
Meta-Learning the Difference: Preparing
Large Language Models for Efficient Adaptation

Zejiang Hou
Princeton University, USA∗

zejiangh@princeton.edu

Julian Salazar
Amazon AWS AI, USA
julsal@amazon.com

George Polovets
Amazon AWS AI, USA
polovg@amazon.com

Abstract
Large pretrained language models (PLMs)
are often domain- or task-adapted via fine-
tuning or prompting. Finetuning requires
modifying all of the parameters and having
enough data to avoid overfitting while prompt-
ing requires no training and few examples
but limits performance. Instead, we pre-
pare PLMs for data- and parameter-efficient
adaptation by learning to learn the differ-
ence between general and adapted PLMs.
This difference is expressed in terms of
model weights and sublayer structure through
our proposed dynamic low-rank reparame-
terization and learned architecture controller.
Experiments on few-shot dialogue comple-
tion, low-resource abstractive summarization,
and multi-domain language modeling show
improvements in adaptation time and perfor-
mance over direct finetuning or preparation via
domain-adaptive pretraining. Ablations show
our task-adaptive reparameterization (TARP)
and model search (TAMS) components indi-
vidually improve on other parameter-efficient
transfer like adapters and structure-learning
methods like learned sparsification.

1 Introduction

Finetuning large pretrained language models
(PLMs) on task-specific supervised data has be-
come the default strategy to produce performant
models for various NLP tasks (Dai and Le, 2015;
Howard and Ruder, 2018; Radford et al., 2019,
inter alia), provided a task has enough train-
ing data to be adapted to without overfitting.
For few-shot tasks, very large PLMs like the
175B-parameter GPT-3 (Brown et al., 2020) do
surprisingly well without training using prompts,
where task-specific examples (xj , yj) are pre-
sented as text to condition the PLM before a
test input xtest is given. Our work considers an
important middle ground: minimizing the com-
putational cost of finetuning while improving

∗Work done during an internship at Amazon AWS AI.

on its performance in low-resource and few-
shot settings.

In general, self-supervised objectives used
for PLMs assume little about the nature of
downstream tasks. Earlier works suggested that
task-awareness is unnecessary for PLMs of suf-
ficient scale; for example, Raffel et al. (2020)
found that multi-task learning underperformed
pretrain-finetune for the largest T5 models
on multi-format question answering. However,
Gururangan et al. (2020) showed that fur-
ther pretraining on unlabeled text from the
downstream task (task-adaptive pretraining, or
TAPT) or a related domain (DAPT) consistently
improved adaptation performance. Aghajanyan
et al. (2021a) revisited Raffel et al. and found
that by greatly improving the number and bal-
ance of tasks, one can utilize a multitask objective
after pretraining and achieve gains in proportion
to the number of tasks. As for even larger mod-
els, Brown et al. (2020) argue that the impressive
few-shot prompting ability of GPT-3 comes from
‘‘implicit’’ meta-learning (Schmidhuber, 1987;
Bengio et al., 1990) which they term in-context
learning, where the outer loop is performed by
self-supervised pretraining, and the inner loop is
performed by forward passes on implicit examples
in unlabeled texts.

These works motivate that exposure to broad
information about downstream tasks remains
useful in preparing a large PLM for adaptation.
Hence, we propose explicit meta-learning for
preparing large PLMs for data-efficient adap-
tation; a visual comparison is in Figure 1. To also
achieve parameter efficiency and performance,
we adapt meta-transfer learning (Sun et al.,
2019) to large PLMs in two proposed ways: An
inner loop optimizing a low-rank task-adaptive
reparameterization (TARP) of weights, and
an outer loop learning an architecture controller
for searching task-adaptive model structures
(TAMS). These improve over general finetuning

1249

Transactions of the Association for Computational Linguistics, vol. 10, pp. 1249–1265, 2022. https://doi.org/10.1162/tacl a 00517
Action Editor: Shay Cohen. Submission batch: 2/2022; Revision batch: 6/2022; Published 11/2022.

c© 2022 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:zejiangh@princeton.edu
mailto:julsal@amazon.com
mailto:polovg@amazon.com
https://doi.org/10.1162/tacl_a_00517


Figure 1: Comparison between (top) implicit
meta-learning from text corpora that incidentally con-
tain task ‘‘prefixes’’, as in GPT-3 (Brown et al., 2020;
Fig. 1.1), and (bottom) explicit meta-learning the trans-
formation of a PLM’s weights and sublayers for a
distribution of tasks.

and even DAPT-prepared LMs on generative
and unconditional few-shot and low-resource
settings, such as multi-domain abstractive sum-
marization (AdaptSum; Yu et al., 2021) and lan-
guage modeling.

Furthermore, our analysis shows that each
component of our task distribution-aware
strategy independently improves over prior
work: (1) meta-transfer learning improves
over model-agnostic meta learning (Finn et al.,
2017) even after multitask learning on the same
data, setting a new state-of-the-art on few-shot
Persona-Chat dialog personalization (Zhang
et al., 2018); (2) our proposed dynamic low-rank
TARP outperforms recent methods such as
MAM adapters (He et al., 2022) and alternate
reparameterizations like Kronecker products
(Zhang et al., 2021); (3) our lightweight controller
for generating task-aware architectures in TAMS
extends improvements into higher resource tasks
and rediscovers task-specific modifications like
1D convolutions for Transformers.

Our proposal is summarized in Figure 2, with
pseudocode in Algorithm 1 at the end of the next
section. We publicly release the code for our
experiments and our reference library online.1

1https://github.com/amazon-research/meta
-learning-the-difference.

2 Methodology

Our goal is to explicitly optimize a PLM for
efficient adaptation to any task Ti sampled from
a distribution of low-resource NLP tasks p(T ).
Each task consists of a training set Dtrain

i , a test set
Dtest

i , and a loss function Li.
The prevailing approach for efficiently opti-

mizing a base model fΘ on a (relatively) small
task-specific dataset is to use model-agnostic
meta-learning (MAML; Finn et al., 2017). This
is a bi-level optimization process that uses a
stochastic gradient-based strategy to sample a
batch of tasks {Ti}Bi=1 from the task distribu-
tion p(T ) in each meta-iteration. In the inner
loop, each task finetunes a copy of the model’s
weights Θ for a small number of steps Tin, pro-
ducing task-specific weights Θi. In the outer loop,
each task model fΘi is evaluated on its corre-
sponding task’s test set Dtest

i and these losses are
summed to produce the overall meta-loss. The
meta-loss

∑
Ti∼p(T ) Ltest

i (fΘi) is then used to opti-
mize and update Θ; see Weng (2018)2 for a more
detailed overview.

MAML, however, is not generally used in
NLP as a competitive alternative to pretrain-then-
finetune methods for low-resource and few-shot
settings. To rectify MAML’s limitations, we pro-
pose a meta-learning the difference (MLtD) frame-
work to optimize PLMs for fast and data-efficient
adaptations with the following contributions:

MAML after Pretraining. Earlier work per-
formed MAML using random initializations, or at
best with pretrained token embeddings (Madotto
et al., 2019), which was shown to underperform
the pretrain-finetune paradigm. With the increased
prevalence of large-scale pretraining, recent work
has begun to initialize MAML with PLMs (Dou
et al., 2019). We continue this approach, but fur-
ther show that pretraining + MAML, even when
labeled (i.e., multitask) and performed only on
the meta-training data (i.e., no external text),
improves performance and mitigates overfitting
versus pretraining alone or MAML alone (Sec-
tion 4), suggesting that pretraining produces a
better initialization that promotes generalization
in later meta-learning.

Parameter-efficient Transfer. Adaptation data
is typically limited, making it easy for large models

2https://lilianweng.github.io/lil-log
/2018/11/30/meta-learning.html.

1250

https://github.com/amazon-research/meta-learning-the-difference
https://github.com/amazon-research/meta-learning-the-difference
https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html
https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html


Figure 2: Overview of our proposed method, which learns to transform a small set of weights Φi (TARP learning)
and modify sublayer modules αi (TAMS learning) in a task-specific, data-efficient, and parameter-efficient
manner. First, we initialize with a base PLM (top left). In each meta-iteration, we sample a batch of tasks from
a task distribution (left). In the inner loop (middle), independent sets of dynamic low-rank reparameterizations
are initialized, and an architecture controller generates independent task-specific sublayer modules, all of whose
weights are adapted to the task’s training set. Each task model is evaluated on the corresponding task’s test set. In
the outer loop (right), these task losses are summed up to produce the overall meta-loss, and the backward path
optimizes the base model, the initial reparameterization, and the architecture controller.

to overfit. Previous work uses very shallow CNNs
(Finn et al., 2017), only adapt scale-and-shift
parameters atop the original model (Sun et al.,
2019), or apply various general regularization
techniques such as weight decay, label smooth-
ing, dropout, early stopping, and �1 regularization
(Madotto et al., 2019; Song et al., 2020). In
contrast, we propose learning dynamic low-rank
reparameterizations gΦi (Section 2.1) of the base
model such that Θi(x) = gΦi(ΘLM, x) for task
Ti. Here, Φ is a small set of new parameters that
are adapted into task-specific Φi when finetun-
ing. Notably, we modify MAML to incorporate
these parameter-efficient modules, so that during
task adaptation in both meta-training (the inner
loop) and meta-testing (novel tasks) Ti, we only
adapt Φ → Φi instead of Θ → Θi, speeding up
both phases and improving overall performance.
Though some work explores the benefits of joint
training or fusion of parameter-efficient modules
(Stickland and Murray, 2019; Lin et al., 2020;
Pfeiffer et al., 2021), prior work has not explored
meta-learning to learn these adaptations in a task
distribution-aware setting.

Architecture Adaptation. While the Trans-
former has proven to be a robust general-purpose
architecture, recent work has shown that the op-
timal attention-then-FFN sublayer structure can

vary across tasks (e.g., Sandwich Transformers;
Press et al., 2020). However, previous data-driven
sublayer searches are often task-agnostic (e.g.,
So et al., 2021), where the sublayer search is
implemented before pretraining. Meta-learning
enables learning data-driven sublayers after pre-
training, in a differentiable, task-adaptive manner
(Section 2.2). Instead of a separate search per
task as in previous methods (DARTS; Liu et al.,
2019a), we propose meta-learning a task-aware
architecture controller to help it generalize to
new tasks when searching neural architectures, by
learning to directly generate task-specific sublayer
structures from the dataset. By exploiting architec-
tural knowledge learned over the task distribution,
our task-adaptive model structure approach im-
proves test-time performance. A related work in
customizing model structure is CMAML (Song
et al., 2020), which applies a sparse pruning al-
gorithm to obtain task-specific weight masks. Our
method differs in that we consider generalization
over a distribution of tasks (instead of a single
task), and it has a richer search space with dif-
ferent operations, numbers of layers, and widths
of layers, so that our method provides architec-
ture diversity to accommodate to the different
task data.

In all, we employ meta-learning to improve
upon initializing from a pretrained ΘLM, allowing

1251



better downstream finetuning on tasks. By learn-
ing only the transformation weights Φi and
(optionally) the task-specific architecture αi for
new tasks Ti, our method ‘‘learns to learn the
difference’’ between a PLM and a task-specific
LM in a training-efficient way.

2.1 Efficient Parameter Adaptation

We categorize recent works in parameter-efficient
adaptation of large PLMs into three types:

Adding Parameter-efficient Layers. Low-
dimensional adapters (Rebuffi et al., 2018) have
been injected into a frozen pretrained BERT
either serially after each sublayer (Houlsby et al.,
2019), or in parallel to the self-attention layers
(PALs; Stickland and Murray, 2019). Previous
work (Bapna and Firat, 2019; Lin et al., 2020)
has applied adapters to other NLP models (e.g.,
GPT-2). Compacters (Mahabadi et al., 2021)
reduce the adapter parameter count via hyper-
complex multiplications (Zhang et al., 2021).

Adding Parameter-efficient Prefixes. Inspired
by prompting, the learning of automated prompts
or task-specific continuous variants has been ap-
plied for encoder-only PLMs like BERT (Shin
et al., 2020; Hambardzumyan et al., 2021) and
generative PLMs (Li and Liang, 2021; Liu et al.,
2021; Lester et al., 2021) where one learns task-
specific vectors prepended to inputs or hidden
representations.

Transformations Only. The adapter and
prefix-tuning strategies insert layers or introduce
prefixes, increasing inference time or in-memory
size. Instead, Zhao et al. (2020) learn binary
masks, and diff pruning (Guo et al., 2021)
learns sparse additive vectors. Both methods
use unstructured sparsity to achieve parameter
efficiency. Later work like BitFit (Zaken et al.,
2021) and LoRA (Hu et al., 2022) introduces
parameter-efficient modifications targeting the
Transformer architecture: BitFit only tunes the
bias parameters, while LoRA adds low-rank de-
composition weights to the self-attention weights.
Recently, He et al. (2022) proposed parallel mix-
and-match (MAM) adapters, which leverage ben-
efits of the preceding types.

Hence, to minimize overhead we focus on a
‘‘transformations only’’ approach. Inspired by the

scale-and-shift parameters of Sun et al. (2019),
we propose learning affine transformations to
reparameterize the pretrained model weights to-
wards a task. For a pretrained weight matrix
W l

0 ∈ R
Cin×Cout (can be any dense layer in

the self-attention module or the FFN module
in a transformer based architecture), we first
reparameterize the task-specific weights as:

W l = Φl
1 �W l

0 + Φl
2, (1)

where Φl
1,Φ

l
2 ∈ R

Cin×Cout and � denotes the
elementwise (Hadamard) product.

At adaptation time, we apply low-rank con-
straints while optimizing the reparameterization
weights only, giving the training objective

min
{Φl

1,Φ
l
2}Ll=1

rank(Φl
i)<r

T∑

t=1

log p(yt|x, y<t; {W l}Ll=1). (2)

A straightforward approach to solve the rank-
constrained problem is to apply a low-rank de-
composition to the transformation weights Φl

i.
We term this approach of learning parameter-
efficient affine transformations task-adaptive
reparameterization (TARP). We consider two
standard static decomposition methods:

• Bilinear, which takes Φl
j = U l

jV
l
j
T where

U l
j ∈ R

Cin×r and V l
j ∈ R

Cout×r, as done in
the additive-only setting (Φl

1 = I) by LoRA.

• Kronecker product, which takes Φl
j =

∑n
k=1 H

l
k ⊗ (U l

kV
l
k
T
) where Hk ∈ R

n×n,
U l
k ∈ R

(Cin/n)×r, V l
k ∈ R

(Cout/n)×r, and n
is a hyperparameter, as used in the ‘‘added-
layer’’ Compacter approach.

In addition, we propose a novel decomposition
inspired by the self-attention mechanism, which
aggregates features using input-dependent atten-
tion weights and can be regarded as a function
using input-dependent parameters. Similarly, the
optimal reparameterization of the base model may
vary with different input values. To account for
this, our TARP parameters are modeled by a
dynamic low-rank decomposition (Figure 3):

Φl
j(x) = U l

jΣ
l
j(x)V

l
j
T
. (3)

1252



Figure 3: TARP with dynamic decomposition (only the
additive Φl

2 is depicted for simplicity).

The square matricesΣl
j(x) ∈ R

r×r are generated
by a lightweight multi-layer perceptron (MLP) for
different input vectors and U l

j , V
l
j are the learn-

able weight matrices with r 	 min(Cin, Cout).
We compare popular parameter-efficient trans-

fer schemes and these three decompositions in
Section 4.

2.2 Efficient Architecture Adaptation
We also propose adapting the model structure for
each task in a data-driven manner. The weights
of the task-specific architectures are learned in
the inner loop, while the task-aware architecture
generator which produces architecture candidates
is learned in the outer loop. We term this ap-
proach task-adaptive model structure (TAMS)
learning.

We first represent each task Ti with an em-
bedding vector zi based on the task training set
Dtrain

i . An embedding module E computes the
task representation by aggregating features of all
training data:

zi = E(Dtrain
i ) =

∑
(x,y)∈Dtrain

i
Embed(x)

|Dtrain
i | , (4)

where Embed(x) are intermediate representa-
tions produced by the PLM. For encoder-decoder
models (Transformer), we take Embed to be
the encoder; for encoder-only or decoder-only
PLMs (BERT, GPT-2), we use the token embed-
ding layer.

Inspired by DARTS (Liu et al., 2019a), we de-
fine the possible sublayer structures by a search
space expressed as a directed acyclic graph
(DAG), where each directed edge corresponds
to a set of candidate operations O. The task ar-
chitecture is represented by a set of parameters
αi that encode the structure, where αi ∈ R

E×|O|

(E is the number of edges, and |O| is the number

of operations). In our proposed TAMS approach
we also introduce a controller A to generate these
task-specific architecture parameters, as a func-
tion of the task embedding vector αi = A(zi).
The probability of choosing operation m in edge
n is given by Pn(m) = softmaxm∈O(αi[n,m]).
In meta-testing, the discrete architecture is ob-
tained by taking the argmax. Since argmax is
non-differentiable, we use the straight-through
Gumbel-Softmax estimator to backpropagate gra-
dients for optimizing the architecture controller
during meta-training.

In TAMS, all possible architectures are initial-
ized as part of the meta-parameters w̃ based on
weight-sharing (Pham et al., 2018), that is, ar-
chitecture αi’s weights w̃(αi) are selected from
the meta-parameters. After the reparameterization
steps in TARP and the architecture generation
steps in TAMS, our inner loop optimization
takes parameters (Φ, w̃(αi)) and performs a
small number of gradient steps Tin on the task
training set to give (Φi, w̃i). In the outer loop
optimization, we thus have to simultaneously
optimize the architecture controller to perform
architecture search, as well as the parameter
initialization. This is in contrast to MAML,
which just optimizes the parameter initializa-
tion in the outer loop. The meta-loss becomes:
min
W

∑
Ti∼p(T ) LDtest

i
(fΘLM∪Φi∪w̃i), where the tuple

W contains the base PLM’s weights ΘLM, the
low-rank reparameterization weights Φ, the ar-
chitecture controller A, and the weight-sharing
meta-parameters w̃.

In summary, our contributions with the TAMS
framework are that (1) it meta-learns a task-aware
controller by training on the task distribution
and then generalizes to new tasks by automat-
ically generating an optimized architecture αi

from the task training data, and (2) it opti-
mizes the controller and parameter initialization
(shared by all tasks) simultaneously under a uni-
fied meta-learning objective. This is in contrast
to DARTS, which performs a separate search and
architecture parameter optimization for each task
independently.

We summarize our net method with TARP and
TAMS as pseudocode in Algorithm 1.

3 Main Results

To demonstrate the overall benefit of our method,
we compare our results to other approaches

1253



Algorithm 1: Meta-Learning the Difference
(MLtD) with TARP and TAMS.

1 Require: pretraining dataset Dpre; meta-training dataset of
tasks Dmeta; base model (LM) fΘ; TARP weights Φ;
embedding module E in TAMS; architecture controller A in
TAMS; meta-parameters w̃ in TAMS; inner-/outer-loop
learning rate ηin/ηout; meta-training iterations Tmeta;
inner-loop iterations Tin; meta-batch size B;

/* Pretraining phase in MLtD */
2 Pretrain the base LM’s weights Θ → ΘLM on Dpre;
// In contrast, MAML runs on random

initialization.
/* Meta-training phase in MLtD */

3 for each meta-iteration t ∈ [Tmeta] do
4 Sample a batch of tasks {Ti}Bi=1 from Dmeta;
5 Lmeta loss = 0;
6 for Ti ∈ {Ti}Bi=1 do
7 Initialize Φi = Φ;
8 Reparameterize ΘLM with Φi (Eq.1,3);
9 Expand task-specific sublayers by TAMS-generated

architecture αi=A(E(Dtrain
i ));

10 Initialize sublayer’s weights: w̃i = w̃(αi);
// In contrast, MAML does not

adapt model architecture to a
task.

11 for Tin iterations do
12 Linner = LDtrain

i

(
fΘLM∪Φi∪w̃i

)
;

13
(
Φi, w̃i

)
–= ηin∇(Φi,w̃i)

Linner;
// In contrast, MAML updates

all parameters, but we only
update a small number in the
inner loop.

14 Evaluate on Dtest
i :

15 Lmeta loss += LDtest
i

(
fΘLM∪Φi∪w̃i

)
;

16 Perform outer-loop optimization:(
ΘLM,Φ,A, w̃

)
–= ηout∇(ΘLM,Φ,A,w̃)Lmeta loss;

17 Return: meta-trained PLM with learned (ΘLM,Φ,A, w̃);

on generative adaptation tasks in the few-shot
(dialogue personalization), low-resource (ab-
stractive summarization), and medium-resource
(multi-domain language modeling) regimes. In
Section 4 we perform some analyses and also
compare TARP by itself to previous parameter-
efficient work.

3.1 Implementation

All of our experiments ran using PyTorch on single
machines with 32GB NVIDIA V100 GPUs. See
per-task hyperparameters in Appendix A.1 and
our code release.

TARP Decomposition. We apply task-adaptive
reparameterization (TARP) to the pretrained
self-attention and feed-forward network (FFN)
blocks. In Section 4.2 we conclude that TARP
with dynamic decomposition outperforms other
parameter-efficient transfer methods; TARP will

always be of this form for our main experiments,
with rank r ≤ 32.

TAMS details. We apply TAMS to expand the
FFN block, so the shared (in structure) sublayers
capture the commonalities among tasks while new
searched sublayers capture task-specific structure.
Our search DAG contains two input nodes that
project the inputs to a low-dimensional space, one
output node that projects the intermediate repre-
sentation back to the original dimension, and three
intermediate nodes. Candidate operations for each
edge are {linear, conv-3×1, conv-5×1, gated lin-
ear unit (GLU), zeroize, and skip connection}; see
code for definitions. All the candidates operate on
a reduced feature dimension to ensure the param-
eter efficiency of the search cell. Our controller A
is a two-layer MLP. The first fully connected layer
has 128 output neurons, and the second layer has
E × |O| neurons (see Section 2.2 for notation).
We apply ReLU after the first layer and softmax
the final output.

3.2 Few-shot Dialogue Personalization

Persona-Chat (Zhang et al., 2018) is a dialogue
generation benchmark with 1137/99/100 personas
for training/validation/testing. We follow recent
work (Madotto et al., 2019; Song et al., 2020) and
regard learning a dialogue model for each persona
as a few-shot meta-learning task. On average, each
persona has 8.3 unique dialogues, 6–8 turns per
dialogue, and 15 words per turn. Following previ-
ous work, we use a standard Transformer model
with pretrained GLoVe embeddings and separate
the dialogues by their persona description into
meta-training/-validation/-testing using Madotto
et al.’s (2019) splits and code.3

Baselines. The following are from previous
work. Pretrain denotes a multitask dialogue
model trained on labeled data from all meta-
training tasks. MAML meta-trains the Trans-
former model from scratch (Madotto et al., 2019),
and CMAML (Song et al., 2020) additionally
applies a pruning algorithm to customize the
model structures for different tasks. +Finetune
corresponds to finetuning on each testing task.
Finally, Pretrain+Persona is a partial oracle for
reference only, where the persona description
is available.

3https://github.com/HLTCHKUST/PAML.

1254

https://github.com/HLTCHKUST/PAML


Method PPL BLEU C-score
Pretrain (multitask)∗ 36.75 0.64 −0.03
Pretrain+Finetune∗ 33.14 0.90 0.00
MAML+Finetune∗ 40.34 0.74 0.20
CMAML+Finetune∗ 36.30 0.89 0.18
Pretrain+Persona∗ 30.42 1.00 0.07
Pretrain+MAML+Finetune 32.54 0.97 0.23
MLtD (TARP only) 32.15 0.99 0.25
MLtD 28.14 1.20 0.30

Table 1: Comparison of test perplexity (PPL;
lower is better), BLEU (higher is better), and
C-score (higher is better) for few-shot dialogue
generation on the Persona-Chat dataset. ∗: pub-
lished results from Madotto et al. (2019); Song
et al. (2020); the rest are ours.

Results (Table 1). We include the same eval-
uation metrics from previous work, including
perplexity, BLEU score, and C-score, where
C-score is a domain-specific metric that uses a
pretrained natural language inference model to
evaluate whether the hypothesis matches the per-
sona or not. Training MAML from scratch yields
worse results than the Pretrain model. However,
when MAML is initialized from the multitask
model (Pretrain+MAML+Finetune), the result
already outperforms previous work. Note that the
same labeled data is used for both Pretrain and
MAML, suggesting that meta-learning benefits
from the more robust initialization that pretrain-
ing provides to improve task-specific few-shot
adaptation (also see analysis in Section 4.1).

Moreover, we see further improvements by
‘‘meta-learning the difference’’ (MLtD). By using
TARP for MAML’s inner loop adaptation (MLtD,
TARP only), we attain equivalent or better
results and faster training time while only up-
dating a small amount of task-specific parameters
(Section 4.2). This indicates that our method helps
mitigate overfitting to low-resource tasks. Finally,
by incorporating TAMS (MLtD), we use the full
framework and achieve the best performance, sug-
gesting the task-adapted model structure gives
better architectures for personas. In this regard,
CMAML lags behind MLtD as well. We conjec-
ture this is because it uses a pruning algorithm
to ‘‘customize’’ the model with different weight
masks, which may not generate enough model
diversity for diverse tasks as the architectural
inductive bias remains the same.

3.3 Low-resource Abstractive
Summarization

AdaptSum (Yu et al., 2021) is a new multi-domain
dataset used to evaluate domain adaptation
schemes for abstractive summarization. It con-
sists of six diverse target domains ranging from
movie reviews to scientific abstracts. Each do-
main has a low-resource task corpus and a larger
unlabeled text corpus as well (list and statis-
tics in Table 4) that is used to evaluate domain-
and task-adaptive pretraining (DAPT/TAPT;
Gururangan et al., 2020). We use pretrained BART
(Lewis et al., 2020) and finetune to each low-
resource task corpus as in Yu et al. (2021), whose
code4 we extend.

Baselines. DAPT continues pretraining with
BART’s self-supervised objective using the unla-
beled domain corpus. TAPT continues pretraining
with the set of unlabeled documents found in the
target summarization task. SDPT uses the XSum
dataset in the News domain to further pretrain
BART with a supervised training objective using
document-summary pairs before finetuning.

Results (Table 2). We find that MLtD, even
without architecture search (TARP only), outper-
forms DAPT, TAPT, and SDPT. These methods
use in-domain/-task knowledge and the stan-
dard pretraining objective to help adaptation
to the target task, while our method considers
cross-domain knowledge via the meta-learning
objective, sampling meta-training tasks from
multiple domain corpora to train the model. More-
over, the use of meta-learning as preparation
outperforms multitask pretraining (TARP only,
multitask pretraining instead), signifying that
mere exposure to the cross-domain data may not
be enough and using a meta-learning objective
to explicitly optimize for the lightweight adap-
tation is beneficial. Finally, we see that without
meta-learning or multitasking (TARP only, no
meta-learning) our performance is also better
than the baseline. This demonstrates the effective-
ness of the lightweight TARP adaptation, which
matches the performance of full finetuning while
only updating less than 5% of parameters.

3.4 Multi-domain Language Modeling
Though the text corpora in AdaptSum were orig-
inally included to evaluate DAPT, we also use

4https://github.com/TysonYu/AdaptSum.

1255

https://github.com/TysonYu/AdaptSum


Method Dialog Email Movie Debate Social Science Avg.
Baseline (full finetuning)∗ 39.95 24.71 25.13 24.48 21.76 72.76 34.80
DAPT (Domain-Adaptive Pre-Training)∗ 41.22 26.50 24.25 26.71 22.95 71.88 35.59
TAPT (Task-Adaptive Pre-Training)∗ 40.15 25.30 25.27 24.59 22.81 73.08 35.20
SDPT (Supervised Domain Pre-Training)∗ 42.84 25.16 25.45 25.61 22.43 73.09 35.76
MLtD 44.81 25.30 26.83 26.88 24.40 74.03 37.04

(TARP only) 42.88 26.92 25.98 25.95 23.34 73.69 36.46
(TARP only, no meta-learning) 40.39 23.20 25.81 26.67 21.46 73.20 35.12
(TARP only, multitask pretraining instead) 41.82 25.41 26.17 25.70 22.54 73.50 35.85

Table 2: ROUGE F1s from multi-domain adaptation for abstractive summarization on AdaptSum
(higher is better). All methods are initialized with pretrained BART and finetuned on the labeled task
training set of each domain at the end. ∗: published results from Yu et al. (2021), using DAPT and TAPT
methods from Gururangan et al. (2020); the rest are ours.

Method Dialog Email Movie Debate Social Science Avg.
Baseline (full finetuning) 31.95 31.57 42.25 34.38 33.02 28.82 33.67

Zero-shot (no finetuning) 37.26 38.45 49.46 41.38 37.13 34.20 39.65
DAPT† 35.15 16.04 43.12 33.83 27.15 18.96 29.04
MLtD 29.66 16.93 35.38 30.61 19.78 17.06 24.90

(TARP only) 28.63 18.67 39.73 32.70 26.93 20.39 27.84
(TARP only, no meta-learning) 31.66 31.59 41.78 33.18 32.78 28.20 33.19

Table 3: Test perplexities from multi-domain language modeling adaptation on AdaptSum (lower is
better). All methods are initialized with pretrained GPT-2 medium and finetuned on the labeled domain
set at the end. †: our re-implementation of Gururangan et al. (2020).

them to evaluate our methods on multi-domain
language modeling. As this is a novel benchmark,
to demonstrate fast adaptation we take Tin = 1.

Baselines. We start with pretrained GPT-2
medium (345M) (Radford et al., 2019) with in-
put sequence length 512 using the Transformers
library (Wolf et al., 2019). Finetuning is per-
formed on the training documents of the task
corpus, and we evaluate perplexity on the test
documents of the task corpus. The only excep-
tion to finetuning is Zero-shot, which evaluates
the pretrained GPT-2 model directly. DAPT con-
tinues pretraining of GPT-2 with the language
modeling objective on the unlabeled domain cor-
pus before finetuning.

Results (Table 3). Our findings in summa-
rization also hold for the unconditional causal
language modeling task. Namely, we see equal or
better performance of TARP vs. full finetuning
and that meta-learning plays a significant role in
the task adaptation quality. In contrast to sum-
marization with BART (Section 3.3) but similar
to Persona-Chat with Transformer (Section 3.2),

Domain
# of tokens

Text only Task corpus
train val test

Dialog 44.96M 27K 74K 75K
Email 117.54M 37K 243K 237K
Movie review 11.36M 633K 1056K 6193K
Debate 122.99M 59K 188K 197K
Social media 153.30M 68K 229K 229K
Science 41.73M 63K 221K 314K

Table 4: Data sizes for AdaptSum (Yu et al., 2021)
across the six domains, for both the text-only
domain-related corpus and the low-resource task
corpus.

we see that TAMS leads to noticeable improve-
ments. We explain why this may be the case and
present the TAMS-learnt sublayer modules in
Section 4.4.

4 Analysis

4.1 Pretraining Improves Meta-learning

We analyze the performance of MLtD on
Persona-Chat at meta-testing time (i.e., finetuning
then testing on unseen personas) with respect to

1256



Figure 4: Perplexities on Persona-Chat testing tasks
with MLtD (TARP only) versus Pretrain+Finetune and
MAML+Finetune. Left: Influence of number of adap-
tation iterations. Right: Influence of the number of
adaptation dialogues.

the number of inner loop steps and training di-
alogues. In Figure 4 (left), we see that original
MAML (no pretraining) overfits, while finetuning
the multitask-pretrained model keeps improving.
Moreover, MLtD atop the multitask-pretrained
model followed by finetuning continues to im-
prove test perplexity. In Figure 4 (right), we fix
the finetuning steps and vary the number of train-
ing dialogues used in finetuning. Using more dia-
logues improves perplexity for all three methods,
with MLtD still leading over full MAML and
direct finetuning after pretraining. The takeaway
from these results is that applying MAML on a pre-
trained model prevents overfitting and promotes
better generalizability from meta-learning.

4.2 Dynamic TARP versus Alternatives

We benchmark our dynamic low-rank reparame-
terization on a variety of NLP models and tasks. To
show that dynamic TARP individually improves
on full finetuning and other parameter-efficient
adaptation methods, we report single-task re-
sults here. For classification, we use pretrained
RoBERTa (Liu et al., 2019b) on the GLUE
benchmark tasks (Wang et al., 2019), which were
evaluated on by many recent parameter efficient
adaptation methods (Houlsby et al., 2019; Zhao
et al., 2020; Zaken et al., 2021; Pfeiffer et al.,
2021; He et al., 2022). For generative tasks,
we use pretrained GPT-2 medium on natural
language generation datasets: We specifically
evaluate on E2E (Novikova et al., 2017), which
was used for adapters (Lin et al., 2020); WebNLG
(Gardent et al., 2017); and DART (Nan et al.,
2021), which was used by LoRA (Hu et al., 2022).
Further dataset and experimental setup details are
in Appendix B. In particular, we chose rank r to

give similar parameter counts to other approaches;
r = 4 in Table 6, r = 8 in Table 5.

For classification tasks, we compare with fine-
tuning all layers; weight Masking (Zhao et al.,
2020); BitFit (Zaken et al., 2021), which only fine-
tunes the biases; AdapterFusion (Pfeiffer et al.,
2021), which composes learned adapters (Houlsby
et al., 2019); as well as He et al. (2022), which
proposed a unified framework connecting several
state-of-the-art adaptation methods like LoRA5

(Hu et al., 2022) and Adapter (Houlsby et al.,
2019), and derived an improved method (MAM
Adapter). Our dynamic TARP can only partly be
viewed in this unified framework as we explore a
novel design dimension, namely, making the mod-
ification to the base model dynamic with respect
to input tokens. For fair comparisons, we follow
past work (Liu et al., 2019b; Zhao et al., 2020;
He et al., 2022) and set the maximum finetun-
ing epochs to 10 on each task. In Table 5,
dynamic TARP introduces and trains only 1%
versus the number of original parameters, while
achieving comparable results to full finetuning
and outperforming the previous best results from
MAM adapters.

For generative tasks, we ablate the design of
TARP and we compare with available numbers,
including finetuning all layers; FT-Top2, which
only finetunes the last two layers of the model;
Adapter (Houlsby et al., 2019), which only
finetunes the adapter layers inserted after each
feed-forward and self-attention sublayer; Prefix-
tuning (Li and Liang, 2021); and LoRA (Hu et al.,
2022). As shown in Table 6, TARP methods
match or outperform other parameter-efficient
methods, while learning task-specific parameters
that are <3% of the number of base parameters
and keep the base model unchanged. Among the
three TARP variants, we find that Dynamic >
Bilinear > Kronecker in terms of performance
across generative metrics. This suggests that
the optimal adaptation to the underlying model
weights may vary per token, which dynamic
low-rank accounts for. Moreover, dynamic TARP
performs better than an alternative where the
O(n2) Hadamard product in Eq. (1) is replaced by
O(n3) matrix multiplication (w/ matrix mult.).

5(orig.) denotes Hu et al. (2022)’s v1 preprint, which
was the one available during our’s and He et al. (2022)’s
work and thus used in their implementation. Published LoRA
adds a per-dataset tunable scaling α that we do not explore
for TARP.

1257



Method Params. CoLA MRPC STS-B RTE SST-2 MNLI QNLI QQP
per task Matt. corr Acc. Pear. corr Acc. Acc. Acc. Acc. Acc. Avg.

Finetuning (full)∗ 100% 63.6 90.2 91.2 78.7 94.8 87.6 92.8 91.9 86.4
Masking∗ 3% 60.3 88.5 – 69.2 94.5 – 92.4 – –
AdapterFusion∗ 1% – 89.7 – 78.8 93.7 86.2 – 90.3 –
MAM Adapter∗ 0.5% 59.2 88.5 90.6 74.3 94.2 87.4 92.6 90.2 84.6
BitFit∗ 0.1% 61.8 92.0 90.8 77.8 93.7 84.8 91.3 84.5 84.6
MAM Adapter† 1% 59.7 90.2 90.6 77.3 94.6 87.6 92.9 90.9 85.5
LoRA (orig.)†,5 1% 63.9 89.7 90.7 76.2 94.5 87.5 92.7 90.8 85.8
Dynamic TARP 1% 65.3±.8 90.9±.4 91.0±.2 80.9±.7 94.8±.2 87.6±.2 93.0±.2 91.3±.1 86.8

Table 5: Comparison with other adaptation methods on the GLUE benchmark. We report single-task
results (including our dynamic TARP) of adapting RoBERTa-base to each task only. ∗: published results
from Liu et al. (2019b), Zhao et al. (2020), Zaken et al. (2021), Pfeiffer et al. (2021), and He et al.
(2022); †: recreated using He et al.’s (2022) implementation. For dynamic TARP, we provide the 95%
confidence interval over five runs.

Method Params. E2E DART WebNLG
per task BLEU NIST METEOR ROUGE-L CIDEr BLEU BLEU

Finetuning (full)∗ 100% 68.2 8.62 46.2 71.0 2.47 46.0 47.6
FT-Top2∗ 7.1% 68.1 8.59 46.0 70.8 2.41 38.1 33.5
BitFit∗ 0.1% 67.2 8.63 45.1 69.3 2.32 43.3 50.5
Adapter∗ 3.2% 68.9 8.71 46.1 71.3 2.47 45.4 54.0
Prefix∗ 1.0% 69.7 8.81 46.1 71.4 2.49 45.7±.2 54.4±.1

LoRA∗ 1.0% 70.4±.1 8.85±.02 46.8±.2 71.8±.1 2.53±.02 47.1±.2 55.3±.2

Bilinear TARP 2.4% 68.8 8.75 46.1 70.8 2.43 46.7 54.0
Kronecker TARP 2.4% 68.2 8.73 45.2 69.4 2.36 45.6 53.1
Dynamic TARP 1.0% 69.7±.1 8.78±.02 46.9±.2 72.1±.1 2.51±.01 47.9±.2 55.3±.1

w/ matrix mult. 1.0% 68.3 8.64 46.4 71.1 2.47 46.5 53.2

Table 6: Comparison with other adaptation methods for natural language generation (E2E, DART,
WebNLG) on GPT-2 medium. ∗: published results from Houlsby et al. (2019), Zaken et al. (2021),
Li and Liang (2021), and Hu et al. (2022); the rest are ours. For dynamic TARP, we provide the 95%
confidence interval over five runs.

4.3 Dynamic TARP Outperforms Finetuning

Tables 5 and 6 also show that dynamic low-rank
reparameterization outperforms finetuning on cor-
responding evaluating metric while being faster,
as it only adapts a small set of weights. The
training time further improves through utilizing
the training data more efficiently. In Figure 5
(left) we compare perplexities of our method
against finetuning on subsets of WikiText-2 and
see that finetuning increasingly underperforms as
the number of examples decrease. To explain this
behavior, in Figure 5 (right) we fix the number
of training examples to 100 and ablate the rank.
Our method performs best with a very small rank
value, suggesting that the difference between the
pretrained and finetuned weight matrices lies in
a lower-dimensional subspace. This complements
Aghajanyan et al.’s (2021b) observation that di-
rect adaptation in lower-dimensional spaces can

Figure 5: Testing perplexities on WikiText-2 with full
finetuning and/or low-rank adaptation with dynamic
TARP. Left: Low-rank adaptation is extremely helpful
on low-resource tasks. Right: Holding the number of
training examples fixed, the model adaptation space is
optimized by fewer dimensions.

be equally as effective as in the original space.
Moreover, we find that the larger the model
(GPT-2 medium vs. GPT-2 small), the lower
the rank value required for the best adaptation
performance.

1258



Figure 6: Dominant structure of the TAMS-learned
sublayers for AdaptSum language modeling.

4.4 TAMS Discovers Better Architectures

Recent studies have shown that simple modi-
fications to the transformer architecture, such
as re-organizing the MHSA and FFN modules
(Zhao et al., 2021) or adding 1D convolutions
to self-attention (So et al., 2021), improve the
task performance. Similarly, from our results in
Table 3, adapting the model structure through
sub-layer modifications in our meta-learning
framework further reduces the testing perplex-
ity compared to MLtD with fixed model structure.
Applying task-aware architecture search (TAMS)
on the FFN module incurs less than 5% addi-
tional model parameters compared to the original
GPT-2 model, but reduces the perplexity by 3
points on average.

A limitation we observe is that the TAMS
method tends to produce a dominant architecture
(cf. Figure 6) as opposed to one different archi-
tecture for each task. We conjecture this may be
because our initial task representation strategy has
low variance due to averaging across the entire
task training data. This may explain why TAMS
did not uniformly improve MLtD in all settings.
Nevertheless, the perplexity reduction implies that
there is still room to optimize the architecture of
current LMs without significantly increasing to-
tal model size. Thus, we believe, that task-aware
architecture search is a promising direction to
continue to invest in the future.

4.5 Training Efficiency of MLtD

We study training efficiency by comparing
the training and finetuning wall-clock time
for multi-domain abstractive summarization on
AdaptSum. The results are shown in Table 7.

We have the following observations: (1) Since
meta-learning explicitly optimizes the model for
fast adaptation, compared with previous methods,
MLtD takes fewer epochs to reach convergence
(e.g., Figure 7) and takes the least time to
adapt the model to each the task; (2) Since our

Method Prep. Finetuning
(hrs.) (mins.)

Baseline (direct finetuning) – 26
SDPT 64 16
DAPT 208 23
TAPT 8 18
MLtD 39 9

(TARP only) 22 7
(TARP only, no meta-learning) – 20

Table 7: Wall-clock time comparison on Adapt-
Sum during preparation on the meta-training data
(Prep.) and during meta-testing (Finetuning) to
convergence (early stopping), summed over all
domains. Times were measured on one GPU.

Figure 7: Convergence trajectories when finetuning
BART upon applying each method on AdaptSum, us-
ing the Debate domain as an example.

lightweight adaptation method (TARP) only up-
dates a small set of task-specific weights, our
model variant (TARP only, no meta-learning) re-
duces the adaptation time by 20% over direct
BART finetuning.

On the other hand, the proposed TARP and
TAMS components introduce some inference
overhead. Due to limitations of current DL li-
braries in implementing parallel computation
branches, the dynamic low-rank decomposition
and the task-aware architecture generation in-
creases the inference time by 10% and 6%,
respectively, measured with a batch size of 4
and a sequence length of 1024 on one GPU.

5 Conclusion

We have shown that explicit meta-learning is
a useful preparation step on top of PLMs
to improve later finetuning. Specifically, our

1259



MLtD framework incorporating dynamic task-
adaptive reparameterization (TARP) and task-
adaptive model search (TAMS) enable data- and
parameter-efficient adaptation to a family of low-
resource tasks. Future avenues include apply-
ing our method in other modalities like vision
and speech, as well as exploring better model
formulations for TARP and TAMS.

Acknowledgments

We thank our colleagues on the Speech Science
team at Amazon AWS AI for supporting this
research. We also thank our TACL action editor
Shay Cohen and the reviewers for their helpful
feedback.

A Further Details for Main Experiments

A.1 Hyperparameters

Most of the experimental setups, for example,
model type, max sequence, optimizer, batch size,
beam search size, are taken from previous meth-
ods for fair comparison. We tuned the inner-loop
and outer-loop learning rates in meta-training on
the meta-validation set, and adjust the learning
rate schedule accordingly. We chose the rank
values r in our dynamic low-rank reparame-
terization to give similar parameter counts to
other parameter-efficient methods. We adapted
the search space in our task-aware model structure
from DARTS. ηin denotes inner-loop and fine-
tuning learning rate, ηout denotes outer-loop learn-
ing rate, Bin denotes inner-loop and finetuning
batch size, Bout denotes meta-batch size, bsz de-
notes decoding beam size, and Tin denotes inner
loop steps.

Few-shot Dialogue Personalization. We take
r = 4, Bout = 16 (as in previous works), bsz = 5,
Tin = 10. For meta-training we use SGD (ηin =
0.01) in the inner loop and Adam for the outer
loop (ηin = 0.0003).

Low-resource Abstractive Summarization.
We take r = 16, Bin = 40 (via gradient accu-
mulation), Tin = 20, bsz = 4. We truncated the
input documents into 1024 tokens due to the limit
of max input length of BART model. We used
Adam with momentum (β1 = 0.9, β2 = 0.998)
and the Noam schedule (linear warmup of 1000

#GPUs GPU Training Meta- Cluster Costs
type time iterations

Low-resource abstractive summarization (Table 2)
1 32GB V100 39hrs 100 AWS p3.2xlarge $120
Few-shot dialogue personalization (Table 1)

1 32GB V100 1.5hrs 100 AWS p3.2xlarge $5
Multi-domain language modeling (Table 3)

1 32GB V100 22hrs 100 AWS p3.2xlarge $68

Table 8: Details on the training cost of MLtD per
run. Cost ($) estimated from on-demand instance
prices.

steps, then inverse square-root decay). Since the
low-resource training set of science domain only
has 100 samples, we used 3 times more training
epochs than other domains.

Multi-domain Language Modeling. We take
r = 32,Bin = 4, and Tin = 1. We used Adam with
ηin = 5 × 10−4, ηout = 5 × 10−5. In meta-testing
we linear decay ηin.

A.2 Training Costs

Table 8 provides information about the amount
of training that MLtD has taken for the main
experiments. The reported training times are for
the single run of each experiment. For hyperpa-
rameter tuning, we search the inner-loop learning
rate and outer-loop learning rate over five runs,
respectively.

B Further Details for TARP
Experiments

Datasets. E2E (Novikova et al., 2017) is com-
monly used for data-to-text evaluation of NLG
systems. It consists of approximately 50K ex-
amples in total from the restaurant domain. Each
input consists of a sequence of slot-value pairs and
can have multiple references. The average output
length is 22.9. We use the official evaluation
script, which reports BLEU, NIST, METEOR,
ROUGE-L, and CIDEr. WebNLG (Gardent et al.,
2017) is a multi-domain dataset for data-to-text
evaluation. It contains 22K examples in total from
14 distinct domains, and the average output length
is 22.5. Nine domains are used for training, and the
remaining five domains are used for testing. Each
input is represented by a sequence of SUBJECT
| PROPERTY | OBJECT triples. The evaluation
metric is BLEU. DART (Nan et al., 2021) is an

1260



open-domain data-to-text dataset. The inputs are
structured as sequences of ENTITY | RELATION
| ENTITY triples. It contains 82K examples in
total and the average output length is 21.6. The
evaluation metric is BLEU. GLUE We report
Matthew’s correlation for CoLA, Pearson correla-
tion for STSB, and accuracy for the other tasks in
Table 5. The dev set performance is presented by
following Zhao et al. (2020) and He et al. (2022).

Setup. For the natural language generation
tasks, we build upon Hu et al.’s (2022) code.6

We used the GPT2-medium as the underlying
LM. In training, we used the AdamW optimizer
with weight decay 0.01. The batch size is set to be
8 and we trained for 5 epochs in total. We used
linear decay learning rate scheduler with the first
500 iterations for warmup. The initial learning rate
is set to be 0.0002. In decoding, we used beam
search with beam size 10.

For GLUE tasks, we built upon He et al.’s
(2022) code.7 Our experiments were performed on
RoBERTabase model. We limited maximum length
of a sentence (pair) to be 512 after wordpiece
tokenization. We used the Adam optimizer with
batch size 32, and trained for 10 epochs on each
task. The learning rate is a hyperparameter to tune
for different tasks over {1, 2, 3, 4, 5}× 10−4, with
a linear warmup for the first 6% of steps followed
by a linear decay to zero.

References

Armen Aghajanyan, Anchit Gupta, Akshat
Shrivastava, Xilun Chen, Luke Zettlemoyer,
and Sonal Gupta. 2021a. Muppet: Massive
multi-task representations with pre-finetuning.
In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Process-
ing, pages 5799–5811, Online and Punta Cana,
Dominican Republic. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/2021.emnlp-main.468

Armen Aghajanyan, Sonal Gupta, and Luke
Zettlemoyer. 2021b. Intrinsic dimensionality

6https://github.com/microsoft/LoRA/tree
/snapshot-9-15-2021; they have greatly refactored
their code since our experiments.

7https://github.com/jxhe/unify-parameter
-efficient-tuning.

explains the effectiveness of language model
fine-tuning. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7319–7328,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2021.acl-long.568

Ankur Bapna and Orhan Firat. 2019. Sim-
ple, scalable adaptation for neural machine
translation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1538–1548,
Hong Kong, China. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D19-1165

Yoshua Bengio, Samy Bengio, and Jocelyn
Cloutier. 1990. Learning a Synaptic Learning
Rule. Citeseer.

Tom B. Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya
Sutsk, and Dario Amodei. 2020. Language
models are few-shot learners. In NeurIPS.

Andrew M. Dai and Quoc V. Le. 2015.
Semi-supervised sequence learning. In NIPS,
pages 3079–3087.

Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos.
2019. Investigating meta-learning algorithms
for low-resource natural language under-
standing tasks. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1192–1197,
Hong Kong, China. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D19-1112

1261

https://doi.org/10.18653/v1/2021.emnlp-main.468
https://doi.org/10.18653/v1/2021.emnlp-main.468
https://github.com/microsoft/LoRA/tree/snapshot-9-15-2021
https://github.com/microsoft/LoRA/tree/snapshot-9-15-2021
https://github.com/jxhe/unify-parameter-efficient-tuning
https://github.com/jxhe/unify-parameter-efficient-tuning
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1112
https://doi.org/10.18653/v1/D19-1112


Chelsea Finn, Pieter Abbeel, and Sergey Levine.
2017. Model-agnostic meta-learning for fast
adaptation of deep networks. In ICML,
volume 70 of Proceedings of Machine Learning
Research, pages 1126–1135. PMLR.

Claire Gardent, Anastasia Shimorina, Shashi
Narayan, and Laura Perez-Beltrachini. 2017.
The WebNLG challenge: Generating text
from RDF data. In Proceedings of the 10th
International Conference on Natural Lan-
guage Generation, pages 124–133, Santiago
de Compostela, Spain. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/W17-3518

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff
pruning. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4884–4896,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2021.acl-long.378

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug
Downey, and Noah A. Smith. 2020. Don’t
stop pretraining: Adapt language models to
domains and tasks. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 8342–8360,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.740

Karen Hambardzumyan, Hrant Khachatrian,
and Jonathan May. 2021. WARP: Word-level
Adversarial ReProgramming. In Proceedings
of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and
the 11th International Joint Conference on
Natural Language Processing (Volume 1:
Long Papers), pages 4921–4933, Online.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021
.acl-long.381

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor
Berg-Kirkpatrick, and Graham Neubig. 2022.
Towards a unified view of parameter-efficient
transfer learning. In International Conference
on Learning Representations.

Neil Houlsby, Andrei Giurgiu, Stanislaw
Jastrzebski, Bruna Morrone, Quentin
de Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for
NLP. In ICML, volume 97 of Proceedings of
Machine Learning Research, pages 2790–2799.
PMLR.

Jeremy Howard and Sebastian Ruder. 2018. Uni-
versal language model fine-tuning for text
classification. In Proceedings of the 56th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 328–339, Melbourne, Australia. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/P18-1031

Edward J. Hu, Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
and Weizhu Chen. 2022. LoRA: Low-rank
adaptation of large language models. In
International Conference on Learning Repre-
sentations.

Brian Lester, Rami Al-Rfou, and Noah
Constant. 2021. The power of scale for
parameter-efficient prompt tuning. In Proceed-
ings of the 2021 Conference on Empirical
Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana,
Dominican Republic. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/2021.emnlp-main.243

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In Proceed-
ings of the 58th Annual Meeting of the
Association for Computational Linguistics,
pages 7871–7880, Online. Association for
Computational Linguistics. https://doi.org
/10.18653/v1/2020.acl-main.703

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for gen-
eration. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4582–4597,

1262

https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


Online. Association for Computational Lin-
guistics.

Zhaojiang Lin, Andrea Madotto, and Pascale
Fung. 2020. Exploring versatile generative
language model via parameter-efficient trans-
fer learning. In Findings of the Association
for Computational Linguistics: EMNLP 2020,
pages 441–459, Online. Association for Com-
putational Linguistics.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2019a. DARTS: Differentiable architecture
search. In ICLR (Poster). OpenReview.net.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming
Ding, Yujie Qian, Zhilin Yang, and Jie
Tang. 2021. GPT understands, too. CoRR,
abs/2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019b. RoBERTa: A robustly op-
timized BERT pretraining approach. CoRR,
abs/1907.11692.

Andrea Madotto, Zhaojiang Lin, Chien-Sheng
Wu, and Pascale Fung. 2019. Personalizing
dialogue agents via meta-learning. In Pro-
ceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 5454–5459, Florence, Italy. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/P19-1542

Rabeeh Karimi Mahabadi, James Henderson,
and Sebastian Ruder. 2021. Compacter: Effi-
cient low-rank hypercomplex adapter layers.
Advances in Neural Information Processing
Systems, 34:1022–1035.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh,
Xiangru Tang, Aadit Vyas, Neha Verma,
Pranav Krishna, Yangxiaokang Liu, Nadia
Irwanto, Jessica Pan, Faiaz Rahman, Ahmad
Zaidi, Mutethia Mutuma, Yasin Tarabar, Ankit
Gupta, Tao Yu, Yi Chern Tan, Xi Victoria
Lin, Caiming Xiong, Richard Socher, and
Nazneen Fatema Rajani. 2021. DART: Open-
domain structured data record to text genera-
tion. In Proceedings of the 2021 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Lan-

guage Technologies, pages 432–447, Online.
Association for Computational Linguistics.

Jekaterina Novikova, Ondřej Dušek, and Verena
Rieser. 2017. The E2E dataset: New challenges
for end-to-end generation. In Proceedings
of the 18th Annual SIGdial Meeting on
Discourse and Dialogue, pages 201–206,
Saarbrücken, Germany. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/W17-5525

Jonas Pfeiffer, Aishwarya Kamath, Andreas
Rücklé, Kyunghyun Cho, and Iryna Gurevych.
2021. AdapterFusion: Non-destructive task
composition for transfer learning. In Pro-
ceedings of the 16th Conference of the
European Chapter of the Association for
Computational Linguistics: Main Volume,
pages 487–503, Online. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/2021.eacl-main.39

Hieu Pham, Melody Y. Guan, Barret Zoph,
Quoc V. Le, and Jeff Dean. 2018. Efficient neu-
ral architecture search via parameter sharing. In
ICML, volume 80 of Proceedings of Machine
Learning Research, pages 4092–4101. PMLR.

Ofir Press, Noah A. Smith, and Omer Levy.
2020. Improving transformer models by re-
ordering their sublayers. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 2996–3005,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.270

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multitask
learners. Technical report, OpenAI.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J.
Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text trans-
former. Journal of Machine Learning Research,
21:140:1–140:67.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and
Andrea Vedaldi. 2018. Efficient parametriza-
tion of multi-domain deep neural networks.
In CVPR, pages 8119–8127. Computer Vision
Foundation / IEEE Computer Society.

1263

https://doi.org/10.18653/v1/P19-1542
https://doi.org/10.18653/v1/P19-1542
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.acl-main.270
https://doi.org/10.18653/v1/2020.acl-main.270


Jürgen Schmidhuber. 1987. Evolutionary Princi-
ples in Self-referential Learning, or on Learning
How to Learn: The Meta-meta-. . . Hook. Ph.D.
thesis, Technische Universität München.

Taylor Shin, Yasaman Razeghi, Robert L.
Logan IV, Eric Wallace, and Sameer Singh.
2020. Autoprompt: Eliciting knowledge from
language models with automatically generated
prompts. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.emnlp-main.346

David So, Wojciech Mańke, Hanxiao Liu,
Zihang Dai, Noam Shazeer, and Quoc V.
Le. 2021. Primer: Searching for efficient
transformers for language modeling. Advances
in Neural Information Processing Systems,
34:6010–6022.

Yiping Song, Zequn Liu, Wei Bi, Rui Yan,
and Ming Zhang. 2020. Learning to cus-
tomize model structures for few-shot dia-
logue generation tasks. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 5832–5841,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.517

Asa Cooper Stickland and Iain Murray. 2019.
BERT and PALs: Projected attention layers for
efficient adaptation in multi-task learning. In
ICML, volume 97 of Proceedings of Machine
Learning Research, pages 5986–5995. PMLR.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and
Bernt Schiele. 2019. Meta-transfer learning for
few-shot learning. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019,
pages 403–412. Computer Vision Foundation /
IEEE.

Alex Wang, Amanpreet Singh, Julian Michael,
Felix Hill, Omer Levy, and Samuel R.
Bowman. 2019. GLUE: A multi-task bench-
mark and analysis platform for natural language
understanding. In ICLR (Poster). OpenRe-
view.net. https://doi.org/10.18653
/v1/W18-5446

Lilian Weng. 2018. Meta-learning: Learning
to learn fast. https://lilianweng
.github.io/lil-log/2018/11/30
/meta-learning.html

Thomas Wolf, Lysandre Debut, Victor
Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault,
Rémi Louf, Morgan Funtowicz, and Jamie
Brew. 2019. HuggingFace’s Transformers:
State-of-the-art natural language processing.
CoRR, abs/1910.03771. https://doi.org
/10.18653/v1/2020.emnlp-demos.6

Tiezheng Yu, Zihan Liu, and Pascale Fung.
2021. AdaptSum: Towards low-resource do-
main adaptation for abstractive summarization.
In Proceedings of the 2021 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies, pages 5892–5904, Online.
Association for Computational Linguistics.

Elad Ben Zaken, Shauli Ravfogel, and Yoav
Goldberg. 2021. BitFit: Simple parameter-
efficient fine-tuning for transformer-basedmasked
language-models. CoRR, abs/2106.10199.
https://doi.org/10.18653/v1/2022
.acl-short.1

Aston Zhang, Yi Tay, Shuai Zhang, Alvin Chan,
Anh Tuan Luu, Siu Cheung Hui, and Jie
Fu. 2021. Beyond fully-connected layers with
quaternions: Parameterization of hypercomplex
multiplications with 1/n parameters. In ICLR.
OpenReview.net.

Saizheng Zhang, Emily Dinan, Jack Urbanek,
Arthur Szlam, Douwe Kiela, and Jason
Weston. 2018. Personalizing dialogue agents:
I have a dog, do you have pets too? In
Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2204–2213,
Melbourne, Australia. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/P18-1205

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and
Hinrich Schütze. 2020. Masking as an efficient
alternative to finetuning for pretrained language
models. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language

1264

https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.acl-main.517
https://doi.org/10.18653/v1/2020.acl-main.517
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html
https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html
https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205


Processing (EMNLP), pages 2226–2241, On-
line. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.emnlp-main.174

Yuekai Zhao, Li Dong, Yelong Shen, Zhihua
Zhang, Furu Wei, and Weizhu Chen. 2021.

Memory-efficient differentiable transformer
architecture search. In Findings of the
Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 4254–4264, On-
line. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2021.findings-acl.372

1265

https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2021.findings-acl.372
https://doi.org/10.18653/v1/2021.findings-acl.372

	Introduction
	Methodology
	Efficient Parameter Adaptation
	Efficient Architecture Adaptation

	Main Results
	Implementation
	Few-shot Dialogue Personalization
	Low-resource Abstractive Summarization
	Multi-domain Language Modeling

	Analysis
	Pretraining Improves Meta-learning
	Dynamic TARP versus Alternatives
	Dynamic TARP Outperforms Finetuning
	TAMS Discovers Better Architectures
	Training Efficiency of MLtD

	Conclusion
	Further Details for Main Experiments
	Hyperparameters
	Training Costs

	Further Details for TARP Experiments

