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Abstract
Current state-of-the-art approaches to cross-
modal retrieval process text and visual input
jointly, relying on Transformer-based archi-
tectures with cross-attention mechanisms that
attend over all words and objects in an image.
While offering unmatched retrieval perfor-
mance, such models: 1) are typically pretrained
from scratch and thus less scalable, 2) suffer
from huge retrieval latency and inefficiency
issues, which makes them impractical in realistic
applications. To address these crucial gaps
towards both improved and efficient cross-
modal retrieval, we propose a novel fine-tuning
framework that turns any pretrained text-image
multi-modal model into an efficient retrieval
model. The framework is based on a cooper-
ative retrieve-and-rerank approach that com-
bines: 1) twin networks (i.e., a bi-encoder)
to separately encode all items of a corpus,
enabling efficient initial retrieval, and 2) a
cross-encoder component for a more nuanced
(i.e., smarter) ranking of the retrieved small
set of items. We also propose to jointly fine-
tune the two components with shared
weights, yielding a more parameter-efficient
model. Our experiments on a series of standard
cross-modal retrieval benchmarks in mono-
lingual, multilingual, and zero-shot setups,
demonstrate improved accuracy and huge effi-
ciency benefits over the state-of-the-art cross-
encoders.1

1 Introduction

Information-rich and efficient methods for deal-
ing with large unstructured data in both computer
vision and NLP are required to process and under-
stand huge amounts of user-created content and
beyond. In multi-modal contexts, such methods
enable fundamental applications such as image

∗Both authors contributed equally to this work.
1We release the code and model weights at github

.com/UKPLab/MMT-Retrieval.

retrieval. A typical efficient bi-encoder2 approach
encodes images and text separately and then
induces a shared high-dimensional multi-modal
feature space. This enables cross-modal retrieval,
where standard distance metrics identify the most
similar examples for each query in the data col-
lection via nearest-neighbor search (Arya et al.,
1998; Kushilevitz et al., 2000; Liu et al., 2004;
Andoni and Indyk, 2008; Hajebi et al., 2011).

These bi-encoder approaches have already been
shown to achieve reasonable performance in
search and retrieval applications, both mono-
lingually for English (Nam et al., 2017; Faghri
et al., 2018; Zheng et al., 2020; Wang et al., 2019a;
Shi et al., 2019) and in multilingual contexts
(Gella et al., 2017; Kádár et al., 2018; Kim et al.,
2020; Wehrmann et al., 2019; Burns et al., 2020).
However, they cannot match performance of
more recent attention-based methods. Here, a typ-
ical modus operandi is to apply a cross-attention
mechanism between examples from the two
modalities to compute their similarity score, re-
lying on Transformer-based neural architectures
(Vaswani et al., 2017). Such so-called multi-modal
cross-encoders (CE) (Tan and Bansal, 2019; Lu
et al., 2019; Chen et al., 2020; Li et al., 2020a;
Gan et al., 2020; Li et al., 2020b; Ni et al., 2021)
pass each text-image pair through the multi-modal
encoder to compute their similarity, see Figure 1a.

While the results accomplished by the CE
methods look impressive (Li et al., 2020b;
Bugliarello et al., 2021; Ni et al., 2021), this
comes at a prohibitive cost. In particular, they
have extremely high search latency: Processing a
single text query with an image collection of 1M
items may take up to 36 minutes using a single
NVIDIA V100 GPU (see Table 3). Due to this is-
sue, they are evaluated only with extremely small

2Also frequently referred to as dual-encoder.
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Figure 1: Different architectures for image and text retrieval. Equal colors indicate shared weights.

benchmarks, that is, the maximum size of typical
image collections for image retrieval tasks is
5k images, and evaluation still lasts ≈50 hours
(see Table 4).3 In sum, cross-encoders are im-
practical for deployment in realistic application
scenarios, while the use of small benchmarks re-
sults in inflated and thus misleading evaluation
performance.

In unimodal text-only setups, Transformer-
based architectures have recently been integrated
with bi-encoder (BE) methods (Guo et al., 2018;
Reimers and Gurevych, 2019; Humeau et al.,
2020; Henderson et al., 2020; Feng et al., 2020, in-
ter alia), yielding computationally more efficient
sentence encoders. Instead of jointly encoding
sentence pairs with cross-attention, a pretrained
Transformer model (e.g., BERT [Devlin et al.,
2019]) is fine-tuned within a twin network with
shared Transformer weights, as illustrated in
Figure 1b. In a nutshell, each sentence is passed
through the encoder separately, and a loss function
is defined on top of the two respective sep-
arately computed encodings. However, despite
their strong performance on sentence retrieval and
similarity tasks (Reimers and Gurevych, 2019;
Litschko et al., 2021), these encoders cannot
match the task performance of cross-encoders
(Humeau et al., 2020).

Motivated by these insights, in this work we
aim to leverage the best of both worlds towards
improved and more efficient cross-modal search
and retrieval: 1) efficiency and simplicity of BE
approaches based on twin networks, as well as
2) expressiveness and cutting-edge performance

3Consequently, it would be impossible to evaluate these
CE approaches on newer larger benchmarks: e.g., the (extrap-
olated) evaluation time on a benchmark spanning 100,000
images exceeds 2 years with a single GPU.

of CE methods. We first provide a systematic
comparative analysis on the effectiveness and effi-
ciency of Transformer-based multi-modal BE and
CE methods across a range of image search eval-
uation benchmarks. We then propose two novel
models that aim to blend the main strengths of CE
and BE. The idea behind the first model variant,
termed cooperative (SEP+COOP), is to retrieve and
rerank with two separate, independently trained
retrieval models: 1) an initial top-k list of po-
tentially relevant items (i.e., texts or images) is
retrieved by the more efficient BE model, and then
2) this top-k list is reranked ‘‘smartly’’ by the more
accurate CE model, as illustrated in Figure 1c.
Our second, joint (JOINT+COOP) model variant also
operates in the same retrieve-and-rerank setup, but
it now trains a multi-modal cross-encoder and a
multi-modal BE model jointly with tied weights,
as illustrated in Figure 1d. The retrieve step, where
efficiency is paramount, is again executed by the
BE sub-model, and the precision-oriented rerank
step is conducted via the CE sub-model.

We propose a general framework for cross-
modal search and retrieval, where JOINT+COOP and
SEP+COOP models are independent of the chosen
pretrained vision-language representation archi-
tectures. The experiments are thus based on a state-
of-the-art vision-language architecture OSCAR
(Li et al., 2020b) (experiments in English) and
M3P (Ni et al., 2021) (multilingual), and we
demonstrate consistent improvements over the
original OSCAR model on the standard bench-
marks MSCOCO and Flick30k and improvements
over the original M3P in multiple languages on the
Multi30k dataset. We empirically validate huge
efficiency benefits of the proposed framework.

Contributions. 1) We construct and system-
atically evaluate twin-networks combined with
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multi-modal Transformers (BE); they outperform
all previous bi-encoder approaches, but lag behind
their CE counterparts. 2) We evaluate BE and
CE approaches within a cooperative retrieve-and-
rerank approach; their combination outperforms
the individual models, while offering substantial
efficiency boosts compared to CE methods. 3)
We propose a novel joint CE-BE model (JOINT+
COOP), which is trained to simultaneously cross-
encode and embed multi-modal input; it achieves
the highest scores overall while maintaining re-
trieval efficiency. 4) Finally, we propose a more
realistic evaluation benchmark; we demonstrate
harsh drops in overall cross-modal retrieval per-
formance of all models in this more difficult sce-
nario, calling for improved evaluation benchmarks
and protocols in future work.

2 Related Work

Efficient approaches to cross-modal image-text
retrieval relied on the induction of shared multi-
modal visual-semantic embedding spaces (VSEs)
(Frome et al., 2013; Faghri et al., 2018; Shi et al.,
2019; Mahajan et al., 2019). In a multilingual
setup, all languages share the same embedding
space along with the visual data (Kim et al., 2020;
Wehrmann et al., 2019; Burns et al., 2020). More
recently, attention-based cross-encoder models,
typically based on Transformer architectures
(Vaswani et al., 2017) have considerably out-
performed the VSE-based approaches. However,
this comes at a severe cost of decreased retrieval
efficiency and increased latency (Lee et al., 2018;
Wang et al., 2019b). The current state-of-the-art
multi-modal models jointly encode and cross-
attend over text tokens and image features (Lu
et al., 2019; Tan and Bansal, 2019; Chen et al.,
2020; Li et al., 2020a; Gan et al., 2020; Li et al.,
2020b; Bugliarello et al., 2021; Ni et al., 2021,
inter alia). These CE methods leverage image
captioning datasets such as MSCOCO (Lin et al.,
2014) and Flick30k (Plummer et al., 2015) and
train a classification head that learns to identify
whether or not an (image, caption) input pair con-
stitutes an aligned pair. Each image-text combina-
tion must be passed through the network, which
scales quadratically with the number of examples.

To handle this quadratic increase, we use a co-
operative retrieve-and-rerank approach. Although
to the best of our knowledge this has not been
proposed for cross-modal settings, it has a long

history in NLP, where Yates et al. (2021) date
it back to the 1960s (Simmons, 1965). Until re-
cently, bag-of-words methods (BoW; e.g., BM25)
were commonly used for the first retrieval step.
For the second step, pretrained language models
(LMs) were fine-tuned to either rerank candidates
(Nogueira and Cho, 2019; Nogueira et al., 2019)
or—for question-answering tasks—directly gen-
erated the answer span (Yang et al., 2019). More
recent work on text-based retrieval and QA tasks
has moved away from BoW methods towards
learned (neural) models for the first retrieval step
(Karpukhin et al., 2020; Qu et al., 2021; Xiong
et al., 2021).

Our work is inspired by recent BE-based ap-
proaches in unimodal text-only setups. Here, LMs
are fine-tuned via twin-network architectures on
auxiliary tasks such as semantic textual similar-
ity (Reimers and Gurevych, 2019; Humeau et al.,
2020), paraphrasing (Wieting et al., 2019), re-
sponse retrieval (Yang et al., 2018; Henderson
et al., 2019; Henderson et al., 2020; Humeau
et al., 2020), or translation ranking (Chidambaram
et al., 2019; Feng et al., 2020). This effectively
turns the LMs into universal sentence encoders
which can then be used off-the-shelf for efficient
text-based monolingual and cross-lingual retrieval
(Litschko et al., 2021). In this work, we first extend
this idea to multi-modal setups, and then show that
our cooperative and joint approaches yields im-
proved cross-modal retrieval models, maintaining
retrieval efficiency.

Joint approaches like our JOINT+COOP model,
which aim to align the retriever and reranker
can be found in different forms: Boualili et al.
(2020) ‘‘mark’’ exact matches from the bag-of-
words retrieval for the reranker; Yan et al. (2021)
share the parameters between a passage expander
(which adds more relevant terms for a bag-of-
words retriever) and the reranker; Hofstätter et al.
(2020) distill knowledge from the reranker into
the retriever model with soft labels generated by
the teacher. Specifically for question-answering—
where a two stage retriever-reader setup similar
to the retrieve-and-rerank approach is common—
research aims to synchronize the models through
knowledge distillation from the reader to the re-
triever (Yang and Seo, 2020; Izacard and Grave,
2021) or by directly training both models end-to-
end (Lee et al., 2019; Sachan et al., 2021a,b). The
challenge here is that the reader and the retriever
are coupled—the reader requires candidates from
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the retriever that contain the solution. Our pro-
posed reranker side-steps this problem as it uses
no candidates from the retriever during training
and only learns if a given input pair is (dis)similar.
This way, we can train both components, the re-
triever and the reranker, side-by-side and align
them by sharing their weights.

The work most closely related to ours includes
contemporaneous models: ALBEF (Li et al.,
2021), CLIP (Radford et al., 2021), ALIGN
(Jia et al., 2021), and VisualSparta (Lu et al.,
2021). ALBEF includes contrastive learning as one
of its pretraining tasks but then uses a CE approach
for downstream retrieval. CLIP and ALIGN use
similar contrastive learning strategies as we do, but
are cast as full-fledged pretraining architectures
that learn from scratch and require magnitudes of
more data than our approach. We show that it is
possible to fine-tune pretrained models with fewer
data and offer a general framework, applicable
to a spectrum of pretrained models. Further, un-
like prior work, we demonstrate the benefits of
combining BE-based (contrastive) learning with
cross-encoders for improved and efficient re-
trieval.4 Finally, VisualSparta (Lu et al., 2021)
fine-tunes OSCAR, but at the level of token
(text) and image-region embeddings. This en-
ables the use of extremely fast lookup tables
for efficient retrieval. However, this comes with a
major disadvantage: the model disposes of wider
context information.5 Our cooperative methods do
leverage the finer-grained information at retrieval.

3 Methodology

The predominant Transformer-based multi-modal
text-vision architecture is a single-stream encoder:
It shares the majority of weights between the
two modalities, including the multi-head cross-
attention (Chen et al., 2020; Li et al., 2020a;
Gan et al., 2020; Li et al., 2020b; Ni et al., 2021).
The Transformer weights and text embeddings are
typically initialized with weights of a pretrained
LM (e.g., BERT [Devlin et al., 2019] for English,
XLM-R [Conneau et al., 2020] for multilingual
models), where the corresponding vocabulary and

4As both CLIP (Radford et al., 2021) and ALIGN
(Jia et al., 2021) disjoin the image and text components
in their methods, cross-attention over the instances is not
possible.

5For example, considering a query ‘‘two dogs and one
cat’’, the model is unable to match the numbers to the animals
yielding likely worse retrieval results.

tokenizer are utilized. Images are preprocessed
via object detection models such as Faster R-CNN
(Ren et al., 2015) to extract feature represen-
tations for regions of interest (Anderson et al.,
2018). The image features are passed through an
affine-transformation layer which learns to align
the vision input with the pretrained Transformer.
The position of the region of interest (or in some
models also the region’s width and height) is used
to generate positional embeddings. By combin-
ing these two representations, each object region
is passed into the Transformer separately. The
cross-attention mechanism of the Transformer
attends over all text and image inputs at ev-
ery layer, thus learning a joint representation of
both modalities.

Similar to masked language modeling (MLM)
in the text domain, multi-modal Transformer mod-
els are trained with self-supervised objectives. For
pretraining, image-caption datasets (i.e., MSCOCO
[Lin et al., 2014], Flickr30k [Plummer et al.,
2015], Conceptual Captions (CC) [Sharma et al.,
2018], and SBU [Ordonez et al., 2011]) are
utilized. The pretrained multi-modal model is
subsequently fine-tuned with multi-modal down-
stream task data.

We focus on different fine-tuning strategies
of the pretrained models for the downstream
task of image-text retrieval. We illustrate these
approaches in Figure 1 and describe them in
what follows.

3.1 Cross-Encoders

For image and text retrieval tasks, the prevailing
approach with pretrained multi-modal Trans-
former models is to cross-encode each image-text
combination (see Figure 1a).

Training. A pretrained model receives as input
positive and negative pairs of images and captions.
Negative pairs are also sampled from the training
dataset (e.g., MSCOCO, Flickr30k). A binary clas-
sification head is placed on top of the Transformer
model, where the contextualized embedding of the
[CLS] token is passed into the classification head.
The weights of the classifier together with the
Transformer, word embeddings, and image fea-
ture transformation matrices are fully fine-tuned
using a binary cross-entropy (BCE) loss:

LCE(i, c) = −
(
y log p(i, c) + (1− y) log(1− p(i, c))

)
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p(i, c) indicates the probability of the input combi-
nation of image i and caption c to have the positive
label (i.e., whether it is the correct image-caption
combination); y = 1 if (i, c) is a positive pair and
y = 0 if either the image or text has been replaced
(i.e., a negative pair).6

Retrieval. At retrieval, all (i, c) combinations
need to be processed, and are ranked by the prob-
ability p(i, c). For instance, given a text query c,
retrieving the single most relevant image i from
an image collection I proceeds as follows:

argmax(p(i, c), ∀i ∈ I) (1)

Despite its typically high performance, this ap-
proach comes at high computational costs as
each target instance needs to be passed through
the entire network along with the query to ob-
tain the score p(i, c); that is, the approach does
not leverage any pre-computed representations
during retrieval.

3.2 Bi-Encoders
Training. Each image and text caption is passed
separately through the pretrained Transformer
model (Figure 1b). The contextualized representa-
tions are mean-pooled to represent the embedding
of the respective image i and text caption c.7

The objective of the twin network is to place
positive training instances (i, c) closely in the
shared multi-modal space, while unrelated in-
stances should be placed farther apart. This is
formulated through a standard triplet loss func-
tion. It leverages (i, c, c′) and (i, i′, c) triplets,
where (i, c) are positive image-caption pairs from
the training corpus, while c′ and i′ are negative
examples sampled from the same corpus such that
image-caption pairs/instances (i, c′) and (i′, c) do
not occur in the corpus. The triplet loss is then:

LBE(i, c) = [cos(i, c′)− cos(i, c) + α]+

+ [cos(i′, c)− cos(i, c) + α]+ (2)

where [·]+ = max(0, ·), α defines a margin, and
i′ and c′ are embeddings of respective image and
caption negatives.

6Some cross-encoders such as UNITER (Chen et al.,
2020) and VL-BERT (Su et al., 2020) rely on another
triplet loss function (Chechik et al., 2010); however, OSCAR
(Li et al., 2020b) reports improved performance with BCE.

7Following Reimers and Gurevych (2019), we opt for
mean pooling as the final ‘‘aggregated’’ embedding; it out-
performed another standard variant, which uses the [CLS]
token, in our preliminary experiments.

Sampling Negative Examples. Negative exam-
ples may have a profound impact on training and
performance, and it has been shown that selecting
hard negative examples typically yields improved
performance (Faghri et al., 2018). However, de-
tecting such hard negatives is only possible with
BE-based approaches, as cross-encoding all in-
stances is computationally infeasible. We rely
on the In-Batch Hard Negatives (BHN) method
(Hermans et al., 2017), a computationally efficient
sampling of hard negative examples. In a nutshell,
BHN randomly samples a set of N negative ex-
amples from the training corpus and then ranks
them according to their distance to all positive
examples; for each positive example, the closest
negative example is selected as the hardest nega-
tive example. By scaling up N , the probability of
sampling truly hard negatives increases.

Retrieval. The BE approach enables pre-
encoding of all items for efficient retrieval look-
up.8 For instance, a text query q is encoded with
the bi-encoder and the most similar pre-encoded
instance from an image collection I is retrieved:
argmaxi∈I cos(i, q).

This approach can scale to even billions of
images (Johnson et al., 2021), but it cannot be
guaranteed that the important idiosyncratic in-
formation necessary to distinguish truly relevant
from related examples is sufficiently encoded in
the embedding. Further, the approach might not
generalize well in low-resource scenarios as the
model is not required to learn finer-grained parts
of the input if they are never demanded by the
training data.

3.3 Separate Training, Cooperative Retrieval
We combine the benefits of the two model types
(CE and BE) within a cooperative retrieval ap-
proach (SEP+COOP), as illustrated in Figure 1c.

Training and Retrieval. Two models, one CE
(§3.1) and one BE (§3.2), are trained indepen-
dently. Following that, the retrieval step is split
into two stages. First, the efficient BE model is
used to retrieve the top-k relevant items from the
entire large collection, yielding a much smaller
collection Ik: Ik = topk({cos(i, q) : ∀i ∈ I}),

8Note that pre-computing the embedding does come with
increased storage and memory demands; e.g., with a base
Transformer architecture this requires an additional ≈ 3kB
of memory for each embedding. A corpus of 1M images
would amount to ≈ 3GB of required storage.
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where topk(·) retrieves a set of the top-k most
similar instances. Second, we rerank the instances
from Ik with the more precise but computationally
more expensive CE model: argmaxi∈I ′ p(i, c).
This cooperative approach thus combines the
benefits of both approaches and is able to effi-
ciently retrieve instances.9 However, given that
this approach requires two models to be stored
in memory, it is less parameter-efficient than the
previous methods.

3.4 Joint Training, Cooperative Retrieval

Training and Retrieval. Instead of relying on
two fully separated models, we propose to train a
single joint model, able to both cross-encode and
embed (i.e., ‘bi-encode’), see Figure 1d. The joint
model with shared parameters trains by alternating
between the respective sub-models and their input
types. When cross-encoding, a dedicated predic-
tion head is trained using BCE loss (§3.1). In order
to train the BE-based sub-model, we again rely on
a twin architecture with a triplet loss from Eq. (2).

Retrieval proceeds with the same two-step
retrieve-and-rerank procedure from §3.3. We first
obtain the set Ik with the much cheaper BE-based
submodel, and then rerank its items with the CE
submodel. We combine the best traits of CE and
BE, while maintaining parameter efficiency. Us-
ing both learning objectives at training, the joint
model is forced to observe the input from differ-
ent viewpoints, thus improving its generalization
capability while offering parameter efficiency.

4 Experimental Setup

Our fine-tuning framework from §3 can be ap-
plied to any pretrained multi-modal Transformer.
In all the experiments, we opt for state-of-the-art
pretrained multi-modal models for monolingual
(English) and multilingual contexts: OSCAR
(Li et al., 2020b) and M3P (Ni et al., 2021),
respectively.

OSCAR is a single-stream multi-modal Trans-
former (Bugliarello et al., 2021), with its weights
initialized with those of the pretrained BERT Base
model, and then subsequently fine-tuned on multi-
modal data (see §3). Unlike prior work, OSCAR
additionally uses object labels of detected regions:
Those labels serve as anchors for visual ground-
ing, with large improvements achieved over its

9Retrieval time for 1M images: 94ms (GPU), 13s (CPU).

prior work. M3P is a single-stream multilingual
multi-modal Transformer. Its weights are initial-
ized with those of pretrained XLM-R Base and
then fine-tuned on multi-modal data (see §3) as
well as multilingual text-only data.

Training and Test Data. We primarily ex-
periment with the English image-text retrieval
benchmarks MSCOCO and Flick30k. They com-
prise 123k and 31.8k images, respectively, with
5 captions describing each image. MSCOCO pro-
vides two test benchmarks of sizes 1k and 5k,
where the smaller set is a subset of the 5k test
set. The standard Flickr30k test set consists of 1k
images. In addition, we use the development set of
Conceptual Captions (CC) (Sharma et al., 2018)
for zero-shot evaluation, and also to construct a
larger and more difficult test set (see later in §6).
The original CC dev set contained 15.8k images,
but currently, only 14k images are still avail-
able online.

For multilingual experiments, we use the stan-
dard Multi30k dataset (Elliott et al., 2016, 2017;
Barrault et al., 2018), which extends Flickr30k
with 5 German and one French and Czech caption
per image. Its test s et also comprises 1k images.

The evaluation metric is the standard Recall-
at-M (R@M): It reports the proportion of queries
for which the relevant target item is present within
the top-M retrieved items.

Training Setup and Hyperparameters. Our
setup largely follows Li et al. (2020b) and Ni et al.
(2021) unless noted otherwise.10 We experiment
with learning rates [5e − 5, 2e − 5], and with the
number of update steps between 25k and 125k.
One batch contains 128 positive pairs plus 128
negative pairs with LCE. We use the AdamW
optimizer (Loshchilov and Hutter, 2019) with a
linear learning rate decay without warmup, and a
weight decay of 0.05. We take model checkpoints
every 5k steps and select the checkpoint with the
best development set performance.

4.1 Baselines and Model Variants

CE. Our main baselines are OSCAR and M3P
models used in the standard CE setting, de-
scribed in §3.1. We fully fine-tune the Transformer

10Unlike Li et al. (2020b), we do not use object tags as
additional input, as preliminary experiments suggested no
improvement with object tags.
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weights along with a randomly initialized classifi-
cation head.11 At retrieval, we cross-encode each
text-image combination and rank them according
to the corresponding probability, see Eq. (1).

BE. We rely on BHN negative sampling, find-
ing that training for 30k steps, with a learning
rate of 5e − 5, and with a margin α = 0.1 works
best.12

SEP+COOP. For the cooperative method with-
out joint training (§3.3), we retrieve the top-20
instances with BE and rerank them via CE.13

JOINT+COOP. We alternate between the two ob-
jective functions while training the joint model
(see §3.4). We find that training for 60k update
steps with a learning rate of 2e − 5 (OSCAR) or
5e− 5 (M3P) works best, the rest of the hyperpa-
rameters are the same as with separately trained
models. For retrieval, we again set k = 20. To
demonstrate the benefits of cooperative retrieval,
we also evaluate two non-cooperative variants
originating from the joint model: JOINT+CE uses
the CE sub-model for a single-step CE-style re-
trieval, while JOINT+BE operates in the fully BE
retrieval setup.

The underlying pretrained Transformer is
denoted with a superscript: For example,
JOINT+COOPOSCAR denotes that: 1) pretrained
OSCAR is 2) fine-tuned with the joint variant
from §3.4, and 3) then used in the cooperative
retrieval setup.

5 Results and Discussion

The main results on English-only monolingual
datasets Flickr30k and MSCOCO are summarized
in Table 1, and the scores on multilingual Multi30k
are provided in Table 2.

As expected, all Transformer-based approaches
(groups G2 and G3) substantially outperform the
pre-Transformer (PT) models (G1). While this has

11Training for 100k steps and a learning rate of 2e − 5
(OSCAR) or 5e− 5 (M3P) performed best.

12We also experimented with Approximate-nearest-
neighbor Negative Contrastive Estimation (ANCE) (Xiong
et al., 2021); however, it did not yield performance benefits.

13We provide an ablation study of different k values in
§6. We have also experimented with training a CE model
using hard negative samples from a pretrained BE model.
However, the CE model is able to easily overfit on those
negative examples, resulting in inferior performance.

already been established in prior work for CE
methods, our findings confirm that the same holds
also for the efficient BE approach. This validates
the effectiveness of Transformer architectures pre-
trained on large corpora for the retrieval task.
R@1 scores with BE lag slightly behind the CE
scores, but the respective R@10 scores are mostly
on-par. This suggests that the BE approach is
‘‘coarser-grained’’, and mostly relies on ‘‘global’’
interactions between the modalities. We investi-
gate this conjecture further in §6.

This is also illustrated by an example in
Figure 2. When dealing with related target items,
CE’s cross-attention mechanism is able to ex-
plicitly attend over each token and image region,
capturing additional (non-global) information rel-
evant to the query. Although the high-level
‘‘global’’ concept of a skiing person is present in
(almost) every example, the additional important
information related to what the person is wearing
is not adequately represented in the embeddings.
Therefore, the BE (sub)model does not rank this
instance at the top position. The CE (sub)model
then directly compares the instances, identifying
that clothing is important and reranks the target
examples accordingly.

Most importantly, the relative comparison of
R@1 versus R@10 scores empirically hints at
the necessity of the retrieve-and-rerank coop-
erative approach: The BE approach efficiently
retrieves 20 relevant examples, but the increased
expressiveness of CE is required to refine the
initially retrieved list. Moreover, the results in
the cooperative setup even without joint training
(SEP+COOPOSCAR and SEP+COOPM3P) demonstrate
that the two models support each other: Slight
improvements are observed over the pure CE,
while offering massive efficiency boosts over CE.
Our speculation is that the BE model filters out
false positives, which in turn makes the CE model
more robust.

The results of the JOINT+COOP variant indi-
cate that it is indeed possible to maintain retrieval
efficiency with improved parameter efficiency:
This approach performs on-par or even slightly
outperforms the standard state-of-the-art CE mod-
els. The results verify that the two objective func-
tions do not interfere with each other and that a
single model is able to both embed and cross-
encode. We note that the JOINT+COOP variant of-
fers the best trade-off between parameter and
retrieval efficiency, achieving the peak scores on
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Group Model Image Retrieval Text Retrieval Image Retrieval Text Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MSCOCO (5k) Flickr30k (1k)

G1. Pre-Transformer

VSE++ (Faghri et al., 2018) 43.9 59.4 72.4 41.3 71.1 81.2 39.6 70.1 79.5 52.9 80.5 87.2
SCAN (Lee et al., 2018) 38.6 69.3 80.4 50.4 82.2 90.0 48.6 77.7 85.2 67.9 90.3 95.8
PFAN (Wang et al., 2019b) — — — — — — 50.4 78.7 86.1 70.0 91.8 95.0
SCG (Shi et al., 2019) 39.2 68.0 81.3 56.6 84.5 92.0 49.3 76.4 85.6 71.8 90.8 94.8

CEUNITER (Chen et al., 2020) 48.4 76.7 85.0 63.3 87.0 93.1 72.5 92.4 96.1 85.9 97.1 98.8
G2. Cross-Encoders CEUnicoder-VL (Li et al., 2020a) 46.7 76.0 85.3 62.3 87.1 92.8 71.5 90.9 94.9 86.2 96.3 99.0
(Inefficient CEVILLA (Gan et al., 2020) — — — — — — 74.7 92.9 95.8 86.6 97.9 99.2
for retrieval) CEOSCAR† (Li et al., 2020b) 54.0 80.8 88.5 70.0 91.1 95.5 — — — — — —

CEOSCAR‡ 52.6 80.0 88.1 69.3 90.7 95.3 75.9 93.3 96.6 88.5 98.5 99.2

VisualSparta (Lu et al., 2021) 44.4 72.8 82.4 — — — 57.4 82.0 88.1 — — —
G3. Bi-Encoders BEOSCAR 52.2 80.2 88.0 66.9 90.1 95.0 72.0 91.0 94.7 84.7 97.1 98.7
(Efficient SEP+COOPOSCAR 52.8 80.5 88.5 70.2 91.6 95.0 76.0 93.0 95.0 88.7 98.3 99.2
for retrieval) JOINT+COOPOSCAR 54.7 81.3 88.9 70.8 91.0 95.2 76.4 93.6 96.2 89.4 97.7 99.0

JOINT+CEOSCAR 54.6 81.1 88.8 70.6 91.0 95.1 76.5 93.4 96.3 89.0 97.9 99.1
JOINT+BEOSCAR 52.5 80.0 88.0 66.7 90.0 95.0 71.6 91.5 95.0 86.3 96.8 98.6

Table 1: Results on MSCOCO and Flickr30k (monolingual setups). The group G1 presents results from
the literature with Pre-Transformer (PT) approaches. G2 denotes the results of recent cross-encoders
with Transformers (CE∗; §3.1). † indicates the results taken directly from the literature (Li et al.,
2020b), and ‡ indicates our own results achieved with the model weights. G3 covers efficient retrieval
methods that either retrieve images based only on distance metrics (BE, §3.2), or rely on the SEP+COOP

approach (see §3.3 and §3.4). The last two lines present the results of the joint model without the
cooperative retrieval step (see §4.1). Highest results per each group in bold, highest overall results
are underlined.

Type Model en de fr cs mean

G1. PT
MULE 70.3 64.1 62.3 57.7 63.6
S-LIWE 76.3 72.1 63.4 59.4 67.8
SMALR 74.5 69.8 65.9 64.8 68.8

G2. CE
CEM3P† 86.7 82.2 73.5 70.2 78.2
CEM3P‡ 83.7 79.4 76.5 74.6 78.6

G3. BE
BEM3P 82.8 78.0 75.1 73.6 77.4
SEP+COOPM3P 84.8 80.5 77.5 75.6 79.6
JOINT+COOPM3P 83.0 79.2 75.9 74.0 78.0

Table 2: Results on Multi30k (multilingual se-
tups). Following prior work (Ni et al., 2021), we
report mean Recall (mR) scores: mR computes
an average score of Recall@1, Recall@5 and
Recall@10 on image-to-text retrieval and text-
to-image retrieval tasks. All methods in the com-
parison use text data from all four languages.
We divide the models into groups G1-G3 as in
Table 1. † indicates results taken directly from
the literature (Ni et al., 2021) and ‡ indicates our
own results. MULE (Kim et al., 2020); S-LIWE
(Wehrmann et al., 2019); SMALR (Burns et al.,
2020); CEM3P† (Ni et al., 2021).

the monolingual MSCOCO and Flickr30k bench-
marks, and very competitive results on the
multilingual Multi30k benchmark.

Model NVIDIA V100 CPU
50k 1M 50k 1M

BE 16ms 37ms 0.2s 1.6s
SEP/JOINT+COOP 74ms 94ms 6s 13s
CE 2min 36min 2.4h 47h

Table 3: Retrieval latency for one query with an
image collection of 50k or 1M images (with pre-
encoded images) using a single GPU/ CPU. Batch
size for cross-encoding of the query with the
images is 512. CPU is an Intel Xeon Gold 6154.

6 Further Analysis

We now discuss a series of additional experi-
ments that further profile and analyze the proposed
multi-modal retrieval approaches, focusing espe-
cially on the multiple efficiency aspects related to
fine-tuning and retrieval stages.

Retrieval Efficiency. We empirically validate
the time efficiency of our cooperative ap-
proaches for retrieval in an image search scenario
(Table 3) and for evaluation on huge datasets
(Table 4). To allow for a fair comparison between
the approaches, we implement the entire retrieval
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Figure 2: We efficiently retrieve the top instances with the JOINT+BEOSCAR submodel to identify the (globally)
most relevant target instances. The more precise, but less efficient JOINT+CEOSCAR submodel then disentangles the
specific intricacies of the images. Ranking proceeds from left to right.

Model 1k 5k 100k

BE 5s 30s 7min
SEP/JOINT+COOP 5min 25min 8.5h
CE 2h 50h 2.3a*

Table 4: Evaluation time for the MSCOCO test
sets of 1k, 5k, and 100k images on an NVIDIA
V100 with batch size 512. The time includes bi-
encoding images and text, i.e., the embeddings are
not pre-computed. * denotes extrapolated values.

pipeline—from model to nearest-neighbor search—
in PyTorch without additional optimization such
as multi-processing or optimized nearest-neighbor
search libraries like FAISS (Johnson et al., 2021).

Our measurements confirm the efficiency of
BEs in comparison to CEs. The cooperative ap-
proaches, which only have to cross-encode a
constant number of items invariant of the col-
lection size, are close in retrieval latency to BE
for image search and remain feasible even for
large datasets.

Larger Benchmarks. The results in Table 1
indicate that current top-performance models
achieve very high scores in absolute terms on
the standard retrieval benchmarks. However, this
is partially due to too small image collections
with only a few thousand instances; one un-
desired effect is that it becomes increasingly
difficult to identify significant differences be-
tween model performances. Unfortunately, the
inefficiency of CE models, as empirically val-
idated in Tables 3–4, has prevented evaluation
with larger collections. However, more efficient

Model Image Retrieval Text Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Flickr30k 1k + CC 14k + MSCOCO 5k

BEOSCAR 45.8 69.1 76.1 71.1 90.9 94.9
SEP+COOPOSCAR 55.5 75.8 80.1 80.5 93.8 95.4
JOINT+COOPOSCAR 55.9 77.5 82.9 81.0 92.9 94.9

MSCOCO 5k + CC 14k + Flickr 1k

BEOSCAR 40.6 68.5 78.1 62.5 87.7 93.3
SEP+COOPOSCAR 43.7 72.1 81.2 68.2 90.4 94.3
JOINT+COOPOSCAR 45.6 73.0 82.3 69.0 90.3 94.7

Table 5: Results with larger benchmarks. The
dataset underlined indicates the actual standard
task with the corresponding task data and labels
used, while the instances from the datasets in italic
are used as additional non-relevant test examples
(i.e., distractors in the search space).

fully BE-based and SEP+COOP methods now en-
able evaluation on larger collections and in real-
istic scenarios.

We thus increase the benchmark size by
merging test instances from different available
evaluation sets. In particular, we construct a
collection spanning 20k images: It blends the
test sets of MSCOCO (5k instances), Flickr30k
(1k), and the development set of CC (14k).
Note that we simply augment the benchmarks
but the query set with labels for each standard-
ized evaluation task/set remains unchanged; in
other words, the instances from other datasets
are used as distractors that increase the search
space and make the retrieval task more difficult.
The results thus provide insights into the model
performance in the target domain, as well as its
robustness regarding out-of-distribution data. We
now observe in Table 5 more salient performance
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Loss Image Retrieval Text Retrieval Image Retrieval Text Retrieval Image Retrieval Text Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MSCOCO 5k Flickr30k 1k CC 14k

JOINT+COOPOSCAR
In-Domain 54.7 81.3 88.9 70.8 91.0 95.2 76.4 93.6 96.2 89.4 97.7 99.0 — — — — — —

CEUNITER — — — — — — 66.2 88.4 92.9 80.7 95.7 98.0 — — — — — —
CEOSCAR 47.8 75.7 84.6 61.8 86.2 92.0 67.2 88.5 92.7 81.0 95.5 97.8 — — — — — —

CLIP 30.4 56.1 66.9 50.1 74.8 83.6 61.1 85.9 91.8 81.9 95.0 97.5 30.8 52.7 61.3 32.1 53.9 63.0
BEOSCAR 37.6 64.4 75.0 52.0 78.1 86.3 63.3 86.4 91.6 78.2 94.0 97.3 13.8 29.4 37.9 14.4 29.6 37.6
SEP+COOPOSCAR 47.6 73.9 81.2 62.8 83.8 88.7 67.6 89.0 93.1 82.4 96.3 98.2 16.8 34.3 41.9 17.0 33.5 41.5
JOINT+COOPOSCAR 47.6 74.5 82.6 63.9 85.7 91.0 70.0 90.2 94.1 83.7 96.8 97.9 16.7 34.7 43.6 17.5 34.6 43.5

Table 6: Results for zero-shot evaluation on Flickr30k, MSCOCO, and CC. For Flickr30k and
MSCOCO results we train on the respective other datasets. For CC results we train on Flickr30k.
JOINT+COOPOSCAR

In-Domain is the in-domain performance for the JOINT+COOP approach and here represents the
upper-bound.

differences, which were lacking with the smaller
benchmarks. The pure BE-based approach now
substantially underperforms SEP/JOINT+COOP vari-
ants. The JOINT+COOP does remain the best-scoring
variant overall.

Zero-Shot Performance. Relying on multi-
modal and multilingual representations fine-tuned
for cross-modal retrieval, the proposed methods
should also generalize to new unseen captions and
images beyond the dataset used for fine-tuning.
Therefore, we directly transfer the model fine-
tuned on one dataset to the test data of another
dataset (e.g., fine-tune on MSCOCO data, test
on Flickr30k). As baselines, we use the reported
zero-shot results of UNITER (Chen et al., 2020)
for Flickr30k14 and we also evaluate the CLIP
model.15

The zero-shot results in Table 6, reveal that the
CE variant slightly outperforms other approaches
when transferring from Flickr30k to MSCOCO,
while JOINT+COOPOSCAR remains competitive.
However, for the opposite direction, we achieve
considerable performance gains with the JOINT+
COOPOSCAR variant. On CC, all variants consid-
erably underperform CLIP; we speculate that it
might be due to a more diverse set of images
included in CC, including illustrations, which nei-
ther exist in MSCOCO nor Flickr30k. This means
that CLIP has a considerable advantage on CC
due to its exposure to massive amounts of data
during pretraining.

Multilingual zero-shot results, where we fine-
tune on the English Multi30k captions and test
on the captions in other languages, are shown in

14They do not report results for MSCOCO.
15We use the ViT-B/32 model variant. Retrieval results

from Radford et al. (2021) Table 13 use the (larger) ViT-L/14
variant that has not been released to the public.

Model en de fr cs Avg

CEM3P (Ni et al., 2021) 86.0 48.8 39.4 38.8 42.3

BEM3P 81.3 52.4 49.7 39.6 47.2
CEM3P 84.2 52.6 49.6 33.4 45.2
SEP+COOPM3P 84.4 55.6 52.2 39.8 49.2
JOINT+COOPM3P 83.5 54.2 48.4 39.4 47.3

Table 7: Multilingual image-text retrieval re-
sults (in mR) on Multi30k. Models are trained
on the English data. Avg results of non-English
languages.

Figure 3: Impact of data size for fine-tuning on retrieval
performance. MSCOCO training and test data; OSCAR
as the underlying Transformer.

Table 7. Cooperative approaches again excel; the
highest scores are achieved by SEP+COOPM3P.

Sample Efficiency. We also analyze how the
amount of image-text data for fine-tuning impacts
the retrieval performance; we thus sample smaller
datasets from the full MSCOCO training set, cov-
ering 1k, 10k, and 50k images with their captions
(5 per image). The results in Figure 3 reveal that
BE-based approaches in general are considerably
less sample-efficient than cross-encoders. They
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Model k Image Retrieval Text Retrieval Image Retrieval Text Retrieval Image Retrieval Text Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MSCOCO 1k MSCOCO 5k Flickr30k

SEP+COOP

10 75.4 94.8 97.2 88.4 98.8 99.7 53.2 80.3 86.6 71.1 90.9 94.3 75.9 92.2 93.4 89.2 97.8 98.4
20 75.3 95.2 98.1 87.9 98.9 99.8 52.8 80.5 88.5 70.2 91.6 95.0 76.0 93.0 95.0 88.7 98.3 99.2
50 75.2 95.0 98.2 87.9 99.1 99.8 52.6 80.1 88.4 70.1 91.4 95.5 75.9 93.4 96.3 88.9 98.4 99.4

JOINT+COOP

10 75.4 95.5 97.8 88.0 98.8 99.9 54.8 81.2 88.0 70.9 91.2 95.0 76.5 93.2 95.0 88.9 97.3 98.6
20 75.5 95.4 98.2 88.1 98.6 99.5 54.7 81.3 88.9 70.8 91.0 95.2 76.4 93.6 96.2 89.4 97.7 99.0
50 75.4 95.4 98.3 88.2 98.4 99.4 54.6 81.2 88.8 70.7 91.1 95.3 76.5 93.5 96.5 89.1 98.0 98.9

Table 8: Results with SEP+COOP and JOINT+COOP reranking the top-k candidates. Bold numbers indicate
which k value resulted in the highest score for each separate model.

Figure 4: Half- vs. full-sized models on Flickr30k.
With half-sized models, we skip every odd-numbered
Transformer layer.

particularly struggle in the lowest-data scenario
with only 1k images available; this is also re-
flected in the lower performance of JOINT+COOP

in the 1k setup. A reason behind the more effective
adaptation of CE to low-data regimes might be
their richer ‘‘input consumption’’: With 1k images
and 5k captions, CE runs a whole grid of 1k×5k
items through its network, which provides more
learning signal with fewer data available. On the
other hand, BE-based approaches are expected to
learn effective encoders of both modalities sepa-
rately based solely on 1k images and 5k captions,
without any cross-modal interaction.

Parameter Efficiency. We also provide a sim-
ple parameter efficiency analysis by initializing
the models with pretrained OSCAR weights, but
only passing the representations through every
second layer, effectively halving the total amount
of Transformer parameters. The results are shown
in Figure 4. The performance with all approaches
using the ‘‘halved’’ model is around ∼ 90% of the
performance with the full Transformer. Overall,
the JOINT+COOP method again achieves the highest

Model Sum λ Image Retrieval Text Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

SEP+COOP

– 76.0 93.0 95.0 88.7 98.3 99.2

ADD

0.1 76.0 92.7 94.8 86.4 98.7 99.2
0.5 75.7 92.6 94.7 85.9 98.5 99.2
0.9 74.5 92.5 94.7 85.1 98.3 99.2

NORM ADD

0.1 70.8 90.2 93.8 86.2 98.5 99.2
0.5 70.7 90.3 93.7 85.4 98.4 99.2
0.9 70.3 90.1 93.7 83.8 97.6 98.8

JOINT+COOP

– 76.4 93.6 96.2 89.4 97.7 99.0

ADD

0.1 76.7 93.3 95.8 88.5 98.0 99.1
0.5 75.6 93.1 95.5 87.2 97.8 99.1
0.9 74.6 92.8 95.5 87.3 97.8 99.1

NORM ADD

0.1 72.8 92.0 95.2 87.6 97.9 99.2
0.5 72.5 92.0 95.2 87.3 97.9 99.0
0.9 72.3 91.8 95.2 86.4 97.0 99.0

Table 9: Results on Flickr30k for different com-
binations of the embedding and cross-encoder
scores using the functions ADDλ and NORM ADDλ

and different values for λ. - indicates the results
for reranking using only the cross-encoder.

scores. This suggests that the proposed fine-tuning
approaches are applicable also to smaller models,
with similar relative trends in retrieval results.

Retrieving Top-k. We analyze different values
for k for top-k retrieval of the BE component
in Table 8. Selecting small values for k signif-
icantly decreases the retrieval latency, as fewer
instances need to be cross-encoded. However, se-
lecting k values that are too small can come at
a cost of precision, as the true positive instance
might not be among the top-k retrieved instances
of the BE model. In our experiments, k = 20
achieves the best trade-off between precision and
retrieval latency.

Combining Ranking. We evaluate the rank-
ing score combination of the two components
JOINT+BE and JOINT+CE in Table 9. We combine
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the ranking of the bi-encoder submodel and the
cross-encoder submodel by summing over the
scores using two different variations:

(1) We directly add the scores in a weighted sum

ADDλ(e, c) = λe+ (1− λ)c (3)

where e and c are the embedding cosine similarity
and cross-encoder similarity scores respectively
and λ is a weighting parameter. The cross-encoder
scores have been processed with a sigmoid func-
tion so that both e and c are in the same value range.
The final ranking is then defined by ADDλ(e, c).

(2) We separately 0-1-normalize the scores for
the top-k candidates of the bi- and cross-encoder
before combining them for NORM ADDλ(e, c),
which is defined analog to ADDλ(e, c).

However, we find that relying solely on the
cross-encoder achieves the best results. This sug-
gests that the scores by the bi-encoder are useful
in the ‘‘global’’ scope with all data to retrieve
strong candidates but in the ‘‘local’’ scope of the
top-k candidates, the cross-encoder is superior.

7 Conclusion

We proposed a novel framework that converts
pretrained multi-modal Transformers into effec-
tive and efficient cross-modal retrieval models.
The framework is applicable to any pretrained
model and combines the efficiency of bi-encoder
(BE) approaches with the accuracy of compu-
tationally more demanding cross-encoding (CE)
approaches. Their synergistic effect at retrieval
is achieved through a cooperative retrieve-and-
rerank regime, where the initial retrieval from
a large collection is performed via efficient BE
approaches, followed by another accuracy-driven
step via a CE model. Moreover, we introduced a
parameter-efficient joint fine-tuning regime that
blends BE and CE into a single model with shared
weights. Our results with state-of-the-art pre-
trained models across a range of standard mono-
lingual and multilingual cross-modal retrieval
tasks and setups validated the strong performance
of such cooperative and joint approaches. At the
same time, we demonstrated their retrieval effi-
ciency, which makes them viable in realistic re-
trieval scenarios with large collections. In future
work, we will put more focus on zero-shot and

few-shot retrieval scenarios, and expand the ap-
proach to more languages, modalities, and tasks.
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