as ne, nr

can go up to millions; also because KGE models
are often shallow machine learning models com-
posed of simple operations, e.g., matrix multiplica-
tion. Caution that a shallow model needs a large
dimension size d to depict the data feature, yield-
ing the issue of the drastic increase of embedding
parameters (Dettmers et al., 2018).

KGE models represented using complex num-
bers have state-of-the-art performance, while they
demand high memory costs. E.g., if using one
of the best models ComplEx (Trouillon et al.,
2016) to create embedding for the benchmark
dataset FB15K whose ne = 14, 951, nr = 1, 345,
and the best-performing dimensionalities de =
4000, dr = 4000, will result in the parameter size
of 65, 184, 000. Considering the data type 64-bit in-
teger (signed), who has a size of 8 bytes in PyTorch,
the memory cost will be 65, 184, 000 × 8 ≈ 497
MB. A KG for real-world application could have a
much larger size, e.g., IBM’s KG contains entities
> 100 million and relations > 5 billion, which is
actively in use and continually growing (Noy et al.,
2019), would need > 148 TB memory to do link
prediction task.

Inspired by the improved performance of com-
plex number representation and Non-Euclidean
models where transformation parameters attempt to
interact rather than be independent, we intuited the
idea of sharing parameters for memory efficiency.

We demonstrate a parameter-sharing method
for complex numbers employed in KGE models.
Specifically, our method formulates conjugate pa-
rameters in appropriate dimensions of the transfor-
mation functions to reduce relation parameters. By



26

using our method, models can reduce their space
complexity to O(nede + nrdr/2), which means
the relation embedding size is half the original
model. In the second place, using conjugate pa-
rameters may help save training time, especially
on the datasets who have more parameter patterns.
Further, our method can be easily applied to various
complex number represented models.

We verified our method on two best-performing
KGE models, i.e., ComplEx (Trouillon et al.,
2016) and 5⋆E (Nayyeri et al., 2021). The experi-
ments were conducted on five benchmark datasets,
i.e., FB15K-237, WN18RR, YAGO3-10, FB15K,
and WN18, by which we empirically show that
our method reserves the models’ ability to achieve
state-of-the-art results. We also see 31% training
time saved on average for 5⋆E in addition to the
memory. Our method is implemented in PyTorch1

and the code with hyperparameter settings2 are
available online.

2 Related Works

We describe the categorizations of KGE models
according to the representation method and the
vector space that inspired our idea.

Representation Method Real and complex num-
ber representations are used to quantify entities and
relations.

Translation approaches including TransE (Bor-
des et al., 2013) and its variants (Ji et al., 2015; Lin
et al., 2015) describe embeddings using real num-
ber representation. Although these simple models
cost fewer parameters, they can only encode two or
three relation patterns, e.g., TransE cannot encode
symmetric relations.
ComplEx (Trouillon et al., 2016) creates embed-

ding with complex number representation, which
can handle a wider variety of relations than using
only real numbers, among them symmetric and an-
tisymmetric relations (Trouillon et al., 2016). 5⋆E
(Nayyeri et al., 2021) utilizes Möbius transforma-
tion, a projective geometric function that supports
multiple simultaneous transformations in complex
number representation and can embed entities in
much lower ranks.

Vector Space Euclidean and Non-Euclidean
spaces are practiced for the calculation of triple
plausibility.

1https://pytorch.org/
2github.com/xincanfeng/dimension

Factorization models such as RESCAL (Nickel
et al., 2011) and DistMult (Yang et al., 2014)
employ element-wise multiplication in Euclidean
space. Correspondingly, the plausibility of a triple
is measured according to the angle of transformed
head and tail entities.
MuRP (Balazevic et al., 2019) minimizes hy-

perbolic distances other than Euclidean. It needs
fewer parameters than its Euclidean analog. ATTH
(Chami et al., 2020) leverages trainable hyperbolic
curvatures for each relation to simultaneously cap-
ture logical patterns and hierarchies. Compared
with Euclidean, the Hyperbolic models can save
more structures using variational curvatures in dif-
ferent areas to depict hierarchical relations.

Relational Constrain on Parameters Replacing
real number with complex number representation
enables the imaginary part to have an effect on the
real part parameters, the boosted performance of
which indicates the hidden relation among param-
eter. Using hyperbolic space other than Euclidean
enables the distances or angles at different posi-
tions to vary, the increased accuracy hints us to
add various constraints on parameters. Learning
from the work by Hayashi and Shimbo (2017), the
potential of improving representations through con-
jugate symmetric constraint is revealed. Therefore,
we hypothesize the efficiency of relational parame-
ters and propose a parameter-sharing method using
conjugate numbers.

3 Method

Complex number employed in current KGE mod-
els enforces multiplicative constraint on represen-
tations; our method further adds conjugate con-
straint within the parameters. Note that we don’t
reduce the dimensions of the parameters, instead,
we share the dimensions.

We economize 50% of the memory in relation
embedding by sharing half of the parameters in
the conjugate form. Our approach is at least com-
parable in accuracy to the baselines. In addition,
our method reduces calculation in the regulariza-
tion process, e.g., for the 5⋆ϵ model, 31% of train-
ing time is saved on average for five benchmark
datasets.

3.1 Preliminaries

Link prediction task inquires if a triple (h, r, t) con-
structed by existing head and tail entities h, t ∈ Vde

https://pytorch.org/
github.com/xincanfeng/dimension


27

and relations r ∈ Vdr (Vd is a d-dimensional vec-
tor space) is true or not. In KGE models, the re-
lations are often represented as the transformation
function ϑ that maps a head entity into a tail entity
which are described as vectors in corresponding
space, i.e., ϑ(h) = t. Then, the score function f :
Vde ×Vdr ×Vde → R returns the plausibility p of
constructing a true triple: f(h, r, t) = p(ϑ(h), t).
a, b, c, d ∈ C denote the parameters in the rela-

tion embedding matrices. x ∈ C is the parameter
of the entity embedding matrices. ai, xi are the
parameters of the submatrices of [a] and [x] respec-
tively. Re(z) is the real part of the complex number
z, z is the complex conjugate of z.

ComplEx This is the first and one of the best-
performing complex models in Euclidean space.
Trouillon et al. (2016) demonstrated that complex
number multiplication could capture antisymmet-
ric relations while retaining the efficiency of the
dot product, i.e., linearity in both space and time
complexity. Balancing between model expressive-
ness and parameter size is also discussed as the
keystone of KGE. However, targeting SOTA is still
computational-expensive because Trouillon et al.
(2016) didn’t solve the performance deterioration
problem when reducing parameters directly.

Performance deterioration can be severe when-
ever the KG needs to be expanded because the
mispredicted links could lead to further misinfor-
mation. Hence we should always endeavour to
adopt the best-performing embedding size in do-
ing link prediction task, even though it could be
hundreds of TB.

To obtain the best results, ComplEx needs em-
bedding size of rank = 2000 on dataset FB15K-
237, WN18RR, FB15K, WN18, and rank = 1000
on dataset YAGO3-10. rank denotes the vector
dimension of a single-functional parameter. Each
entity and relation in this model needs 2 × rank
parameters, representing real and imaginary part,
respectively.

In this model, relations are represented as the
real part of low-rank matrix

[
a
]
, which act as

weights on each entity dimension x, followed by a
projection onto the real subspace. The transforma-
tion of ComplEx is

x →
[
a
]
x → ax. (1)

5⋆E This is a novel model applying complex
numbers in Non-Euclidean space. Nayyeri et al.
(2021) tackled the problem of multiple subgraph

structures in the neighborhood, e.g., combinations
of path and loop structures. Unlike the ComplEx
model, they replaced the dot product with the
Möbius function which has several favorable theo-
retical properties. This model subsumes ComplEx
in that it embeds entities in much lower ranks, i.e.,
about 25% or even smaller to achieve the state-of-
the-art performance. However, 5⋆E is inferior to
ComplEx in that it needs almost the same large
size of relation parameters to do much more sophis-
ticated calculation.

Following the hyperparameter search range of
Nayyeri et al. (2021), the embedding sizes we
tested for 5⋆E to obtain the best result are rank =
500 for all datasets. Each entity needs 2 × rank
parameters, and each relation needs 8× rank pa-
rameters that function differently.

In this model, relations are represented as[
a b
c d

]
. The transformation function ϑ of 5⋆E

is

x →
[
x
1

]
→

[
a b
c d

] [
x
1

]
→ ax+ b

cx+ d
. (2)

Möbius function ϑ is capable of representing var-
ious relations simultaneously because it combines
five subsequent transformations: ϑ = ϑ4 ◦ϑ3 ◦ϑ2 ◦
ϑ1, where ϑ1 = x+ d

c is describing translation by
d
c , ϑ2 = 1

x is describing inversion and reflection
w.r.t. real axis, ϑ3 = bc−ad

c2
x is describing homo-

thety and rotation, and ϑ4 = x + a
c is describing

translation by a
c .

3.2 Method Formulation
Let

[
a1 a2

]
denotes the relation embedding ma-

trix. Our method constrains half of the parameters
a2 using the complex conjugate of the other half
a1, i.e., a2 = a1; it is model-dependent to spec-
ify which parameters are suitable for conjugation.
We formulated our method on above two baseline
models.

Complϵx By using our method, the original
model ComplEx is adapted to the parameter-
sharing model Complϵx, where relations are rep-
resented as the real part of low-rank matrices with
conjugate parameters. Specifically, we set the orig-
inal square relation embedding matrices

[
a1 a2

]
to be half the normal parameters and the other half
their conjugation, i.e.,

[
a1 a1

]
. In this model,

since each parameter is functioning equally, the
positions of the conjugate parameters can be set
randomly.



28

(a) Transformed entities by ComplEx (left) and Complϵx
(right). In the left graph, a black point describes a trans-
formed entity, and the vector values of a point are unrelated
in each dimension. While in the right graph, half of the value
zi, i ∈ [1, d/2] of a vector z1, z2, ..., zd that is describing a
point are constrained as the other half zi, i ∈ [d/2+1, d] corre-
spondingly. The linear constrain zi = aixi + biyi is illustrated
in the right graph.

(b) Transformed entities by 5⋆E (left) and 5⋆ϵn (right). Note
that we illustrate the negative conjugated model instead of
the positive conjugated one for simplicity in plotting. Blue
traces are the original entities and their projections in the Non-
Euclidean space. Green traces are the multiple copies of the
blue traces under iterations of the Möbius transformation. Red
traces are the inverse of green traces. Apparently, the right
graph has much neater geometric properties.

Figure 1: Transformed entities illustrated in 3D

5⋆ϵ Our method transforms the original model
5⋆E into the parameter-sharing model 5⋆ϵ, where
relations are represented as the real part of low-
rank matrices using conjugate parameters. Specifi-
cally, we set the original square relation embedding

matrices
[
a b
c d

]
to be half the normal parameters

and the other half their conjugate parameters, i.e.,[
a b

b a

]
. In this model, parameters play distinct

roles at different positions, and the best conjuga-
tion positions are the principal and secondary diag-
onal positions. Note that experiments showed that,
the following negative conjugation method, i.e.,[
a b

−b a

]
, achieves similar performance as above.

Although the negative conjugation on this model is
equivalent to restricting the original Möbius func-
tion to the unitary Möbius transformation, our ap-
proach is much more general to a variety of repre-
sentations.

3.3 Transformation Analysis

Complϵx Let a2 = a1, then the transformation
of conjugate model Complϵx is[
x1 x2

]
→

[
a1 a1

] [
x1 x2

]
→

[
a1x1 a1x2

]
.

(3)
We can see that the resulted relation embedding is
constrained to

[
a1 a1

]
other than

[
a1 a2

]
; the

predicted tail entity is constrained to
[
a1x1 a1x2

]
instead of

[
a1x1 a2x2

]
in original model, which

does not narrow the rang of relation or tail embed-
ding since the a1, x2 can be any value. Further,
since tail entities also act as head entities, we can

say that the range of both the entities and relations
are not constrained.

5⋆ϵ Let c = b, d = a, then the transformation of
conjugate model 5⋆ϵ is

x →
[
x
1

]
→

[
a b

b a

] [
x
1

]
→ ax+ b

bx+ a
. (4)

The five subsequent transformations turn into:
ϑ1 = x+ a

b
which depicts translation by a

b
, ϑ2 =

1
x

which depicts inversion and reflection w.r.t. real
axis, ϑ3 = bb−aa

b
2 x which depicts homothety and

rotation, and ϑ4 = x+ a
b

which depicts translation
by a

b
. We can see that, although the relation pa-

rameters are constrained comparing to the original
model, the five sub-transformations are reserved in
this conjugate model.

Characteristics For this reason, we consider our
conjugate models retain expressiveness in function
level for various relation patterns compared to their
original counterparts. The difference between orig-
inal models and our conjugate models is that, the
latter ones have more linear constrain in its value of
each embedding parameter, as illustrated in Figure
1.

3.4 Reduced Calculation

Sharing half of the parameters also reduces the
computation for the regularization terms into half,
where each parameter of relation is squared to the
sum. For example, the original calculation r21 + r22
is turned into r21×2 in both baseline models, where
r1, r2 denote the real or imaginary part of a com-
plex number, and in which r1 represents the shared



29

Dataset #Training #Validation #Test Ent Rel Exa
FB15K-237 272,115 17,535 20,466 14,541 237 544,230
WN18RR 86,835 3,034 3,134 40,943 11 173,670
YAGO3-10 1,079,040 5,000 5,000 123,188 37 2,158,080
FB15K 483,142 50,000 59,071 14,951 1,345 966,284
WN18 141,442 5,000 5,000 40,943 18 282,884

Table 1: Datasets statistics. #: Split in terms of number of triples; Ent: Entities; Rel: Relations; Exa: Examples.

parameter. However, the final time consumption
depends on multiple aspects, such as formulation
and coding, thus is not necessarily reduced.

4 Experiments

4.1 Experimental Setup

Metrics We followed the standard evaluation pro-
tocal for KGE models. T : the rank set of truth, ri:
the rank position r of the first true entity for the
i-th query. We computed two rank-based metrics:
(i) Mean Reciprocal Rank (MRR), which computes
the arithmetic mean of reciprocal ranks of all true
entities from the ranked list of answers to queries
T , and (ii) Hits@N (N = 1, 3, 10), which counts
the true entities I and calculate their proportion in
the truth T in top N sorted predicted answers list.

MRR =
1

T

T∑
i=1

1

ri
(5)

Hits@N =
1

T

∑
r∈T,r≤N

I (6)

We also use additional metric Time (sec-
onds/epoch) to measure how many seconds each
training epoch costs to demonstrate the time saved
by our method. To do this, we conducted all exper-
iments using the same GPUs. GeForce GTX 1080
Ti is used for all datasets except for the largest
dataset YAGO3-10 who needs a larger GPU and
we used Tesla V100S-PCIE-32GB for it.

Datasets We evaluated our method on five widely
used benchmark datasets (See Table 1). FB15K
(Bordes et al., 2013) is a subset of Freebase, the
contents of which are general facts. WN18 (Bordes
et al., 2013) is a subset of Wordnet, a database that
features lexical relations between words. YAGO3-
10 (Dettmers et al., 2018) is the largest common
dataset, which mostly describes attributes of per-
sons, and contains entities associated with at least
ten different relations.

As was first noted by Toutanova and Chen
(2015), FB15K and WN18 suffer from test leak-
age through inverse relations, e.g., the test set fre-
quently contains triples such as (s, hyponym, o)
while the training set contains its inverse
(o, hypernym, s). To create a dataset without this
property, they introduced FB15K-237, a subset
of FB15K where inverse relations are removed.
WN18RR was created for the same reason by
Dettmers et al. (2018).

We adopted all of the five datasets for compre-
hensive comparison of models.

Hyperparameter Settings We explored the in-
fluence of hyperparameter settings to our method.
To do this, we used the best hyperparameter set-
tings for the original models (marked as ∇ or no
mark), and applied the same settings on our con-
jugate models and ablation models. We adopted
the best hyperparameter settings for ComplEx pro-
vided by Nayyeri et al. (2021), and fine-tuned the
best hyperparameters ourselves for 5⋆E since there
was no published best hyperparameter settings for
this model at the time we did the experiments. We
also fine-tuned the best hyperparameters for one of
our conjugate model 5⋆ϵ (noted as ♢) to explore
the upper bound.

We selected the hyperparameters based on the
MRR on the validation set. Our grid search
range refered to but was larger than Nayyeri et al.
(2021). The optional optimizers are {Adagrad,
Adam, SGD}. The range of embedding dimensions
are {100, 500} with learning rates range in {1E-02,
5E-02, 1E-01}. The batch sizes attempted range in
{100, 500, 1000, 2000}. Regularization coefficients
are tested among {2.5E-03, 5E-03, 1E-02, 5E-02,
1E-01, 5E-01}.

5 Results

5.1 Main Results and Analysis

The main experimental results are shown in Table
2 and Table 3. The numbers with boldface indicate



30

Model Time MRR H@1 H@3 H@10
ComplEx 42±8 0.366±4e-4 0.271 0.402 0.558
Complϵx 46±11 0.363±5e-4 0.268 0.400 0.555
5⋆E 18±3 0.350±8e-4 0.257 0.386 0.538
5⋆ϵ∇ 14±4 0.353±7e-4 0.259 0.390 0.541
5⋆ϵ♢ 17±9 0.354±8e-4 0.259 0.391 0.544

(a) FB15K-237
Model Time MRR H@1 H@3 H@10
ComplEx 139±21 0.488±1e-3 0.442 0.503 0.579
Complϵx 146±45 0.475±9e-4 0.433 0.488 0.558
5⋆E 16±1 0.490±5e-4 0.444 0.506 0.587
5⋆ϵ∇ 11±1 0.493±8e-4 0.442 0.512 0.588
5⋆ϵ♢ - - - - -

(b) WN18RR
Model Time MRR H@1 H@3 H@10
ComplEx 370±2 0.577±1e-3 0.502 0.622 0.712
Complϵx 371±2 0.574±2e-3 0.500 0.618 0.707
5⋆E 415±2 0.574±2e-3 0.502 0.617 0.701
5⋆ϵ∇ 297±1 0.576±2e-3 0.505 0.619 0.702
5⋆ϵ♢ - - - - -

(c) YAGO3-10

Table 2: Link prediction results on FB15K-237,
WN18RR, YAGO3-10 datasets. Time, MRR and H@n
are presented as mean (± standard deviation).

the best results among all the models.
We mainly tested whether the conjugate mod-

els perform consistent with their original counter-
parts, especially whether they can achieve the same
state-of-the-art results. We conducted one set of
experiments using the best hyperparameters of the
original models (marked as ∇ or no mark), and the
other set of experiments tuning the hyperparam-
eters for one of our conjugate model (marked as
♢).

The results show that both Complϵx and 5⋆ϵ
consistently achieve results comparable to their
original models on the datasets without test set leak-
age, including the largest dataset, i.e., YAGO3-10;
and obtain the same optimal accuracies as the orig-
inal models on all datasets with possibly-required
fine-tuning. From the perspective of training time,
we see 5⋆ϵ spends 31% less time on average for all
datasets; and both conjugate models perform sub-
stantially best in training time on datasets FB15K,
who have the most relations.

Complϵx Under the best hyperparameter set-
tings of the original model, the performance
of Complϵx are consistently comparable with
ComplEx on all five datasets. We speculate the
reason for the consistent but tiny performance drop
might come from the computation precision, but
we will leave it as our future studies.

Model Time MRR H@1 H@3 H@10
ComplEx 346±124 0.855±1e-3 0.823 0.874 0.910
Complϵx 293±16 0.855±1e-3 0.827 0.871 0.907
5⋆E 42±9 0.812±1e-3 0.767 0.840 0.889
5⋆ϵ∇ 26±0 0.794±2e-3 0.743 0.827 0.882
5⋆ϵ♢ 29±5 0.813±2e-3 0.766 0.844 0.894

(a) FB15K
Model Time MRR H@1 H@3 H@10
ComplEx 57±3 0.951±3e-4 0.944 0.954 0.961
Complϵx 58±5 0.950±3e-4 0.945 0.953 0.960
5⋆E 43±6 0.952±5e-4 0.946 0.955 0.962
5⋆ϵ∇ 29±6 0.949±6e-4 0.944 0.953 0.959
5⋆ϵ♢ 26±2 0.952±3e-4 0.947 0.955 0.962

(b) WN18

Table 3: Link prediction results on FB15K and WN18
datasets. Instructions for this table are the same as those
in Table 2.

Although our method reduces the computation,
applying the method on this model requires split-
ting and concatenating matrices to keep the shape
of outputs which incurs additional time-consuming
operations. Consequently, the total time cost is not
reduced much. However, training time on dataset
FB15K, who has the most relations, becomes very
stable.

Overall results imply our conjugate model
Complϵx is at least comparative with its baseline
model ComplEx.

5⋆ϵ Under the best hyperparameter settings of
the original 5⋆E, the conjugate 5⋆ϵ∇ consistently
achieve competitive results on the datasets FB15K-
237, WN18RR and YAGO3-10. The tiny but
consistent accuracy enhancement on these three
datasets is probably caused by similar program-
ming artifacts as observed in ComplEx.

We hypothesize that the accuracy fluctuation of
5⋆ϵ∇ on FB15K and WN18 is caused by the test
leakage issue which makes the model sensitive to
its hyperparameter setting. Because the only dif-
ference of these two datasets comparing to their
subsets FB15K-237 and WN18RR is the 81% and
94% inverse relations (Toutanova and Chen, 2015),
i.e., (s, hyponym, o) and (o, hypernym, s) in the
training set and the test set respectively, which is
known as test leakage. Note that the accuracy fluc-
tuation was simply solved by fine-tuning the hyper-
parameters (See results marked as 5⋆ϵ♢).

Notice that in Table 2, we didn’t report the fine-
tuned results of 5⋆ϵ♢ on datasets WN18RR and
YAGO3-10, because the results abtained with the
original settings ∇ is already the best.



31

Model Time MRR H@1 H@3 H@10
5⋆ϵ∇ 14±4 0.353±7e-4 0.259 0.390 0.541
5⋆ϵn 13±2 0.353±8e-4 0.259 0.389 0.541
5⋆Er 16±0 0.326±1e-3 0.238 0.357 0.505
5⋆ϵv 13±1 0.264±4e-4 0.192 0.288 0.404
5⋆ϵh 12±0 0.301±4e-4 0.221 0.329 0.458

(a) FB15K-237
Model Time MRR H@1 H@3 H@10
5⋆ϵ∇ 11±1 0.493±8e-4 0.442 0.512 0.588
5⋆ϵn 14±3 0.485±1e-3 0.432 0.506 0.589
5⋆Er 16±0 0.410±3e-3 0.391 0.417 0.447
5⋆ϵv 12±5 0.026±2e-4 0.015 0.025 0.045
5⋆ϵh 14±3 0.026±3e-4 0.016 0.025 0.046

(b) WN18RR
Model Time MRR H@1 H@3 H@10
5⋆ϵ∇ 297±1 0.576±2e-3 0.505 0.619 0.702
5⋆ϵn 298±1 0.574±1e-3 0.502 0.618 0.701
5⋆Er 416±2 0.569±2e-3 0.499 0.611 0.695
5⋆ϵv 297±1 0.562±8e-4 0.488 0.607 0.695
5⋆ϵh 298±1 0.546±1e-3 0.471 0.592 0.680

(c) YAGO3-10

Table 4: Ablation studies on FB15K-237, WN18RR,
YAGO3-10 datasets. Instructions for this table are the
same as those in Table 2.

Training time in this model was reduced by 22%,
31%, 28%, 38% and 33% on each dataset respec-
tively, and 31% on average. 5⋆E has eight param-
eter matrices in the coding. By using our method,
the parameter matrices are directly reduced to four
with no additional coding operations, which makes
the significant saved training time.

Above results mean our conjugate model 5⋆ϵ
exceeds the baseline model 5⋆E in all respect of
accuracy, memory-efficiency and time footprint.

5.2 Ablation Studies

We did two kinds of ablation studies. The results
are shown in Table 4 and Table 5. We know the
reduced calculation is mainly in the regularization
process because we only use half of the parameters.
Thus we experimented where the regularization
term is only half of the parameters on the original
model (See results for 5⋆Er) to explore whether
the effect of our method is similar to the reduced
parameters regularization.

Then we experimented with conjugations in dif-
ferent positions to explore how the models per-
form differently. We set negative conjugation
c = −b, d = a in model 5⋆ϵn, where half of the
conjugate parameters are using negative conjuga-
tion instead of positive conjugation; we set vertical

Model Time MRR H@1 H@3 H@10
5⋆ϵ∇ 26±0 0.794±2e-3 0.743 0.827 0.882
5⋆ϵn 31±12 0.799±2e-3 0.750 0.831 0.883
5⋆Er 37±1 0.807±3e-3 0.760 0.838 0.888
5⋆ϵv 31±7 0.801±8e-4 0.753 0.833 0.885
5⋆ϵh 28±2 0.787±2e-3 0.735 0.822 0.877

(a) FB15K
Model Time MRR H@1 H@3 H@10
5⋆ϵ∇ 29±6 0.949±6e-4 0.944 0.953 0.959
5⋆ϵn 26±0 0.952±3e-4 0.946 0.955 0.962
5⋆Er 40±0 0.943±9e-4 0.935 0.950 0.954
5⋆ϵv 31±11 0.892±2e-3 0.836 0.944 0.958
5⋆ϵh 26±0 0.822±2e-3 0.719 0.920 0.949

(b) WN18

Table 5: Ablation studies on FB15K and WN18 datasets.
Instructions for this table are the same as those in Table
2.

conjugation c = a, d = b in model 5⋆ϵv, where
parameters are conjugated in their vertical direc-
tion instead of the diagonal direction; and we let
b = a, d = c in model 5⋆ϵh, the horizontal con-
jugation, where parameters are conjugated in their
horizontal direction.

The studies show that, first, by comparing the
accuracy of 5⋆ϵ and 5⋆Er, we know that reducing
parameters in the regularization process hurts the
accuracy significantly, which indicates our conju-
gation method indeedly reserves model’s ability
even when the parameters are reduced. Second, the
negative conjugate model 5⋆ϵn performs as well as
5⋆ϵ. Last but not least, conjugate method should
choose suitable positions, e.g., 5⋆ϵv and 5⋆ϵh do
not perform as well.

5.3 Statistical Methods

To clarify the difference between original models
and their conjugate models, we took the highest
mean as the best result, with the standard devi-
ation as a secondary judgement, and ultimately
two-sample t-tests (See Table 6 in Appendix) are
conducted to decide whether two similar results can
be considered statistically equivalent and which is
the best.

The two-sample t-test estimates if two popula-
tion means are equal. Here we use the t-test to
judge if the Time or MRR means of two models
are equal. We set significance level α = 0.05, and
the null hypothesis assumed that the two data sam-
ples are from normal distributions with unknown
and unequal variances. (h, p) means the result h
and p-value of the hypothesis test. h = 1, 0. h = 1



32

means rejection to the null hypothesis at the sig-
nificance level α. h = 0 indicates the failure to
reject the null hypothesis at the significance level
α. p ∈ [0, 1] is a probability of observing a test
statistic as extreme as, or more extreme than, the
observed value under the null hypothesis. A small
p value suggests suspicion on the validity of the
null hypothesis.

To prepare data for the t-tests, experiments
on ComplEx, Complϵx, 5⋆E, 5⋆ϵ∇, 5⋆ϵ♢ and
5⋆ϵn are conducted 17 times each. Apart from
that, the 5⋆Er, 5⋆ϵv, 5⋆ϵh apparently perform
worse than the former six models, thus the t-tests
are not needed and their experiments are conducted
5 times each.

Most of our t-tests were done among the orig-
inal model and its conjugate models as the dis-
tribution differs significantly if the base model is
different. However, since the accuracies among
different models are similar on the YAGO3-10 and
WN18 datasets, we did several supplementary t-
tests (indicated in italics). The supplementary t-
tests showed that the distributions are different in-
deed when based on different original models even
though they appear to be similar. On the contrary,
there exist similar distributions among the results
distribution of the original model and its conjugate
model.

5.4 Advantages of Parameter Sharing

Approching for the best accuracy in link predic-
tion task has the trade off of misinformation effect
or inevitable high memory and time costs. Our
parameter-sharing method by using half conjugate
parameters is very easy to apply and can help con-
trol these costs, and potentially no trade off.

The original ComplEx and 5⋆E each has their
own strength in the perspective of accuracy on dif-
ferent datasets; while ComplEx costs much more
memory and time than 5⋆E when compared under
similar accuracy.

Our conjugate models consume less memory
and time, and not inferior to the original models in
accuracy, which shows that our parameter-sharing
method makes a complex number represented KGE
model superior to itself.

6 Conclusions

We propose using shared conjugate parameters for
transformations, which suffices to accurately repre-
sent the structures of the KG.

Our method can help scaling up KG with less
carbon footprints easily: first, it reduces parame-
ter size and consumes less or at least comparable
training time while achieving consistent accuracy
as the non-conjugate model, including reaching
state-of-the-art results; second, it is easily general-
izable across various complex number represented
models.

7 Future Work

We would like to deal with the interpretation of the
linear constrain of our method. For example, to ex-
plore the effect of this method on different relation
patterns. Moreover, many KG applications like the
work done by Hongwimol et al. (2021) regard vi-
sual appeal as important, where appropriate visuals
can better convey the points of the data and facil-
itate user interaction. We can see that the vector
representations of transformed entities using this
method have more substantial geometric constrains
(See transformed entities illustrated in Figure 1).
We want to explore if our method can obtain better
KG visualization.

Acknowledgements

This work was supported by JSPS KAKENHI
Grant Numbers 21H05054.

References
Ivana Balazevic, Carl Allen, and Timothy Hospedales.

2019. Multi-relational poincaré graph embeddings.
In Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates,
Inc.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6901–6914, Online. Association for Computational
Linguistics.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In AAAI.

Katsuhiko Hayashi and Masashi Shimbo. 2017. On the
equivalence of holographic and complex embeddings

https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/P17-2088
https://doi.org/10.18653/v1/P17-2088


33

for link prediction. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 554–559,
Vancouver, Canada. Association for Computational
Linguistics.

Pollawat Hongwimol, Peeranuth Kehasukcharoen, Pa-
sit Laohawarutchai, Piyawat Lertvittayakumjorn,
Aik Beng Ng, Zhangsheng Lai, Timothy Liu, and
Peerapon Vateekul. 2021. ESRA: Explainable scien-
tific research assistant. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing: System
Demonstrations, pages 114–121, Online. Association
for Computational Linguistics.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge graph embedding via dy-
namic mapping matrix. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 687–696, Beijing, China. Asso-
ciation for Computational Linguistics.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation embed-
dings for knowledge graph completion. Proceedings
of the AAAI Conference on Artificial Intelligence,
29(1).

Mojtaba Nayyeri, Sahar Vahdati, Can Aykul, and
Jens Lehmann. 2021. 5* knowledge graph embed-
dings with projective transformations. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(10):9064–9072.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML.

Natasha Noy, Yuqing Gao, Anshu Jain, Anant
Narayanan, Alan Patterson, and Jamie Taylor. 2019.
Industry-scale knowledge graphs: Lessons and chal-
lenges. Communications of the ACM, 62 (8):36–43.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57–66, Beijing, China. Association
for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Com-
plex embeddings for simple link prediction. CoRR,
abs/1606.06357.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases.

https://doi.org/10.18653/v1/P17-2088
https://doi.org/10.18653/v1/2021.acl-demo.14
https://doi.org/10.18653/v1/2021.acl-demo.14
https://doi.org/10.3115/v1/P15-1067
https://doi.org/10.3115/v1/P15-1067
https://cacm.acm.org/magazines/2019/8/238342-industry-scale-knowledge-graphs/fulltext
https://cacm.acm.org/magazines/2019/8/238342-industry-scale-knowledge-graphs/fulltext
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
http://arxiv.org/abs/1606.06357
http://arxiv.org/abs/1606.06357
https://doi.org/10.48550/ARXIV.1412.6575
https://doi.org/10.48550/ARXIV.1412.6575


34

A Two-sample t-test
Time t-test (h, p)

ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
ComplEx - (0, 2e-1) - - - -
Complϵx - - - - - -
5⋆E - - - (1, 8e-3) (0, 6e-1) (1, 4e-5)
5⋆ϵ∇ - - - - (0, 4e-1) (0, 4e-1)
5⋆ϵ♢ - - - - - (0, 2e-1)
5⋆ϵn - - - - - -

MRR t-test (h, p)
ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
- (1, 8e-17) - - - -
- - - - - -
- - - (1, 1e-12) (1, 1e-14) (1, 1e-10)
- - - - (1, 6e-3) (1, 1e-2)
- - - - - (1, 7e-6)
- - - - - -

(a) FB15K-237
Time t-test (h, p)

ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
ComplEx - (0, 6e-1) - - - -
Complϵx - - - - - -
5⋆E - - - (1, 4e-11) - (1, 6e-3)
5⋆ϵ∇ - - - - - (1, 2e-2)
5⋆ϵ♢ - - - - - -
5⋆ϵn - - - - - -

MRR t-test (h, p)
ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
- (1, 3e-28) - - - -
- - - - - -
- - - (1, 9e-11) - (1, 2e-15)
- - - - - (1, 4e-21)
- - - - - -
- - - - - -

(b) WN18RR
Time t-test (h, p)

ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
ComplEx - (0, 4e-1) - - - -
Complϵx - - - - - -
5⋆E - - - (1, 5e-47) - (1, 1e-46)
5⋆ϵ∇ - - - - - (0, 7e-1)
5⋆ϵ♢ - - - - - -
5⋆ϵn - - - - - -

MRR t-test (h, p)
ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
- (1, 3e-6) (1, 2e-7) (1, 7e-3) - (1, 3e-8)
- - - - - -
- - (1, 5e-4) - (0, 6e-1)
- - - - - (1, 3e-4)
- - - - - -
- - - - - -

(c) YAGO3-10
Time t-test (h, p)

ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
ComplEx - (0, 1e-1) - - - -
Complϵx - - - - - -
5⋆E - - - (1, 2e-6) (1, 3e-5) (1, 8e-3)
5⋆ϵ∇ - - - - (1, 3e-2) (0, 1e-1)
5⋆ϵ♢ - - - - - (0, 5e-1)
5⋆ϵn - - - - - -

MRR t-test (h, p)
ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
- (0, 8e-2) - - - -
- - - - - -
- - - (1, 2e-21) (1, 2e-2) (1, 6e-21)
- - - - (1, 1e-23) (1, 3e-9)
- - - - - (1, 3e-22)
- - - - - -

(d) FB15K
Time t-test (h, p)

ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
ComplEx - (0, 5e-1) - - - -
Complϵx - - - - - -
5⋆E - - - (1, 1e-7) (1, 4e-9) (1, 6e-9)
5⋆ϵ∇ - - - - (0, 2e-1) (0, 8e-2)
5⋆ϵ♢ - - - - - (0, 1e-1)
5⋆ϵn - - - - - -

MRR t-test (h, p)
ComplEx Complϵx 5⋆E 5⋆ϵ∇ 5⋆ϵ♢ 5⋆ϵn
- (0, 8e-2) - - (1, 1e-17) (1, 1e-13)
- - - - (1, 5e-21) (1, 2e-16)
- - (1, 3e-14) (1, 5e-5) (0, 2e-1)
- - - - (1, 4e-15) (1, 5e-14)
- - - - - (1, 3e-5)
- - - - - -

(e) WN18

Table 6: t-test (h, p) of Time and MRR on FB15K-237, WN18RR, YAGO3-10, FB15K and WN18 datasets.


