
SUKI 2022

The Workshop on Structured and Unstructured Knowledge
Integration (SUKI)

Proceedings of the Workshop

July 14, 2022

©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-86-5

i

Organizing Committee

Organizing Committee

Wenhu Chen, Google / University of Waterloo
Xinyun Chen, UC Berkeley
Zhiyu Chen, UCSB
Ziyu Yao, George Mason University
Michihiro Yasunaga, Stanford University
Tao Yu, University of Washington / University of Hong Kong
Rui Zhang, Penn State University

ii

Program Committee

Program Committee

Alon Albalak, University of California, Santa Barbara
Andrew Lyubovsky, Carnegie Mellon University
Ansong Ni, Yale University
Bailin Wang, University of Edinburgh
Ben Bogin, Tel Aviv University
Chen Henry Wu, Carnegie Mellon University
Chia-Hsuan Lee, University of Washington
David Tresner-Kirsch, Brandeis University
Dung Ngoc Thai, University of Massachusetts, Amherst
Enrique Noriega-Atala, University of Arizona
Erica Kido Shimomoto, National Institute of Advanced Industrial Science and Technology
Fahim Faisal, George Mason University
Gyuwan Kim, UC Santa Barbara
Haoyu Dong, Microsoft
Hiroshi Iida, The University of Tokyo
Ishan Jindal, IBM
Jonathan Herzig, Tel Aviv University
Li Dong, Microsoft Research
Linyong Nan, Yale University
Maharshi Gor, University of Maryland, College Park
Michael Saxon, UC Santa Barbara
Naihao Deng, University of Michigan, Ann Arbor
Nan Zhang, Pennsylvania State University
Nitisha Jain, Hasso Plattner Institute
Ori Yoran, Tel Aviv University
Qian Liu, Beihang University
Raj Ratn Pranesh, Pennsylvania State University
Ruiqi Zhong, University of California Berkeley
Saurabh Srivastava, George Mason University
Shiyang Li, UC Santa Barbara
Sheng Zhang, Amazon
Shuaichen Chang, Ohio State University
Shuyan Zhou, Carnegie Mellon University
Siddhartha Datta, University of Oxford
Tianbao Xie, Harbin Institute of Technology
Tianyang Zhao, Pennsylvania State University
Torsten Scholak, University of Toronto
Vardaan Pahuja, Ohio State University
Vasiliki Kougia, Universitat Vienna
Vivek Gupta, University of Utah
Xi Victoria Lin, Facebook
Xi Ye, UT Austin
Xiang Deng, Ohio State University
Xiang Yue, Ohio State University
Xianjun Yang, UC Santa Barbara
Xinlu Zhang, University of California, Santa Barbara

iii

Yilun Zhao, Yale University
Yujie Lu, UC Santa Barbara
Yunxiang Li, The Chinese University of Hong Kong
Zekun Li, University of California, Santa Barbara
Zhen Han, Institut fur Informatik
Zhen Wang, Ohio State University
Zhiruo Wang, Carnegie Mellon University
Zhoujun Cheng, Shanghai Jiaotong University

iv

Table of Contents

FabKG: A Knowledge graph of Manufacturing Science domain utilizing structured and unconventional
unstructured knowledge source

Aman Kumar, Akshay Ganesh Bharadwaj, Binil Starly and Collin Lynch . 1

Modeling Compositionality with Dependency Graph for Dialogue Generation
Xiaofeng Chen, Yirong Chen, Xiaofen Xing, Xiangmin Xu, Wenjing Han and Qianfeng Tie . . . 9

Strategies to Improve Few-shot Learning for Intent Classification and Slot-Filling
Samyadeep Basu, Amr Sharaf, Karine Ip Kiun Chong, Alex Fischer, Vishal Rohra, Michael

Amoake, Hazem El-Hammamy, Ehi Nosakhare, Vijay Ramani and Benjamin Han 17

Learning Open Domain Multi-hop Search Using Reinforcement Learning
Enrique Noriega-Atala, Mihai Surdeanu and Clayton Morrison . 26

Table Retrieval May Not Necessitate Table-specific Model Design
Zhiruo Wang, Zhengbao Jiang, Eric Nyberg and Graham Neubig . 36

Transfer Learning and Masked Generation for Answer Verbalization
Sebastien Montella, Lina Maria Rojas-Barahona, Frederic Bechet, Johannes Heinecke and Alexis

Nasr . 47

Knowledge Transfer between Structured and Unstructured Sources for Complex Question Answering
Lingbo Mo, Zhen Wang, Jie Zhao and Huan Sun . 55

Hierarchical Control of Situated Agents through Natural Language
Shuyan Zhou, Pengcheng Yin and Graham Neubig . 67

v

Program

Thursday, July 14, 2022

09:00 - 08:45 Opening Remark

09:45 - 09:00 Invited Talk by Heng Ji

10:30 - 09:45 Invited Talk by Percy Liang

11:15 - 10:30 Invited Talk by Jonathan Berant

12:00 - 11:15 Invited Talk by Hanna Hajishirzi

12:30 - 12:00 Lunch Break

13:30 - 12:30 Poster Session

14:15 - 13:30 Invited Talk by William Cohen

15:00 - 14:15 Invited Talk by Julian Eisenschlos

16:00 - 15:00 Shared Task

16:45 - 16:00 Invited Talk by Luna Dong

17:30 - 16:45 Contributed Talks

17:45 - 17:30 Closing Remark

vi

Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI), pages 1 - 8
July 14, 2022 ©2022 Association for Computational Linguistics

FabKG: A Knowledge graph of Manufacturing Science domain utilizing
structured and unconventional unstructured knowledge source

Aman Kumar
akumar33@ncsu.edu

Akshay G Bharadwaj
abharad3@ncsu.edu

Binil Starly
bstarly@ncsu.edu

Collin Lynch
cflynch@ncsu.edu

Abstract

As the demands for large-scale information pro-
cessing have grown, knowledge graph-based
approaches have gained prominence for repre-
senting general and domain knowledge. The
development of such general representations is
essential, particularly in domains such as manu-
facturing which intelligent processes and adap-
tive education can enhance. Despite the contin-
uous accumulation of text in these domains, the
lack of structured data has created information
extraction and knowledge transfer barriers. In
this paper, we report on work towards develop-
ing robust knowledge graphs based upon entity
and relation data for both commercial and edu-
cational uses. To create the FabKG (Manufac-
turing knowledge graph), we have utilized text-
book index words, research paper keywords,
FabNER (manufacturing NER), to extract a
sub knowledge base contained within Wikidata.
Moreover, we propose a novel crowdsourcing
method for KG creation by leveraging student
notes, which contain invaluable information
but are not captured as meaningful information,
excluding their use in personal preparation for
learning and written exams. We have created
a knowledge graph containing 65000+ triples
using all data sources. We have also shown the
use case of domain-specific question answering
and expression/formula-based question answer-
ing for educational purposes.

1 Introduction

In recent years, the advancement of artificial intel-
ligence applications has grown multifold. Many
areas such as natural language processing, digital
twins (Liu et al., 2021), and chatbots (Chen et al.,
2021) have become very popular for their ability
to record and use information from unstructured
sources efficiently. One such application is Knowl-
edge Graph (KG), which has gained popularity in
various domains due to its potential applications. A
Knowledge Graph is a graph meant to accumulate
and impart real-world knowledge, with nodes rep-

resenting entities of interest and edges representing
potentially diverse relations between the entities.
A KG has varied applications in recommendations,
search, question answering and many more. Most
importantly, a KG can be used to make decisions
based on inferences.

The use of a knowledge graph is of high value
in making design and manufacturing-related deci-
sions. As there has been an explosion of knowledge
addition in various design considerations and man-
ufacturing decisions, most of the knowledge is with
Small and medium-sized enterprises (SMEs). The
decision-making in design and production could
be significantly improved using knowledge graphs
(Buchgeher et al., 2021). It can benefit not only
small and medium manufacturers (Li et al., 2021),
but also hardware-based entrepreneurs and help
boost self-sustaining product development (Li et al.,
2020).

A number of prior researchers have started de-
veloping manufacturing related knowledge graphs
based on specific problem areas such as machining
process planning (Yang et al., 2019; Ye et al., 2018),
workshop resource KG (Zhou et al., 2021; Sun and
Wang, 2019), intelligent manufacturing (Yan et al.,
2020), faults (Liang et al., 2022; Wang and Yang,
2019), maintenance (Hossayni et al., 2020) and
industry 4.0 (Garofalo et al., 2018; Bader et al.,
2020; Kraft and Eibeck, 2020). However, none
of these graphs represent fundamental knowledge
of manufacturing concepts, processes, process pa-
rameters, characterization, materials, applications,
and various other basic aspects of manufacturing
domain education. A large amount of such frag-
mented knowledge can be integrated to assist the
learners in intuitively and easily connecting with
the knowledge system by leveraging the nodes and
relationships. Such knowledge integration will also
assist in intelligent question answering that can
accelerate knowledge discovery and search.

Google bases part of its Knowledge Vault on the

1

Figure 1: (a) Manufacturing Knowledge Graph construction methodology (b) Use of SPARQLWrapper to fetch
Wikidata items associated with ’crystal structure’ in two step forward and two step backward. This image also
shows addition of entities from student notes.

well-known Wikidata knowledge base (Ringler and
Paulheim, 2017). Even though Wikidata has a large
amount of information from Wikipedia, there is a
dearth of standardized knowledge regarding many
important entities related to the Manufacturing do-
main. For instance, the term ‘additive manufactur-
ing’ is present as ‘3d printing’; while there have
been substantial developments in the field of ‘metal
additive manufacturing’ (metal AM) over the last
decade, it is not present as a subclass of ‘3d print-
ing’ in Wikidata. Moreover, within metal additive
manufacturing (Frazier, 2014), sub-classifications
such as DMLS, EBAM, and PBF are not present
in Wikidata. One reason for this is the volunteer-
driven nature of Wikidata as a knowledge base; this
has led to a limited amount of specialist terminol-
ogy and information regarding the manufacturing
domain. Therefore, Wikidata cannot provide direct
answers to questions that are very specific to this
domain. To understand the basic concepts in the
context of manufacturing we focus on formulating
answers to some basic questions such as, ‘What are
some precision finishing manufacturing process?’,
‘What are some tools for machining copper?’ etc.
The purpose of creating such a knowledge graph of
manufacturing using Wikidata is to provide a start-
ing point for a structured manufacturing knowledge
base, which can be amalgamated with knowledge
from other sources such as textbook (Rahdari et al.,
2020) and research articles (Wang et al., 2020b).

To tackle the challenges in developing the knowl-
edge graph from scratch for manufacturing science,
we consider various methodologies for creating ac-
curate graphs. We propose a merged knowledge
graph that combines the existing structured Wiki-
data knowledge graph with a novel semi-supervised

knowledge graph extracted from textbook data. For
extracting graph triples from Wikidata, as men-
tioned in Figure 1, we have adopted two methods
for the approach: (1) Vocabulary-based and (2)
Based on Unstructured text. Former includes fetch-
ing Wikidata items using a collection of manufac-
turing vocabulary terms through the utilization of
textbook index words, keywords from research pa-
pers, and named entity recognition using FabNER
(Kumar and Starly, 2021), followed by the use of
DBpedia (Mendes et al., 2011) to find Wikidata
items. The latter is a semi-supervised approach
that utilizes students’ notes, considering standard
textbooks as the reference. The most significant
purpose of the latter method is to make use of text-
book knowledge structured by humans, thereby
increasing the quality of the knowledge base. The
following sections elaborate on the details of the
methodology and implementation.

2 Manufacturing Knowledge Graph
Construction

2.1 KG construction using Wikidata
Wikidata is a knowledge base maintained collabora-
tively by the community to represent information in
machine readable format. Since no such knowledge
base exists for the manufacturing domain, we de-
cided first to extract existing Wikidata knowledge
and then merge this with the knowledge contained
within manufacturing textbooks.

Wikidata’s knowledge graph has Q and P identi-
fiers where Q represents entities, and P represents
relations (Hernández et al., 2015). Currently, Wiki-
data is limited to very few relevant relations be-
tween entities for manufacturing domain-specific
entities. We have taken about 10 unique relations

2

based on all P identifiers attached with relevant
Q identifiers identified by us. The relevant rela-
tions in Wikidata include ‘Instance of’, ‘Subclass
of’, ‘Use’, ‘Color’, ‘Part of’, ‘Uses’, ‘Has qual-
ity’, ‘Has cause’, ‘Has part’, ‘Facet of’, ‘Different
from’.

In order to find manufacturing-specific entities
in Wikidata, we used the following methods:

2.1.1 Entities extraction from index words of
textbooks

Index words located at the end of textbooks are
a list of all topics and entities provided to assist
readers in finding the location of the text (Kumar
and Dinakaran, 2021). These are important terms
that are often overlooked but are a good collec-
tion of domain-specific entities. We utilized eas-
ily accessible 5 diverse ebooks related to manu-
facturing (Groover, 2020), digital manufacturing
(Zhou et al., 2012), manufacturing process (El-
Hofy, 2005) welding technology (Kou, 2003) and
additive manufacturing (Gibson et al., 2021), and
extracted the index entities mentioned at the end
of the book to expand the list of relevant entities.
We found about 3500 relevant entities from various
books and added those to our vocabulary.

2.1.2 Keywords from research papers
We used 500k+ abstracts to create the corpus for
manufacturing, as mentioned in FabNER. While
extracting the abstracts, we accumulated the key-
words mentioned in the abstract, removed dupli-
cates, and normalized many of the words (using
Levenshtein distance). There are many words
written with some variation in the spelling. E.g.,
Landau-Ginzburg-Devonshire, Landau-Ginsburg-
Devonshire, Landau-Ginsberg-Devonshire, are the
same entities with variation in the way it is written
in different abstract keywords by various authors.
Overall, we found about 4500 relevant entities from
a sample of 5000 abstracts.

2.1.3 Named entity recognition on
unstructured text

We utilized review articles related to manufacturing
to find the most frequent and diverse terms since
it generally mention most of the past work and
technologies developed in the succinct text. Ten
full review articles (Wong and Hernandez, 2012;
ElMaraghy et al., 2012; Zhu et al., 2013; Frazier,
2014; Oztemel and Gursev, 2020; Yan et al., 2018;
Stuart et al., 2010; Rajurkar et al., 2017; Wang et al.,

2020a; Kaur and Singh, 2019) for this part were
selected, which were processed using a trained
neural network model consisting of BERT (Devlin
et al., 2018) and GloVe (Pennington et al., 2014)
stacked embeddings through Flair framework (Ak-
bik et al., 2019). Next, we employed BiLSTM
and CRF (Consoli and Vieira, 2019) architecture
to identify 12 category entities in the review arti-
cles with F-score of 83%. Overall, we found about
2000 entities from diverse review articles related
to manufacturing.

Table 1: Named entity recognition performance for the
Manufacturing dataset

Model Precision Recall F1
BERT+BiLSTM+CRF 0.8185 0.8429 0.8306

Using text and vocabulary of entities from all
the above sources, i.e., index words, research paper
keywords, and NER on review articles, we fur-
ther employed two methods for finding existing
Wikidata items. As depicted in Fig. 1, in the first
method, we used DBpedia spotlight API to find
Wikidata items associated with the unstructured
text directly based on a 0.5 confidence value. In
the second, we provide manufacturing vocabulary
terms as the input to wptools python library to fetch
Wikidata items as the output. We find all manu-
facturing relevant Wikidata items to extract a sub-
graph from Wikidata and later merge this relatively
bigger knowledge graph with textbook knowledge
(explained in the next section). Upon availability
of some Wikidata items, we further used SPARQL-
Wrapper (uses Wikidata SPARQL endpoint) and
relations list (P identifiers) to fetch forward (head
from the primary entity) as well as backward (tail
from the primary entity) entities associated with
the item. We performed the same for two linked
steps forward and two linked steps backward to
find most of the nodes that are connected with each
other.

2.2 KG construction using Exam
cheatsheet/notes for Manufacturing

We propose a novel approach for creating triples
utilizing human knowledge. Qualifying exams (or
course exams) are part of any doctoral degree pro-
gram. In some schools, written exams are con-
ducted for a few courses. In some specific courses,
cheatsheets/concise notes are allowed for students
to bring into the exam to enable the student to re-
member important points. In most cases, the cheat-

3

Figure 2: Conversion of concise notes to structured graph

sheet (or notes) developed for the exam are useless
when the exams are over. This also means that the
verified knowledge written by a student to remem-
ber the essential facts is lost or left unutilized for
future references.

We devised a strategy for making these short,
concise notes be useful input for building con-
nected entities within FabKG. We created optional
advice on cheatsheet generation for students to fol-
low prior to the exam at our institution so that they
could participate to the task of knowledge base en-
hancement in the Manufacturing area. Students
can only write crucial details from various text-
book chapters, assuming that the number of pages
allowed in the exam is limited. There is a title
within each chapter, followed by several subtitles,
each of which contains some entities and context,
which is potentially a good knowledge source. The
guidelines were kept simple so that students would
not have to spend much time referring to them. It
mentioned the title, subtitle, and content hierarchy
and a precise technique for separating them.

The following guidelines are provided for exam-
ple purposes only:

a) The chapter name is preserved as the top title,
followed by a distinctive symbol, making it easier
to distinguish between chapters.

b) Within a chapter, many sub-topics are sepa-
rated by another unique symbol, such as a double
semi-colon ’;;’. Two sub-topics are shown in Fig. 2,
for example, (1) Defects and (2) Crystal structure

c) If there is a further subtopic within a subtopic,
it is separated by a symbol such as ’:’ followed by
some relevant points. A single semi-colon sepa-

rates multiple subtopics.
d) Explanations or additional information about

any term are retained in brackets as an attribute
of a relational entity. For example, displaced ion
(Frenkel defect) denotes that a point defect with a
displaced ion is also known as a Frenkel defect.

Use of some symbols patterns when creating
the notes aided in the design of regex patterns for
quickly extracting entities and their obvious rela-
tionships. We were able to extract over 1200 dis-
tinct entities, 25 unique relations, and 4200 unique
triples using this method. Fig. 2 depicts the notes
in their raw and structured state. The student notes
in both unstructured and structured form was veri-
fied by human supervision. Indirect crowdsourcing
is the crucial aspect that has made this element of
the project possible. However, the intention was
to use note takers’ knowledge. It should be em-
phasized that even though some previous work has
mentioned the use of notes (Denny et al., 2015)
for developing a knowledge map, however, on a
larger scale and for educational applications, this
type of knowledge source has not been studied.
This method might be used with little effort for any
domain-specific textual material.

Despite the small number of entities/relations
discovered, this method allows textbook knowledge
to be converted into useable knowledge, which aids
in developing a knowledge graph for educational
purposes. In general, for automatic extraction of
directed relation, it is often difficult to determine
which entities are related to each other when more
than 2 entities are present in a sentence. This is
also because, on multiple occasions, no relation

4

exists between the entities. It becomes a challenge
to employ a NER and detect directed relations be-
tween entities automatically which we solve by
this semi-supervised method. Based on the analy-
sis of the notes, some of the crucial relations found
include: ‘has’, ‘hasProperty’, ‘uses’, ‘usedTo’,
‘usedIn’, ‘causes’, ‘producedBy’, ‘makes’, ‘has-
Expression’, ‘hasPart’, ‘addedWith’, ‘hasValue’,
‘includes’, ‘partOf’, ‘alsoCalled’, ‘dueTo’, ‘in-
stanceOf’, ‘isAbbrev’, ‘isAcronym’, ‘hasCompara-
tor’.

2.3 Fusion of structured and unstructured
knowledge

All triples found with the above-mentioned meth-
ods were aggregated together to create a knowledge
graph of about 65000 triples. Fig1(b) depicts the
merger of Wikidata and textbook knowledge. We
created a collection of possible synonyms for vari-
ous entities to enable us to merge Wikidata entities
with textbook entities. We found that out of 1200
textbook entities, about 25% were present in Wiki-
data. We also found some links between entities
which otherwise were not present in Wikidata due
to limited relations.

3 Knowledge driven QA

3.1 Domain specific question answering

The Knowledge Graph for manufacturing (FabKG)
is suitable for answering questions and powering
a chatbot to answer questions. The FabKG is a
directed graph G = (V, E) where the node v ∈ V
denotes named entities of manufacturing, numeric
literal or expression, and the edge e ∈ E denotes
directed relation between the nodes.

Given a natural language question as input, the
entities are categorized in their respective classes.
Based on the subject and predicate most similar
object (highest cosine similarity) to the category in
the knowledge base is queried.

Some of the common domain specific questions
could not be answered using general purpose search
engines. Examples of questions that could be an-
swered by FabKG are:

a. Which tool geometry is used for planning?
b. Which material has more hardness, cermet or

alumina? Note: We have used a hasComparator
relation specifying various comparison values in
our KG that could answer the ‘more’ and ‘less’
inference question.

Figure 3: A small subgraph showing the links of entities
connected with other expressions for ease of calculation,
making the system think like humans.

c. What is the composition of Tungsten in cast
cobalt?

d. Which nontraditional manufacturing process
is used for coining operations?

e. What is the length to depth ratio for discontin-
uous fibers?

3.2 Expression based question answering

We have included some manufacturing-specific for-
mulas/expressions in the knowledge graph to en-
able inference-based calculations. Since we have
captured some formulae linked with entities using
‘hasExpression’ relation, traversing for the formula
node in the graph is easy. We have also included a
simple rule for calculation-type questions. Here is
an example question below:

Calculate the strain on the cylinder given
the area 1 cm2, 10N force, and Young’s
modulus for steel 200 GPa.

Given the question above, we have some ‘for-
mula entities’: area, force, and young modulus of
steel. These entities are queried in the KG for any
available linked expression. Similar to MathGraph
(Zhao et al., 2019), we utilize SymPy (Meurer et al.,
2017) to convert the queried expression into a math-
ematical equation with variables, and to perform
the calculation, we use some basic rules of prece-
dence to fetch the results. As shown in fig. 3, we
can find strain using Young’s modulus and stress;
however, since stress is not known, we calculate
stress as the first step using force and area. This
process depicts the way human thinks while an-
swering a question with some inputs and related
expressions.

Some other examples of questions forms that
are easier than the above-mentioned questions: a.
Calculate material removal rate given feed rate,

5

cutting speed, and depth of cut. HINT: We can
calculate the Material removal rate using (feed
rate)*(cutting speed)*(depth of cut). b. Calculate
measuring length of roughness given cutoff length
of 0.8. HINT: measuring length of roughness = 0.5
* cutoff length.

4 Conclusion and future work

We have developed FabKG – a knowledge graph for
product design and manufacturing, which utilizes
two critical sources of knowledge, (1) Wikidata
and (2) Human constructed notes, that combine
structured/unstructured knowledge towards answer-
ing question-related to product development and
manufacturing. Using this KG, students, product
developers, and knowledge seekers can get good
insights into various concepts and fundamentals
about various topics in this domain. Using all the
methods described above, we have found 65000+
triples in 12 entity categories.

In the future, we plan to use the heterogeneous
knowledge graph for directed relation prediction
in the bigger corpus, performing graph embedding
and link prediction. Moreover, lecture presenta-
tions with succinct text could also be utilized for
finding entities and relations. Generally, the ti-
tle/topic of the presentation symbolizes the sub-
ject, with some entities either written directly or
placed after another subtopic. Furthermore, ‘prop-
erty/attribute’ of relation through the specific value
of entities such as the strength of materials, carbon
content, Brinell hardness, Etc., currently available
in tabular form in books and other resources, can
be added to the KG. The same could be represented
using a hypergraph by combining multimodal data.
Therefore, the new graph structure would have
not only an ‘entity-relation-entity’ type graph but
also an ‘entity-attribute-value’ graph. Finally, this
knowledge graph could help link to global knowl-
edge by contributing to existing Wikidata knowl-
edge with the help of Wikimapper.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics (Demonstrations), pages 54–
59.

Sebastian R Bader, Irlan Grangel-Gonzalez, Priyanka

Nanjappa, Maria-Esther Vidal, and Maria
Maleshkova. 2020. A knowledge graph for
industry 4.0. In European Semantic Web Conference,
pages 465–480. Springer.

Georg Buchgeher, David Gabauer, Jorge Martinez-Gil,
and Lisa Ehrlinger. 2021. Knowledge graphs in man-
ufacturing and production: A systematic literature
review. IEEE Access, 9:55537–55554.

Tzu-Yu Chen, Yu-Ching Chiu, Nanyi Bi, and Richard
Tzong-Han Tsai. 2021. Multi-modal chatbot in intel-
ligent manufacturing. IEEE Access, 9:82118–82129.

Bernardo Consoli and Renata Vieira. 2019. Multido-
main contextual embeddings for named entity recog-
nition. In Proceedings of the Iberian Languages
Evaluation Forum, volume 2421, pages 434–441.

Joshua C Denny, Anderson Spickard III, Peter J Speltz,
Renee Porier, Donna E Rosenstiel, and James S Pow-
ers. 2015. Using natural language processing to pro-
vide personalized learning opportunities from trainee
clinical notes. Journal of biomedical informatics,
56:292–299.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Hassan Abdel-Gawad El-Hofy. 2005. Advanced ma-
chining processes: nontraditional and hybrid ma-
chining processes. McGraw Hill Professional.

Waguih ElMaraghy, Hoda ElMaraghy, Tetsuo
Tomiyama, and Laszlo Monostori. 2012. Complexity
in engineering design and manufacturing. CIRP
annals, 61(2):793–814.

William E Frazier. 2014. Metal additive manufactur-
ing: a review. Journal of Materials Engineering and
performance, 23(6):1917–1928.

Martina Garofalo, Maria Angela Pellegrino, Abdulrah-
man Altabba, and Michael Cochez. 2018. Leveraging
knowledge graph embedding techniques for indus-
try 4.0 use cases. In Cyber Defence in Industry 4.0
Systems and Related Logistics and IT Infrastructures,
pages 10–26. IOS Press.

Ian Gibson, David W Rosen, Brent Stucker, Mahyar
Khorasani, David Rosen, Brent Stucker, and Mahyar
Khorasani. 2021. Additive manufacturing technolo-
gies, volume 17. Springer.

Mikell P Groover. 2020. Fundamentals of modern man-
ufacturing: materials, processes, and systems. John
Wiley & Sons.

Daniel Hernández, Aidan Hogan, and Markus Krötzsch.
2015. Reifying rdf: What works well with wikidata?
SSWS@ ISWC, 1457:32–47.

6

Hicham Hossayni, Imran Khan, Mohammad Aazam,
Amin Taleghani-Isfahani, and Noel Crespi. 2020.
Semkore: Improving machine maintenance in indus-
trial iot with semantic knowledge graphs. Applied
Sciences, 10(18):6325.

Manmeet Kaur and K Singh. 2019. Review on tita-
nium and titanium based alloys as biomaterials for
orthopaedic applications. Materials Science and En-
gineering: C, 102:844–862.

Sindo Kou. 2003. Welding metallurgy. New Jersey,
USA, 431(446):223–225.

Markus Kraft and Andreas Eibeck. 2020. J-park sim-
ulator: Knowledge graph for industry 4.0. Chemie
Ingenieur Technik, 92(7):967–977.

Aman Kumar and Swathi Dinakaran. 2021. Text-
book to triples: Creating knowledge graph in the
form of triples from ai textbook. arXiv preprint
arXiv:2111.10692.

Aman Kumar and Binil Starly. 2021. “fabner”: infor-
mation extraction from manufacturing process sci-
ence domain literature using named entity recogni-
tion. Journal of Intelligent Manufacturing, pages
1–15.

Xinyu Li, Chun-Hsien Chen, Pai Zheng, Zuoxu Wang,
Zuhua Jiang, and Zhixing Jiang. 2020. A knowledge
graph-aided concept–knowledge approach for evolu-
tionary smart product–service system development.
Journal of Mechanical Design, 142(10):101403.

Yunqing Li, Shivakumar Raman, Paul Cohen, and Binil
Starly. 2021. Design of knowledge graph in manufac-
turing services discovery. In International Manufac-
turing Science and Engineering Conference, volume
85079, page V002T07A010. American Society of
Mechanical Engineers.

Kun Liang, Baoxian Zhou, Yiying Zhang, Yiping Li,
Bo Zhang, and Xiankun Zhang. 2022. Pf2rm: A
power fault retrieval and recommendation model
based on knowledge graph. Energies, 15(5):1810.

Shimin Liu, Yuqian Lu, Jie Li, Dengqiang Song,
Xuemin Sun, and Jinsong Bao. 2021. Multi-scale
evolution mechanism and knowledge construction of
a digital twin mimic model. Robotics and Computer-
Integrated Manufacturing, 71:102123.

Pablo N Mendes, Max Jakob, Andrés García-Silva, and
Christian Bizer. 2011. Dbpedia spotlight: shedding
light on the web of documents. In Proceedings of
the 7th international conference on semantic systems,
pages 1–8.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki,
Ondřej Čertík, Sergey B Kirpichev, Matthew Rocklin,
AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj
Singh, et al. 2017. Sympy: symbolic computing in
python. PeerJ Computer Science, 3:e103.

Ercan Oztemel and Samet Gursev. 2020. Literature
review of industry 4.0 and related technologies. Jour-
nal of Intelligent Manufacturing, 31(1):127–182.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Behnam Rahdari, Peter Brusilovsky, Khushboo Thaker,
and Jordan Barria-Pineda. 2020. Using knowledge
graph for explainable recommendation of external
content in electronic textbooks. In iTextbooks@
AIED.

KP Rajurkar, H Hadidi, J Pariti, and GC Reddy. 2017.
Review of sustainability issues in non-traditional ma-
chining processes. Procedia Manufacturing, 7:714–
720.

Daniel Ringler and Heiko Paulheim. 2017. One knowl-
edge graph to rule them all? analyzing the differences
between dbpedia, yago, wikidata & co. In Joint Ger-
man/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), pages 366–372. Springer.

Martien A Cohen Stuart, Wilhelm TS Huck, Jan Genzer,
Marcus Müller, Christopher Ober, Manfred Stamm,
Gleb B Sukhorukov, Igal Szleifer, Vladimir V
Tsukruk, Marek Urban, et al. 2010. Emerging ap-
plications of stimuli-responsive polymer materials.
Nature materials, 9(2):101–113.

Tao Sun and Qi Wang. 2019. Multi-source fault detec-
tion and diagnosis based on multi-level knowledge
graph and bayesian theory reasoning (s). In SEKE,
pages 177–232.

Baicun Wang, S Jack Hu, Lei Sun, and Theodor Frei-
heit. 2020a. Intelligent welding system technologies:
State-of-the-art review and perspectives. Journal of
Manufacturing Systems, 56:373–391.

Qingyun Wang, Manling Li, Xuan Wang, Nikolaus
Parulian, Guangxing Han, Jiawei Ma, Jingxuan Tu,
Ying Lin, Haoran Zhang, Weili Liu, et al. 2020b.
Covid-19 literature knowledge graph construction
and drug repurposing report generation. arXiv
preprint arXiv:2007.00576.

XiuQing Wang and ShunKun Yang. 2019. A tutorial
and survey on fault knowledge graph. Cyberspace
Data and Intelligence, and Cyber-Living, Syndrome,
and Health, pages 256–271.

Kaufui V Wong and Aldo Hernandez. 2012. A review
of additive manufacturing. International scholarly
research notices, 2012.

Hehua Yan, Jun Yang, and Jiafu Wan. 2020. Know-
ime: a system to construct a knowledge graph for
intelligent manufacturing equipment. Ieee Access,
8:41805–41813.

7

Qian Yan, Hanhua Dong, Jin Su, Jianhua Han, Bo Song,
Qingsong Wei, and Yusheng Shi. 2018. A review
of 3d printing technology for medical applications.
Engineering, 4(5):729–742.

Yan Yang, Tianliang Hu, Yingxin Ye, Wenbin Gao,
and Chengrui Zhang. 2019. A knowledge genera-
tion mechanism of machining process planning using
cloud technology. Journal of Ambient Intelligence
and Humanized Computing, 10(3):1081–1092.

Yingxin Ye, Tianliang Hu, Chengrui Zhang, and We-
ichao Luo. 2018. Design and development of a cnc
machining process knowledge base using cloud tech-
nology. The International Journal of Advanced Man-
ufacturing Technology, 94(9):3413–3425.

Tianyu Zhao, Yan Huang, Songfan Yang, Yuyu Luo,
Jianhua Feng, Yong Wang, Haitao Yuan, Kang Pan,
Kaiyu Li, Haoda Li, et al. 2019. Mathgraph: A
knowledge graph for automatically solving mathe-
matical exercises. In International conference on
database systems for advanced applications, pages
760–776. Springer.

Bin Zhou, Jinsong Bao, Jie Li, Yuqian Lu, Tianyuan Liu,
and Qiwan Zhang. 2021. A novel knowledge graph-
based optimization approach for resource allocation
in discrete manufacturing workshops. Robotics and
Computer-Integrated Manufacturing, 71:102160.

Zude Zhou, Shane Xie, and Dejun Chen. 2012. Funda-
mentals of digital manufacturing science. Springer.

Zicheng Zhu, Vimal G Dhokia, Aydin Nassehi, and
Stephen T Newman. 2013. A review of hybrid man-
ufacturing processes–state of the art and future per-
spectives. International Journal of Computer Inte-
grated Manufacturing, 26(7):596–615.

8

Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI), pages 9 - 16
July 14, 2022 ©2022 Association for Computational Linguistics

Modeling Compositionality with Dependency Graph for Dialogue
Generation

Xiaofeng Chen1, Yirong Chen1, Xiaofen Xing1∗, Xiangmin Xu1, Wenjing Han1, Qianfeng Tie1

1UBTECH-SCUT Joint Research Lab, School of Electronic and Information Engineering,
South China University of Technology, China

{eexiaofengchen, eeyirongchen, eewenjinghh, 202120112795}@mail.scut.edu.cn
{xmxu, xfxing}@scut.edu.cn

Abstract

Because of the compositionality of natural lan-
guage, syntactic structure which contains the
information about the relationship between
words is a key factor for semantic understand-
ing. However, the widely adopted Transformer
is hard to learn the syntactic structure effec-
tively in dialogue generation tasks. To explic-
itly model the compositionaity of language in
Transformer Block, we restrict the informa-
tion flow between words by constructing di-
rected dependency graph and propose Depen-
dency Relation Attention (DRA). Experimental
results demonstrate that DRA can further im-
prove the performance of state-of-the-art mod-
els for dialogue generation.

1 Introduction

In natural language, complex semantics are often
expressed by combining words with certain rules.
For example, "room" can express higher-level se-
mantics by fusing the information of "a" and "ho-
tel", and the meaning of "reserve" will be clearer
after fusing the information of "room". Prior works
have achieved great success in NLP tasks by lever-
aging syntactic structure knowledge, such as se-
mantic relatedness (Tai et al., 2015; Gupta and
Zhang, 2018), sentiment analysis (Ma et al., 2015;
Sun et al., 2019), relation extraction (Tian et al.,
2021), and named entity recognition (Aguilar and
Solorio, 2019; Xu et al., 2021).

Due to the strong ability to capture long-term de-
pendencies (Tang et al., 2018), many recent works
have adopted the Transformer block (Vaswani et al.,
2017) to extract context features in dialogue gener-
ation tasks (Su et al., 2019; Liu et al., 2020; Song
et al., 2021). However, it is hard for Transformer
block to implicitly learn the compositionality of lan-
guage in the training process of dialog generation,
since it simply uses position embeddings to repre-
sent the relationships between words, and it learns

∗ Corresponding author: xfxing@scut.edu.cn

Figure 1: An example of dependency graph.

the local position information that can only be ef-
fective in masked language modeling (Wang and
Chen, 2020). Besides, the computation of attention
weights on unrelated word pairs in Transformer
block is redundant and decreases performance.

To obtain better distributed representations of
context in dialogue generation tasks, we propose
Dependency Relation Attention to model the re-
lationship between words as an alternative to po-
sition embeddings. Specifically, we incorporate
dependency relation knowledge that contains syn-
tactic structure information into the Transformer
block. As shown in Figure 1, we use the depen-
dency parser (Chen and Manning, 2014) in the
StanfordCoreNLP toolkit (Manning et al., 2014) to
build dependency graphs of utterances. Then, the
Dependency Relation Mask is generated to avoid
performing attention on words without dependency
relations, and the fusion of information among
words depends on the direction specified by the
dependency graph. Our contributions can be sum-
marized as follows:

• We propose Dependency Relation Attention,
a novel method for expressing relationships
between words as an alternative to position
embeddings.

• We demonstrate that our method can further
improve the performance of Transformer and
DialogBERT (Gu et al., 2021) in dialogue gen-
eration task by conducting experiments on two
datasets.

9

Figure 2: Dependency Relation Mask.

2 Related Works

In the past few years, dependency graph has drawn
attention from many researchers in the field of
NLP. Strubell et al. (2018) propose Syntactically-
informed self-attention and incorporate syntactic
dependency knowledge into a attention head of
specific Transformer block. To make the attention
learned by Transformer more interpretable, Wang
et al. (2019) propose Constituent Attention which
makes each position not attend to the position in dif-
ferent constituents. Ahmad et al. (2021) explicitly
fuse structural information to learn the dependency
relations between words with different syntactic
distances.

In dialogue generation tasks, to improve the qual-
ity of generated responses, previous works focus
on capturing the high-level relationships between
contexts and responses (Xing et al., 2018; Zhang
et al., 2019) or between utterances in context(Gu
et al., 2021). How to effectively model the relation-
ships between words in Transformer has not been
explored. Inspired by TreeLSTM (Tai et al., 2015),
our method aim at modeling the compositional-
ity in language, then the Transformer block does
not need to learn the relationships between words
through position embeddings in the training pro-
cess of dialog generation. The differences between
DRA and others dependency relation-aware atten-
tion mechanisms are: (1) DRA incorporates the
dependency arc directions into Transformer block
to model the relationships between words instead of
position embeddings. (2) The position embeddings
are excluded for the models with DRA applied.

3 Method

In dialogue generation tasks, given a piece of con-
text containing m utterances U = {X1, ..., Xm}
as inputs, where Xi = {xi,1, ..., xi,ni}, i ∈ [1,m]
indicates the i-th utterance containing ni words,

Figure 3: Illustration of applying DRA to standard
Transformer encoder. Dependency Relation Mask is
used to model the semantic relationship between words
instead of position embeddings.

dialogue generation models map it into feature vec-
tors and estimate the generation probability of the
corresponding response Y = {y1, ..., yt}:

p(y1, ..., yt|U) =
t∏

k=1

p(yk|y<k, U) (1)

To obtain a better representations of context, we
incorporate dependency relation knowledge into
the Transformer block, which is widely used in
recent works.

3.1 Dependency Relation Mask
We use the StanfordCoreNLP toolkit1 to parse the
dependency relations and obtain a set of triples
Ri,j = (ri,j , gi,j , di,j), j ∈ [1, ni] for each utter-
ance, where ri,j , gi,j , and di,j represent the name
of the relation, the index of the governor, and the
index of the dependent (the j-th word in the i-th
utterance) respectively. For the utterance in Figure
1, here is the triples R returned from the parser:
•(nsubj, 3, 1) •(aux, 3, 2) •(ROOT, 0, 3)

•(mark, 5, 4) •(xcomp, 3, 5) •(det, 8, 6)
•(compound, 8, 7) •(obj, 5, 8) •(punct, 3, 9)
The indexes in dependency relation triples E =
{(g1, d1), ..., (gn, dn)} are used to generate the De-
pendency Relation Mask M ∈ R(n+1)×(n+1). Fig-
ure 2 shows an example:

Mu,v =

0, u = 0 or u = v

0, (u, v) ∈ E

−∞, otherwise

(2)

3.2 Dependency Relation Attention
The main idea of our proposed method is to use
Dependency Relation Attention (DRA) to model

1https://nlp.stanford.edu/software/
nndep.html

10

the compositionality, instead of letting models
implicitly learn the relationships between words
through position embeddings. Figure 3 is an il-
lustration of applying Dependency Relation Atten-
tion to a standard Transformer encoder. Specifi-
cally, for the l-th layer of the Transformer block in
the encoding process, the hidden states of words
W l ∈ Rn×dhidden are linearly mapped to three
subspaces in different heads of multi-head atten-
tion network: Ql ∈ Rn×dhead , K l ∈ Rn×dhead

and V l ∈ Rn×dhead . The attention score matrix
Sl ∈ Rn×n, which indicates the strength of rela-
tionships between words, is calculated by:

Sl =
QlK lT

√
dhead

(3)

Then, the attention scores of unrelated word pairs
are masked:

Sl
masked = Sl +M (4)

The hidden states of words W are updated based
on the dependency relations:

Al
masked = softmax(Sl

masked)

Ol,i = Al,i
maskedV

l,i

Ol = concat(Ol,1, ..., Ol,nhead)

W l+1 = W l +Ol

(5)

4 Experiments

4.1 Settings

4.1.1 Datasets
In our experiment, we use DailyDialog (Li et al.,
2017) and EmpatheticDialogues (Rashkin et al.,
2019) to verify the effectiveness of our method.
They contains 11.1K, 1K, 1K and 19.5K, 2.7K,
2.5K dialogues for training, validation, testing, re-
spectively. To accommodate the granularity of the
word segmentation of the dependency parser and
ensure fairness, StanfordCoreNLP toolkit is used
to tokenize utterances for all models. Besides, we
report the results of methods with subword tok-
enization in appendix. Words with word frequency
less than 3 are replaced by "[UNK]". For each sam-
ple, dialogue turn and utterance length are limited
to 4 and 50, respectively.

4.1.2 Compared Methods
We apply DRA to Transformer (Vaswani et al.,
2017) and DialogBERT (Gu et al., 2021) and posi-
tion embeddings are excluded. The performance of

models before and after the modification and the
following methods are compared: ReCoSa (Zhang
et al., 2019), LISA (Strubell et al., 2018), Tree-
Transformer (Wang et al., 2019) and GATE (Ah-
mad et al., 2021). Position embeddings are in-
cluded for all baseline models.

We set the hidden sizes of all models to 768.
The number of Transformer layers is set to 3. Each
Transformer block contains 16 attention heads. The
word embedding layers of all models are initialized
with GloVe 300-dimensional word embeddings
(Pennington et al., 2014). The batch size is set to 40.
All models are trained by the AdamW (Loshchilov
and Hutter, 2018) optimizer with weight decay of
0.01. We linearly warm up the learning rate from 0
to 5e-4 at the first 3000 steps. Afterward, the learn-
ing rate decreases to 0 linearly during training.

4.1.3 Evaluation Metrics
Automatic evaluation. PPL, BLEU (Papineni
et al., 2002) and Distinct (Li et al., 2016) are em-
ployed to reflect the degree of fluency, relevance
and diversity of generated responses respectively.
They are widely used in dialog generation tasks
(Song et al., 2020; Liang et al., 2021).
Human evaluation. We randomly select 100 con-
texts from the DailyDialog test set and generate
responses with models trained on DailyDialog.
Based on grammatical correctness and contextual
coherence, three annotators are asked to score the
generated responses independently with the follow-
ing grading scale: "+0" (response is not fluent),
"+1" (response is fluent but irrelevant), and "+2"
(response is fluent and relevant).

4.2 Experimental Results

Table 1 gives the automatic evaluation results on
DailyDialog and EmpatheticDialogues validation
set. For both datasets, Transformer+DRA and Di-
alogBERT+DRA achieved the best performance on
PPL and Dist-2 respectively. Transformer+DRA
achieved comparable BLEU-2 scores in contrast to
DialogBERT+DRA. It is worth noting that DRA
improved the performance of Transformer and Di-
alogBERT on all automatic metrics, which indi-
cates that our method can help these two mod-
els generate more fluent, relevant, and diverse re-
sponses. We also study the computational effi-
ciency and the impact of parsing errors, the results
are shown in appendix.

The results of human evaluation are shown in

11

Model
DailyDialog EmpatheticDialogues

PPL BLEU-2 Dist-2 PPL BLEU-2 Dist-2
ReCoSa 19.846 20.538 16.611 34.450 19.062 7.619

LISA 18.378 19.002 17.011 32.467 19.169 6.974
TreeTransformer 18.155 20.035 17.847 31.862 19.755 7.870
GATE (δ = 1) 18.405 19.142 17.742 32.273 18.640 7.452
Transformer 18.278 19.519 17.381 32.329 18.553 7.499

Transformer+DRA 17.628 21.140 18.396 31.604 19.966 8.203
DialogBERT 20.056 18.069 15.562 35.643 17.199 5.064

DialogBERT+DRA 17.878 21.786 21.283 32.785 19.739 9.601

Table 1: Automatic evaluation results on DailyDialog and EmpatheticDialogues validation set.

(a) Standard Transformer. (b) Transformer+DRA.

Figure 4: The average attention weights of the last layer of Transformer encoder in different methods.

Model +2 +1 +0 Avg.
ReCoSa 29.7 52.7 17.7 1.12

LISA 35.3 51.7 13.0 1.22
TreeTransformer 32.3 55.3 12.3 1.20
GATE (δ = 1) 32.7 55.0 12.3 1.20
Transformer 33.3 54.3 12.3 1.21

Transformer+DRA 47.0 39.0 14.0 1.33
DialogBERT 32.3 59.3 8.3 1.24

DialogBERT+DRA 50.0 43.3 6.7 1.43

Table 2: Human evaluation results. (in %)

Table 2. The Fleiss’ kappa score (Fleiss, 1971) for
assessing agreement among annotators was 0.563,
which can be interpreted as “moderate agreement”.
This shows that DRA can enhance the semantic
understanding of Transformer block and help mod-
els generate more relevant responses, especially for
the hierarchical Transformer encoder architecture.

4.3 Discussions

To further explore why our method can improve the
performance of the Transformer encoder, we visu-
alized the attention weights of the last layer of the
Transformer encoder in different methods. Taking

the utterance in Figure 1 as input, Figure 4 shows
the mean value of attention weights of 16 heads in
standard Transformer and Transformer+DRA. We
can see that, in standard Transformer, the Trans-
former block assigns very similar weights to each
part of the utterance when updating the hidden
state of different words. This means that standard
Transformer encoder can find the key parts of the
utterance, but does not learn the relationships be-
tween words. In Transformer+DRA, for each word,
attention weights are assigned to appropriate parts.
For example, when updating the hidden state of
"reserve", the Transformer block pays more atten-
tion to the "room" that has merged the information
of "a" and "hotel". In other words, DRA makes it
easier for Transformer encoder to understand the
relationships between words and generate more
meaningful distributed representations.

5 Conclusion and Future Work

In this paper, we propose Dependency Relation At-
tention (DRA) to model the relationships between
words instead of position embeddings in the Trans-
former encoder. Experimental results show that
our method can further improve the performance

12

of models that use Transformer block to obtain the
distributed representations of context in dialogue
generation task. In the future, we will study the ef-
fect of the specific domains that parsers are usually
trained in, as well as the possibility of improving
the performance of pretrained language models
with DRA.

6 Acknowledgement

The work is supported in part by the National Nat-
ural Science Foundation of China under Grant
U1801262; in part by the Key-Area Research
and Development Program of Guangdong under
Grant 2019B010154003; in part by the Science
and Technology Project of Guangzhou under Grant
202103010002; and in part by the Guangdong
Provincial Key Laboratory of Human Digital Twin
under Grant 2022B1212010004.

References
Gustavo Aguilar and Thamar Solorio. 2019.

Dependency-aware named entity recognition
with relative and global attentions. arXiv e-prints,
pages arXiv–1909.

Wasi Uddin Ahmad, Nanyun Peng, and Kai-Wei Chang.
2021. Gate: graph attention transformer encoder
for cross-lingual relation and event extraction. In
Proceedings of the Thirty-Fifth AAAI Conference on
Artificial Intelligence, volume 4, pages 74–75.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP), pages 740–750.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Xiaodong Gu, Kang Min Yoo, and Jung-Woo Ha. 2021.
Dialogbert: Discourse-aware response generation via
learning to recover and rank utterances. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 12911–12919.

Amulya Gupta and Zhu Zhang. 2018. To attend or
not to attend: A case study on syntactic structures
for semantic relatedness. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2116–
2125.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep re-
inforcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-

ods in Natural Language Processing, pages 1192–
1202, Austin, Texas. Association for Computational
Linguistics.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 986–995.

Yunlong Liang, Fandong Meng, Ying Zhang, Yufeng
Chen, Jinan Xu, and Jie Zhou. 2021. Infusing multi-
source knowledge with heterogeneous graph neural
network for emotional conversation generation. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13343–13352.

Qian Liu, Yihong Chen, Bei Chen, Jian-Guang Lou,
Zixuan Chen, Bin Zhou, and Dongmei Zhang. 2020.
You impress me: Dialogue generation via mutual
persona perception. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 1417–1427.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight
decay regularization in adam.

Mingbo Ma, Liang Huang, Bowen Zhou, and Bing Xi-
ang. 2015. Dependency-based convolutional neural
networks for sentence embedding. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 174–179.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5370–5381.

13

Haoyu Song, Yan Wang, Kaiyan Zhang, Wei-Nan
Zhang, and Ting Liu. 2021. BoB: BERT over BERT
for training persona-based dialogue models from lim-
ited personalized data. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 167–177, Online. Association
for Computational Linguistics.

Haoyu Song, Yan Wang, Weinan Zhang, Xiaojiang Liu,
and Ting Liu. 2020. Generate, delete and rewrite: A
three-stage framework for improving persona consis-
tency of dialogue generation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5821–5831.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5027–5038.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Pengwei
Hu, Cheng Niu, and Jie Zhou. 2019. Improving
multi-turn dialogue modelling with utterance rewriter.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 22–
31.

Kai Sun, Richong Zhang, Samuel Mensah, Yongyi Mao,
and Xudong Liu. 2019. Aspect-level sentiment analy-
sis via convolution over dependency tree. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5679–5688, Hong
Kong, China. Association for Computational Linguis-
tics.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1556–
1566.

Gongbo Tang, Mathias Müller, Annette Rios Gonza-
les, and Rico Sennrich. 2018. Why self-attention?
a targeted evaluation of neural machine translation
architectures. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 4263–4272.

Yuanhe Tian, Guimin Chen, Yan Song, and Xiang Wan.
2021. Dependency-driven relation extraction with
attentive graph convolutional networks. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4458–4471, Online.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1061–1070.

Yu-An Wang and Yun-Nung Chen. 2020. What do
position embeddings learn? an empirical study of
pre-trained language model positional encoding. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6840–6849.

Chen Xing, Yu Wu, Wei Wu, Yalou Huang, and Ming
Zhou. 2018. Hierarchical recurrent attention network
for response generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Lu Xu, Zhanming Jie, Wei Lu, and Lidong Bing. 2021.
Better feature integration for named entity recogni-
tion. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 3457–3469.

Hainan Zhang, Yanyan Lan, Liang Pang, Jiafeng Guo,
and Xueqi Cheng. 2019. ReCoSa: Detecting the
relevant contexts with self-attention for multi-turn
dialogue generation. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3721–3730, Florence, Italy. Asso-
ciation for Computational Linguistics.

14

A Additional Analysis

Extra experiments were conducted to further anal-
yse models that applied with DRA, position em-
bedding (PE.), or subword-level tokenization (ST.),
since DRA and PE. can be applied to transformer
block at the same time. The result is shown in Table
3 (Trans., Dial., B-2 and D-2 denote Transformer,
DialogBERT, BLEU-2 and Dist-2, respectively).
ST. can not improve the fluency (PPL) and diversity
(D-2) of generated responses although it can pro-
mote higher BLEU score. Besides, the models with
DRA can not handle the information of position
embeddings well, we need to design some methods
that can model the information of word order in
dependency graph in the future.

Model
DailyDialog

PPL B-2 D-2
Transformer 18.28 19.52 17.38
- Trans.+ST. 18.59 22.15 16.64
- Trans.+DRA 17.63 21.14 18.40
- Trans.+DRA+PE. 18.13 19.66 18.08
DialogBERT 20.06 18.07 15.56
- Dial.+ST. 20.07 19.51 15.72
- Dial.+DRA 17.88 21.79 21.28
- Dial.+DRA+PE. 20.32 17.86 15.77

Table 3: Result of extra comparison.

B Comparison of Running Time

Table 4 shows the average time occupied by differ-
ent models to generating response for each dialogue
in DailyDialog (Pre. denote the process of word
tokenization and dependency relation parsing of
the raw text, Gen. denote the process of inference).
We can see that the dependency parsing process
does not take much time.

Model Pre. Gen. Total
Transformer 0.005s 0.111s 0.116s

Transformer+DRA 0.028s 0.115s 0.143s
DialogBERT 0.005s 0.123s 0.128s

DialogBERT+DRA 0.030s 0.118s 0.148s

Table 4: Comparison of running time.

C Results of Parsing Errors.

As the accuracy of dependency parsing will affect
the downstream task performance, it is worthwhile

(a) PPL

(b) BLEU-2

(c) Dist-2

Figure 5: The result of parsing errors.

to investigate the result of the errors that result from
syntactic parsing. We simulate parsing errors by
manually changing the parsing results, specifically,
the attention weights with dependency relations
will be masked and those without dependency rela-
tions will not. Figure 5 show how the parsing errors
affect PPL, BLEU-2, Dist-2 of models on Daily-
Dialog validation set. The horizontal axis in the
figure represents the proportion of parsing errors. It
shows that our proposed method has certain robust-
ness, especially for the hierarchical Transformer
encoder architecture.

D Samples of Generated Dialogues

Table 5 and 6 provide some examples of the gener-
ated responses. The visual attention weights of dif-
ferent methods are presented in Figure 6 and 7. The
models with DRA will focus on the relevant words
when updating the hidden state of each word. They
demonstrates that Dependency Relation Attention
can help Transformer and DialogBERT generate
better responses.

15

Example 1
Speaker1: Hello, Miao Li, where are you going?
Speaker2: Hello, I am going to the store to buy some fruit.

Gold Resp: Oh, would you do me a favor?
Transformer: Oh, I’m afraid I’m going to take the train station.

Transformer+DRA: What kind of fruit do you like?
DialogBERT: Would you like some dessert?

DialogBERT+DRA: What are you going to buy?

Table 5: Example responses from different models.

(a) Standard Transformer. (b) Transformer+DRA.

Figure 6: Attention weights visualization of example 1

Example 2
Speaker1: My niece is super talented lately.
Speaker2: What is her best talent?
Speaker1: Art, she was accepted into a special program for high school.

Gold Resp: Does she draw or paint? How many students are in this program?
Transformer: Wow, that is a pretty cool name.

Transformer+DRA: Oh wow, that is impressive.
DialogBERT: That’s great. What kind of job?

DialogBERT+DRA: Wow, that is a big accomplishment.

Table 6: Example responses from different models.

(a) Standard Transformer. (b) Transformer+DRA.

Figure 7: Attention weights visualization of example 2

16

Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI), pages 17 - 25
July 14, 2022 ©2022 Association for Computational Linguistics

Strategies to Improve Few-shot Learning for Intent Classification and
Slot-Filling

Samyadeep Basu*, Karine lp Kiun Chong*, Amr Sharaf*, Alex Fischer, Vishal Rohra,
Michael Amoake, Hazem El-Hammamy, Ehi Nosakhare, Vijay Ramani, Benjamin Han

{sbasu, kaipkiun, amrsharaf, alex.fischer, virohra, miamoako, haelhamm,
ehnosakh, vijayram, diha}@microsoft.com

Microsoft AI

Abstract

Intent classification (IC) and slot filling (SF)
are two fundamental tasks in modern Natural
Language Understanding (NLU) systems. Col-
lecting and annotating large amounts of data
to train deep learning models for such sys-
tems are not scalable. This problem can be
addressed by learning from few examples us-
ing fast supervised meta-learning techniques
such as prototypical networks. In this work,
we systematically investigate how contrastive
learning and data augmentation methods can
benefit these existing meta-learning pipelines
for jointly modelled IC/SF tasks. Through
extensive experiments across standard IC/SF
benchmarks (SNIPS and ATIS), we show that
our proposed approaches outperform standard
meta-learning methods: contrastive losses as
a regularizer in conjunction with prototypical
networks consistently outperform the existing
state-of-the-art for both IC and SF tasks, while
data augmentation strategies primarily improve
few-shot IC by a significant margin.

1 Introduction

NLU specific intent classification and slot-filling
models often need to learn from only a few contex-
tual examples given by the end user in industrial
model deployment scenarios. Such models are of-
ten trained using meta-learning, a competitive few-
shot learning strategy to learn from only a few ex-
amples. In this paper, we systematically dissect the
existing meta-learning pipelines for jointly mod-
elled few-shot Intent Classification (IC) and Slot
Filling (SF) and identify practical training strate-
gies to improve their performance by a significant
margin. Precisely, we investigate how different
data augmentation and contrastive learning strate-
gies improve IC/SF performance, and show that
our training approach outperforms state-of-the-art
models for few-shot IC/SF. Given the user utter-
ance: “Book me a table for 6 at Lebanese Taverna”,
an IC model identifies “Restaurant Booking” as

the intent of interest, and an SF model identifies
the slot types and values: Party_Size:"6", Name:
"Lebanese Taverna". These functionalities are typi-
cally driven by powerful deep learning models that
rely on huge amounts of domain-specific training
data. As such labeled data is rarely available, build-
ing models that can learn from only a few examples
per class is inevitable.

Few-shot learning techniques (Krone et al., 2020;
Ren and Xue, 2020; Geng et al., 2019, 2020; Liu
et al., 2020b) have been recently proposed to ad-
dress the problem of generalizing to unseen classes
in IC/SF when only a few training examples per
class are available. Krone et al. (2020) utilized
meta-learning approaches such as prototypical net-
works (Snell et al., 2017) and MAML (Finn et al.,
2017) to jointly model IC/SF. They showed that
prototypical networks outperform other prevalent
meta-learning techniques such as MAML as well
as fine-tuning. Moreover, one primary benefit of
prototypical networks is that it is computationally
cheap during meta-testing, thus making it a good
candidate for industrial few-shot learning systems.
In this paper, we extend this powerful supervised
meta-learning technique with unsupervised con-
trastive learning and data augmentation.

Rajendran et al. (2020) showed that meta-
learners can be particular prone to overfitting which
can be partially alleviated by data augmentation
(Liu et al., 2020a). Data augmentation strategies
in NLP have been shown to boost performance in
general text classification settings (Wei and Zou,
2019b; Xie et al., 2019; Lee et al., 2021), however,
there exists very little work on how data augmen-
tation can be effectively used in the meta-learning
pipeline specific to NLU tasks. To address this
question, we first use a data augmentation strategy
slot-list values for IC/SF tasks which gen-
erates synthetic utterances using dictionary-based
slot-values. We note that similar dictionary based
augmentation has been previously used in (Li et al.,

17

2021), but in the context of dialogue state tracking,
orthogonal to our use-case. Additionally, we in-
vestigate how state-of-the-art augmentation strate-
gies such as backtranslation (Xie et al., 2019) and
perturbation-based augmentations such as EDA –
Easy Data Augmentation (Wei and Zou, 2019b) –
can be used alongside prototypical networks.

We further investigate how contrastive learn-
ing (Chen et al., 2020) can be used as a regular-
izer during the meta-training stage to create better
generalizable meta-learners. Contrastive learning
is useful in creating improved prototypes as they
pull similar representations together while pushing
apart dissimilar ones. Through extensive experi-
ments across SNIPS and ATIS, we show that meta-
training with contrastive losses as a regularizer im-
proves IC/SF performance for unseen classes with
few examples. Our contributions include:

• We demonstrate the effectiveness of con-
trastive losses as a regularizer in meta-
learning, by empirically showing how it im-
proves few-shot IC/SF tasks across bench-
mark datasets.

• We illustrate the positive impact of data aug-
mentation techniques such as slot-list
values, backtranslation and EDA in the
meta-learning pipeline.

2 Proposed Approaches

We follow the few-shot learning setup for IC/SF
described in (Krone et al., 2020) with a few modifi-
cations. Instead of using a frozen backbone such
as BERT or ELMo with a BiLSTM head, we use
a more powerful pre-trained RoBERTa encoder.
Additionally, in contrast to (Krone et al., 2020),
we update our encoder during the meta-training
stage. For a given utterance xi = {xi1, xi2, ..., xin}
with n tokens, we first use the RoBERTa model
denoted by fϕ to encode the utterance resulting
in hi = {hi<cls>, h

i
1, ..., h

i
n}. We use the <cls>

token embedding to denote the utterance level em-
bedding which we use for intent classification. For
slot filling, we use each of the token embeddings
{hij}nj=1 of the ith utterance. Given a support set S,
assuming Sl consists of utterances belonging to the
intent class cl and Sa consists of tokens from the
slot class ca, we first compute the class prototypes
for intents (cl) and slots (ca):

cl =
1

|Sl|
∑

xi∈Sl

fϕ(x
i) (1)

ca =
1

|Sa|
∑

xi
j∈Sa

fϕ(x
i
j) ∀xi ∈ S (2)

Given a query example z and a distance func-
tion d, a distribution over the different classes is
computed using the softmax of the distances to the
different class prototypes. Specifically we denote
the intent specific log likelihood loss as:

LIC(ϕ, z) = − log{ exp(−d(fϕ(z), cl))∑
l′ exp(−d(fϕ(z), cl′))

}
(3)

We use euclidean distance as the standard dis-
tance function. Similarly, we define the slot specific
loss as LSlots(ϕ, z). For a given query set Q, the
cumulative loss for intents and slots is the log like-
lihood averaged across all the query samples and
is denoted by LTotal(ϕ):

LTotal(ϕ) =
∑

z∈Q

1

|Q|{LIC(ϕ, z) + LSlots(ϕ, z)}

(4)2.1 Contrastive Learning
The general idea of contrastive learning (Chen et al.,
2020) is to pull together the representations of simi-
lar samples while pushing apart the representations
of dissimilar samples in an embedding space. In
our work, we specifically incorporate the super-
vised contrastive loss as an added regularizer with
the prototypical loss computation in Eq. (4). In
particular we identify places in the meta-training
pipeline where the incorporation of the contrastive
loss is most beneficial for good generalization to
few-shot classes. We devise two types of con-
trastive losses for the IC/SF tasks: (a) contrastive
loss for intents LcontrastiveIC(ϕ) where the <cls>
token embedding is used in the loss; (b) contrastive
loss for slots LcontrastiveSF (ϕ) where the individ-
ual token embeddings are used in the loss. The
regularized prototypical loss is the following:

LTotal(ϕ) =
∑

z∈Q

1

|Q|{LIC(ϕ, z)+LSlots(ϕ, z)}

+ λ1LcontrastiveIC(ϕ) + λ2LcontrastiveSF (ϕ)
(5)

We provide more details about the two contrastive
losses in the Appendix section.

2.2 Data Augmentation for Few-shot IC/SF
Prior works in computer vision (Liu et al., 2020a;
Ni et al., 2020) have shown that data augmentation

18

Level
SNIPS

(Kmax=20)
ATIS

(Kmax=20)
SNIPS

(Kmax=100)
ATIS

(Kmax=100)
IC Acc Slot F1 IC Acc Slot F1 IC Acc Slot F1 IC Acc Slot F1

Krone et al. (2020) - 0.877 ± 0.01 0.597 ± 0.017 0.660 ± 0.02 0.340 ± 0.004 0.877 ± 0.01 0.621 ± 0.007 0.719 ± 0.01 0.412 ± 0.02
Baseline (Ours) - 0.887 ± 0.06 0.597 ± 0.04 0.737 ± 0.06 0.74 ± 0.01 0.907 ± 0.05 0.593 ± 0.04 0.80 ± 0.04 0.70± 0.02

CL (IC) Support(m-train) 0.905 ± 0.05 0.594 ± 0.04 0.75 ± 0.07 0.748 ± 0.02 0.912 ± 0.03 0.594 ± 0.04 0.802 ± 0.06 0.70 ± 0.02
CL (IC) Support,Query(m-train) 0.908 ± 0.06 0.596 ± 0.04 0.76 ± 0.04 0.748 ± 0.02 0.93 ± 0.05 0.60 ± 0.03 0.829 ± 0.06 0.703 ± 0.03

CL (IC + SF) Support(m-train) 0.903 ± 0.06 0.60± 0.04 0.757 ± 0.04 0.755 ± 0.02 0.92 ± 0.01 0.60 ± 0.04 0.826 ± 0.05 0.70 ± 0.03
CL (IC + SF) Support,Query(m-train) 0.91 ± 0.04 0.60 ± 0.03 0.75 ± 0.07 0.756 ± 0.02 0.93 ± 0.03 0.60 ± 0.04 0.833 ± 0.05 0.71 ± 0.02

CL (IC + SF), DA (Slot list) Support,Query(m-train) 0.921± 0.037 0.619± 0.037 0.803 ± 0.069 0.748 ± 0.019 0.923± 0.055 0.619± 0.035 0.821± 0.08 0.73± 0.02

Table 1: Few-shot classification accuracy with contrastive learning (CL) for prototypical networks. For CL (IC)
only LcontrastiveIC is used, whereas for CL (IC + SF), both LcontrastiveIC and LcontrastiveSF are used.

is very effective in meta-learning. In this section,
we use various data augmentation strategies to im-
prove the meta-learning pipeline for IC/SF tasks.
Data augmentation for joint IC/SF tasks in NLU
is particularly challenging as the augmentation is
primarily possible at the level of intents. For in-
tent level data augmentation, we use state-of-the-
art techniques such as backtranslation (Xie et al.,
2019) and EDA (Wei and Zou, 2019b) along with
prototypical networks. We also introduce a novel
data augmentation technique called slot-list
values which effectively leverages the structure
of joint IC/SF tasks. In particular, we investigate
the effectiveness of these data augmentation tech-
niques in the meta-learning pipeline at different
levels such as: (a) support at meta-training; (b)
support + query at meta-training; (c) support at
meta-testing; (d) combination of those. We provide
details about these augmentation methods below.

2.2.1 Slot-List Values Augmentation

In IC/SF datasets, certain slot types often can take
on values specified in a finite list. For example,
in the SNIPS dataset the slot type facility can take
on values from the list ["smoking room", "spa",
"indoor", "outdoor", "pool", "internet", "parking",
"wifi"] . Specific to the discrete slot filling task,
(Shah et al., 2019) used such values to learn an ad-
ditional attention module for improving SF. Such
lists can be created from the training dataset and
be used for data augmentation. We leverage such
lists to create synthetic utterances by replacing the
values of slot types in a given utterance with other
values from the list: e.g. given an utterance “Book
a table at a pool bar”, we synthesize another utter-
ance “Book a table at a indoor bar”.

2.2.2 Augmentation by Backtranslation

Backtranslation is a technique of translating an
utterance into an intermediate language and back
to its original language using a neural machine
translation model. Previous works (Edunov et al.,
2018; Yu et al., 2018; Sennrich et al., 2015) showed

that backtranslation is extremely effective as a data
augmentation technique for NLP applications. In
our paper in particular, we use a pre-trained en-es
NMT model (Junczys-Dowmunt et al., 2018) for
generating the augmented utterances. To ensure
that the generated utterances are diverse, we follow
the procedure in (Xie et al., 2019) in which we
employ restricted sampling from the model output
probability distribution instead of beam-search.

2.2.3 EDA Data Augmentation
Adding small perturbations to the training data
via random insertion, deletion, swapping and syn-
onym replacement is one simple technique to gen-
erate synthetic data for data augmentation. Pre-
vious work by (Wei and Zou, 2019a) showed
that EDA achieves state-of-the-art results on text-
classification tasks. In our work, we use EDA to
generate synthetic data to perform data augmenta-
tion at different stages of meta-learning.

3 Experiments
Datasets: We use two well-known IC/SF bench-
marks: SNIPS (Coucke et al., 2018) and ATIS
(Hemphill et al., 1990). SNIPS is a more chal-
lenging dataset as it contains intents from diverse
domains whereas the ATIS dataset contains intents
from only the Airline domain.

Episode Construction: We follow the standard
episode construction technique described in (Krone
et al., 2020; Triantafillou et al., 2020) where the
number of classes and the shots per class in each
episode are sampled dynamically.

Few-shot Splits: For the SNIPS dataset, we
use 4 intent classes for meta-training and 3 in-
tent classes for meta-testing. Similar to (Krone
et al., 2020), we do not form a development split
for SNIPS as there are only 7 intent classes and
the episode construction process requires at least
3 classes in each split. For the ATIS dataset, we
first select intent classes with more than 15 exam-
ples, then use 5 intent classes for meta-training and
7 intent classes for meta-testing. The rest of the

19

Level SNIPS(Kmax=20) ATIS (Kmax=20) SNIPS (Kmax=100) ATIS(Kmax=100)
IC Acc IC Acc IC Acc IC Acc

(Krone et al., 2020) - 0.877 ± 0.01 0.660 ± 0.02 0.877 ± 0.01 0.719 ± 0.01
Baseline (Ours) - 0.887 ± 0.06 0.737 ± 0.06 0.907 ± 0.05 0.80 ± 0.04
DA (Slot-list) Support(m-train) 0.898 ± 0.061 0.735 ± 0.052 0.916 ± 0.055 0.810 ± 0.052
DA (Slot-list) Support,Query(m-train) 0.919 ± 0.062 0.800 ± 0.054 0.917 ± 0.051 0.806 ± 0.066
DA (Slot-list) Support(m-train, m-test) 0.905± 0.062 0.772 ± 0.044 0.922± 0.051 0.818± 0.056
DA (Slot-list) Support(m-test) 0.926 ± 0.038 0.764 ± 0.073 0.931 ± 0.037 0.840± 0.047

DA (Backtranslation) Support(m-train) 0.885 ± 0.03 0.77 ± 0.06 0.928 ± 0.029 0.79 ± 0.06
DA (Backtranslation) Support(m-train, m-test) 0.881 ± 0.03 0.79 ± 0.05 0.931 ± 0.030 0.795 ± 0.06
DA (Backtranslation) Support(m-test) 0.895 ± 0.036 0.71 ± 0.06 0.899 ± 0.06 0.77 ± 0.14

DA (EDA) Support(m-train) 0.893 ± 0.062 0.787 ± 0.07 0.911 ± 0.04 0.805 ± 0.08
DA (EDA) Support(m-train,m-test) 0.893 ± 0.047 0.761 ± 0.08 0.915 ± 0.04 0.808 ± 0.10
DA (EDA) Support(m-test) 0.892 ± 0.047 0.731 ± 0.06 0.915 ± 0.05 0.78 ± 0.059

Table 2: Few-shot IC accuracy with Data Augmentation (DA) for prototypical networks; m-train refers to meta-
training and m-test refers to meta-testing

classes are used as a development split. In (Krone
et al., 2020), the intent classes for each split are
manually chosen. This is not representative of real-
istic situations where the types of few-shot classes
can vary considerably. To address this issue, we
report our experiment results averaged over 5 seeds
where in each run the intent classes for each split
are randomly sampled. In each experiment run, we
evaluate our results for 100 episodes sampled from
the test-split. We refer to our re-implementation of
(Krone et al., 2020) with this strategy as Baseline.

Contrastive Learning Helps IC/SF tasks: Ta-
ble 1 shows the results of experiments adding
contrastive losses as a regularizer to our baseline.
Overall, we observe that across both SNIPS and
ATIS datasets, using contrastive losses as a regu-
larizer predominantly improves IC accuracy, while
marginally improving SF F1 score. In particular,
we notice that using contrastive losses as a reg-
ularizer with both the support and query during
meta-training leads to the best performances.

Impact of Data Augmentation is Dependent
on Stage of Application: Table 2 shows the re-
sults of adding data augmentation to the few-shot
IC tasks. We find that the data augmentation
techniques in general improve the performance of
few-shot IC, depending on the stage in the meta-
learning pipeline at which the data is augmented.
More specifically, for SNIPS we notice up to 4%
and 2% gain in IC accuracy for Kmax = 20
and Kmax = 100 respectively. With EDA, we
find that augmentation during meta-training and
meta-testing together leads to a noteworthy gain
in few-shot IC performances across both SNIPS
and ATIS. In comparison, backtranslation is effec-
tive in improving the few-shot IC performance for
SNIPS, when the shots per class is higher such as
in Kmax = 100. However for ATIS, we observe
a significant gain in IC only for Kmax = 20.

Slot-list Values Augmentation at Meta-Testing

Helps: We find that dictionary based augmentation
techniques such as slot-list values gener-
ally show consistent gain in IC at all stages during
meta-training and shots per class.

Combination of Contrastive Learning and
Data Augmentation Helps IC/SF tasks: We find
that the combination of contrastive losses and data
augmentation via slot-list values outper-
forms models trained independently with only con-
trastive losses or data augmentation. We hypothe-
size that this is due to two independent effects work-
ing together in conjunction: (a) contrastive learning
helps to create improved prototypes whereas (b)
data augmentation helps mitigate meta-overfitting.

For SF, we find that data augmentation leads to
only limited improvements when compared to IC
(see Appendix C). We attribute this to the low shots
per slot class, an artifact of the episodic sampling
procedure (Krone et al., 2020), done per intent class
in the joint IC/SF setting.

4 Conclusion
In this work, we systematically dissect meta-
learning pipelines for few-shot IC/SF tasks and
identify stages during meta-learning where con-
trastive learning and data augmentation can be ef-
fective. Empirically, we found that contrastive
losses are effective regularizers during meta-
training and outperform the current state-of-the-
art few-shot joint IC/SF benchmarks across both
SNIPS and ATIS. Impact of data augmentation in
general is highly dependent on the stage at which it
is applied during meta-learning. Notably, a combi-
nation of contrastive losses and data augmentation
via slot-list values during meta-training
leads to the best performances across both SNIPS
and ATIS. These strategies for improving few-shot
IC/SF tasks create a strong benchmark and open
up possibilities on more stronger modes of meta-
specific augmentation and contrastive learning.

20

References
Ting Chen, Simon Kornblith, Mohammad Norouzi, and

Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. CoRR, abs/1808.09381.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation
approaches for nlp.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages
1126–1135. PMLR.

Mauajama Firdaus, Shobhit Bhatnagar, Asif Ekbal, and
Pushpak Bhattacharyya. 2018. A deep learning based
multi-task ensemble model for intent detection and
slot filling in spoken language understanding. In Neu-
ral Information Processing, pages 647–658, Cham.
Springer International Publishing.

Ruiying Geng, Binhua Li, Yongbin Li, Jian Sun, and
Xiaodan Zhu. 2020. Dynamic memory induction
networks for few-shot text classification. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 1087–1094, On-
line. Association for Computational Linguistics.

Ruiying Geng, Binhua Li, Yongbin Li, Yuxiao Ye, Ping
Jian, and Jian Sun. 2019. Few-shot text classification
with induction network. CoRR, abs/1902.10482.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27,1990.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast

neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116–121,
Melbourne, Australia. Association for Computational
Linguistics.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Super-
vised contrastive learning. CoRR, abs/2004.11362.

Jason Krone, Yi Zhang, and Mona Diab. 2020. Learning
to classify intents and slot labels given a handful of
examples.

Kenton Lee, Kelvin Guu, Luheng He, Tim Dozat, and
Hyung Won Chung. 2021. Neural data augmentation
via example extrapolation.

Shiyang Li, Semih Yavuz, Kazuma Hashimoto, Jia
Li, Tong Niu, Nazneen Rajani, Xifeng Yan, Yingbo
Zhou, and Caiming Xiong. 2021. Coco: Controllable
counterfactuals for evaluating dialogue state trackers.

Jialin Liu, Fei Chao, and Chih-Min Lin. 2020a. Task
augmentation by rotating for meta-learning.

Zihan Liu, Genta Indra Winata, Peng Xu, and Pascale
Fung. 2020b. Coach: A coarse-to-fine approach for
cross-domain slot filling. CoRR, abs/2004.11727.

Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong,
and Tom Goldstein. 2020. Data augmentation for
meta-learning.

Janarthanan Rajendran, Alex Irpan, and Eric Jang. 2020.
Meta-learning requires meta-augmentation.

F. Ren and S. Xue. 2020. Intention detection based
on siamese neural network with triplet loss. IEEE
Access, 8:82242–82254.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation models
with monolingual data. CoRR, abs/1511.06709.

Darsh J. Shah, Raghav Gupta, Amir A. Fayazi, and
Dilek Hakkani-Tür. 2019. Robust zero-shot cross-
domain slot filling with example values. CoRR,
abs/1906.06870.

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.
Prototypical networks for few-shot learning. CoRR,
abs/1703.05175.

Dhanasekar Sundararaman, Vivek Subramanian,
Guoyin Wang, Shijing Si, Dinghan Shen, Dong
Wang, and Lawrence Carin. 2019. Syntax-infused
transformer and BERT models for machine trans-
lation and natural language understanding. CoRR,
abs/1911.06156.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pas-
cal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Man-
zagol, and Hugo Larochelle. 2020. Meta-dataset:
A dataset of datasets for learning to learn from few
examples.

21

Jixuan Wang, Kai Wei, Martin Radfar, Weiwei Zhang,
and Clement Chung. 2020. Encoding syntactic
knowledge in transformer encoder for intent detec-
tion and slot filling.

Jason Wei and Kai Zou. 2019a. Eda: Easy data augmen-
tation techniques for boosting performance on text
classification tasks.

Jason W. Wei and Kai Zou. 2019b. EDA: easy data
augmentation techniques for boosting performance
on text classification tasks. CoRR, abs/1901.11196.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Minh-Thang
Luong, and Quoc V. Le. 2019. Unsupervised data
augmentation. CoRR, abs/1904.12848.

Wenxiu Xie, Dongfa Gao, Ruoyao Ding, and Tianyong
Hao. 2018. A feature-enriched method for user intent
classification by leveraging semantic tag expansion.
In Natural Language Processing and Chinese Com-
puting, pages 224–234, Cham. Springer International
Publishing.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V.
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehension.
CoRR, abs/1804.09541.

Chenwei Zhang, Wei Fan, Nan Du, and Philip S. Yu.
2016. Mining user intentions from medical queries:
A neural network based heterogeneous jointly mod-
eling approach. In Proceedings of the 25th Interna-
tional Conference on World Wide Web, WWW ’16,
page 1373–1384, Republic and Canton of Geneva,
CHE. International World Wide Web Conferences
Steering Committee.

22

A Hyperparameters

For the ATIS dataset, we use the development set
to tune for λ1 and λ2 in Eq. (5). For the SNIPS
dataset, we empirically set both λ1 and λ2 to be
0.06 due to the lack of a development set. In our ex-
periments with the three data augmentation strate-
gies, we generate synthetic utterances to exactly
double the training data size for fair comparison
throughout. Across all the experiments, we meta-
train the models for 50 episodes and use a learning
rate of 5e− 5.

B On Contrastive Learning

In our work, we use two types of contrastive losses
for IC/SF tasks: (a) contrastive loss for intents
LcontrastiveIC(ϕ) where the <cls> token embed-
ding is used in the loss; (b) contrastive loss for slots
LcontrastiveSF (ϕ) where the individual token em-
beddings from the encoder are used in the loss.
In particular, we use the supervised contrastive
loss (Khosla et al., 2020) and leverage the label
information present in the support or support +
query set during meta-training. First we define
the contrastive loss for intents LcontrastiveIC(ϕ):
given a set of utterances with their corresponding
intent labels Sintents = {(xi, yi)mi=1}, assume P (i)
to be a set consisting of examples from Sintents

with same labels as the ith example. Formally
P (i) : {xj : yj = yi ∀j ∈ [1,m] & j ̸= i}. The
contrastive loss for the intents LcontrastiveIC(ϕ) is
defined as the following:

m∑

i=1

− log
{ 1

|P (i)|
∑

z∈P (i)

exp(fϕ(xi)
T fϕ(z))/τ∑m

j=1,j ̸=i exp(fϕ(xi)
T fϕ(xj))/τ

}

(6)

Here fϕ(xi) denotes the <cls> embedding for
the ith utterance. In case of slots, we first obtain
the individual token embeddings in each utterance
xi ∀i ∈ [1,m]. Consider the total number of to-
kens to be N in an episode and their associated em-
beddings’ set to be Sslots = {(hj , y

′
j), ∀j ∈ N},

where y
′
j is the slot label for the jth token. Similar

to the intents, we define the set Q(i) : {hj : y′
j =

y
′
i ∀j ∈ [1, N] & j ̸= i}. Next we define the

contrastive loss for the slots Lslots(ϕ) as:

N∑

i=1

− log
{ 1

|Q(i)|
∑

z∈Q(i)

exp(hTi z)/τ∑N
j=1,j ̸=i exp(h

T
i hj)/τ

}

(7)

C Impact of Data Augmentation for Slot
Filling

Data augmentation for joint IC/SF tasks is challeng-
ing as augmentation is only possible at the level
of intents. Although data augmentation leads to
large improvements in few-shot IC performances,
its impact on SF tasks is limited. From Table 3,
across the different data augmentation methods
such as backtranslation, EDA and slot-list
values, we observe that there is no consistent
improvements in SF performances across our dif-
ferent experiment settings. We hypothesize that
as data augmentation does not provide any direct
signal to the SF task, the improvements are insub-
stantial. To address this issue and provide a more
direct signal to the SF task, we incorporate part-
of-speech (POS) and noun-phrase information of
the different slot values into the joint IC/SF model.
In the next section, we discuss ways to incorpo-
rate these additional syntactic information into the
meta-learning pipeline.

D Beyond Semantic Information

Part-of-speech (POS) and noun-parser information
can provide additional syntactic information about
of an utterance, thus augmenting the semantic in-
formation from the encoded tokens. In particular,
POS tags can help resolve decisions for ambiguous
tokens or words. Previous work (Wang et al., 2020)
has shown that prior information from POS tags
helps in improving IC and SF tasks in the general
supervised many shot setting. In our work, we use
POS tags as an additional source of information
particularly for the few-shot setting. We propose
two primary ways to incorporate POS tags in the
general meta-learning setting: (a) POS tag as an
additional input feature; (b) Explicitly training the
model to predict POS tags via a multi-task loss.

In addition to POS tags, we also augment infor-
mation about noun-phrases as an additional input
feature. Noun chunks or phrases have the poten-
tial to provide strong signals about possible spans
of different slots to the underlying model, thus
improving SF performance. For example, in the
utterance “book me a table for one at blue ribbon
barbecue”(with intent BookRestaurant, and slots:
party_size_number:"one", restaurant_name: "blue
ribbon barbecue"), "blue ribbon barbecue" is iden-
tified as a noun-chunk and the span information

23

Level SNIPS(Kmax=20) ATIS (Kmax=20) SNIPS (Kmax=100) ATIS(Kmax=100)
Slot F1 Slot F1 Slot F1 Slot F1

Baseline (Ours) - 0.599 ± 0.04 0.748 ± 0.01 0.593 ± 0.04 0.703 ± 0.02
DA (Slot-list) Support(m-train) 0.603 ± 0.043 0.738 ± 0.020 0.609 ± 0.047 0.713 ± 0.025
DA (Slot-list) Support,Query(m-train) 0.609 ± 0.043 0.74 ± 0.02 0.609 ± 0.03 0.715 ± 0.02
DA (Slot-list) Support(m-train, m-test) 0.587± 0.045 0.712 ± 0.026 0.595 ± 0.042 0.686± 0.029
DA (Slot-list) Support(m-test) 0.572 ± 0.036 0.697 ± 0.028 0.589 ± 0.042 0.684± 0.02

DA (Backtranslation) Support(m-train) 0.595 ± 0.04 0.742 ± 0.01 0.611 ± 0.036 0.716 ± 0.02
DA (Backtranslation) Support(m-train, m-test) 0.595 ± 0.04 0.742 ± 0.01 0.611 ± 0.03 0.716 ± 0.02
DA(Backtranslation) Support(m-test) 0.598 ± 0.03 0.74 ± 0.01 0.60 ± 0.03 0.72 ± 0.01

DA(EDA) Support(m-train) 0.585 ± 0.032 0.742 ± 0.02 0.596 ± 0.05 0.701 ± 0.03
DA(EDA) Support(m-train,m-test) 0.593 ± 0.033 0.742 ± 0.02 0.594 ± 0.04 0.711 ± 0.005
DA(EDA) Support(m-test) 0.586 ± 0.036 0.74 ± 0.01 0.593 ± 0.037 0.714 ± 0.02

Table 3: Few-shot Slot F1 with Data Augmentation (DA) for prototypical networks; m-train refers to meta-training
and m-test refers to meta-testing

SNIPS (Kmax = 20) SNIPS(Kmax=100) ATIS(Kmax=20) ATIS(Kmax=100)
IC Acc Slot F1 IC Acc Slot F1 IC Acc Slot F1 IC Acc Slot F1

Baseline (Ours) 0.887 ± 0.06 0.597 ± 0.04 0.907 ± 0.05 0.593 ± 0.04 0.737 ± 0.06 0.748 ± 0.02 0.801 ± 0.05 0.703 ± 0.02
Multi-task POS loss 0.905 ± 0.04 0.603 ± 0.03 0.929 ± 0.03 0.595 ± 0.03 0.769 ± 0.06 0.75 ± 0.01 0.807 ± 0.05 0.711 ± 0.02
With POS-tag features 0.896 ± 0.06 0.592 ± 0.04 0.926 ± 0.03 0.590 ± 0.04 0.745 ± 0.06 0.747 ± 0.01 0.793 ± 0.09 0.713 ± 0.02
With noun-parser features 0.912 ± 0.05 0.599 ± 0.04 0.897 ± 0.05 0.597 ± 0.03 0.764 ± 0.04 0.755 ± 0.02 0.805 ± 0.07 0.715 ± 0.02

Table 4: Effect of adding syntactic information into the joint IC/SF model

can potentially help with the SF task for the restau-
rant_name slot. Conversely, the POS tag for “one”
is NUM and can help classify numeric words to the
numeric slot party_size_number.

D.1 Feature-Based Addition
Previous works have shown that adding POS tags
as features improves IC (Zhang et al., 2016; Xie
et al., 2018) as well SF performances (Firdaus et al.,
2018) in many-shot settings. In this work we look
into incorporating syntactic features in our meta-
learning pipeline. A simple idea to incorporate
POS or noun-chunk tags of an utterance is to con-
catenate a vector representation of them, pij and
ηij respectively, with the token embeddings fϕ(xij).
Formally, in our meta-learning pipeline, we revise
Eq. (2) for our slot prototype:

ca =
1

|Sa|
∑

xi
j∈Sa

fϕ(x
i
j)⊕ pij ⊕ ηij ∀xi ∈ S (8)

D.2 Multi-task POS Loss
Although training language models distills implic-
itly the structural knowledge of the underlying
languages (Jawahar et al., 2019; Sundararaman
et al., 2019) into the model, such knowledge can
be imperfect. Explicitly training to learn structural
knowledge such as POS tags (Wang et al., 2020),
however, can help the model to improve on down-
stream tasks such as IC/SF. We treat POS tagging
as a token level classification problem, similar to
SF. Given a support set S, assume Sl to consist of

utterances belonging to the intent class cl, Sa to
consist of tokens from the slot class ca and Spos to
consist of POS tag tokens from the class cpos. In
addition to the intent class prototypes cl and slot
class prototypes ca, we define an additional class
prototype cpos for the POS tags:

cpos =
1

|Spos|
∑

xi
j∈Spos

fϕ(x
i
j) ∀xi ∈ S (9)

Given a query example z, we define the correspond-
ing loss with the POS tag prototypes as:

Lpos(ϕ, z) = − log{ exp(−d(fϕ(z), cpos))∑
pos′ exp(−d(fϕ(z), cpos′))

}

(10)
For the query set Q, the composite loss function is
the following:

LTotal(ϕ) =
∑

z∈Q

1

|Q|{LIC(ϕ, z) + LSlots(ϕ, z)

+ βLpos(ϕ, z)} (11)

where β is a hyperparameter. For the ATIS dataset,
we select β by using a validation set. In case of the
SNIPS dataset, we empirically set β as 0.01 due to
unavailability of a development set.

In Table 4, we observe an improvement in both
IC and SF over the baseline with the addition of
information from the POS tags as an auxilliary loss.

24

However, similar to feature-based addition, we no-
tice only a marginal and small improvement for SF.
To understand further this issue, we exmined the
episodic sampling procedure used in (Krone et al.,
2020). Across both the SNIPS and ATIS datasets,
the average shots per class for intents are ≈ 5 and
≈ 10 for Kmax = 20 and Kmax = 100 respec-
tively. However for slots, we find that the average
shots per class are ≈ 1.3 and ≈ 3 for Kmax = 20
and Kmax = 100 respectively. We conjecture that
as the shots per class for slots are much lesser in
comparison to that of intents, it results in smaller
improvements when compared to intents in the
joint IC/SF setting.

E Compute

For all our experiments we primarily use a
V100-16GB GPU. For meta-training on ATIS for
Kmax = 100 with data augmentation, we use
V100-32GB GPU due to increased memory require-
ments.

F Note on Data Augmentation Techniques

In our paper, we investigate only a limited num-
ber of data augmentation techniques specific to
natural language processing. We note that in the
recent years, a wide variety of augmentation tech-
niques for NLP has been developed (See (Feng
et al., 2021) for a good overview). However, we
choose EDA, backtranslation and use a dictionary
based slot-list values in our experiments
due to it’s inherent simplicity which can enable
easy integration with existing meta-learning meth-
ods. Designing and adapting existing augmentation
techniques to meta-learning is a future direction of
research.

25

Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI), pages 26 - 35
July 14, 2022 ©2022 Association for Computational Linguistics

Learning Open Domain Multi-hop Search Using Reinforcement Learning

Enrique Noriega-Atala
The University of Arizona

enoriega@arizona.edu

Mihai Surdeanu
The University of Arizona

msurdeanu@arizona.edu

Clayton T. Morrison
The University of Arizona
claytonm@arizona.edu

Abstract

We propose a method to teach an automated
agent to learn how to search for multi-hop
paths of relations between entities in an open
domain. The method learns a policy for direct-
ing existing information retrieval and machine
reading resources to focus on relevant regions
of a corpus. The approach formulates the learn-
ing problem as a Markov decision process with
a state representation that encodes the dynam-
ics of the search process and a reward struc-
ture that minimizes the number of documents
that must be processed while still finding multi-
hop paths. We implement the method in an
actor-critic reinforcement learning algorithm
and evaluate it on a dataset of search problems
derived from a subset of English Wikipedia.
The algorithm finds a family of policies that
succeeds in extracting the desired information
while processing fewer documents compared
to several baseline heuristic algorithms.

1 Introduction

The sheer size of public corpora such as Wikipedia1

or large paper repositories like arXiv2 and PubMed
Central3 poses an enormous challenge to automat-
ing effective search for relevant information. This
problem is compounded when the underlying infor-
mation needs require multi-hop connections, e.g.,
searching for biological mechanisms that connect
two proteins (Cohen, 2015) or searching for expla-
nations that require complex reasoning by under-
standing text supported by different documents in
QA systems (Welbl et al., 2018; Yang et al., 2018).

In a naive approach, an automated information
extraction agent could process all the documents
in a corpus, searching for the indirect connections
that satisfy a multi-hop information need. However,
this quickly becomes prohibitively expensive as the
corpus size increases. Further, the documents may

1https://www.wikipedia.org/
2http://arxiv.org/
3https://www.ncbi.nlm.nih.gov/pmc/

also be behind a paywall, adding an additional eco-
nomic cost to accessing information. Thus, the
naive exhaustive reading approach is simply not
feasible for most large corpora scenarios. Instead,
we need to incorporate the kind of iterative focused
reading that humans are capable of. When peo-
ple search for information, they use background
knowledge, based in part on what they have just
read, to narrow down the search space while se-
lectively committing time and other resources to
carefully reading documents that appear relevant.
This process may be repeated multiple times until
the information need is satisfied.

We propose a methodology that uses reinforce-
ment learning (RL) to teach an automated agent
how to direct a search process, using existing in-
formation retrieval and machine learning compo-
nents selectively, focusing on the relevant parts of
the corpus in order to minimize the expenditure of
computational resources and access costs.

The contributions of our work are the following:

1. A reinforcement learning framework to teach
an automated agent how to direct a multi-hop
search process that selectively allocates ma-
chine reading resources in an open-domain
corpus.

2. A set of domain-agnostic state representation
features that enable the reinforcement learn-
ing method to learn a policy that improves
the chances of finding the desired information
while processing fewer documents compared
to strong baselines.

3. A new dataset of open-domain multi-
hop search problems derived from En-
glish Wikipedia contained in the WikiHop
dataset 4 (Welbl et al., 2018). Using this
dataset, we show that our RL approach is able

4http://qangaroo.cs.ucl.ac.uk

26

to derive policies that find the desired informa-
tion more frequently and by processing fewer
documents than several heuristic baselines.

2 Related Work

Modern machine reading technology enables the
extraction of structured information from natural
language data. Named-entity recognition (Tjong
Kim Sang and De Meulder, 2003) systems detect
and label specific classes of concepts from text,
both in the general domain (Manning et al., 2014)
and for specific domains (Neumann et al., 2019).
Relation extraction systems extract interactions be-
tween different concepts in open-domain (DBL,
2018, 2017, 2008) and domain-specific scenar-
ios (Jin-Dong et al., 2019; Demner-Fushman et al.,
2019; Cohen et al., 2011).

Reinforcement learning has been successfully
deployed for a variety of natural language process-
ing (NLP) tasks. (Clark and Manning, 2016) pro-
posed a policy-gradient method to resolve the cor-
rect coreference chains for the task of coreference
resolution. (Li et al., 2017) used reinforcement
learning to train an end-to-end task-completion
dialogue system. For the task of machine trans-
lation, (He et al., 2016) formulated the task as a
dual-learning game in which two agents teach each
other without the need of human labelers using
policy-gradient algorithms.

Reinforcement learning has also been specifi-
cally applied to improving search and machine
reading. In learning how to search, (Kanani and
McCallum, 2012) proposed a methodology for the
task of slot-filling based on temporal-difference
q-learning that uses domain specific state repre-
sentation features to select actions in a resource-
constrained scenario. (Noriega-Atala et al., 2017)
successfully applied RL to finding relevant bio-
chemical interactions in a large corpus by focus-
ing the allocation of machine reading resources
towards the most promising documents. Similarly,
(Wang et al., 2019) explore the use of deep neu-
ral networks and deep RL to simulate the search
behavior of a researcher, also in the biomedical
domain.

3 Learning to Search

We propose a methodology to teach an automated
agent how to selectively retrieve and read docu-
ments in an iterative fashion in order to efficiently
find multi-hop connections between a pair of con-

cepts (or entities). Each search step focuses on a
restricted set of documents that are hypothesized
to be more relevant for finding a connection be-
tween the two target concepts. The focus set is
retrieved and processed and if a path connecting
the concepts is found, the search terminates. Oth-
erwise, a new set of focus documents is identified
based on what has been learned so far during the
search. The process is repeated iteratively until the
desired information is found or a number of itera-
tions is exceeded. Our method is general as it does
not directly rely on any supervised domain specific
semantics.

During the search, the agent iteratively con-
structs a knowledge graph (KG) that represents the
relations between concepts found so far through
machine reading. In each iteration, the algorithm
formulates a document retrieval query based on the
current state of the knowledge graph, which is then
executed by an information retrieval (IR) compo-
nent. The IR component contains data structures
to query the corpus, for example using an inverted
index. The construction of these data structures
usually only requires shallow processing, such as
tokenization and stemming, and not a full-fledged
NLP pipeline. Any documents returned from exe-
cuting the query are processed by an information
extraction (IE) component that performs named en-
tity recognition and relation extraction. The KG
is expanded by adding newly identified entities as
new nodes and previously unseen relations as new
edges. The overall goal of the method is to focus on
the documents that appear to be most likely to con-
tain a path between the target concepts, all while
processing as few documents as possible.

(Noriega-Atala et al., 2017) formalized this iter-
ative search process as a family of focused reading
algorithms, shown in Algorithm 1:

Algorithm 1 Focused reading algorithm
1: procedure FOCUSEDREADING(E1, E2)
2: KG← {{E1, E2}, ∅}
3: repeat
4: Q← BUILDQUERY(KG)
5: (V,E)← RETRIEVAL+EXTRACTION(Q)
6: EXPAND(V,E,KG)
7: until ISCONNECTED(E1, E2) OR HASTIMEDOUT

8: end procedure

The algorithm starts with the KG representing
only the endpoints of the search: the named enti-
ties E1 and E2. The algorithm then initiates the
search loop. The first step in the loop analyzes

27

the knowledge graph and generates an information
retrieval query, Q. As we will describe shortly, the
current state of the KG is used to parameterize and
constrain the scope of Q, focusing it on returning a
limited subset of documents that are hypothesized
to be most relevant. After retrieval, the documents
are processed by the IE component. Any entities
not previously found in the KG are placed in the
new entity set V , and similarly any new relations
linking entities are placed in the new relation set,
E. V and E are incorporated into the KG and the
algorithm then searches the updated KG for any
new possible paths connecting E1 and E2. If a
path exists, it is returned as a candidate explana-
tion of how E1 and E2 are related. Otherwise, if
no such path exists, the query formulation process
(using the updated KG) followed by IR and IE, is
repeated until a path is found or the process times
out.

This framework can answer multi-hop search
queries for which the relationships along a connect-
ing path come from different documents. For exam-
ple, this process may discover that Valley of Mexico
is connected to the Aztecs because the Aztecs were
a pre-columbian civilization (found in one docu-
ment), which, in turn, was located in the Valley of
Mexico (found in another document).

In the following subsections, we formulate
focused reading as a Markov decision process
(MDP).

3.1 Constructing Query Actions

Template # Params Constraints

Conjunction Two: (A, B) Contains A and B
Singleton One: (E) Contains E
Disjunction Two: (A, B) Contains A or B

Table 1: Query templates

In the focused reading MDP, actions are com-
prised of information retrieval queries. Actions are
constructed from a set of three query templates,
listed in Table 1. Each template is parameterized
by one or two arguments representing the entities
that are the subject of the query. The template
type then incorporates these entities into the set of
constraints that must be satisfied by a document
in order to be retrieved. The different query tem-
plates are intuitively designed to give the agent the
choice of either exploring the corpus by perform-
ing a broader search through the more permissive

disjunctive query (documents are retrieved if either
of the entities are present), or instead exploiting
particular regions of the corpus through the more
restrictive conjunctive query (the documents must
contain both entities).

Because conjunctive queries return documents
with the text of both entities, they are more likely to
identify relations connecting the entities. However,
there is also an increased risk that such queries will
end up not finding any satisfying documents, es-
pecially when the entities are not closely related,
resulting in waisting one iteration in the search pro-
cess. On the other hand, disjunctive queries are
designed to return a larger set of documents, which,
reduce the likelihood of returning an empty set. But
they introduce the risk of processing more poten-
tially irrelevant documents, and potentially intro-
ducing more irrelevant entities. Singleton queries
represent a compromise between conjunction and
disjunction. They are designed to expand the set
of existing queries to the knowledge graph, which
may in turn be along paths that connect the target
entities, but retrieving documents related to just
one entity, rather than two.

Every entity or pair of entities in the current
knowledge graph is eligible to serve as a parameter
in a query template. The challenge is to choose
which entities paired with query template type are
more likely to retrieve documents containing can-
didate paths, using only the domain-agnostic infor-
mation present in the KG.

As the search process proceeds, the number of
entities in the knowledge graph grows, in turn
increasing the number of possible query actions
that can be constructed. RL quickly becomes in-
tractable as the state and action space grows. We
therefore perform a beam search to fix the cardinal-
ity of the action space to a constant size. In partic-
ular, we use cosine similarity (for entity pairs) and
average tf-idf scores (for single entities) to rank
the entities that might participate in constructing
query actions. The agent then chooses among the
top n entities/pairs for each query template, thus
bounding the total number of actions available to
the agent to 3n different queries at each step.

We rank candidate entity pairs that might par-
ticipate in query templates involving two entities
by computing the cosine similarity of the vector
representations of the entities. We use the natural
language expression representation of the named
entities to construct a continuous vector represen-

28

tation. The vector representation of each entity is
built by averaging the word embedding vectors5 of
the words in the text of the named entity descrip-
tion. This similarity works as a proxy indicator of
how related those entities are, under the intuition
that entities that have similar embeddings are more
likely to participate in relations.

For singleton entity queries, we use the average
tf-idf score of the entity’s natural language descrip-
tion for ranking. The tf-idf score of an entity is
derived from averaging the tf-idf score of the in-
dividual terms in the entity’s natural language de-
scription. Each term’s frequency value is based on
the complete corpus. Tf-idf scores are often used
as a proxy measure of term importance (the term
occurs selectively with greater frequency within
some documents), so here the intuition is that en-
tities with higher tf-idf scores may be associated
with higher recall in the corpus.

Finally, there is an additional non-query action
that is available in every step of the search: early
stop. If the agent choses to stop early, the search
process transitions to a final, unsuccessful state.
This deprives the agent from successfully finding a
path, but avoids incurring further cost of processing
more documents in a possibly unfruitful search.

3.2 State Representation Features
At each step during search, the focused reading
agent will select just one action to execute (a query
action or early stop) based on the current search
state. The agent makes this decision using a model
that estimates for each action the expected long-
term reward that can be achieved by taking that
action in the current state. Here we describe the
collection of features used to represent the current
state, provided as input to the model.

Table 2 provides a summary of the features in-
cluded in the state representation. We group them
into four categories.

• Search state features: Information about the
current state of the search process including:
the number of documents that have been pro-
cessed so far; how long has the search been
running (expressed in iterations); and the size
of the knowledge graph.

• Endpoints of the search: E1 and E2 represent
the original target concepts that we are trying

5We used the pretrained GloVe model provided by spaCy
at https://spacy.io/models/en#en_core_web_
lg

Category Feature

Search state

Iteration number
Doc set size
of vertices in KG
of edges

Endpoints Embedding of E1
Embedding of E2

Query Cosine sim. or avg tf-idf score
of new documents to add

Topic Modeling ∆ Entropy of queries
KL Divergence of query

Table 2: State representation features

to find a path between. The identity of the
endpoints determines the starting point of the
search and conditions the theme of the content
sought during the search. This information is
provided to the model using the vector embed-
ding representations of E1 and E2.

• Query features: We include in the state repre-
sentation features the score with which each
of the 3n queries in the action space is ranked.
This includes the cosine similarity for conjunc-
tion and disjunction queries and tf-idf score
for singleton queries. The intuition is that
the score may be correlated with the expected
long-term reward. For each query action, we
will also see the identities of which documents
will be retrieved. This allows us to count how
many documents will be retrieved that have
not already contributed to the KG, and this is
included in the state representation for each
action.

• Topic modeling features: Finally, we would
like to incorporate some indication of what in-
formation is contained in the documents that
might be retrieved, and how it relates to the
current entities within the KG. As a proxy
for this information, we model the topics in
the potentially retrieved documents, by peek-
ing into the IR component to see the identity
of documents that would be returned by the
queries in the action space, and compare them
to the topics represented in the KG using two
numerical scores: (a) an approximation of
how broad or specific the topics are in the set
of documents that would be returned by the
query, and (b) an estimate of how the knowl-
edge graph’s topic distribution would change
if the query is selected as the next action.

29

3.3 Topic Modeling Features

Topic modeling features can be useful for staying
on topic throughout the search, avoiding drift into
potentially irrelevant content. Consider the follow-
ing example: A user wants to know how the Red
Sox and the Golden State Warriors are related by
searching Wikipedia. While the two entities cover
different sports in different regions of the United
States, it is more likely that the connection will oc-
cur in a document about sports, e.g., they are both
covered by the ESPN TV station.

We use Latent Dirichlet Allocation (Blei et al.,
2003) (LDA) to provide the agent the ability to
exploit topic information available in the corpus.
LDA is unsupervised and requires only shallow
processing of the corpus, namely, tokenizing and
optionally stemming. This is essentially the same
information required for constructing an inverted
index for IR, so can be computed along with the IR
component used in the focused reading system.

LDA produces a topic distribution for each doc-
ument. We then aggregate the set of documents
by summing the topic frequencies across docu-
ments and renormalizing. The topic distribution of
the KG is then the aggregation of the topic distri-
butions of the documents processed so far in the
search process. The topic distribution of a query
is the aggregation of the topic distributions of the
unseen documents returned by the query.

We consider two statistics for relating topic
distributions: topic entropy and Kullback-Leibler
(KL) divergence.

Intuitively, the entropy of a topic distribution is
an estimate of how specialized a document is, that
is, how much it focuses on a particular set of topics.
For example, a document that only talks about a
specific sport will generally have a topic distribu-
tion where the mass is concentrated only on the
particular topics of that sport, and therefore have a
lower entropy than another document that discusses
sports and business. Document sets with overall
higher entropy are more likely to introduce infor-
mation about more topics to the knowledge graph,
and therefore produce more opportunities for new
links between a broader set of entities. Lower en-
tropy queries focus on a narrower set of topics, and
thus, may introduce links between a restricted set
of entities. The difference in entropy expresses this
intuition in relative terms. We introduce a feature,
∆ Entropy, as the difference in entropy between
documents retrieved by a candidate action and the

documents the action retrieved in the previous step.
Positive values indicate that the candidate query
will generally expand the topics compared to those
fetched the last step while negative values indicate
more restricted topic focus.

∆ Entropy measures how concentrated the mass
is, but it does not tell us how the distributions
are different. Two document sets may have com-
pletely different topic distributions, yet have the
same or similar entropy. Kullback-Leibler (KL) di-
vergence (Kullback and Leibler, 1951), also known
as relative entropy, helps measure how different
two distributions are with respect to each other,
even if they have the same absolute entropy. To
capture this information, we compute the KL di-
vergence between the topic distribution in the new
documents (retrieved by the new query) and the
topic distribution of the knowledge graph. This
estimates how different the information in the new
query is relative to what has already been retrieved.

3.4 Reward Function Structure
The overall goal of the focused reading learning
processes is to identify a policy that efficiently finds
paths of relations between the target entities while
minimizing the number of documents that must
be processed by the IE component. To achieve
this, we want the reward structure of the MDP
to incorporate the tradeoff between the number
of documents that have to be read (the reading
cost) and whether the agent can successfully find a
path between the entities. Equation 1 describes the
reward function, where st represents the current
state and at represents the action executed in that
state.

r(st, at) =

S if st+1 is succesful sate
−c×m if m > 0

−e if m = 0

(1)

A positive reward S (for “success”) is given when
executing at results in a transition to a state whose
knowledge graph contains a path connecting the
target entities. Otherwise, the search is not yet com-
plete and the a cost is incurred for processing m
documents with machine reading on step t. The
cost is adjusted by a hyper parameter c that controls
the relative expense of processing a single docu-
ment. Note that there may be actions that return an
empty document set, incurring no cost from read-
ing, but still not making progress in the search. To
discourage the agent from choosing such actions,
the hyperparameter e controls the cost of executing

30

an unfruitful action that returns no new informa-
tion. (Specific parameter values used in this work
are presented in Table 4 of Section 5.)

4 Evaluation and Discussion

To evaluate the focused reading learning method,
we introduce a novel dataset derived from the En-
glish version of Wikipedia. Our dataset consist
of a set of 369 multi-hop search problems, where
a search problem is consists of a pair of entities
to be connected by a path of relations, potentially
connecting to other entities along the path.

The foundation of the dataset is a subset of 6,880
Wikipedia articles from the WikiHop (Welbl et al.,
2018) corpus. We used Wikification (Ratinov et al.,
2011; Cheng and Roth, 2013) to extract named
entities from these documents and normalize them
to the title of a corresponding Wikipedia article.
Wikification does not perform relation extraction,
so we lack gold-standard relations. To overcome
this limitation, in this paper we induce a relation
between entities that co-occur within a window of
three sentences. Every relation extracted this way
can be traced back to at least one document in the
corpus.

We create a gold-standard knowledge graph us-
ing the induced entities and relations, and we sam-
ple pairs of entities connected by paths to create
search problems for the dataset. Table 3 contains
a break-down of the number of elements in each
subset of the dataset.

Element Size

Corpus 6880 articles

Search Problems
Training 230 problems
Development 500 problems
Testing 670 problems

Total 1400 problems

Table 3: Multi-hop search dataset details.

We train an LDA model6 and constructed an
information retrieval inverted index over the collec-
tion of documents.7

We used the Advantage Actor Critic algo-
rithm (Mnih et al., 2016) (A2C) to implement our

6We used the LDA implementation provided by gensim
https://radimrehurek.com/gensim_3.8.3/.

7Code and dataset files are found at https://ml4ai.
github.io/OpenDomainFR/

reinforcement learning focused reading method.8

A2C is an actor-critic method and we use a single
neural network architecture to model the action pol-
icy (actor) as well as the state value function (critic).
We use a single neural network architecture to im-
plement the A2C actor-critic model. The archi-
tecture consists of a fully-connected feed-forward
neural network with four layers and two output
heads. The first output head represents the approxi-
mation of the action policy (the actor) as a soft-max
activation layer whose size is the cardinality of the
action space. This approximates the probability
distribution of the actions given the current state.
The second head approximates the state value, as
a single neuron with a linear activation. The state
value estimates the expected long-term reward of
using the estimated action distribution of the first
head in the current state. Altogether the model
consists of approximately 3.79 million parameters.

Table 4 lists the hyper-parameter values used in
our experiments. 9

Hyper-parameter Value

Environment
entities per query template 15
Maximum # of steps 10

Reward Function
Successful outcome S 1000
Document processing cost c 10
Empty query cost e 100

Training
Mini-batch size 100
Iterations 2000

Table 4: Hyper-parameter values

We performed an ablation analysis on the de-
velopment dataset to find the best configuration of
features.

The development dataset contains five hundred
search problems. The set of endpoints of the search
problems does not overlap with those of the training
and validation datasets. This is enforced to avoid
any accidental leak of training information.

Table 5 contains the results of the ablation ex-
periments. All the search problems were repeated
five times with different random seeds. The key
columns of the table are defined as follows. Success
Rate represents the percentage of problems in the
test set for which the agent connected the endpoints.

8Implemented using the rlpyt library hosted at https:
//github.com/astooke/rlpyt.

9Hyper-parameter values were determined through manual
tunning.

31

Average Steps
Success Rate Processed Documents Documents per Success Overall Successes Failures

Baselines

Random 25.04 (0.014) 56,187.8 (3,197.6) 449.83 (34.34) 8.41 (0.06) 3.66 (0.25) 10 (0)
Conditional 23.92 (0.008) 49,609.8 (4,215.11) 415.03 (36.01) 8.51 (0.06) 3.78 (0.07) 10 (0)

Cascade 32.84 (0.01) 62,058.2 (3,686.57) 378.15 (23.87) 7.42 (0.05) 2.93 (0.19) 9.61 (0.06)

All Features

Dropout 0.2 36 (0.007)* 58,552.2 (719.67)* 325.41 (8.43)* 6.56 (0.05) 2.22 (0.06) 9.01 (0.04)
Dropout 0.5 36.64 (0.004)* 100,869 (4,121) 550.76 (26.2) 7 (0.04) 2.37 (0.08) 9.67 (0.06)

No Embs 26.3 (0.008) 39,433 (1,678.2)* 428.82 (19.51) 6.52 (0.03) 2.37 (0.08) 7.74 (0.07)

No Query Features

Dropout 0.2 33.68 (0.003) 42,022.2 (2,071.89)* 249.57 (13.02)* 4.56 (0.05) 2.02 (0.03) 5.84 (0.08)
Dropout 0.5 36.48 (0.003)* 62,126.6 (1,900.75) 340.62 (10.79)* 5.95 (0.06) 2.28 (0.03) 8.06 (0.09)

No Embs 35.6 (0.005)* 58,025.8 (1,085.72)* 325.99 (4.26)* 6.37 (0.07) 2.2 (0.07) 8.68 (0.12)

No Search Features

Dropout 0.2 35.92 (0.002)* 55,723 (1,437.01)* 310.27 (8.13)* 6.42 (0.04) 2.15 (0.03) 8.82 (0.07)
Dropout 0.5 35.32 (0.003)* 53,227.4 (1,429.88)* 301.42 (8.77)* 5.41 (0.07) 2.09 (0.02) 7.22 (0.11)

No Embs 37.16 (0.004)* 97,612.2 (4,550.54) 525.48 (26.72) 6.92 (0) 2.44 (0.08) 9.56 (0.01)

No Topic Features

Dropout 0.2 35.56 (0.004)* 51,757.4 (1,510.95)* 291.11 (8.36)* 5.92 (0.02) 2.15 (0.07) 8 (0.05)
Dropout 0.5 35.72 (0.007)* 55,637 (1,456.53)* 311.58 (8.74)* 5.56 (0.05) 2.13 (0.06) 7.46 (0.06)

No Embs 28.52 (0.004) 50,634.6 (2,060.88)* 355.05 (12.1) 6.74 (0.06) 3.5 (0.04) 8.03 (0.1)

Table 5: Feature sets ablation results. * denotes the difference w.r.t. the cascade baseline is statistically significant.

Processed Docs provides the number of documents
processed in all the search problems of the test
set. Docs per Success is a summary the other two
columns: it contains the number of documents pro-
cessed divided by the number of successes. This
ratio is an aggregate statistic useful for comparing
the performance between different policies. We
report the sample averages and their standard de-
viations in parentheses. For example, the Success
Rate column displays the average and standard de-
viation of five success rate calculations over five
hundred search problems. The Processed Docu-
ments column displays the average and standard
deviation of the cumulative count of documents
processed in the search problems, and so forth.

We implement three baseline policies that were
not derived using RL:

• Random: Uniformly randomly selects a query
from all possible queries constructed from eli-
gible combinations of entities assigned to the
query templates.

• Conditional Random: Uniformly randomly
selects a query template, conjunction, disjunc-
tion and singleton and then choses the uni-
formly randomly selects the entities to param-

eterize the template.

• Cascade: Uniformly randomly samples a pair
of entities and executes a conjunction query. If
the result set does not contain any documents,
then the agent selects a disjunction query with
the same entities.

For consistency, each baseline was also evalu-
ated with five different random seeds over the test-
ing set. The top part of Table 5 shows the results
of the baseline policies.

To test for statistical significance, we performed
a non-parametric bootstrap resampling test with
ten thousand samples for the the following metrics:
success rate, processed documents and documents
per success. For each metric, we calculated the dif-
ference between the result of the cascade baseline
and the result of each of the reinforcement learning
(RL) policies. If p ≤ 0.05 of the difference being
in favor of the reinforcement learning policy, the
quantity is starred in the table.

In terms of success rate, most of the reinforce-
ment learning models perform better than the cas-
cade baseline. The notable exceptions are two fea-
ture configurations that do not use endpoint em-
beddings. These configurations are the one that

32

Average Steps
Success Rate Processed Documents Documents per Success Overall Successes Failures

Baseline

Cascade 36.52 (0.008) 83,252.4 (2,538.11) 339.39 (13.01) 7.18 (0.06) 2.81 (0.05) 9.69 (0.04)

No Topic Features

Dropout 0.2 39.02 (0.007)* 79,737.2 (1,664.65) 304.22 (10.06)* 6.28 (0.04) 2.16 (0.08) 8.91 (0.03)

All Features

Dropout 0.2 39.49 (0.003)* 85,637.8 (1,751.95) 322.71 (7.99) 6.34 (0.04) 2.16 (0.03) 9.07 (0.06)

Table 6: Results of the best model in the testing dataset. Quantities are averages over five runs with different random
seeds and standard deviations are shown in parentheses. * denotes the difference w.r.t. the cascade baseline is
statistically significant.

considers all feature classes and the one that does
not consider topic features.

Excluding query features from training produces
models that process fewer documents per success
with or without endpoint embeddings.

Excluding search features produced in average
models with higher success rate, with or without
embeddings, but does so while processing more
documents compared to other configurations.

The configurations that exclude query features
produced models with the best numbers of docu-
ments per success. When the topic features are
excluded, a similar result is achieved, but the num-
ber of documents per success of model that does
not use endpoint embeddings is not statistically sig-
nificantly lower than that of the cascade baseline.

Nonetheless the model that has the best balance
between success rate and documents per success
is the one that excludes topic features and trains
with a dropout coefficient of 0.2 on the endpoint
embeddings. We use this model to evaluate the
validation dataset.

Table 6 displays the results of the cascade
baseline, which shows the strongest performance
among the baseline policies, and the chosen rein-
forcement learning model on the validation dataset.
The validation dataset contains 650 search prob-
lems and the set of endpoints of its search problems
is disjoint from the other datasets’ for the same rea-
son, to avoid leaking any training or development
signal into the validation dataset. We did the same
non-parametric bootstrap test for statistical signifi-
cance. The reinforcement learning policy achieves
approximately 2.5% higher average success rate on
the testing dataset that the cascade baseline policy.
While it also processes fewer documents in aver-
age, the difference is not statistically significant,

but when considering the number of documents
per success, the result is indeed significant, requir-
ing approximately thirty five documents in average
than cascade.

5 Conclusions

We proposed a focused reading methodology to au-
tomatically learn how to direct search in large cor-
pora while iteratively building a knowledge base.
The knowledge base is modeled as a graph, which
in turn is used to focus the search toward doc-
uments that appear relevant. Our methodology
complements existing information retrieval and
machine tools. We evaluated focused reading on
a set of search problems extracted from English
Wikipedia and demonstrated that reinforcement
learning with a state representation based on fea-
tures about dynamics of the search process and the
properties of the corpus is more effective and effi-
cient than heuristic baselines. In this methodology,
inference in a knowledge graph acquired during the
search process is agnostic of the semantics of the
concepts and their relations. Their quality depends
on the machine reading components used to extract
them.

In future work, we plan to explore approaches for
incorporating the semantics of the relations along
the multi-hop paths that connect the target entities.
Crucially, this includes incorporating additional
constraints based on topic context. Providing con-
text to a search problem could prove useful to bet-
ter focus the search process and to improve the
accuracy of inference. We also plan to adapt the
focused reading methodology to handle other class
of search problems, e.g., slot filling tasks where the
endpoints are underspecified.

33

References
2008. Proceedings of the First Text Analysis Conference,

TAC 2008, Gaithersburg, Maryland, USA, November
17-19, 2008. NIST.

2017. Proceedings of the 2017 Text Analysis Con-
ference, TAC 2017, Gaithersburg, Maryland, USA,
November 13-14, 2017. NIST.

2018. Proceedings of the 2018 Text Analysis Con-
ference, TAC 2018, Gaithersburg, Maryland, USA,
November 13-14, 2018. NIST.

David Blei, Andrew Ng, and Michael I. Jordan. 2003.
Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022.

Xiao Cheng and Dan Roth. 2013. Relational inference
for wikification. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1787–1796, Seattle, Washington,
USA. Association for Computational Linguistics.

Kevin Clark and Christopher D. Manning. 2016. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 643–653, Berlin, Germany. Association for
Computational Linguistics.

Kevin Bretonnel Cohen, Dina Demner-Fushman,
Sophia Ananiadou, John Pestian, Jun’ichi Tsujii,
and Bonnie Webber, editors. 2011. Proceedings of
BioNLP 2011 Workshop. Association for Computa-
tional Linguistics, Portland, Oregon, USA.

Paul R Cohen. 2015. Darpa’s big mechanism program.
Physical biology, 12(4):045008.

Dina Demner-Fushman, Kevin Bretonnel Cohen,
Sophia Ananiadou, and Junichi Tsujii, editors. 2019.
Proceedings of the 18th BioNLP Workshop and
Shared Task. Association for Computational Linguis-
tics, Florence, Italy.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai
Yu, Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual
learning for machine translation. In Advances in
neural information processing systems, pages 820–
828.

Kim Jin-Dong, Nédellec Claire, Bossy Robert, and
Deléger Louise, editors. 2019. Proceedings of The
5th Workshop on BioNLP Open Shared Tasks. Asso-
ciation for Computational Linguistics, Hong Kong,
China.

Pallika H. Kanani and Andrew K. McCallum. 2012.
Selecting actions for resource-bounded information
extraction using reinforcement learning. In Proceed-
ings of the fifth ACM international conference on Web
search and data mining, pages 253–262.

Solomon Kullback and Richard A. Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86.

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng
Gao, and Asli Celikyilmaz. 2017. End-to-end task-
completion neural dialogue systems. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 733–743, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In International conference on machine learning,
pages 1928–1937.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and robust models
for biomedical natural language processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319–327, Florence, Italy. Association for
Computational Linguistics.

Enrique Noriega-Atala, Marco A. Valenzuela-
Escárcega, Clayton Morrison, and Mihai Surdeanu.
2017. Learning what to read: Focused machine
reading. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2905–2910, Copenhagen, Denmark.
Association for Computational Linguistics.

Lev Ratinov, Dan Roth, Doug Downey, and Mike An-
derson. 2011. Local and Global Algorithms for Dis-
ambiguation to Wikipedia. In Proc. of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Haohan Wang, Xiang Liu, Yifeng Tao, Wenting Ye,
Qiao Jin, William W. Cohen, and Eic P. Xing. 2019.
Automatic human-like mining and constructing re-
liable genetic association database with deep rein-
forcement learning. In PSB, pages 112–123. World
Scientific.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel.
2018. Constructing datasets for multi-hop reading
comprehension across documents. Transactions of
the Association for Computational Linguistics, 6:287–
302.

34

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

35

Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI), pages 36 - 46
July 14, 2022 ©2022 Association for Computational Linguistics

Table Retrieval May Not Necessitate Table-specific Model Design

Zhiruo Wang, Zhengbao Jiang, Eric Nyberg, Graham Neubig
Language Technologies Institute, Carnegie Mellon University
{zhiruow,zhengbaj,ehn,gneubig}@cs.cmu.edu

Abstract
Tables are an important form of structured data
for both human and machine readers alike,
providing answers to questions that cannot,
or cannot easily, be found in texts. Recent
work has designed special models and training
paradigms for table-related tasks such as table-
based question answering and table retrieval.
Though effective, they add complexity in both
modeling and data acquisition compared to
generic text solutions and obscure which el-
ements are truly beneficial. In this work, we
focus on the task of table retrieval, and ask: “is
table-specific model design necessary for ta-
ble retrieval, or can a simpler text-based model
be effectively used to achieve a similar result?”
First, we perform an analysis on a table-based
portion of the Natural Questions dataset (NQ-
table), and find that structure plays a negligible
role in more than 70% of the cases. Based
on this, we experiment with a general Dense
Passage Retriever (DPR) based on text and a
specialized Dense Table Retriever (DTR) that
uses table-specific model designs. We find that
DPR performs well without any table-specific
design and training, and even achieves supe-
rior results compared to DTR when fine-tuned
on properly linearized tables. We then experi-
ment with three modules to explicitly encode
table structures, namely auxiliary row/column
embeddings, hard attention masks, and soft
relation-based attention biases. However, none
of these yielded significant improvements, sug-
gesting that table-specific model design may
not be necessary for table retrieval.1

1 Introduction

Tables are a valuable form of data that organize
information in a structured way for easy storage,
browsing, and retrieval (Cafarella et al., 2008;
Jauhar et al., 2016; Zhang and Balog, 2020). They
often contain data that is organized in a more acces-
sible manner than in unstructured texts, or even not

1The code and data are available at https://github.com/
zorazrw/nqt-retrieval

Question:
Who is the highest paid baseball player in the major leagues?

Table:

Figure 1: A correct table can be identified by matching
key phrases in question to those in the table title and
header cells.

available in text at all (Chen et al., 2020a). There-
fore, tables are widely used in question answering
(QA) (Pasupat and Liang, 2015; Zhong et al., 2017;
Yu et al., 2018). For open-domain QA, the abil-
ity to retrieve relevant tables with target answers
is crucial to the performance of end-to-end QA
systems (Herzig et al., 2021). For example, in
the Natural Questions (Kwiatkowski et al., 2019)
dataset, 13.2% of the answerable questions can be
addressed by tables and 74.4% by texts.

Because tables are intuitively different from
unstructured text, most previous works consider
text-based methods to be functionally incapable
of processing tables effectively and create special-
purpose models with table-specific architectures
and training methods, adding auxiliary structure-
indicative parameters (Herzig et al., 2020; Wang
et al., 2021b; Deng et al., 2020; Yang et al., 2022),
enforcing structure-aware attention (Yin et al.,
2020; Wang et al., 2021b; Zayats et al., 2021), and
table-oriented pre-training objectives (Deng et al.,
2020; Yin et al., 2020; Wang et al., 2021b; Liu
et al., 2021; Yu et al., 2020). Though effective in
many tasks, these special-purpose models are more
complex than generic solutions for textual encod-

36

ing, and must be intentionally built for and trained
on tabular data. In addition, because these methods
modify both the model design and the training data,
it is difficult to measure the respective contributions
of each of these elements.

Particularly for question-based table retrieval,
we hypothesize that content matching is paramount,
and little, if any, structural understanding may be re-
quired. For example, given a question “Who is the
highest paid baseball player in the major leagues?”
in Figure 1, a correct table can be retrieved by sim-
ply identifying the phrase “highest-paid”, “major
league”, and “baseball player” in the table title,
and matching the semantic type of “Who” to the
“Name” header. Hence, any benefit demonstrated
by table-based models may well come from good
training data while table-specific model design has
a limited influence.

In this paper, we specifically ask: “Does table
retrieval require table-specific model design, or can
properly trained generic text retrievers be exploited
to achieve similar performance with less added
complexity?” Our work centers around the table-
based open-domain QA dataset, NQ-table (Herzig
et al., 2021), a subset of the Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019) where
each question can be answered by part(s) of a
Wikipedia table. We start with manual analysis
of 100 random samples from NQ-table and ob-
serve that consideration of table structure seems
largely unnecessary in over 70% of the cases, while
the remaining 30% of cases only require simple
structure understanding such as row/column align-
ment without structure-dependent complex reason-
ing chains (§ 2). With this observation, we experi-
ment with two strong retrieval models: a general-
purpose text-based retriever (DPR; Karpukhin et al.
(2020)) and a special-purpose table-based retriever
(DTR; Herzig et al. (2021)). We find that DPR,
without any table-specific model design or train-
ing, achieves similar accuracy as the state-of-the-
art table retriever DTR, and further fine-tuning on
NQ-table yields significantly superior performance,
casting doubt on the necessity of table-specific
model design in table retrieval (§ 3). Using DPR
as the base model, we then thoroughly examine
the effectiveness of both encoding structure implic-
itly with structure-preserving table linearization
(§ 4) and encoding structure explicitly with table-
specific model design, such as auxiliary embed-
dings and specialized attention mechanisms (§ 5).

We find that models can already achieve a degree
of structure awareness using properly linearized
tables as inputs, and additionally adding explicit
structure encoding model designs does not yield
a further improvement. In sum, the results reveal
that a strong text-based model is competitive for
table retrieval, and table-specific model designs
may have limited additional benefit. This indicates
the potential to directly apply future improved text
retrieval systems for table retrieval, a task where
they were previously considered less applicable.

2 NQ-table Analysis: How Much
Structure Does Table Retrieval
Require?

The NQ-table dataset (Herzig et al., 2021)
is a subset of the Natural Questions (NQ)
dataset (Kwiatkowski et al., 2019) which contains
questions from real users that can be answered
by Wikipedia articles. Previous works on text-
based QA extract the text portion from source
Wikipedia articles that can answer around 71k ques-
tions, while NQ-table extract tables that contain
answers for 12k questions. Unless otherwise spec-
ified, we use NQ-text to denote the commonly re-
ferred NQ dataset that can be answered by texts.

To better understand to what extent (if any) is
structure understanding required by table retrieval,
we perform a manual analysis on the NQ-table
dataset. Specifically, we randomly sample 100
questions and their relevant tables then categorize
their matching patterns.

Keyword Matching Without Structural Con-
cern Aligning with the insight that retrieval often
emphasizes content matching rather than complex
reasoning (Rogers et al., 2021), we find that 71 out
of the 100 samples only require simple keyword
matching, where 18 questions fully match with ta-
ble titles (Figure 2 (a)) and the other 53 questions
further match with table headers (Figure 2 (b)).

Retrieval that Requires Row/Column Alignment
For the other 29 samples, understanding table struc-
ture is helpful but only simple row/column align-
ment is needed. 21 of them require locating content
cells in a specific column and combining the infor-
mation from headers. For example in Figure 2(c),
under the general header “Population”, one should
locate the “Total” field by their structural relation to
confirm that the ‘total number’ measure of ‘popula-
tion’ exists. In addition, 7 of the samples are some-

37

……

Question:
What is the largest man made lake in the us?

Question:
What is the genus of a bald eagle?

(a)

(b)

……

(c)

Question:
What is the population of Florida?

……

Figure 2: Table (a) matches the question by its title, (b)
matches topic in title and answer type in header, and in
(c) knowing the column alignment helps.

what ambiguous and may require external knowl-
edge or question clarification (Min et al., 2020).

In summary, our analysis reveals that understand-
ing table structure is not necessary in the majority
of cases, and even for cases where structural infor-
mation is useful, they merely require aligning the
rows/columns instead of building complex chains
of reasoning.

3 Text Retrieval vs Table Retrieval

Given the previous analysis, we hypothesize that
general-purpose text-based retrievers without table-
specific designs might not be necessarily worse
than special-purpose table-based retrievers, contra-
dictory to what most previous work has assumed
(Herzig et al., 2021, 2020; Yin et al., 2020; Wang
et al., 2021b). Properly trained text-based retriev-
ers might even outperform table-based retrievers
because the strong content matching ability learned
on text retrieval datasets can transfer to the table
retrieval task.

To validate these assumptions, we examine two
representative retrieval systems: the text-based
Dense Passage Retriever (DPR) and the table-based
Dense Table Retriever (DTR). We first briefly in-
troduce their input formats and model architectures
(§ 3.1,§ 3.2), then conduct experiments in both zero-
shot and fine-tuning settings and compare their ta-
ble retrieval performance (§ 3.3).

3.1 Text Retriever: DPR
We choose DPR (Karpukhin et al., 2020) as a rep-
resentative text retrieval model, mainly because of
(1) its impressive performance across many text-
related retrieval tasks, and (2) its similarity with
DTR from both training and modeling perspectives,
which make it easy to make fair comparisons.

DPR comprises a question-context bi-encoder
built on BERT (Devlin et al., 2018), which includes
three types of input embeddings as summarized
in Table 1. The question encoder BERTq encodes
each question q and outputs its dense representa-
tion using the representation of [CLS] token, de-
noted as hq = BERTq(q)[CLS]. The context en-
coder works similarly. To enable tables for sequen-
tial context inputs, we linearize each table into a to-
ken sequence T , which is then fed into the context
encoder BERTc to obtain its dense representation
hT = BERTc(T)[CLS]. The similarity score be-
tween a question q and a table T is computed as the
dot product of two vectors sim(q, T) = hq · hT .

DPR has been trained only on sequential text
contexts. For each question in the NQ-text training
set, the model is trained to select the correct con-
text that contains the answer from a curated batch
of contexts including both the annotated correct
contexts and mined hard negative contexts.

To convert tables into the DPR input format,
we linearize tables into token sequences. We con-
catenate the title, the header row, and subsequent
content rows using a period ‘.’ (row delimiter).
Within each header or content row, we concatenate
adjacent cell strings using a vertical bar ‘|’ (cell
delimiter). A template table linearization reads
as [title].[header].[content1]. · · · .[contentn]. Al-
though the BERT encoder has the capacity for a
maximum of 512 tokens, DPR is only exposed to
contexts no longer than 100 words during train-
ing and testing. To avoid potential discrepancies
between its original training and our inference pro-
cedure, we shorten long tables by selecting the first
few rows that fit into the 100-word window.

3.2 Table Retriever: DTR
Dense Table Retriever (DTR) (Herzig et al., 2021)
is the current state-of-the-art table retrieval model
on the NQ-table dataset.

Model Architecture DTR largely follows the bi-
encoder structure of DPR, but differs from it in the
embedding layer. As shown in Table 1, DTR uti-
lizes the existing embeddings in alternative ways

38

and introduces new types of embeddings specifi-
cally designed to encode tables.

Both models use the BERT vocabulary index for
token embedding. For the segment index, DPR
assigns all tokens in a sequence to index 0, while
DTR distinguishes the title from table content by
assigning 0 and 1, respectively. For positions, DPR
inherits from BERT the sequence-wise order index
[0, 1, 2, ..., sequence length−1]; DTR adopts a cell-
wise reset strategy that records the index of a token
within its located cell [0, 1, ..., cell length− 1].

Most importantly, DTR introduces row and col-
umn embeddings to encode the structural position
of each token in the cell that it appears. This ex-
plicit join of three positional embeddings is poten-
tially more powerful than the BERT-style flat index.
Besides, concerning the high frequency of numeri-
cal values in tables, DTR adds a ranking index for
each token if it is part of a number.

Embeddings DPR DTR

token BERT vocab BERT vocab
segment 0 for all tokens 0 for text, 1 for table
position sequential cell-wise reset
row - row index
column - column index
rank - rank of token value

Table 1: Comparison of DPR and DTR embeddings.

Training Process DTR also has a more complex
training process than DPR. As summarized in Fig-
ure 3, DTR has a three-stage training using tables.

BERT

NQ-table Hard
Negative

All
Wikipedia

Tables
Masked LM

All
Wikipedia

Tables

Inverse
Cloze Task

NQ-table Hard
Negative

DPR DTR

TAPAS

Figure 3: Comparison of DPR and DTR training.

First, model parameters, except for those ex-
tra table-specific embeddings, are initialized with

BERT weights. The model is then pre-trained
on all Wikipedia tables using the Masked LM
(MLM) (Devlin et al., 2018) task, yielding the
TAPAS (Herzig et al., 2020) model. Second, to
leverage TAPAS to the retrieval task, it is further
pre-trained using the Inverse Cloze task (ICT) in-
troduced by ORQA (Lee et al., 2019), again, on
all Wikipedia tables. Third, the model is trained
on the specific NQ-table dataset, similar to the way
that DPR is trained on text retrieval datasets: for
each question in the NQ-table training set, DTR
uses the annotated table as the positive context and
self-mined tables without answers as hard negative
(HN) contexts.

3.3 Text Retrieval Benefits Table Retrieval
To evaluate the benefit on table retrieval from train-
ing on in-domain text retrieval datasets, we com-
pare the performance of DPR and BERT (Devlin
et al., 2018) after fine-tuning on NQ-table.

As shown in Table 3, BERT-table significantly
underperforms DPR-table, indicating that training
on in-domain text retrieval datasets benefits the
table retrieval task. We conjecture that the large gap
is essentially because (1) NQ-text and NQ-table
questions share similar characteristics hence are
agnostic to the format of answer source (Wolfson
et al., 2020), and (2) NQ-text has a larger size than
NQ-table (71k versus 12k).

3.4 DPR vs DTR
To verify if table-specific model designs in DTR
are necessary, we start with comparing the original
DPR with DTR to evaluate their off-the-shelf per-
formance, then proceed to fine-tune DPR on NQ-
table to examine the how much improvement can
be brought by training data. We evaluate both mod-
els on NQ-table test set and measure the retrieval
accuracy by computing the portion of questions
where the top-k retrieved tables contain the answer.

For DPR experiments, we use the latest pub-
lished checkpoint2 where the hard-negative text
passages are mined using the DPR checkpoint
saved in the previous round. To reproduce the DTR
performance, we use the published checkpoints3

and run the retrieval inference.
To curate training samples for questions in the

NQ-table training set, we take the same positive
table used in DTR training. For negative contexts,

2https://github.com/facebookresearch/DPR
3https://github.com/google-research/tapas/blob/master/

DENSE_TABLE_RETRIEVER.md

39

we use the original DPR checkpoint to retrieve the
top-100 table candidates for each question, from
which we take the highest-ranked tables without
answers as the hard negatives. We train with a batch
size of 16 and a learning rate of 2e−5. Experiments
are finished on four NVIDIA Tesla V100 GPUs.

Note that the published DPR and DTR check-
points are not strictly comparable, since the size of
DPR base falls between the DTR medium and DTR
large with respect to the number of parameters. We
report the performance of DTR in both medium
and large size to approximate the lower and upper
bounds for the DTR base model.

Size Layers Attention Heads Hidden Size

medium 8 8 512
base 12 8 768
large 24 16 1024

Table 2: Hyper-parameters for BERT models of varied
sizes. Models of different sizes vary in the number
of transformer layers, the number of heads in the self-
attention module, and the dimension of hidden states.

Table 2 shows the configurations of BERT-
variants in different sizes. As can be seen from the
hyper-parameter values, models of medium size
have the smallest capacity, base is an intermediate
configuration, and large size is the biggest.

As reported in Table 3, DPR is able to achieve a
zero-shot retrieval accuracy (DPR) on NQ-table
that is fairly close to the state-of-the-art DTR
model, even without any table-specific model de-
sign and training. Further, simply fine-tuning DPR
on NQ-table (DPR-table) using the same annotated
positive and mined hard-negative tables as DTR in-
creases the performance by a large margin, achiev-
ing superior performance than DTR, especially at
top ranking positions (i.e., small k).

Model Retrieval Accuracy
@1 @5 @10 @20 @50

DTR (medium) 62.32 82.51 86.75 91.51 94.26
DTR (large) 63.98 84.27 89.65 93.48 95.65

BERT-table 60.97 79.81 85.51 88.20 91.62

DPR 57.04 80.54 86.13 89.54 92.34
DPR-table 67.91 84.89 88.72 90.58 92.86

Table 3: Top-k table retrieval accuracy on NQ-table test
set. DPR is the original model checkpoint. DPR-table
and BERT-table are DPR and BERT fine-tuned on NQ-
table respectively.

These observations question the necessity of
both table-specific model designs listed in Table 1
and table-specific pre-training listed in Figure 3.
Given the task analysis in § 2 that table retrieval
only requires simple structure understanding, we
hypothesize that DPR, trained with table inputs
linearized from top-to-bottom and left-to-right, is
functionally capable of implicitly encoding simple
table structure such as row/column alignment, and
the benefit of extra table-specific model designs is
minimal. To thoroughly and rigorously verify our
hypothesis, we first examine the effect of different
ordering in table linearization in § 4, then exper-
iment with three widely-used structure injection
model designs by adding them on DPR in § 5.

4 Implicit Structure Encoding from
Linearized Tables

The simplest way to encode table structure is to
linearize the table following the top-to-bottom left-
to-right order and insert delimiters between cells
and rows, from which the sequence-oriented trans-
former models should also be able to recover the
two-dimensional table structure.

We hypothesize that this type of implicit struc-
ture encoding is sufficient for table retrieval, which
only requires simple structure understanding. To
verify this, we manipulate linearized tables by ran-
domly shuffling their rows/columns (§ 4.1) or re-
moving the delimiters (§ 4.2), and examine how
these perturbation affect the final performance.

4.1 Shuffling Rows and Columns

Our first experiment focuses on the order of table
linearization: if DPR relies on a proper lineariza-
tion to capture table structure, randomly shuffling
the table contents should corrupt the structure infor-
mation and hurt the representation quality, leading
to lower retrieval accuracy.

To verify this, we shuffle table cells within each
row, each column, or both. Cells in the same row
often describe the same entity from multiple prop-
erties according to their column headers, therefore
shuffling the order of multiple cells in the same row
corrupts their alignment with header cells. Mean-
while, cells in the same column are often of the
same semantic type but are attributes to different
entities in different rows, shuffling the order of
cells in the same column breaks their alignment
with entities. We also examine shuffling on both
dimensions, which completely removes the order

40

information from the table linearizations.
Since models trained on properly linearized ta-

bles might be prone to the train-test discrepancy
when tested on shuffled tables, we conjecture that
the gap between testing on proper tables and shuf-
fled tables cannot be fully attributed to the loss of
order information. We therefore conduct a more rig-
orous experiment by fine-tuning DPR on shuffled
tables in both dimensions (DPR-table w/ shuffle)
and test it on both proper and shuffled tables.

Method Retrieval Accuracy
Model Shuffle @1 @5 @10 @20 @50

DPR

- 57.04 80.54 86.13 89.54 92.34

row 55.18 79.19 85.82 89.75 92.44
column 57.04 80.85 86.65 89.34 92.55
both 57.97 79.61 84.89 89.44 92.55

DPR-table

- 67.91 84.89 88.72 90.58 92.86

row 55.18 76.09 80.64 85.40 89.23
column 58.39 77.74 82.92 86.44 89.86
both 54.76 75.16 80.64 84.87 88.82

- 62.94 80.12 84.99 88.92 91.30

DPR-table row 62.11 80.95 85.30 88.82 91.72
w/ shuffle column 64.91 82.30 86.75 89.54 92.55

both 63.35 81.06 85.20 89.34 91.93

Table 4: Top-k table retrieval accuracy on shuffled NQ
tables, using the original DPR, the fine-tuned (DPR-
table), and the fine-tuned on shuffled tables (DPR-table
w/ shuffle).

As shown in Table 4, on the original DPR model,
all table shuffling strategies result in minor vari-
ations in retrieval accuracy, which is intuitive be-
cause DPR has never been trained on linearized
tables and it is not sensitive to cell orders.

The performance of fine-tuned DPR (DPR-table)
drops significantly when tested on shuffled tables,
similar to the previous finding that T5 model is
also sensitive to the ordering of structured knowl-
edge (Xie et al., 2022). Besides the potential dis-
crepancy in table layout between training and test
inputs, this may indicate that DPR, although with-
out explicit structure encoding modules, also learns
to implicitly capture structures by training on lin-
earized table inputs.

To ablate out the influence of train-test discrep-
ancy, we also fine-tune DPR on shuffled posi-
tive and negative tables. As expected, DPR-table
w/ shuffle does not suffer from train-test discrep-
ancy. While DPR fine-tuned on shuffled tables still
outperforms the original DPR (57.04→62.94@1),
the improvement is not as significant as the im-

provement obtained by fine-tuning on proper tables
(57.04→67.91@1), indicating that DPR is able to
utilize structure-preserving table linearizations to
encode structures during training.

Comparing different shuffling dimensions, we
notice that in-row shuffling hurts the performance
more than in-column shuffling, indicating that pre-
serving semantic type alignment within each col-
umn is more important than preserving entity align-
ment within each row for table retrieval.

4.2 Removing Delimiters Between Rows/Cells
In this section, we study the impact of delimiters in
helping models to encode table structures. If delim-
iters are not included, it is theoretically impossible
to recover the table structure even from properly
linearized tables, because the boundaries between
different cells and rows are unknown. To verify if
delimiters can serve as effective indicators of table
structure, we study the usefulness of both inserting
delimiter (‘|’) between cells and inserting delimiter
(‘.’) between rows.

Similarly to the previous experiment, we evalu-
ate (1) the original DPR model (DPR), (2) the DPR
fine-tuned on tables with delimiters (DPR-table),
and (3) the one fine-tuned on linearized tables with-
out delimiters (DPR-table w/o delimiter).

Method Retrieval Accuracy
Model Delimiter @1 @5 @10 @20 @50

DPR

all 57.04 80.54 86.13 89.54 92.34

cell 56.00 79.40 85.30 89.54 92.34
row 54.24 77.54 82.92 87.68 92.13
none 55.49 79.09 84.78 89.44 92.03

DPR-table

all 67.91 84.89 88.72 90.58 92.86

cell 55.80 75.26 81.16 85.20 89.23
row 55.07 74.95 80.75 84.68 89.65
none 56.63 76.19 81.26 86.13 89.75

all 63.46 81.47 85.09 88.82 92.13

DPR-table cell 63.04 83.02 87.47 90.06 92.13
w/o delimiter row 63.35 80.54 85.20 89.34 92.03

none 64.49 81.88 86.23 89.86 92.55

Table 5: NQ-table retrieval accuracy with linearized
table w/ and w/o cell and row delimiters. cell linearizes
table by only inserting delimiters between cells, row
only inserts delimiters between rows, and none inserts
neither.

As shown in Table 5, for DPR, although the over-
all performance drop is small without delimiters,
separating cells is more important than separating
rows, which is intuitive because the number of cells
is larger than the number of rows. On DPR-table

41

that learns from properly delimited tables, the in-
fluence is more significant, and the extent of drop-
ping is similar to that of table structure shuffling
in Table 4. Also similar to the previous findings,
training on non-delimited tables (DPR-table w/o
delimiter) improves over the original DPR, but the
improvement is not as significant as the improve-
ment obtained by fine-tuning on delimited tables,
suggesting that cell and row delimiters help models
encode table structure.

5 Explicit Structure Encoding with
Table-specific Model Design

From the previous section, we conclude that DPR
can already encode simple table structures based on
structure-preserving linearized tables with correct
cell order and delimiters. The next question is “can
explicit table-specific model designs encode more
complex structure that is useful beyond the capacity
of implicit encoding?”

In this section, we examine three widely used
table-specific modules to explicitly encode table
structure information by adding these modules on
top of the DPR architecture. As summarized in
Table 6 and illustrated in Figure 4, we categorize
existing methods for table-specific structure encod-
ing into three representative types: (1) auxiliary
table-specific embeddings, (2) restricted hard at-
tention mask to enforce structure-aware attention,
and (3) soft attention bias based on the structural
relations of cell pairs. For each component, we add
it onto the DPR architecture and fine-tune under
the same setting as for DPR-table.

Method Papers

auxiliary embeddings

TAPAS (Herzig et al., 2020)
MATE (Eisenschlos et al., 2021)
TUTA (Wang et al., 2021b)
TABBIE (Iida et al., 2021)

hard attention mask

TURL (Deng et al., 2020)
SAT (Zhang et al., 2020)
ETC (Ainslie et al., 2020)
DoT (Krichene et al., 2021)
MATE (Eisenschlos et al., 2021)
TUTA (Wang et al., 2021b)

soft attention bias RAT-SQL (Wang et al., 2020)
‘ TableFormer (Yang et al., 2022)

Table 6: Structure encoding methods used in previous
works for table-related tasks.

5.1 Auxiliary Row and Columns Embeddings

We first examine if adding table-specific embed-
ding parameters would bring additional improve-
ment. Specifically, we add row and column embed-
dings into the DPR to encode the row and column
indices of tokens, which is denoted as DPR-table w/
emb. Both row and column indices are 1-indexed,
and 0 is used for tokens that are not part of the table
(e.g., title). We initialize row/column embeddings
with zero to allow smooth continual learning.

5.2 Hard Attention Mask

Another approach is to enforce structure-aware at-
tention using hard attention mask that only allows
attention between elements within their mutual
structural proximity, with the assumption that ele-
ments are only semantically relevant to elements
in their structural proximity. Specifically, Krichene
et al. (2021); Eisenschlos et al. (2021); Deng et al.
(2020) sparsify the attention mask such that each
token is only visible to other tokens that are either
within the same row or the same column. We apply
this masking strategy when fine-tuning DPR and
denote this setting as DPR-table w/ mask.

5.3 Soft Relation-based Attention Bias

The third method is to bias the attention weight
between two tokens based on their structural rela-
tion, which is a more fine-grained way to enforce
structure-aware attention than hard mask. Specifi-
cally, different bias scalars are added to the atten-
tion scores based on the relation between two cells.
Wang et al. (2020) categorize relations by columns,
while Yang et al. (2022) defines 13 relations based
on which component the token belongs to: sen-
tence, header, and cell. A more concrete example
is illustrated in Figure 4. Relational bias is invari-
ant to the numerical indices of rows and columns,
which is more robust to answer-invariant structure
perturbation. We follow Yang et al. (2022) to add
soft attention bias on DPR with 13 relations.

5.4 Results and Analysis

As shown in Table 7, methods that explicitly
encode table structures, either with additional
row/column embeddings (w/ emb), hard attention
mask (w/ mask), or soft relation-based attention
bias (w/ bias), do not bring improvements over
the DPR-table baseline, indicating that given the
capacity of DPR in implicitly encoding structure

42

Encoder

token + position + segment

DPR

token + position + segment

Auxiliary embeddings Hard attention mask

+
0 1 1 1 2 2 2

token + position + segment

Soft attention bias

token + position + segment

Embedding row id

0 1 2 3 1 2 3column id

c00

c11

c12

c13

c21

c22

c23

c00 c11 c12 c13 c21 c22 c23 c00 c11 c12 c13 c21 c22 c23 c00 c11 c12 c13 c21 c22 c23 c00 c11 c12 c13 c21 c22 c23

normal (global) attention

masked (not visible)

sentence-to-sentence

sentence-to-header

sentence-to-cell

header-to-sentence

cell-to-sentence

header-to-header (same column)
header-to-header (diff. column)
header-to-cell (same column)
header-to-cell (diff. column)
cell-to-header (same column)
cell-to-header (diff. column)
cell-to-cell (same column)
cell-to-cell (diff. column)

Figure 4: Illustration of three explicit structure encoding methods.

from linearized tables, the benefit of using special-
purpose structure encoding modules is minimal.

Model Retrieval Accuracy
@1 @5 @10 @20 @50

DPR-table 67.91 84.89 88.72 90.58 92.86

w/ emb 65.73 81.99 86.02 89.23 92.86
w/ mask 62.11 81.88 86.96 89.86 93.06
w/ bias 65.42 82.23 86.75 89.54 92.13

Table 7: Top-k table retrieval accuracy on NQ-table test.
DPR-table is fine-tuned on the NQ-table without any
table-specific modules, while the other three methods
add auxiliary row/column embeddings (w/ emb), hard
attention mask (w/ mask), and soft relation-based atten-
tion bias respectively (w/ bias).

6 Related Work

Open-domain Question Answering Open-
domain QA systems often use a retriever-reader
pipeline, where the retriever retrieves relevant
contexts and the reader extracts or generates
answer from them. Because the candidate context
corpus is usually large with millions of documents,
good retrieval accuracy is crucial for open-domain
QA systems (Karpukhin et al., 2020). Beyond
texts, another common sources for answering
open-domain questions is tables. Herzig et al.
(2021) recently identified a subset of Natural
Questions (NQ) dataset (Kwiatkowski et al., 2019)
that is answerable by Wikipedia tables. Oguz
et al. (2021) found that incorporating structured
knowledge is beneficial for open-domain QA tasks.

Ma et al. (2021) showed that verbalizing structured
knowledge into fluent text bring further gains over
raw format for open-domain QA. Different from
prior work, our paper analyzes different strategies
for encoding tables with a focus on the task of
table retrieval.

Table Understanding To encode the relational
structure of tables, CNNs (Chen et al., 2019a),
RNNs (Gol et al., 2019), LSTMs (Fetahu et al.,
2019), and their combinations (Chen et al., 2019b)
are explored. In addition, graph neural networks
(GNN) are used, especially for tables with complex
structures (Koci et al., 2018; Zayats et al., 2021; Vu
et al., 2021; Bhagavatula et al., 2015). With the re-
cent advances in pre-trained language models, table
encoders adapt pre-trained language models with
additional table-specific modules encoding struc-
ture (Herzig et al., 2020; Yin et al., 2020; Wang
et al., 2021b) and numeracy (Wang et al., 2021b;
Herzig et al., 2020). These methods are intention-
ally built for tables, but their necessity in each task
remains unknown. Our work exploits a generic
model to show that content-emphasized tasks like
retrieval do not require such specific designs.

Table Retrieval Earlier works focus on web table
search in response to keyword queries (Cafarella
et al., 2008, 2009; Balakrishnan et al., 2015; Pimp-
likar and Sarawagi, 2012) or a seed table (Sarmad
et al., 2012). Many of them use the 60 keywords
and relevant web tables collected by Zhang and Ba-
log (2018). Tables are modeled by aggregating mul-

43

tiple fields (Zhang et al., 2019), contexts (Trabelsi
et al., 2019), and synthesized schema labels (Chen
et al., 2020b). More recently, Chen et al. (2020c);
Wang et al. (2021a) use structure-augmented BERT
for retrieval. These works largely treat the retrieval
task on its own account and target similarity under
the traditional Information Retrieval (IR).

7 Conclusion

Given the importance of finding relevant tables
when answering questions in the NQ-table dataset,
we study the task of table retrieval and find that
table retrieval emphasizes content rather than table
structure. Our experiments with the text-generic
Dense Passage Retriever (DPR) and the state-of-
the-art table-specific Dense Table Retriever (DTR)
demonstrate that DPR can already encode sim-
ple structures based on linearized tables and table-
specific designs such as auxiliary embeddings, hard
attention mask, and soft attention bias are not nec-
essary. Our findings suggest that future develop-
ment on table retrieval can potentially be built upon
successful text retrievers and table-specific model
designs should be carefully examined to avoid un-
necessary complexity.

Acknowledgements

We would like to thank Frank F. Xu and Kaixin Ma
for the helpful discussions and anonymous review-
ers for their valuable suggestions on this paper.

References
Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-

clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. Etc: Encoding long and structured inputs in
transformers. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 268–284.

Sreeram Balakrishnan, Alon Halevy, Boulos Harb, Hon-
grae Lee, Jayant Madhavan, Afshin Rostamizadeh,
Warren Shen, Kenneth Wilder, Fei Wu, and Cong Yu.
2015. Applying webtables in practice.

Chandra Sekhar Bhagavatula, Thanapon Noraset, and
Doug Downey. 2015. Tabel: Entity linking in web
tables. In International Semantic Web Conference,
pages 425–441. Springer.

Michael J Cafarella, Alon Halevy, and Nodira Khous-
sainova. 2009. Data integration for the relational web.
Proceedings of the VLDB Endowment, 2(1):1090–
1101.

Michael J Cafarella, Alon Halevy, Daisy Zhe Wang,
Eugene Wu, and Yang Zhang. 2008. Webtables: ex-
ploring the power of tables on the web. Proceedings
of the VLDB Endowment, 1(1):538–549.

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and
Charles Sutton. 2019a. Colnet: Embedding the se-
mantics of web tables for column type prediction.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 29–36.

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks,
and Charles Sutton. 2019b. Learning seman-
tic annotations for tabular data. arXiv preprint
arXiv:1906.00781.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Wang. 2020a. Hybridqa: A
dataset of multi-hop question answering over tabular
and textual data. arXiv preprint arXiv:2004.07347.

Zhiyu Chen, Haiyan Jia, Jeff Heflin, and Brian D Davi-
son. 2020b. Leveraging schema labels to enhance
dataset search. Advances in Information Retrieval,
12035:267.

Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Yinan Xu,
and Brian D Davison. 2020c. Table search using a
deep contextualized language model. In Proceedings
of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 589–598.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2020. Turl: Table understanding through repre-
sentation learning. arXiv preprint arXiv:2006.14806.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Julian Eisenschlos, Maharshi Gor, Thomas Mueller, and
William Cohen. 2021. Mate: Multi-view attention for
table transformer efficiency. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7606–7619.

Besnik Fetahu, Avishek Anand, and Maria Koutraki.
2019. Tablenet: An approach for determining fine-
grained relations for wikipedia tables. In The World
Wide Web Conference, pages 2736–2742.

Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely.
2019. Tabular cell classification using pre-trained
cell embeddings. In 2019 IEEE International Confer-
ence on Data Mining (ICDM), pages 230–239. IEEE.

Jonathan Herzig, Thomas Müller, Syrine Krichene, and
Julian Martin Eisenschlos. 2021. Open domain ques-
tion answering over tables via dense retrieval. arXiv
preprint arXiv:2103.12011.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Mueller, Francesco Piccinno, and Julian Eisensch-
los. 2020. Tapas: Weakly supervised table parsing

44

via pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. Tabbie: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446–3456.

Sujay Kumar Jauhar, Peter Turney, and Eduard Hovy.
2016. Tables as semi-structured knowledge for ques-
tion answering. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 474–483.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.

Elvis Koci, Maik Thiele, Wolfgang Lehner, and Oscar
Romero. 2018. Table recognition in spreadsheets
via a graph representation. In 2018 13th IAPR Inter-
national Workshop on Document Analysis Systems
(DAS), pages 139–144. IEEE.

Syrine Krichene, Thomas Mueller, and Julian Eisensch-
los. 2021. Dot: An efficient double transformer for
nlp tasks with tables. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3273–3283.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open do-
main question answering. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6086–6096.

Qian Liu, Bei Chen, Jiaqi Guo, Zeqi Lin, and Jian-
guang Lou. 2021. Tapex: Table pre-training via
learning a neural sql executor. arXiv preprint
arXiv:2107.07653.

Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric Nyberg,
and Jianfeng Gao. 2021. Open domain question an-
swering with a unified knowledge interface. arXiv
preprint arXiv:2110.08417.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2020. Ambigqa: Answering am-
biguous open-domain questions. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 5783–
5797.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Scott Yih. 2021.
Unik-qa: Unified representations of structured and
unstructured knowledge for open-domain question
answering. arXiv preprint arXiv:2012.14610, 54:57–
60.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480.

Rakesh Pimplikar and Sunita Sarawagi. 2012. Answer-
ing table queries on the web using column keywords.
Proceedings of the VLDB Endowment, 5(10):908–
919.

Anna Rogers, Matt Gardner, and Isabelle Augenstein.
2021. Qa dataset explosion: A taxonomy of nlp
resources for question answering and reading com-
prehension. arXiv preprint arXiv:2107.12708.

Anish Das Sarmad, Lujun Fang, Nitin Guptad, Alon
Halevyd, Hongrae Leed, Fei Wud, Reynold Xin, and
Cong Yud. 2012. Finding related tables.

Mohamed Trabelsi, Brian D Davison, and Jeff Heflin.
2019. Improved table retrieval using multiple con-
text embeddings for attributes. In 2019 IEEE Inter-
national Conference on Big Data (Big Data), pages
1238–1244. IEEE.

Binh Vu, Craig A Knoblock, Pedro Szekely, Minh Pham,
and Jay Pujara. 2021. A graph-based approach for
inferring semantic descriptions of wikipedia tables.
In International Semantic Web Conference, pages
304–320. Springer.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578.

Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and
Pedro Szekely. 2021a. Retrieving complex tables
with multi-granular graph representation learning.
arXiv preprint arXiv:2105.01736.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021b. Tuta: Tree-
based transformers for generally structured table pre-
training. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
pages 1780–1790.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard-
ner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. 2020. Break it down: A question understand-
ing benchmark. Transactions of the Association for
Computational Linguistics, 8:183–198.

45

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. arXiv preprint arXiv:2201.05966.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
Tableformer: Robust transformer modeling for table-
text encoding. arXiv preprint arXiv:2203.00274.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Yi Chern Tan,
Xinyi Yang, Dragomir Radev, Caiming Xiong, et al.
2020. Grappa: Grammar-augmented pre-training for
table semantic parsing. In International Conference
on Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Vicky Zayats, Kristina Toutanova, and Mari Osten-
dorf. 2021. Representations for question answering
from documents with tables and text. arXiv preprint
arXiv:2101.10573.

Hongzhi Zhang, Yingyao Wang, Sirui Wang, Xuezhi
Cao, Fuzheng Zhang, and Zhongyuan Wang. 2020.
Table fact verification with structure-aware trans-
former. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1624–1629.

Li Zhang, Shuo Zhang, and Krisztian Balog. 2019. Ta-
ble2vec: Neural word and entity embeddings for ta-
ble population and retrieval. In Proceedings of the
42nd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 1029–1032.

Shuo Zhang and Krisztian Balog. 2018. Ad hoc table
retrieval using semantic similarity. In Proceedings
of the 2018 world wide web conference, pages 1553–
1562.

Shuo Zhang and Krisztian Balog. 2020. Web table ex-
traction, retrieval, and augmentation: A survey. ACM
Transactions on Intelligent Systems and Technology
(TIST), 11(2):1–35.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

46

Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI), pages 47 - 54
July 14, 2022 ©2022 Association for Computational Linguistics

Transfer Learning and Masked Generation for Answer Verbalization

Sebastien Montella
Orange Innovation / Lannion, France

Aix-Marseille Univ. CNRS, LIS / Marseille, France
sebastien.montella@orange.com

Lina M. Rojas-Barahona
Orange Innovation / Lannion, France
linamaria.rojasbarahona

@orange.com

Frederic Bechet
AMU/CNRS/LIS, Marseille, France
frederic.bechet@lis-lab.fr

Johannes Heinecke
Orange Innovation / Lannion, France

johannes.heinecke@orange.com

Alexis Nasr
AMU/CNRS/LIS, Marseille, France
alexis.nasr@lis-lab.fr

Abstract

Structured Knowledge has recently emerged as
an essential component to support fine-grained
Question Answering (QA). In general, QA sys-
tems query a Knowledge Base (KB) to detect
and extract the raw answers as final prediction.
However, as lacking of context, language gen-
eration can offer a much informative and com-
plete response. In this paper, we propose to
combine the power of transfer learning and the
advantage of entity placeholders to produce
high-quality verbalization of extracted answers
from a structured KB. We claim that such ap-
proach is especially well-suited for answer gen-
eration. Our experiments show 44.25%, 3.26%
and 29.10% relative gain in BLEU over the
state-of-the-art on the VQuAnDA, ParaQA and
VANiLLa datasets, respectively. We addition-
ally provide minor hallucinations corrections in
VANiLLa standing for 5% of each of the train-
ing and testing set. We witness a median abso-
lute gain of 0.81 SacreBLEU. This strengthens
the importance of data quality when using au-
tomated evaluation.

1 Introduction

Question Answering (QA) has witnessed a massive
number of stupendous improvements over the past
few years which marked a new era of QA. At the
core of this significant progress is the huge leap in
the use of Pretrained Language Model (PLM). On
several benchmarks, state-of-the art QA systems
perform on par with human according to reported
evaluation metrics. However, despite remarkable
accuracy in answer detection and extraction, few
works have considered returning a verbalized re-
sponse to the user. Indeed, most of QA systems out-

puts over Knowledge Bases (KBs) are utterly bereft
of any context. To this extent, more works progres-
sively tackled the Answer Verbalization task (AV)
which consists in generating a verbalized form of
the answer. As a consequence, the user may benefit
from a more contextualized response.

Recently, there have been few techniques pro-
posed to perform surface realisation of a raw an-
swer. With the lack of paired training data, Ak-
ermi et al. (2020) investigated an unsupervised
method to obtain answer verbalizations for both
English and French languages. An initial step was
to first check whether the question marker (e.g.
Who, What) could be straightforwardly substituted
with the raw answer or not. For instance, with the
question “Who is the president of the U.S.?”, its
raw answer “Joe Biden” can directly replace the
question marker “who” with the question mark
substituted with a period. If this is not the case,
the question is segmented into chunks based on the
syntactic tree parsed with UDPipeFuture (Straka,
2018; Akermi et al., 2021). After defining the raw
answer as a new chunk, all possible permutations
of the chunks are collected. The most likely per-
mutation is identified with a PLM such as GPT2
(Radford et al., 2019). Finally, Akermi et al. (2020)
use BERT (Devlin et al., 2019) to find any possi-
bly missing function words around the raw answer
such as a, an, to, with, in etc. In spite of its ap-
pealing unsupervised mechanism, this method is
computationally expensive because of the cost of
estimating the likelihood of all (distinct) permuta-
tions. Moreover, the likelihood is computed with
potential absent words which may jeopardize the
final ranking of permutations.

47

Following, multiple datasets were released to
spur the community to apply end-to-end learning
(Kacupaj et al., 2020, 2021a; Biswas et al., 2021).
Kacupaj et al. (2021c) introduced VOGUE, an
end-to-end model based on a dual encoder-decoder
architecture. More precisely, the input question is
encoded with a first Transformer encoder (Vaswani
et al., 2017). On top of that, a logical form of
the question is also encoded with an additional
Transformer encoder. The logical form is a sim-
plified representation of the question, similar to a
query, inspired from Plepi et al. (2021) and Kacupaj
et al. (2021b). Taking our aforementioned question
example, its logical form is find(president,
U.S). During the decoding phase, VOGUE uses
entities placeholders1 for both the raw answer and
the subject entity to generate an abstract version
of the response. Following the previous example,
the generated verbalization would be “[ANS] is
the president of [ENT]”. In our work, we utilize a
comparable mechanism fused with large-scaled pre-
trained models to leverage efficient transfer learn-
ing.

Specifically, our contribution is twofold:

• We propose a masked answer verbalization
coupled with transfer learning to verbalize ex-
tracted answers over KBs. Placeholders are
generated instead of the correct raw answer.
This allows a better generalization and scala-
bility of the model. Then, a post-processing
step is applied which consists of replacing the
placeholder with the raw answer.

• We provide a minor revision of the VANILLA

dataset by correcting entity hallucinations in
5% of the verbalizations. We show evidence
that erroneous references may be the culprit
of 0.13% absolute median SacreBLEU drop
in evaluation and up to 0.81 absolute median
gain in SacreBLEU when trained on corrected
training data.

2 Our Approach

In this section, we present our method
based on transfer learning and masked gen-
eration. We consider an input question
X = {x1, x2, . . . , xN−1, xN} with xi the ith word
and its raw answer A = {a1, a2, . . . , aK−1, aK}
with aj the jth word of the answer2. The

1We use the term placeholder and mask interchangeably.
2The raw answer can be of multiple words.

goal is to generate a verbalized answer
Y = {y1, y2, . . . , yM−1, yM} We model
the generation of each token as a condi-
tional θ-parameterized probability distribu-
tion. More precisely, we estimate θ such that
Pθ(yi|X,A, y1, y2, . . . , yi−1) is maximized.

As mentioned in Dai and Le (2015), Howard and
Ruder (2018) and Montella et al. (2020), NLG has
significantly benefited from transfer learning and
very large PLMs (Devlin et al., 2019; Radford et al.,
2019). The generalization ability to unseen data
has tremendously improved over the last decades
due to the use of excessively large training corpora.
As a consequence, we consider two recent PLMs
for generation to leverage transfer learning:

• BART (Lewis et al., 2020) is based on a Trans-
former architecture (Vaswani et al., 2017).
More specifically, its encoder and decoder cor-
respond to BERT (Devlin et al., 2019) and to
GPT (Radford et al., 2019), respectively. Dur-
ing training, BART is pretrained with a de-
noising objective. It consists in corrupting the
input of the model (masking, reordering, etc)
and to reconstruct the original, i.e. denoised,
input.

• T5 (Raffel et al., 2020) is similar to the
Transformer-based model (Vaswani et al.,
2017) with minor changes. For instance, as po-
sitional embeddings, a single scalar is added
to the logits used for attention weights compu-
tation. Also, a simplified layer normalization
is utilized. T5 is trained on multiple tasks at
once such as question answering, language
modeling, span extraction, paraphrasing, sen-
timent analysis, etc. To do so, all text process-
ing tasks are cast in a text-to-text framework
which allows to reuse the same model, loss
function, optimizer and so on. Both input and
target are textual content or transformed as
text. Thus, for binary, numerical or categori-
cal data types, T5 maps such format to strings.
Moreover, a specificity of T5 is that the task
is informed within the input thanks to a pre-
fix, e.g. “translate English to German:” or

“summarize:”. While finetuning, it is a good
practice to reuse the same prefix as the down-
stream task for efficient transfer learning.

In order to verbalize the answer, a first step con-
sists in encoding X with the encoder part of T5 or
BART model. Then, the decoder part takes learned

48

representations to generate Y . In our case, a place-
holder is generated in Y which will be replaced by
the raw answer A as explained in next section.

2.1 Masked Answer Verbalization
As humans, our ability to generate a response is
independent and agnostic to our own knowledge.
For instance, given the question “What is the capi-
tal of Ghana?”, although the answer, i.e. “Accra”,
might not be known, one is still able to generate
the response “The capital of Ghana is [ANSWER]”
where [ANSWER] stands for a placeholder of the
correct raw answer. Therefore, this paradigm could
remain when modeling any question answering sys-
tem. This is a two-stage process. First, a template
of the verbalized answer is generated. Secondly,
we replace the mask with the corresponding raw
answer, i.e. a single or several entities, of the input
question. We are aware that this approach works
especially well in English, but would require adjust-
ment to other languages such as French or German
because of gender agreement. However, several
benefits can be pointed out. It alleviates the train-
ing of the model since it principally learns to gen-
erate templates. In addition, it avoids misspelling
of entities during the generation. It has been shown
that unseen entities are not handled properly by
the generative system (Ferreira et al., 2020). This
is further critical when a copy mechanism is not
applied. On top of that, using placeholders reduces
the complexity of the model by shrinking its vocab-
ulary dimension (last layer). This is also significant
regarding training time since a softmax layer is usu-
ally applied which is known to be time consuming.

3 Datasets

More and more efforts have been made to construct
and annotate new QA datasets. However, most of
proposed corpora do not include a well-formed and
informative response. In fact, no verbalization of
the retrieved answer is usually given. Only the raw
answer acts as the final prediction which puts a curb
on possible downstream generation task. To this
end, we explore newly released datasets equipped
with a natural language form of the response:

• VQuAnDa (Kacupaj et al., 2020) is based on
the Large scale Complex Question Answer-
ing Dataset (LC-QuAD). VQuAnDa provides
a set of 5000 complex questions with their
SPARQL queries and their corresponding an-
swer verbalization. A semi-automatic pro-

cess is used to derive the answer verbalization
of each question. The available templates of
the questions in LC-QuAD dataset are para-
phrased using strict rules (use of active voice,
synonyms, order rearranging, etc.) to get nat-
ural response templates. Then, a second step
consists in extracting raw answers from DB-
pedia using the SPARQL queries. In case
that the number of retrieved answers is greater
than 15, the list of answers is replaced with
a single token [answer] to avoid long se-
quences. Lastly, entities and predicates are
filled accordingly to generate the final ver-
balization. To ensure correctness, resulting
verbalization are checked manually according
to (Kacupaj et al., 2021a). There are totally
4000 and 1000 pairs for training and testing
sets, respectively.

• ParaQA (Kacupaj et al., 2021a) extends
VQuAnDa by proposing multiple verbaliza-
tions for each question. This paraphrasing
task was done using different techniques such
as back-translation. At least two verbal-
izations per questions are given, and up to
8 unique paraphrases are provided in some
cases. Thus, more pairs in training set can
be found for the same question. We record
a total of 12,637 pairs in training. Note that
the training and testing splits of ParaQA are
different than VQuAnDa.

• VANiLLa (Biswas et al., 2021) is a com-
pelling dataset due to its size. Covering more
than 300 relations, it was built using a semi-
automatic framework. First, direct questions
with single entity as answer were extracted
from the Complex Sequential Question An-
swering (CSQA) (Saha et al., 2018) and Sim-
pleQuestions3 Datasets. After clustering simi-
lar questions based on 4-grams, a template-
based verbalization of a single instance of
each cluster was manually annotated thanks
to Amazon Mechanical Turk (AMT). Finally,
a post-processing aims at using the resulting
templates to infer the verbalization for other
similar questions in corresponding clusters.
Totally, VANiLLa gathers 85,732 and 21,434
pairs for training and testing.

3Available at https://github.com/
davidgolub/SimpleQA/tree/master/
datasets/SimpleQuestions

49

Train Test
VQuAnDa 4,000 1,000

ParaQA 12,637 1,000
VANiLLa 85,732 21,434

Table 1: Datasets Statistics

These datasets are therefore suitable for the re-
sponse generation task. Nonetheless, because of
the semi-automatic framework, these corpora are
prone to errors as we will show in Section 4.4

4 Experiments

In our experiments, we provide empirical results
on the introduced datasets in Section 3. In Section
4.2, we compare our transfer learning approach
over the existing literature using T5 and BART em-
bedded with a masking strategy. Then, we explore
the advantage of placeholders in Section 4.3. Our
inputs and outputs with and without our masking
approach are depicted in Table 2.

4.1 Training Settings

We use the pretrained BART and T5 models
from HuggingFace. For both PLMs, we use their
base models, i.e. facebook/bart-base and
t5-base configurations. The input questions
and target responses are all lower-cased. Since no
validation sets are provided regarding the official
splits, we arbitrarily set our hyperparameters
for all of our experiments and do not validate
them. We choose to finetune models on 10
epochs using a batch size of 32. We use the
cross entropy loss and Adam optimizer for
optimization. The initial learning rates are set
to 1.0 × 10−5 and 1.0 × 10−4 for BART and T5
respectively.4 For T5, we prefix each question
with the prefix “question:” as it has already been
used during T5 pretraining for question-answering.
During generation, we use a greedy decoding (no
beam search or sampling is applied). For better
reproducibility, our code is available at https:
//github.com/Anonymous1911272/
answerverbalization.

4.2 Results

Evaluation of natural language remains a critical is-
sue since it is difficult to automate. Besides, human
annotations are usually costly and time-consuming.

4We witness divergence when learning rate is set to 1.0×
10−4 for BART.

For fair comparison, we follow exactly the same
evaluation protocol and metrics as Kacupaj et al.
(2021c), using BLEU (on 4-grams) (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005)5.
Since our predicted verbalizations contain place-
holders, we replace them with the raw answers
included in the dataset. Therefore, our evaluation
does not differ between unmasked approaches. Re-
sults on VQuAnDa, ParaQA and VANiLLa datasets
are depicted in Table 3.

We can see that transfer learning methods sys-
tematically show best (bold) or second-to-best (un-
derlined) performances on all datasets. This is not
surprising as large pretraining has shown massive
improvements over standard approaches. BART
exhibits much better performances than T5 on
VQuAnDa and ParaQA. On the contrary, T5 is
slightly better on VANiLLa. We conjecture that
BART is well-fitted to map question to its answer
verbalization. Question and response usually share
similar words, but in different orders and few words
or preprosition could be missing to go from one
to another. This exactly corresponds to the denois-
ing objective on which BART has been pretrained.
Therefore, the input question can be viewed as
a noisy version of the answer verbalization from
which BART attempts to reconstruct. Regardless,
pretrained models on average results in 44.25%,
3.26% and 29.10% relative gain in BLEU over
VOGUE on VQuAnDa, ParaQA and VANiLLa re-
spectively. VOGUE nonetheless shows interesting
results despite its size and no pretraining. This
is also explained by the logical form of the ques-
tion which boils down the question to a simple
abstraction. Furthermore, we observe that the un-
supervised strategy by Akermi et al. (2020) has
strong shortcoming to compete with a basic RNN.
Their method is sensitive to the syntax and length
of the input question. The longer the question, the
worst the generation. While the verbalizations in
VQuAnDa and ParaQA are 17 tokens long on aver-
age, this might be the reason of low performances
on these datasets. Moreover, unnatural questions,
as included in VANiLLa, are not handled properly
because of the use of PLMs to gauge the likelihood
of permutations.

In the following, our interest lies in measuring
the real gain of using placeholders.

5Kacupaj et al. (2021c) average the BLEU and METEOR
of each verbalization.

50

Input Output
w/o mask Who is the president of the U.S.? [SEP] J. Biden The president of the U.S. is J. Biden.
w/ mask Who is the president of the U.S.? The president of the U.S. is [ANSWER].

Table 2: Examples of model input and output with and without placeholders. During evaluation, the placeholder is
replaced with the raw answer J. Biden.

BLEU ↑ METEOR ↑
Models VQuAnDa ParaQA VANiLLa VQuAnDa ParaQA VANiLLa
RNN✝ 15.43 22.45 16.66 53.15 58.41 58.67

Transformer✝ 18.37 23.61 30.80 56.83 59.63 62.16
Akermi et al. (2020) 22.70 18.25 18.30 48.04 44.27 48.27

VOGUE✝ 28.76 32.05 35.46 67.21 68.85 65.04
T5 (masking) 39.07 30.62 45.87 67.70 59.81 67.15

BART (masking) 43.90 35.57 45.69 71.92 65.40 66.71

Table 3: Answer Verbalization Results. (✝) results are taken from Kacupaj et al. (2021c).

BLEU ↑ METEOR ↑ SacreBLEU ↑ Chrf++ ↑ TER ↓
T5 w/o mask 30.06 58.39 35.25 56.44 52.67

w/ mask 39.07 67.70 58.26 73.87 42.45
BART w/o mask 33.93 61.43 39.19 59.26 49.22

w/ mask 43.90 71.92 60.85 75.45 35.36

Table 4: Results with and without placeholders on VQuAnDa.

BLEU ↑ METEOR ↑ SacreBLEU ↑ Chrf++ ↑ TER ↓
T5 w/o mask 25.55 53.55 33.49 53.84 56.04

w/ mask 30.62 59.81 47.01 66.39 49.87
BART w/o mask 30.56 57.80 37.61 56.95 52.41

w/ mask 35.57 65.40 50.70 68.86 43.50

Table 5: Results with and without placeholders on ParaQA.

BLEU ↑ METEOR ↑ SacreBLEU ↑ Chrf++ ↑ TER ↓
T5 w/o mask 42.91 64.56 53.33 70.19 44.41

w/ mask 45.87 67.15 57.67 73.40 41.59
Bart w/o mask 43.14 65.13 54.16 71.36 43.99

w/ mask 45.69 66.71 57.41 73.07 42.00

Table 6: Results with and without placeholders on VANiLLa.

4.3 To Mask or not to Mask?

In this section, we investigate the impact of using
a masking mechanism. We conduct a comparative
study between masked and non-masked generation.

To do so, we finetune BART and T5 with the
same hyperparameters as previous experiments.
For non-masked generation, the input question is
concatenated with its raw answer. To differentiate
question and answer, we make use of the separa-
tor token [SEP]. With this setting, models should
learn to combine input question and input answer

accordingly to form a grammatically correct ver-
balization. We adopt additional evaluation met-
ric, i.e. SacreBLEU (Post, 2018), Chrf++ (Popović,
2015) and TER (Snover et al., 2006), yielding much
fine-grained analysis. The experiment results for
VQuAnDa, ParaQA and VANiLLa are shown in
Table 4, 5 and 6.

On the three datasets, we observe that using a
placeholder leads to systematic gain for all reported
metrics. More importantly, the gap can be consid-
erably significant when masking the raw answer.

51

20 40 60 80 100
Ratio of Training Data (%)

32

36

40

44

48

52

56

60

Sa
cr

eB
LE

U
 (%

)
VQuAnDa

BART w/o mask
BART w/ mask
T5 w/o mask
T5 w/ mask

20 40 60 80 100
Ratio of Training Data (%)

33

36

39

42

45

48

51

Sa
cr

eB
LE

U
 (%

)

ParaQA

BART w/o mask
BART w/ mask
T5 w/o mask
T5 w/ mask

20 40 60 80 100
Ratio of Training Data (%)

52

53

54

55

56

57

58

Sa
cr

eB
LE

U
 (%

)

VANiLLa

BART w/o mask
BART w/ mask
T5 w/o mask
T5 w/ mask

Figure 1: Tuning proportion of training data

Test Set
raw corrected

T5 w/o mask 53.33 53.45
w/ mask 57.67 57.81

BART w/o mask 54.16 54.30
w/ mask 57.41 57.16

Test Set
raw corrected

T5 w/o mask 52.72 53.58
w/ mask 57.48 58.23

BART w/o mask 54.96 55.81
w/ mask 58.36 59.13

Table 7: SacreBLEU scores of T5 and BART trained on raw VANiLLa (left) and corrected VANiLLa (right)

For T5 and BART, we note 23.01%, 13.52%, 4.34%
and 21.56%, 13.09%, 3.25% absolute gain in Sacre-
BLEU for VQuAnDa, ParaQA and VANiLLa re-
spectively. Thus, generating a more abstract ver-
balization alleviates the learning. Following, we
inspect the effect of the size of training set. We
thereby finetune BART and T5 on different (ran-
dom) proportion of training data. We report Sacre-
BLEU scores for each portion of training data in
Fig. 1. At first glance, the gap between masked
and non-masked generation remains very distinc-
tive despite using less training data. We remark
for T5 and BART about 23.09%, 13.81%, 3.44%
and 21.65%, 13.00%, 3.40% absolute gain on av-
erage in SacreBLEU on VQuAnDa, ParaQA and
VANiLLa while tuning amount of data fed to mod-
els. We observe that both masked and unmasked
strategies keep increasing performances when new
samples are given. Contrary to expectation, despite
the use of placeholder, masked generation keeps
benefiting of some significant performance leaps.
For BART on VQuAnDa and ParaQA, SacreBLEU
reaches a limit with only 40% of the training data

in both configurations. On VANiLLa, models show
much more variance, but a positive trend remains
overall.

4.4 References are not Innocent

Semi-automatic dataset construction is a conve-
nient yet effective technique to automatically gener-
ate sizeable corpora. Few handcrafted annotations
are needed as initial seed. However, resulting sam-
ples are highly prone to errors or not natural. This
remains a major drawback in the NLG community
where the low quality or diversity of the available
data jeopardize comparison between approaches.
Within the VANiLLa dataset, we particularly re-
veal some verbalizations where the subject entity
of the question differs with the subject entity of
the reference. For example, given the question

“Which sex does Doris Miller belong to?”, the as-
signed reference is “Sterjo is a male”, with “Sterjo”
a hallucinated entity, which should be corrected
with “Doris Miller”. Those hallucinated entities
in gold references especially occur with specific
and redundant entities (e.g. “Sterjo”). We assume

52

the semi-automatic pipeline to be the culprit of
such mismatch. Fortunately, those errors can be
corrected automatically since the subject entity of
each question is explicitly inquired in the origi-
nal dataset. We identified 12 repeated hallucinated
entities over the whole training set of VANiLLa.
We thus interchange erroneous entities with correct
ones. This stands for 5% for each of the training
and testing set. The quality and diversity of refer-
ences was proved to be at the core of variations of
automated metrics outcomes (Freitag et al., 2020).
Errors in references directly jeopardize resulting
performances of models. Indeed, good predictions
might be rated as bad quality while being correct.
Furthermore, automatic metrics are critically sen-
sitive to any changes in chosen words in target
verbalization. We hence investigate the shift in re-
ported results with corrected references. Precisely,
we finetune T5 and BART with same hyperparam-
eters as previously mentioned in Section 4.1. We
train and evaluate models on the original VANiLLa
dataset (“Raw”) and the corrected version (“Cor-
rected”). The SacreBLEU scores are given in Table
7.

With only 5% of corrections in both training
and testing sets, we record small improvements in
SacreBLEU. Although the increases are relatively
insignificant, those results clearly indicates that the
quality of the references is crucial to precisely as-
sess models performances. More and more works
are competing in improving those metrics. Several
contributions in generation considered slight im-
provements as predominance of their approaches
over previous methods. However, we show in Ta-
ble 7 that evaluating models on a corrected version
lead to different results that are not systematically
better. In contrast, when trained on much higher
quality samples, results on corrected testing exam-
ples exhibits more important gain as seen in Table
7. The absolute median gain reaches 0.81 Sacre-
BLEU with a cleaner training set while barely 0.13
with the standard training set. As a consequence,
it is hard to compare and to draw any conclusions
between models on noisy datasets. It is then im-
portant to raise awareness toward automatic dataset
construction.

5 Conclusion

We proposed to verbalize answers usually returned
by any question-answering system from a struc-
tured knowledge base. We combined the ad-

vantages of transfer learning and masked gener-
ation. We compared our strategies with and with-
out masks using T5 and BART. We showed that
using massively pretrained models with answer
placeholders alleviates the learning and led to un-
precedented results on VQuAnDa, ParaQA and
VANiLLa datasets. Furthermore, we revealed
multiple redundant entity hallucinations in the
VANiLLa dataset. By automatically correcting 5%
of them, we observed shifts in performances. This
further demonstrates the limitation of automatic
metrics when references are not reliable.

References
Imen Akermi, Johannes Heinecke, and Frédéric

Herledan. 2020. Transformer based natural language
generation for question-answering. In Proceedings of
the 3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+), page
349–359, Dublin, Ireland (Virtual). Association for
Computational Linguistics.

Imen Akermi, Johannes Heinecke, and Frédéric
Herledan. 2021. Génération automatique de texte
en langage naturel pour les systèmes de questions-
réponses. Traitement Automatique des Langues,
62(1):13–37.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Debanjali Biswas, Mohnish Dubey, Md Rashad
Al Hasan Rony, and Jens Lehmann. 2021. Vanilla:
Verbalized answers in natural language at large scale.
arXiv:2105.11407.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Informa-
tion Processing Systems, volume 28. Curran Asso-
ciates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh,
Chris Van Der Lee, Simon Mille, Diego Moussallem,
and Anastasia Shimorina. 2020. The 2020 Bilingual,

53

Bi-Directional WebNLG+ Shared Task Overview
and Evaluation Results (WebNLG+ 2020). In Pro-
ceedings of the 3rd International Workshop on Nat-
ural Language Generation from the Semantic Web
(WebNLG+), Dublin/Virtual, Ireland.

Markus Freitag, David Grangier, and Isaac Caswell.
2020. BLEU might be guilty but references are not
innocent. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 61–71, Online. Association for
Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Endri Kacupaj, Barshana Banerjee, Kuldeep Singh, and
Jens Lehmann. 2021a. Paraqa: A question answer-
ing dataset with paraphrase responses for single-turn
conversation. In ESWC 2021, pages 598–613.

Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh
Thakkar, Jens Lehmann, and Maria Maleshkova.
2021b. Conversational question answering over
knowledge graphs with transformer and graph atten-
tion networks. In Proceedings of the 16th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 850–862,
Online. Association for Computational Linguistics.

Endri Kacupaj, Shyamnath Premnadh, Kuldeep Singh,
Jens Lehmann, and Maria Maleshkova. 2021c.
Vogue: Answer verbalization through multi-task
learning. In Machine Learning and Knowledge Dis-
covery in Databases. Research Track, pages 563–579,
Cham. Springer International Publishing.

Endri Kacupaj, Hamid Zafar, Jens Lehmann, and Maria
Maleshkova. 2020. Vquanda: Verbalization question
answering dataset. In The Semantic Web, pages 531–
547, Cham. Springer International Publishing.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Sebastien Montella, Betty Fabre, Tanguy Urvoy, Jo-
hannes Heinecke, and Lina Rojas-Barahona. 2020.
Denoising pre-training and data augmentation strate-
gies for enhanced RDF verbalization with transform-
ers. In Proceedings of the 3rd International Work-
shop on Natural Language Generation from the Se-
mantic Web (WebNLG+), pages 89–99, Dublin, Ire-
land (Virtual). Association for Computational Lin-
guistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Joan Plepi, Endri Kacupaj, Kuldeep Singh, Harsh
Thakkar, and Jens Lehmann. 2021. Context trans-
former with stacked pointer networks for conversa-
tional question answering over knowledge graphs. In
The Semantic Web, pages 356–371, Cham. Springer
International Publishing.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage Models are Unsupervised Multitask Learners.
https://openai.com/blog/better-language-models/.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Amrita Saha, Vardaan Pahuja, Mitesh M. Khapra,
Karthik Sankaranarayanan, and Sarath Chandar.
2018. Complex sequential question answer-
ing: Towards learning to converse over linked
question answer pairs with a knowledge graph.
arXiv:1801.10314.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of trans-
lation edit rate with targeted human annotation. In
Proceedings of the 7th Conference of the Association
for Machine Translation in the Americas: Technical
Papers, pages 223–231, Cambridge, Massachusetts,
USA. Association for Machine Translation in the
Americas.

Milan Straka. 2018. UDPipe 2.0 Prototype at CoNLL
2018 UD Shared Task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

54

Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI), pages 55 - 66
July 14, 2022 ©2022 Association for Computational Linguistics

Knowledge Transfer between Structured and Unstructured
Sources for Complex Question Answering

Lingbo Mo∗, Zhen Wang∗, Jie Zhao, Huan Sun
The Ohio State University

{mo.169,wang.9215,zhao.1359,sun.397}@osu.edu

Abstract

Multi-hop question answering (QA) combines
multiple pieces of evidence to search for the
correct answer. Reasoning over a text corpus
(TextQA) and/or a knowledge base (KBQA)
has been extensively studied and led to dis-
tinct system architectures. However, knowl-
edge transfer between such two QA systems
has been under-explored. Research questions
like what knowledge is transferred or whether
the transferred knowledge can help answer over
one source using another one, are yet to be an-
swered. In this paper, therefore, we study the
knowledge transfer of multi-hop reasoning be-
tween structured and unstructured sources. We
first propose a unified QA framework named
SIMULTQA to enable knowledge transfer and
bridge the distinct supervisions from KB and
text sources. Then, we conduct extensive anal-
yses to explore how knowledge is transferred
by leveraging the pre-training and fine-tuning
paradigm. We focus on the low-resource fine-
tuning to show that pre-training SIMULTQA on
one source can substantially improve its perfor-
mance on the other source. More fine-grained
analyses on transfer behaviors reveal the types
of transferred knowledge and transfer patterns.
We conclude with insights into how to con-
struct better QA datasets and systems to exploit
knowledge transfer for future work.1

1 Introduction

Structured knowledge source, such as Knowledge
Base (KB) and unstructured knowledge source,
such as text corpus, are arguably the most popular
sources for complex question answering (CQA).
Multi-hop KB based question answering (KBQA)
systems translate questions to logical forms to be
executed over a KB for finding answers (Talmor
and Berant, 2018; Maheshwari et al., 2019; Lan
and Jiang, 2020; Gu et al., 2020; Das et al., 2021;

∗Equal contribution
1Code and data are available at https://github.

com/Stefan1220/SimultQA

Text Corpus Knowledge Base

Our SimultQA:
Existing
TextQA
Systems

Existing
KBQA

Systems

Answers from Text Answers from KB

Text Spans KB Entities

Knowledge
Transfer between

Text and KB

Figure 1: To facilitate knowledge transfer between struc-
tured and unstructured sources, we develop a unified
framework SIMULTQA that can leverage supervisions
from both sources to answer complex questions.

Ye et al., 2021), while text based QA (TextQA)
systems leverage large text corpora to retrieve para-
graphs and extract answer spans for complex ques-
tions (Yang et al., 2018; Qi et al., 2019; Asai et al.,
2020; Dhingra et al., 2020; Zhu et al., 2021).

However, despite the impressive performance
of separate KBQA and TextQA systems, it is not
quite clear to the community whether a system
trained on one source can be transferred and ben-
eficial to question answering over another source.
Inspired by the general transfer learning in NLP
by pre-trained language models (PLMs) (Radford
et al., 2018; Devlin et al., 2019; Raffel et al., 2020),
it is important to study this research problem sys-
tematically and thoroughly for the following rea-
sons. First, given the heterogeneity of structured
and unstructured sources, it is desirable to build a
unified reasoning module to work on both text and
KB and combine different source-specific supervi-
sions. Second, transfer learning has shown to boost
the performance on low-resource domains, and it
would be practically useful to leverage annotated
datasets on one source for CQA on the other source,
especially when human annotations are expensive
to create new multi-hop QA datasets. Third, it is

55

also critical to investigate what kind of knowledge
can be transferred, which can inspire future CQA
dataset creation and system design.

One major obstacle in such an investigation for
knowledge transfer between structured and unstruc-
tured sources is the disparity of them and their
specifically designed QA systems as we mentioned
earlier. For instance, KB is highly structured and
curated where complex query functions can be ex-
ecuted, while text data is unstructured and noisier,
leading to quite distinct QA systems. One relevant
line of research is HybridQA that tries to lever-
age multiple sources for QA (Mihaylov and Frank,
2018; Sun et al., 2018, 2019; Min et al., 2019;
Oguz et al., 2020; Shi et al., 2021). To operate
their single model on both KB and text, these meth-
ods primarily convert distinct sources into similar
data format, e.g., merge text and KB by entity link-
ing, which sacrifices unique characteristics of each
source to some extent and makes it harder to inves-
tigate knowledge transfer as sources are entangled
together. Thus, typical HybridQA methods are not
suitable for studying knowledge transfer problem.

In this paper, our first contribution is propos-
ing a unified CQA framework to enable knowl-
edge transfer between structured and unstructured
sources. The proposed framework, SIMULTQA,
could perform multi-hop reasoning over text and
KB simultaneously by collecting reasoning paths
from either text or KB, then rerank paths to se-
lect the best one for generating the answer. There
are several new and desirable properties of SI-
MULTQA. First, SIMULTQA unifies the recent ad-
vanced KBQA (Luo et al., 2018; Lan and Jiang,
2020) and TextQA (Chen et al., 2017; Asai et al.,
2020) systems seamlessly, which preserves their
unique strengths maximally to handle various rea-
soning types. Second, SIMULTQA can utilize dis-
tinct supervisions from both sources, which has
the potential to combine both KBQA and TextQA
datasets for a unified training. Last but not least,
since SIMULTQA can be applied to any source, we
can pre-train it on KB and fine-tune it on text and
vice versa, which makes it easier to quantify trans-
fer effect brought by the pre-training on a different
source. In summary, despite the framework design
looks straightforward, we are the first to unify two
seemingly distinct CQA systems and study knowl-
edge transfer between two sources for CQA.

With SIMULTQA that enables knowledge trans-
fer, our second contribution is to systematically

analyze the transfer behavior to help us deeply
understand the nature of the multi-hop reasoning
process in KB and Text. We apply our methodol-
ogy to CWQ (Talmor and Berant, 2018) and Hot-
potQA (Yang et al., 2018), which are arguably the
most popular dataset in KB and text source, and
are representative enough to cover most of the rea-
soning types on KB and text. We first show that
pre-training on one source can consistently improve
the fine-tuning performance on the other one in the
low-resource setting, indicating future data-hungry
QA systems can be boosted by pre-training on an-
other disparate source, especially when human an-
notation is expensive. More interestingly, further
fine-grained analyses attempt to reveal sources of
performance gain and find out what knowledge is
transferred. We mainly investigate three aspects,
reasoning types, reasoning hops and question simi-
larity. We find that despite KB and text sources are
quite disparate, SIMULTQA still find ways to trans-
fer knowledge by learning a shared semantic space
for the reasoning and a high-level understanding be-
yond distinct surface forms of reasoning paths. In
addition, we study a more challenging transfer set-
ting where we seek to use text reasoning to answer
KB-based questions2 and vice versa. Promising
results are obtained by using text knowledge to
help KB questions highlighting the expressiveness
of text corpus. We conclude that knowledge trans-
fer between structured and unstructured sources is
an intriguing direction to combine the strengths of
KBQA and TextQA systems and to use data from
one source to boost QA on the other. To the best
of our knowledge, this paper is the first to study
knowledge transfer between KB- and text-based
CQA in a quantitative and systematic manner.

2 Related Work
Complex Question Answering. There has been a
long history of QA models to answer simple ques-
tions (Berant et al., 2013; Rajpurkar et al., 2016;
Chen et al., 2017; Wang et al., 2018; Lee et al.,
2018; Yang et al., 2019; Karpukhin et al., 2020).
More recent attention has focused on answering
complex questions, which requires a multi-hop rea-
soning process (Yang et al., 2018; Fang et al., 2020).
For example, some of them target questions that
can be answered using multiple text paragraphs as
evidences (Das et al., 2018; Qi et al., 2019; Feld-
man and El-Yaniv, 2019; Asai et al., 2020), while

2We refer to questions originally from KBQA/TextQA
datasets as KB-based/text-based questions in this paper.

56

Ans
Complex
Question

... ...

... ...

Reasoning Path Construction Answer Generation

Reasoning Path
Candidates

Text
Reasoning

KB
Reasoning

Ranker Ranker

Text Candidates Text Candidates

KB Candidates KB Candidates

Reranker

Figure 2: Overview of SIMULTQA Framework. There are two stages including constructing reasoning path from
either text or KB, and path reranking for the answer generation. In the inference time, the reasoning can be
performed simultaneously over text and KB source to find the final answer.

some existing KBQA works (Bao et al., 2016; Luo
et al., 2018; Chen et al., 2019; Lan et al., 2019;
Lan and Jiang, 2020) studied how to answer ques-
tions by iteratively chaining multiple knowledge
base relations into the evidence path. Our proposed
framework unifies these two recent trends of CQA
frameworks in text and KB to study knowledge
transfer between them.

Hybrid Question Answering. HybridQA is a line
of QA research that also studies different knowl-
edge sources (e.g., text articles, Web tables, knowl-
edge bases) for answering questions (Mihaylov and
Frank, 2018; Sun et al., 2018, 2019; Xiong et al.,
2019; Min et al., 2019; Oguz et al., 2020; Chen
et al., 2020a,b). This line of work typically re-
quires extra human efforts to merge hybrid data
for later complex modeling, for example, linking
text paragraphs to KB by entity linking or uni-
versal schema (Das et al., 2017; Sun et al., 2018,
2019) or converting KB edges to plain text (Oguz
et al., 2020), which is not needed in SIMULTQA.
Their major motivation is to unify data formats for
text and KB and construct a more comprehensive
knowledge space, which is orthogonal to our mo-
tivation of studying knowledge transfer between
intact knowledge space of text and KB.

Transfer Learning in NLP. In the last few years,
NLP has witnessed the emergence of several trans-
fer learning techniques, and their effectiveness of
constantly improving state-of-the-art on a wide
range of NLP tasks. Traditional transfer learning
techniques (Pan and Yang, 2009) include multi-task
learning, domain adaptation, etc (Liu et al., 2019;
Clark et al., 2019; Ruder et al., 2019). More re-

cently, fine-tuning PLMs has become the de facto
standard for transferring knowledge among NLP
tasks (Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2019; Raffel et al., 2020). In this
paper, we study knowledge transfer between struc-
tured and unstructured sources in CQA task and use
BERT models as the backbone of our approach.

3 SIMULTQA Framework
SIMULTQA is a unified framework for multi-hop
reasoning to incorporate both KB and text sources.
It consists of two stages, iteratively reasoning and
final reranking, which can be trained with supervi-
sions from both sources.

3.1 Reasoning Path Construction
CQA requires a multi-hop reasoning process to de-
rive the answer. For KBQA, the reasoning is to tra-
verse the knowledge graph for multi-steps based on
generated queries from the question, while for Tex-
tQA, it is to collect multiple documents from a text
corpus. We consolidate both by iteratively search-
ing for evidence from each source and construct
the reasoning path at the end. The key formulation
is we treat each step as a ranking problem and train
the model to select the most appropriate document/
KB query graph from text corpus/ knowledge graph
that can answer the complex question.

Formally, at time step t, (t ≥ 1), we are given
the complex question q, a pool of candidate ev-
idences, ei ∈ {e1, ..., eN}, and the hidden state
ht−1 from previous step. We first encode them
by the BERT [CLS] token representation to get
the contextual embedding wi for each candidate
ei. Then, we calculate the probability of ei to be

57

selected in current step by feeding wi to a fully-
connected layer. We denote text evidence as eτi
which is a sequence of tokens from a document in
the text corpus. For KB evidence, following previ-
ous work (Lan and Jiang, 2020), each candidate is
“serialized” into a sequence of relation tokens and
denoted as eκi . The scoring process at t-th step is
defined as follows:

wτ
i = BERT[CLS]([q; e

τ
i]), (1)

wκ
i = BERT[CLS]([q; e

κ
i]), (2)

P τ
t (e

τ
i |q) = FC(wτ

i ,ht) ∈ [0, 1], (3)

P κ
t (e

κ
i |q) = FC(wκ

i ,ht) ∈ [0, 1], (4)

where [q; ei] represents the concatenation of the
question and evidence separated by [SEP] token.
We simply choose a Recurrent Neural Network
(RNN), and ht is calculated to model the sequential
multi-hop reasoning process as follows:

ht = RNN(ht−1,w
∗
t−1) ∈ Rd (5)

where w∗
t−1 encodes the ground-truth evidence in

previous step for t > 1 during training and h0 will
be a free parameterized vector to be initialized ran-
domly, when t = 1. During inference, evidences
will be dynamically inferred based on the results
from previous step. To encourage knowledge trans-
fer, we share the parameters for the recurrent mod-
ule and BERT model (as well as the answer gener-
ation module that will be introduced later) for KB
and text source, which will be jointly optimized.
We next introduce how to generate high-quality
candidate pools for each step.
Generate Text Candidates. Following previous
methods (Chen et al., 2017), for a given complex
question and a large text corpus (e.g., Wikipedia),
we leverage TF-IDF based methods to retrieve top-
K documents with the tri-gram hashing techniques.
For the iterative process, we reuse TF-IDF method
to retrieve candidates in next step combining the
complex question and the previous retrieved doc-
ument. Moreover, since TF-IDF methods mainly
consider the lexical matching, there are several ad-
vanced approaches that can be explored to extend
the reasoning path, such as meta-info based (e.g.,
entity links, hyperlinks (Nie et al., 2019; Asai et al.,
2020)), search engine (Qi et al., 2019, 2020), dense
retrieval (Xiong et al., 2021). We consider hyper-
links (Asai et al., 2020) in this work and leave more
sophisticated methods to future work.
Generate KB Candidates. We follow recent ad-
vanced staged query generation methods (Yih et al.,
2015; Luo et al., 2018; Lan and Jiang, 2020) to

generate candidates and perform KB reasoning. As
shown in Figure 2, the KB module starts from a
grounded entity in the complex question and iden-
tifies core relation paths3 as candidates with neces-
sary constraints. We iteratively generate and rank
candidate query graphs in each step based on the
topic entity or the entity from the last step.

With the iterative ranking in each step, we can
establish the reasoning chain as a sequence of doc-
uments, Eτ = [eτ1 , ..., e

τ
k] for TextQA and a se-

quence of query graphs, Eκ = [eκ1 , ..., e
κ
k] for

KBQA. We score each path by the multiplica-
tion of probability of each selected evidence as
P (e1|q) · ... · P (ek|q) and use beam search to pro-
duce top-M reasoning paths {E1, ..., EM} for the
final answer generation.

3.2 Reranking and Answer Generation

Given a complex question q and several reasoning
paths {E1,EM} from the previous component,
we rerank the paths based on how likely they can
answer the question. We use another BERT [CLS]
token representation to encode the reasoning path
Ei with a fully connected model to output the prob-
ability of choosing Ei as follows:

vi = BERT[CLS]([q, {ei1, ..., eik}]), (6)

P (Ei|q) = FC(vi) ∈ [0, 1] (7)

After the reasoning path reranking, our system
allows the KB reasoning path and text reasoning
path to be handled differently. This reflects the
advantage of our system to combine the strength
of both KBQA and textQA as discussed earlier.
Since KB is structured, we can directly execute
the complete query graph in the knowledge graph
to get the answers. For question answering with
textual evidence chains in particular, another reader
component is employed to select the text spans that
are the final answer based on the top-ranked path.

3.3 Training and Inference

We leverage the annotated document labels from
HotpotQA dataset to train the reasoning path con-
struction and reranking modules. For CWQ dataset,
we split the golden complex logic form into sub-
queries by defining the sub-query to be composed
of head/tail entities along with one relation or two
relations with CVT type node. Constraint relations
are also added to the connected sub-queries. The

3As in (Lan and Jiang, 2020), we allow the relation to be a
single predicate or two predicates connected through a CVT
node designed for a multi-argument relation.

58

sub-queries are treated as supervisions in each rea-
soning step as well as the path reranking module.
Note that it is now the standard way to train ro-
bust CQA systems by leveraging full supervision
in each hop. We leave utilizing distantly weak su-
pervisions for training to future work. In each step
of reasoning module, the loss functions for KB and
text are defined as follows:

Lτ
t = −logP (eτt |q)
−∑

ẽτ∈Cτ
t

log(1− P (ẽτ |q)) (8)

Lκ
t = −logP (eκt |q)
−∑

ẽκ∈Cκ
t

log(1− P (ẽκ|q)) (9)

where Cτ
t and Cκ

t are negative samples. For text,
we follow previous work (Asai et al., 2020) to gen-
erate lexically and semantically similar negative
samples based on TF-IDF as well as hyperlinks.
For KB, we treat all query graphs other than the
golden one in the same step as negative samples.

In terms of reranking reasoning paths for KB and
text, we reuse the previous supervisions to train a
ranker model (Eqn. 7) for selecting the correct path
with the loss function as follows:

Lτ
rank = −∑

i y
τ
i · log(P (Eτ

i |q)) (10)

Lκ
rank = −∑

i y
κ
i · log(P (Eκ

i |q)) (11)

where yτi and yκi are the assigned labels for the
golden path of i-th sample from two sources. We
also design negative samples for reasoning paths
by replacing the golden evidence in one of k hops.

4 Knowledge Transfer Experiments

We focus on investigating knowledge transfer be-
tween structured and unstructured sources in this
paper, though the proposed SIMULTQA can be ap-
plied to any open-domain CQA datasets. We seek
to answer three research questions (RQs):
• RQ1: Can the knowledge learned on one source
help the QA performance on another one? (§4.2)
• RQ2: What kind of knowledge has been trans-
ferred between KB and text? (§4.3)
• RQ3: Can knowledge transfer help answer ques-
tions by both sources? (§4.4)

4.1 Experimental Setup
Choice of Datasets. Investigating knowledge trans-
fer between text and KB requires at least one
dataset from each source. Without losing the
generality, we choose Wikipedia and Freebase as
the source for text and KB respectively, and se-
lect their arguably the most representative CQA

0
0.3

k 1k 5k 20
k

60
k
90

k

Number of Samples

0

10

20

30

40

50

60

70

An
sw

er
 F

1

CWQ Transfer
CWQ Not Transfer
HotpotQA Transfer
HotpotQA Not Transfer

Figure 3: Pre-training and fine-tuning experiments on
CWQ and HotpotQA datasets. We first pre-train SI-
MULTQA on one source with the full dataset, then fine-
tune it on another one with various sizes of samples.

dataset to cover the majority of reasoning types.
We leave applying SIMULTQA to other domain-
specific sources and datasets as future work.

The selected large-scale KB dataset is Complex
WebQuestions (CWQ) (Talmor and Berant, 2018)
that consists of around 27K/3.5K/3.5K samples for
train/dev/test. The text dataset is HotpotQA (Yang
et al., 2018) that consists of around 90K/7.4K/7.4K
samples for train/dev/test. For both datasets, we
focus on the most practical setting, which is the
open-domain QA, meaning that the model needs to
reason over the entire knowledge space for answer-
ing the question.
Implementation Details. We adopt pre-trained
BERT models (Devlin et al., 2019) using the un-
cased base configuration (768-hidden) for our rea-
soning path construction and reranking module.
We follow Graph Retriever (Asai et al., 2020) and
use their pre-trained whole word masking uncased
large configuration (1024-hidden) for the reader.
During the process of reasoning path construction,
we set the number of negative examples along with
the gold example as 30, set the number of hops as
2, and use beam search when doing the inference.
Beam size is set as 5 for CWQ and 9 for HotpotQA.

4.2 RQ1: Quantitative measurement

Pre-training and Fine-tuning. A straightforward
way to investigate the effect of knowledge transfer
between text and KB is to leverage the pre-training
and fine-tuning paradigm, where we first pre-train
SIMULTQA on one source and fine-tune it on an-
other one. The transfer effect then can be measured
by the performance difference with and without
the pre-training stage. Furthermore, to demonstrate
the transfer effect carefully, we focus on the low-

59

10 30 50 100
Number of Samples

5

10

15

20

25

30
An

sw
er

 F
1

CWQ Dev
Transferred
Not Transferred

Figure 4: Few-shot experiments on CWQ dataset. Boxes
extends from the first quartile to the third quartile of the
samples, and lines inside boxes mark the medians.

10 30 50 100
Number of Samples

5

10

15

20

25

30

35

40

45

An
sw

er
 F

1

HotpotQA Dev
Transferred
Not Transferred

Figure 5: Few-shot experiments on HotpotQA dataset.

resource setting where we increasingly add more
samples for the fine-tuning. Note that we only pre-
train and fine-tune the first stage of SIMULTQA,
which is the retriever, because this is the most im-
portant module for multi-hop reasoning.
Transfer Text Knowledge to KB. We show the
fine-tuning performance in Figure 3, where we can
see that pre-training SIMULTQA on text dataset
can consistently improve the performance on KB
dataset, especially when the fine-tuning data is lim-
ited. Specifically, when there is no fine-tuning
data for KB (zero-shot transfer), text pre-training
achieves about 8 F1 score on CWQ already, mean-
ing that text knowledge can greatly help the QA
model on KB. We also notice that when a large
number of KB samples are available, the transfer
effect becomes less prominent, possibly due to the
model begins overfitting KB-specific features.

To further demonstrate the transfer effect on low-
resource setting, we conduct few-shot experiments
by randomly sampling only a handful of samples
for fine-tuning. We sample five times to reduce the
randomness of few-shot samples and results are
shown in Figure 4. We can see the transfer effect
from text to KB more clearly, and this finding can
be leveraged to boost the performance of KBQA
in low-data region when human annotations are

0

20

40

60

Composition (45%)
Transferred
Not Transferred

Conjunction (45%)
Transferred
Not Transferred

0 10 100 1k 10k
0

20

40

60

Comparative (5%)
Transferred
Not Transferred

0 10 100 1k 10k

Superlative (5%)
Transferred
Not Transferred

Figure 6: Analysis of reasoning types in CWQ. Num-
bers in parentheses are percentages of types.

20

40

60

80
Composition (48%)

Transferred
Not Transferred

Conjunction (15%)

Transferred
Not Transferred

0 10 100 1k 10k 100k

20

40

60

80
Comparison - Yes/No (6%)

Transferred
Not Transferred

0 10 100 1k 10k 100k

Comparison - A/B (21%)
Transferred
Not Transferred

Figure 7: Analysis of reasoning types in HotpotQA.
Numbers in parentheses are percentages of types.

expensive to collect over domain-specific KBs.
Transfer KB Knowledge to Text. Figure 3 shows
the pre-training on KB also provides performance
boost for fine-tuning on text domain in the low-
resource setting. In zero-shot transfer, pre-training
on KB brings about 12.5 F1 improvement, which
verifies that KB knowledge can also help answer
text-based questions. Moreover, few-shot experi-
ments in Figure 5 demonstrate the transfer effect
when < 100 text-based samples are available. We
notice that the variance of few-shot experiments
is greatly reduced by the pre-training, indicating
another potential useful transfer effect may be to
help reduce the instability in the few-shot learn-
ing. Meanwhile, we conduct error analysis for both
CWQ and HotpotQA respectively in Table 2.

4.3 RQ2: What has been transferred?

We further conduct fine-grained analyses under pre-
vious experiment settings trying to answer what
knowledge is transferred between structured and

60

0 10 100 1k 10k
Number of Samples

0

20

40

60

80
Ra

nk
in

g
M

RR

CWQ Hop Analysis
Hop1-with-pretrain
Hop1-without-pretrain
Hop2-with-pretrain
Hop2-without-pretrain

Figure 8: Hop Analysis on the CWQ dataset.

0 10 100 1k 10k 100k
Number of Samples

0

10

20

30

40

50

60

70

80

Ra
nk

in
g

M
RR

HotpotQA Hop Analysis
Hop1-with-pretrain
Hop1-without-pretrain
Hop2-with-pretrain
Hop2-without-pretrain

Figure 9: Hop Analysis on the HotpotQA dataset.

unstructured sources. We hypothesize three major
factors that may influence the transfer effect and
test their correlations with performance changes.
Reasoning types play a central role in answer-
ing complex questions. SIMULTQA is expected
to learn similar reasoning processes from struc-
tured/unstructured sources if the knowledge about
certain reasoning types is transferred. We analyze
the transfer effect w.r.t. various reasoning types
defined in both datasets (we refer to the original pa-
pers (Talmor and Berant, 2018; Yang et al., 2018)
for their detailed definitions). As shown in Fig-
ure 6 and 7, the most shared two types in both text
and KB, composition (i.e., infer the bridge entity)
and conjunction (i.e., checking multiple properties)
questions are benefited from knowledge transfer the
most (especially in the zero-shot transfer), which
suggests that SIMULTQA is able to transfer simi-
lar reasoning processes between disparate sources
regardless of their distinct surface forms.

Another interesting observation is for the Com-
parison - A/B on HotpotQA (e.g., Who is older, A
or B?) that has a larger F1 score gain under the
zero-shot setting. This type asks a two-choice ques-
tion which can be answered by locating an entity
as the final answer through iteratively retrieving
two evidences, which is similar to the chain rea-
soning in Composition and Conjunction. Although

[0, 0.45]

(0.45, 0.49]

(0.49, 0.52]

(0.52, 0.55]

(0.55, 0.58]

(0.58, 0.62]
(0.62, 1]

Ranges of Question Similarity

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

An
sw

er
 F

1

HotpotQA Question Simialrity w.r.t. Transfer Effect
Performance gain via pre-training
With pre-training
Without-pretraining

Figure 10: Relationship between question similarity and
performance gain.

[0, 0.5]
(0.5, 0.55]

(0.55, 0.58]

(0.58, 0.61]

(0.61, 0.64]

(0.64, 0.68]
(0.68, 1]

Ranges of Question Similarity

0

2

4

6

8

10

An
sw

er
 F

1

CWQ Question Similarity w.r.t. Transfer Effect

Performance gain via pre-training
With pre-training
Without-pretraining

Figure 11: Relationship between question similarity and
performance gain on CWQ.

this specific reasoning type is not shared by both
sources, the similarity between the reasoning pro-
cesses makes it benefited from knowledge transfer.
Reasoning hops correspond to decomposed sub-
questions from a complex question and we are inter-
ested in whether the transfer effect varies according
to different hops. In both KBQA and TextQA, the
first hop sub-question tends to closely connect with
a topic entity or phrase mentioned in the question,
while the subsequent (second) hops require more
semantic inference to answer the sub-question. As
shown in Figure 8, the first hop in CWQ dataset
usually gets higher retrieval performance and can
be transferred from the other source, which indi-
cates that the knowledge of finding the topic entity
in the question is transferred. We also show the
hop analysis for HotpotQA in Figure 9. Similar to
the observation on CWQ, it shows that the first hop
in HotpotQA gets higher retrieval performance and
can be transferred from the other source, which fur-
ther validate that the knowledge of finding the topic
entity mentioned in the question is transferred.
Question similarity measures the semantic simi-
larities between questions in testing and training.
We hypothesize that the transfer might be easier
for testing questions if some similar ones appear
in the training. We investigate the zero-shot trans-

61

Complex question: What is European Union country used the Hungarian forint as its main currency?

Gold KB reasoning path: European Union members−−−−−→ y1(CVT) member−−−−−→ Hungary
currency_used←−−−−−−−−− Forint

Reasoning paths from text source:
1. (first passage) The currency of Hungary is the Hungarian forint since 1 August 1946 ...
(second passage) As a member of the European Union, Hungarian government ... replace the forint with the euro.

2. (first passage) The forint is the currency of Hungary. ... and the forint has been declared fully convertible.
(second passage) As a member of the European Union, the long-term of aim of the Hungarian government ...

3. (first passage) The Gulden or forint was the currency ... and the Austro-Hungarian Monarchy ...
(second passage) In Hungary, the forint was divided into ... for the unit and subunit.

Table 1: Case Study. The question comes from CWQ dataset and is originally answered by a KB reasoning path.

fer to study the influence of pre-training questions
more directly. Specifically, for a CWQ question
in testing set, we calculate its semantic similarities
with all HotpotQA questions in pre-training and
take the average of top 5 similarities. We then split
CWQ testing questions into several chunks based
on this averaged similarity and aggregate their QA
performance before and after the pre-training. We
do the same thing for the other direction of transfer.
We present the relationship between question simi-
larity and performance in HotpotQA on Figure 10.
Interestingly, we observe that question similarity is
not correlated with transfer effect, i.e., higher sim-
ilar testing questions are not necessarily to obtain
larger performance gain. This finding implies that
SIMULTQA transfers the reasoning process in a
high-level semantic space rather than through low-
level lexical features. We show questions similarity
for CWQ in Figure 11, where we also find question
similarity is not correlated with the transfer effect.

Type %
Questions with constraints 50

CWQ Questions with aggregation functions 25
Others 25

Relations not covered in KB 45
HotpotQA Not satisfy chain reasoning 35

Others 20

Table 2: We manually analyze 20 questions with wrong
predicted answers respectively from CWQ and Hot-
potQA and categorize them.

Error analysis is conducted under the full dataset
fine-tuning setting to further understand the transfer
behaviors by manually checking errors and cate-
gorizing them. As is shown in Table 2, 75% of
wrongly answered questions sampled from CWQ
contain additional constraints or arithmetic opera-
tions which are hard to be supported by text corpus.
45% questions sampled from HotpotQA contain
semantic knowledge or relations which cannot be

covered in Knowledge Base. 35% of them don’t
follow the chain reasoning process and are not suit-
able to be decomposed to answer step by step like
KBQA. The other remaining questions are related
to errors in retrieval, re-ranking or span extrac-
tion process. These unshared knowledge between
CWQ and HotpotQA make it reasonable that those
wrongly answered questions in one data source
cannot be contributed from the other data source.

4.4 RQ3: Answering complex questions by
both knowledge sources

To directly measure the transfer effect, in previous
sections, the reasoning is always performed on the
same knowledge source as where the question is
from, e.g., a text-based question is answered by the
text reasoning path. Now, we ask whether ques-
tions can be better answered by considering both
sources. Note that this is a more challenging set-
ting because questions in both datasets only have
supervisions from one source, which thus requires
stronger transfer signal. Moreover, we can utilize
this setting to test how complementary two knowl-
edge sources are, regarding how much they can
help each other. Specifically, in addition to the an-
notated reasoning paths, we collect candidate paths
from the other source, i.e., KB paths for text-based
questions and text paths for KB-based questions.
The final reranking will select the best path from
both KB and text paths for all questions. We refer
to this setting as the hybrid evaluation.

Our preliminary experiments show that pre-
training on one source and then fine-tuning on the
other tends to forget the knowledge of the first
source, leading to less satisfactory results. There-
fore, we jointly train SIMULTQA by iteratively
sampling batches from both sources to expose the
model to both sources equally in the training time.
We then compare the hybrid evaluation with the
single-source evaluation in Table 4. For CWQ

62

(HotpotQA) In the television series Green Hornet, which actor played the role of Kato?

Gold reasoning path from text source:
(first passage) The Green Hornet is a television series on ABC ... starring Van Williams and Bruce Lee ...
(second passage) Kato is a fictional character ... was portrayed by Bruce Lee.

Reasoning paths from KB source:
1. Green Hornet series←−−−− y1(CVT)

starring_roles←−−−−−−−−− Bruce Lee actor←−−− y2(CVT)
appear_in_tv_program←−−−−−−−−−−−−−− Kato

2. Green Hornet
film←−−− y1(CVT) character←−−−−−− AI Hodge

notable_types←−−−−−−−− TV Actor

3. Green Hornet
film←−−− y1(CVT) character←−−−−−− Seth Rogen

appeared_on←−−−−−−−− y2(CVT)
appearance_type←−−−−−−−−−− Host

Table 3: Case study. The question comes from HotpotQA and is originally answered by a textual reasoning path.

CWQ F1 Hit@1
SIMULTQA- KB 46.7 47.7
SIMULTQA- Hybrid 48.5 49.8
HotpotQA F1 EM
SIMULTQA- Text 71.7 58.8
SIMULTQA- Hybrid 71.2 58.4

Table 4: Comparing single and hybrid evaluations.

dataset, SIMULTQA- Hybrid achieves 1.8 F1 score
gains after incorporating text paths for the infer-
ence, while the performance of HotpotQA is not
influenced in hybrid evaluation after incorporating
KB paths. This shows that text knowledge is easier
to be transferred to help KB-based questions.

We also conduct case studies by retrieving top-
ranked reasoning paths in hybrid evaluation. Ta-
ble 1 presents a CWQ question and shows that top-
ranked text paths are closely related to the golden
KB path, indicating that linguistics variants of text
knowledge can greatly help KB reasoning. On the
other hand, KB knowledge seems to be less helpful
to answer text-based questions based on the overall
QA performance in Table 4, partially due to the in-
compatibility between TextQA and KBQA dataset,
e.g., entities and relations that cannot be mapped
to KB, reasoning types that cannot be answered
by KB (see Section 4.3), etc. However, we still
find cases in HotpotQA in Table 3 to show KB can
somehow contribute to textual reasoning as well.

5 Discussion for future directions
Based on our findings of knowledge transfer for
CQA in this paper, we discuss the following direc-
tions for future CQA datasets and systems.
Knowledge transfer for efficient CQA dataset
annotations. When annotating new CQA datasets
whether on text or KB, it would be beneficial to
leverage pre-trained SIMULTQA on other sources
to discover high-quality reasoning paths for further

annotating, which will save much annotation cost.
Diversity of reasoning types. Both text and KB
sources are dominant by relatively easy reason-
ing types, e.g., composition and conjunction. Fu-
ture CQA datasets should pursue more diverse and
harder reasoning types, e.g., types with constraints
and arithmetic operations (Dua et al., 2019).
A universal reasoning module. Investigating
knowledge transfer between text and KB in this
paper suggests that despite the discrepancy of sur-
face forms in different sources, their underlying
reasoning processes could be shared. This points
out the possibility of learning a universal reasoning
process from multiple sources and it is strongly
desired to modularize such a reasoning process,
which can be injected it into future QA systems.

6 Conclusion
In this paper, we study CQA over structured and
unstructured knowledge sources (i.e., KB and text
particularly), and focus on studying the knowledge
transfer between different knowledge sources. To
facilitate the transfer, we first propose a unified
CQA framework, SIMULTQA to bridge KBQA
and TextQA systems. Empirical results show that
knowledge transfer enables substantial improve-
ments on low-resource domains. More importantly,
we conduct fine-grained analyses to shed more light
on how knowledge is transferred to inspire future
research on knowledge transfer between sources,
and we conclude the paper with insights for future
CQA datasets and systems.

Acknowledgments
The authors would like to thank the reviewers and
OSU NLP group members for their thoughtful com-
ments. This research was sponsored in part by
Google Faculty Award, NSF IIS-1815674, NSF
CAREER #1942980, NSF OAC-2112606.

63

References
Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,

Richard Socher, and Caiming Xiong. 2020. Learning
to retrieve reasoning paths over wikipedia graph for
question answering. In International Conference on
Learning Representations.

Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and
Tiejun Zhao. 2016. Constraint-based question an-
swering with knowledge graph. In Proceedings of
COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
2503–2514.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1870–1879.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William
Wang, and William W Cohen. 2020a. Open ques-
tion answering over tables and text. arXiv preprint
arXiv:2010.10439.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020b. Hy-
bridqa: A dataset of multi-hop question answering
over tabular and textual data. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing: Findings, pages 1026–1036.

Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jij-
nasa Nayak, and Lun-Wei Ku. 2019. Uhop: An
unrestricted-hop relation extraction framework for
knowledge-based question answering. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 345–356.

Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal,
Christopher D Manning, and Quoc Le. 2019. Bam!
born-again multi-task networks for natural language
understanding. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5931–5937.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
and Andrew McCallum. 2018. Multi-step retriever-
reader interaction for scalable open-domain question
answering. In International Conference on Learning
Representations.

Rajarshi Das, Manzil Zaheer, Siva Reddy, and Andrew
McCallum. 2017. Question answering on knowledge
bases and text using universal schema and memory
networks. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 358–365.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew McCallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9594–9611.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachan-
dran, Graham Neubig, Ruslan Salakhutdinov, and
William W. Cohen. 2020. Differentiable reasoning
over a virtual knowledge base. In International Con-
ference on Learning Representations.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of NAACL-HLT, pages 2368–2378.

Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuo-
hang Wang, and Jingjing Liu. 2020. Hierarchical
graph network for multi-hop question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8823–8838.

Yair Feldman and Ran El-Yaniv. 2019. Multi-hop para-
graph retrieval for open-domain question answering.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2296–
2309.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2020. Beyond iid:
Three levels of generalization for question answering
on knowledge bases. arXiv e-prints, pages arXiv–
2011.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.

Yunshi Lan and Jing Jiang. 2020. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 969–974.

Yunshi Lan, Shuohang Wang, and Jing Jiang. 2019.
Multi-hop knowledge base question answering with
an iterative sequence matching model. In 2019 IEEE
International Conference on Data Mining (ICDM),
pages 359–368. IEEE.

64

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung
Ko, and Jaewoo Kang. 2018. Ranking paragraphs for
improving answer recall in open-domain question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 565–569.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487–4496.

Kangqi Luo, Fengli Lin, Xusheng Luo, and Kenny Zhu.
2018. Knowledge base question answering via en-
coding of complex query graphs. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2185–2194.

Gaurav Maheshwari, Priyansh Trivedi, Denis
Lukovnikov, Nilesh Chakraborty, Asja Fischer, and
Jens Lehmann. 2019. Learning to rank query graphs
for complex question answering over knowledge
graphs. In International semantic web conference,
pages 487–504. Springer.

Todor Mihaylov and Anette Frank. 2018. Knowledge-
able reader: Enhancing cloze-style reading compre-
hension with external commonsense knowledge. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 821–832.

Sewon Min, Danqi Chen, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Knowledge guided text re-
trieval and reading for open domain question answer-
ing. arXiv preprint arXiv:1911.03868.

Yixin Nie, Songhe Wang, and Mohit Bansal. 2019.
Revealing the importance of semantic retrieval for
machine reading at scale. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2553–2566.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Scott Yih. 2020.
Unified open-domain question answering with struc-
tured and unstructured knowledge. arXiv preprint
arXiv:2012.14610.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237.

Peng Qi, Haejun Lee, Oghenetegiri Sido, Christo-
pher D Manning, et al. 2020. Retrieve, rerank,
read, then iterate: Answering open-domain questions
of arbitrary complexity from text. arXiv preprint
arXiv:2010.12527.

Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and
Christopher D Manning. 2019. Answering complex
open-domain questions through iterative query gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2590–2602.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training (2018).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Sebastian Ruder, Matthew E Peters, Swabha
Swayamdipta, and Thomas Wolf. 2019. Transfer
learning in natural language processing. In Proceed-
ings of the 2019 conference of the North American
chapter of the association for computational
linguistics: Tutorials, pages 15–18.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Han-
wang Zhang. 2021. Transfernet: An effective and
transparent framework for multi-hop question an-
swering over relation graph. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4149–4158.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2380–2390.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early
fusion of knowledge bases and text. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 4231–4242.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North

65

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641–651.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerald
Tesauro, Bowen Zhou, and Jing Jiang. 2018. R3:
Reinforced ranker-reader for open-domain question
answering.

Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick
Lewis, William Yang Wang, Yashar Mehdad, Scott
Yih, Sebastian Riedel, Douwe Kiela, and Barlas
Oguz. 2021. Answering complex open-domain ques-
tions with multi-hop dense retrieval. In International
Conference on Learning Representations.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo,
and William Yang Wang. 2019. Improving ques-
tion answering over incomplete kbs with knowledge-
aware reader. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4258–4264.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
72–77.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2021. Rng-kbqa: Generation
augmented iterative ranking for knowledge base ques-
tion answering. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1321–1331.

Yunchang Zhu, Liang Pang, Yanyan Lan, Huawei Shen,
and Xueqi Cheng. 2021. Adaptive information seek-
ing for open-domain question answering. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 3615–3626.

66

Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI), pages 67 - 84
July 14, 2022 ©2022 Association for Computational Linguistics

Hierarchical Control of Situated Agents through Natural Language

Shuyan Zhou, Pengcheng Yin, Graham Neubig
Language Technologies Institute

Carnegie Mellon University
{shuyanzh, pcyin, gneubig}@cs.cmu.edu

Abstract

When humans perform a particular task, they
do so hierarchically: splitting higher-level
tasks into smaller sub-tasks. However, most
works on natural language (NL) command of
situated agents have treated the procedures to
be executed as flat sequences of simple ac-
tions, or any hierarchies of procedures have
been shallow at best. In this paper, we pro-
pose a formalism of procedures as programs,
a method for representing hierarchical proce-
dural knowledge for agent command and con-
trol aimed at enabling easy application to var-
ious scenarios. We further propose a mod-
eling paradigm of hierarchical modular net-
works, which consist of a planner and reactors
that convert NL intents to predictions of exe-
cutable programs and probe the environment
for information necessary to complete the pro-
gram execution. We instantiate this framework
on the IQA and ALFRED datasets for NL in-
struction following. Our model outperforms
reactive baselines by a large margin on both
datasets. We also demonstrate that our frame-
work is more data-efficient, and that it allows
for fast iterative development.1

1 Introduction

Procedural knowledge, or “how-to” knowledge,
refers to knowledge of how to execute particular
tasks. It is inherently hierarchical; high-level proce-
dures consist of many lower-level procedures. For
example, “cooking a pizza” comprises many lower-
level procedures, including “buying ingredients”,
“knead dough”, etc. There are also multiple levels
of hierarchy; “buying ingredients” can be further
decomposed to “go to a grocery”, “paying” etc.

There has been significant prior work on bench-
marks and methods for complex task completion
using situated agents given natural language (NL)
instructions, such as agents trained to navigate the
web and mobile UIs (Li et al., 2020; Xu et al., 2021)

1All code will be released upon acceptance.

or solve household tasks (Shridhar et al., 2020a).
However, most methods applied to these tasks use
a reactive strategy that makes decisions on the low-
level atomic actions available to the agent while
making steps through the environment (Gupta et al.,
2017; Zhu et al., 2020), or define procedures in a
shallow way where there only exists one level of hi-
erarchy (Andreas et al., 2017; Gordon et al., 2018;
Yu et al., 2019; Das et al., 2019).These approaches
are often data-inefficient due to the semantic gap
between abstract natural language instructions and
concrete executions. In contrast, several works
have demonstrated that using specially designed
intermediate representations tailored to individual
tasks (Chen and Mooney, 2011; Artzi and Zettle-
moyer, 2013; Misra et al., 2016) can help reduce
this expense and improve performance, albeit at
the cost of significant effort on the part of the re-
searchers devising these methods.

In this paper, we propose a framework to im-
prove the execution of complex natural language
commands (example in Fig. 1) by expressing proce-
dures as programs (PaP) written in a high-level pro-
gramming language like Python (§4). This makes
it easy for human engineers to express and lever-
age their hierarchical procedural knowledge, and
the execution of each program yields actions to
accomplish a task described in NL. There are sev-
eral merits to this approach. First, programs are
inherently hierarchical; they apply nested function
calls to realize higher-level functionality with mul-
tiple calls to lower-level functionality. Second, pro-
grams have built-in control-flow operators, making
it possible to deal with multiple divergent situations
without the loss of higher-level abstraction. Third,
programs provide a flexible way to define, share
and call different machine-learned components to
perceive the environment through an embodied
agent’s executions. Finally, programs in a familiar
high-level programming language are comprehensi-
ble and curatable, allowing for fast development on

67

Prepare a meal

ex
ec

ute

HMN-Planner (§ 4)
!

I have to
reheat the bread

and prepare some
fruits udp_heat_object(bread)

udp_clean_object(apple)
…

plan

This is a microwave! It can be
opened and it is close

def udp_put_object(obj, recep):
 atomic_navigate(recep)
 reactor = get_reactor(“check_attr”)
 attr = reactor(recep)
 if attr.openable and attr.close:
 atomic_open_object(recep)
 atomic_put_object(obj, recep)
 else:
 atomic_put_object(obj, recep)

attr.openable=True  
attr.close=True

HMN-Reactor (§ 4)
"

Environment

predict

Procedure Library | PaP (§ 3)

def udp_pickup_object(obj)

…

def udp_heat_object(obj)

def udp_cool_object(obj)

def udp_clean_object(obj)

#

$

 an executable procedural action ae
natural language input x

execute

Figure 1: The proposed framework, containing a hierarchical library of procedures written as Python functions
(§4). Coupled with this library is a hierarchical neural network (HMN, §5) with a PLANNER that constructs an
executable procedure and REACTORS that react to the environment to resolve control flow.

various tasks. These four features remain largely
unexplored in the existing representations (Chen
and Mooney, 2011; Artzi and Zettlemoyer, 2013;
Misra et al., 2016), as discussed further in §2.

Coupled with this representation, we propose a
modeling paradigm of hierarchical modular net-
works (HMN; §5) that has (1) a learnable PLAN-
NER that maps NL to the corresponding executable
programs and (2) a collection of REACTORS that
perceive the environment and provide context-
sensitive feedback to decide the further execution
of the program. Such modular design can facilitate
training efficiency and improve the performance of
each individual component (Andreas et al., 2016).

We instantiate our framework on two task set-
tings: the IQA dataset (Gordon et al., 2018) where
an agent explores the environment to answer ques-
tions regarding objects; and the ALFRED dataset
(Shridhar et al., 2020a), in which an agent must
map natural language instructions to actions to com-
plete household tasks (§6). In experiments (§7), we
find that our framework outperforms the reactive
baseline by a significant margin on both datasets,
and is significantly more data-efficient. We also
demonstrate the flexibility of our framework for
fast iterative development of program libraries. We
end with a discussion of the limitations of the
framework and the potential solutions, paving the
way for future works that scale our framework to
more open-domain tasks (§7).

2 Contrast to Previous Formalisms

While designing intermediate representations that
stand between NL and low-level actions for indi-
vidual tasks has been studied in the literature, our
goal is to design a framework that makes it simple
to design such representations for new tasks, with a

particular focus on capturing the hierarchical nature
of procedures. In contrast to most previous works
in this area, which employ relatively esoteric repre-
sentation methods such as lambda calculus (Artzi
and Zettlemoyer, 2013; Artzi et al., 2014), PaP
uses widely-adopted general-purpose programming
languages (e.g. Python) to specify and represent
hierarchical procedures. These are comprehensi-
ble to most engineers and do not require system
designers to learn a new task-specific language.
PaP also enable easy creation of more hierarchical
procedures with reusable sub-routines. Existing
works either do not model such sub-procedures as
reusable components (Misra et al., 2016), or define
procedures as a flat sequence of actions without any
hierarchy (Chen et al., 2020; Artzi and Zettlemoyer,
2013). The hierarchical procedures with reusable
sub-routines is also reminiscent of works in se-
mantic parsing, which compose programs from id-
iomatic program structures (Iyer et al., 2017; Shin
et al., 2019). More discussions are in §E.

Additionally, PaP uses control flow with diver-
gent branches to handle environment-specific varia-
tions of a high-level procedure. A single procedure
could therefore dynamically adapt to a variety of
environments following the branches triggered by
the environments. This makes our representations
more compact. This feature also allows developers
to easily inject human priors of executions traces
under different conditions, which might be chal-
lenging to learn in a data-efficient manner. To our
best knowledge, this feature is largely unexplored
in the literature on designing intermediate represen-
tations for agent control.

Finally, PaP provides a convenient interface for
procedures to query and interact with task-specific
situated components (e.g. a visual component). Un-

68

der PaP, situated components are exposed as pre-
defined APIs, and can be easily called by high-
level procedures. In contrast, existing works either
require separate mechanisms to call such compo-
nents (Misra et al., 2016), or the environment where
they are expected to work is less complex, and thus
the flexible use of a collection of situated compo-
nents is not a necessity (Chen and Mooney, 2011).

We can also view the PaP formalism as a way to
construct behavior trees (Colledanchise and Ögren,
2018), which have been used in robotic planning
and game design literature. We can use the off-
the-shelf tools to convert the programs to abstract
syntax trees (AST) which resemble these trees. Pre-
vious works on robotics also leverage planning
domain definition language (PDDL) and answer
set planners (ASP) for task planning (Jiang et al.,
2019b), which is conceptually different from our
formalism. PDDL+ASP searches for an action se-
quences based on the initial and the final states,
while our formalism focuses on describing the ac-
tual procedure used to accomplish a task.

3 Task: Controlling Situated Agents

First, we define the task of controlling an agent in
some situated environment E through natural lan-
guage. The environment E provides a set of atomic
actions Aa = {aa1, aa2, ...} to interact with the envi-
ronment. Each atomic action can take zero or more
arguments that specify which parts of the environ-
ment to which it is to be applied. We denote action
aai ’s jth argument as ri,j . The specific type of each
argument will depend on the action and environ-
ment; it could be discrete symbols, scalar values,
tensors describing regions of the visual space, etc.
Given a user intent x, the control system aims at
creating an atomic action sequence consisting of a
sequence of actions a = [a1, a2, ...] (ai ∈ Aa) and
concrete assignments r for each of these n actions.
This action sequence is executed against the envi-
ronment to achieve a result ŷ = E(a, r), which is
compared against a gold-standard result y using a
score function s(y, ŷ). Action sequences realizing
the intent will receive a high score, and those that
do not will receive a low score.

4 Representing Procedures as Programs

Next, we introduce the main components of our
formalism. A few examples are listed in Tab. 1.2

2Since actions are implemented as functions, we use “ac-
tion” and “function” interchangeably.

C1: an atomic action to toggle on an appliance
def atomic_toggle_on(obj):

env.call("toggle_on", obj)
C2: a procedural action to pick and then put an object
def udp_pick_and_put_object(obj, dst):

udp_pickup_object(obj)
udp_put_object(obj, dst)

C3: an emptying receptacle procedure with for−loop
def udp_empty_recep(recep, dst):

reactor = get_reactor("find_all_obj")
obj_list = reactor(recep)
for obj in obj_list:

udp_pick_and_put_object(obj, dst)
C4: a pickup object procedure with control flow
def udp_pickup_object(obj):

atomic_navigate(obj)
reactor1 = get_reactor("find_recep")
reactor2 = get_reactor("check_obj_attr")
recep = reactor1(obj)
attr = reactor2(recep)
if attr.openable and attr.close:

atomic_open_object(recep)
atomic_pickup_object(obj)
atomic_close_object(recep)

else: atomic_pickup_object(obj)

Table 1: Atomic and procedural action functions in
Python, starting with atomic and udp respectively.

Interface to Atomic Actions Aa (C1) Atomic
actions provide a medium for direct interaction
with the environment. The call of an atomic ac-
tion with proper argument types will invoke the
corresponding execution in the environment.

Procedural ActionsAp (C2-C4) Procedural ac-
tions describe abstractions of higher-level proce-
dures composed of either lower-level procedures
or atomic actions. Notably, lower-level procedures
can be re-used across many higher-level procedures
without re-definition. Formalizing the hierarchies
in this compact way can not only facilitate the pro-
cedure library curation process but also potentially
benefit automatic library induction (e.g. through
minimal description length (Ellis et al., 2020)).

Control-flow of Ap (C3-C4) There can be mul-
tiple execution traces to accomplish the same goal
under different conditions. For example, picking
up an object from inside a closed receptacle re-
quires opening the receptacle first, while the open
action is not required for objects not in a receptacle.
To improve the coverage of procedural functions
we leverage the built-in control flow of the host
programming language to allow for conditional ex-
ecution of environment-specific actions (C4). To
deal with the repeated calls of the same routine,
we further introduce for/while-loops. For example,
C3 works for emptying receptacles with variable
number of objects without repeatedly writing down
the udp_pick_put_object. Leveraging control
flows to describe divergent procedural traces re-
mains largely unexplored in previous works.

69

Call of Situated Components (C3-C4) The dy-
namic trigger of a control flow often remain un-
known before the agent interacts with the environ-
ment. We introduce situated components to probe
the environment and gather state information to
guide program execution. In C4, the agent uses
two different reactors to find the potential holder of
an object (reactor1) and exam the holder’s prop-
erties (reactor2). A reactor can be implemented
in many ways (e.g. using a neural network).

5 Hierarchical Modular Networks

This section introduces how to use the procedure
library A to generate executable programs to com-
plete tasks described in natural language x. We
propose a modeling method of hierarchical mod-
ular networks (HMN) that consists of two main
components. First, there is a HMN-PLANNER

that convert x to an executable procedural action
ae = {a1, a2, ..., an} where ai either belongs to
atomic functions Aa or procedural functions Ap.
We model the HMN-PLANNER as a sequence-to-
sequence model where the encoder takes x as in-
put, and the decoder generates one function ai at a
time from a constrained vocabulary Ap

⋃Aa, con-
ditioned on x and the action history {a1, ..., ai−1}.

Next, we define the collection of situated com-
ponents, “reactors,” as HMN-REACTORS. Each re-
actor is a classifier that predicts one or many labels
given the observed information (e.g. the NL input,
the visual observation. For example, reactor2 in
C4 in Tab. 1 probes the status of a receptacle based
on receptacle name and the visual input. HMN-
REACTORS allows us to flexibly share the same
reactor among different functions and design sep-
arated reactors to serve different purposes. For
example in C4, we use two reactors to find the
possible receptacle of an object (reactor1) and
to perceive the open/closed status of a receptacle
(reactor2) since these two tasks presumably re-
quire more mutually exclusive information. At the
same time, we share reactor2 to also probe the
related openable property of a receptacle for more
efficient parameter sharing. This sort of modular
design leads to efficient training and improved per-
formance (Andreas et al., 2016).

6 Instantiations

In this section, we introduce two concrete real-
izations of the proposed framework over the IQA
dataset (Gordon et al., 2018) and the ALFRED

dataset (Shridhar et al., 2020a). Both are based
on egocentric vision in a high-fidelity simulated
environment THOR (Deitke et al., 2020).

6.1 IQA
IQA is a dataset for situated question answering
with three types of questions querying (1) the ex-
istence of an object (e.g. Is there a mug?), (2) the
count of an object (e.g. How many mugs are there?)
and (3) whether a receptacle contains an object (e.g.
Is there a mug in the fridge?).

There are seven atomic actions in IQA,
i.e. Moveahead, RotateLeft, RotateRight,
LookDown, LookUp, Open and Close; and all argu-
ments are expressed through the unique object IDs
(e.g. apple_1). We further process the atomic nav-
igation actions to a single atomic action Navigate
with one argument destination, which moves
the agent directly to the destination. This replace-
ment is done by searching the scene and recording
the coordinates of unmovable objects (e.g. cabinet)
– more details provided in the §C.1.
Procedure Library We design a procedure for
each of the three types of questions in IQA, as
shown in Tab. 2. Generally speaking, those proce-
dures first search all or a subset of the receptacles
(e.g.table, fridge) in a scene for the target ob-
ject (e.g.mug), and then execute a question-specific
intent (e.g. existence-checking, counting). Tab. 2
shows the procedure for answering existence ques-
tions. Since the target object can be inside a recep-
tacle (e.g. fridge), we introduce control flow to de-
cide whether to open and close a receptacle before
and after checking its contents in sub-procedure
udp_check_relation. Following the paper au-
thor’s understanding of the three types of questions,
these procedural functions were created without
looking into any actual trajectories that answer
these questions. In total, we define six procedu-
ral actions with a complete list in §A.
HMN The natural language questions x in IQA
are generated with a limited number of templates.
There are only seven receptacles, and three of them
are openable. We thus use a rule-based HMN-
PLANNER to map a template to one of the three
high-level procedural actions (i.e. existence, count
and contain). Then, we design two reactors, each as
a multi-classes classifier: ATTRCHECKER, which
examines the properties (whether the object is open-
able) and the status (whether the object is opened)
of an object, and RELCHECKER, which checks the
spatial relation between two objects. We leave the

70

check existence of an object in the scene
def udp_check_obj_exist(obj):

all_recep = udp_grid_search_recep()
for recep in all_recep:

rel = udp_check_relation(obj, recep)
if rel == OBJ_IN_RECEP:

return True
return False

check object inside receptacle
def udp_check_relation(obj, recep):

atomic_navigate(recep)
r1 = get_reactor("check_obj_attr")
r2 = get_reactor("check_obj_recep_rel")
attr = r1(recep)
if attr.is_openable and attr.is_closed:

atomic_open_object(recep)
rel = r2(obj, recep)
atomic_close_object(recep)

else:
rel = r2(obj, recep)

return rel

Table 2: The procedural actions to answer the existence
questions of the IQA dataset.

detailed implementations of the reactors to §C.3.
Notably, we use zero IQA training data to build the
HMN. Instead, it is made up of a few heuristic com-
ponents based on the predictions of a pre-trained
perception component.

6.2 ALFRED
ALFRED is a benchmark for mapping NL instruc-
tions to actions to accomplish household tasks in
the situated environment (e.g. heat an egg). Exam-
ples in ALFRED come with both single-sentence
high-level intents describing a goal (e.g. the NL
input in Fig. 1), and more fine-grained, step-by-
step instructions. In this paper we only use the
high-level intents, a more realistic yet more chal-
lenging setting to study the effectiveness of our
framework in encoding extra procedural knowl-
edge for under-specified intents. Besides the seven
atomic actions in the IQA dataset, ALFRED also
introduces Pickup, Put, ToggleOn, ToggleOff
for object interactions. ALFRED uses 2D binary
tensor describing regions of the visual space as ar-
guments. Similarly to IQA, we replace the nav-
igation action with an atomic action Navigate
destination. Previous works also apply similar
replacement (Shridhar et al., 2020b; Karamcheti
et al., 2020) to allow the agent to proceed to a loca-
tion without fail. Details in §C.
Procedure Library We create a procedure li-
brary for ALFRED by identifying idiomatic control
flow and operations from a small set of randomly
sampled examples. The library is designed with
two goals in mind as discussed in §4: reusability,
where a single function can be applied to multiple
similar scenarios, and coverage, where a function

should cover different execution trajectories under
different conditions For instance, many tasks con-
sist of a sub-routine to obtain an object by first
navigating to the object and then picking up the
object by hand, calling for a reusable procedure
adaptable to those scenarios. Moreover, if an ob-
ject is positioned inside a receptacle, picking up
the object would require opening the receptacle
first, an edge case that should be covered by rele-
vant procedures (e.g. C4 in Tab. 1). Notably, we
constrain the conditions of the control flow to the
logic operation of the property values of objects
(e.g. fridge.is_openable=True).

In total, we define ten such procedural actions
(complete list in §A). This creation process was
done by the first author, a graduate student profi-
cient in Python, and took about two hours. This
modest amount of time is partially due to PaP’s
intuitive interface that allows for quick summa-
rization of complex procedures and partially due
to ALFRED’s relative simplicity; it has a lim-
ited number of task types and consistent execu-
tion traces. A sanity check of an initial version
of the library uncovered some mismatches (details
in §C.4). For example, a laptop should be closed
before picking up, which was not captured by our
library. We thus added a udp_close_if_needed
function call before the atomic_pick_object in
udp_pick_object. On one hand this increases
the complexity of the library design process, but on
the other hand it also demonstrates the flexibility of
the PaP framework, as the necessary fixes could be
done entirely by modifying the procedure library it-
self. §7.1 provides an end-to-end comparison with
different procedural libraries.

To investigate the scalability of our annotation
process, we also provided a similar guideline and
the 21 examples to a separate programmer who
does not have any prior knowledge to the dataset.
We found that the programmer could quickly under-
stand the PaP Python interface and issue reasonable
procedural functions that highly resemble our own
creations. This indicates the possibility to curate
the procedure libraries with crowd-sourcing efforts.
More discussion is provided in §7.2 and the full
list of the annotation guideline and the user-issued
functions are listed in §B.

HMN As discussed in §5, HMN-PLANNER gen-
erates an executable procedural action ae, given the
natural language instruction x. We implement our
planner with a sequence-to-sequence model with

71

C1, heat an object with microwave
def udp_heat_object(obj):

udp_pick_and_put_object(obj, microwave)
atomic_toggleon_object(microwave)
atomic_toggleoff_object(microwave)

C2, prepare the receptacle for future interactions
def udp_prepare_recep(obj):

reactor = get_reactor("check_obj_attr")
attr = reactor(obj)
if attr.is_openable and attr.is_closed:

atomic_open_object(obj)

Table 3: Two procedural actions for ALFRED

attention (Bahdanau et al., 2015).
Based on the construction of the procedure li-

brary and the required argument type, we design
three reactors: ATTRCHECKER, which has the
same functionality as in IQA, REFINDER, which
probes where the desired object lies by predicting
a receptacle name from all available receptacles
to the dataset, and MGENERATOR, which gener-
ates the 2D binary tensor representing the inter-
action region. Since ALFRED has much richer
scene configurations and more diverse objects than
IQA, the reactors are fully implemented with neu-
ral networks.This demonstrates the flexibility of
our framework to share, add and replace compo-
nents to suit different situations. We describe the
detailed implementations of the reactors in §C.3.
The HMN is trained in a supervised fashion, and
the heuristic way to induce the supervisions from
the original dataset is described in §C.4.

7 Experiments

We compare our proposed framework with the base-
line reactive agents that predicts a single atomic
action at each time step. Notably, we apply the
same pretrained vision models, pre-searched map
and the Navigate atomic action used in PaP-HMN
to the baseline to ensure a fair comparison. More
details in §C.2. We attempt to answer the following
research questions: (1) Does our framework per-
forms better in complex tasks with inherent hier-
archical structures, comparing to a purely reactive
system? If so, in what way? (2) Can our framework
leverage the procedural knowledge encoded in the
procedure library and the modularity of its HMN to
learn more efficiently? And (3) Can our framework
accelerate the development of the task of interest?

7.1 Results on IQA
Results in Tab. 6 show that our framework yields
the best performance across all models over dif-
ferent question types. Through error analysis, we

3unseen features the out-of-distribution visual appearances
and arrangements of objects, same for ALFRED

EX CNT CT

A3C seen - - -
unseen 48.6 24.5 49.9

HIMN seen 73.7 36.3 60.7
unseen 68.5 30.4 58.7

Reactive seen 50.0 25.1 49.6
unseen 18.9 9.1 30.6

PaP-HMN seen 82.8 43.8 82.2
unseen 83.8 45.2 83.1

PaPv0.1-HMN seen 80.3 41.5 75.7

Table 4: The answer accuracy (%) over IQA dataset on
existence (EX), counting (CNT) and contain (CT) ques-
tions. The results of AC3 and HIMN are from Gordon
et al. (2018). Bold shows the best performance3

observe that while the reactive model can gener-
ate reasonable action sequences seen, its answers
are no better than a random guess. This indicates
the inability of a reactive model to book-keep the
observed objects in the memory. For unseen, we
find that the baseline model skips predicting some
receptacles or even generates syntactically invalid
sequences (e.g. functions without required argu-
ments). This is surprising, since the reactive base-
line is trained using the canonicalized action se-
quences according to the roll-out of the for-loops
in the procedure library, which are quite regular.
This indicates that even simple repeated procedures
can be easily represented with a for/while-loop can
still be challenging to a reactive agent implemented
with a sequence-based backbone. The strong per-
formance of PaP might seem unsurprising given
that the library is tailored carefully to the domain.
However, sophisticated models like HIMN (Gor-
don et al., 2018) still struggle to capture such sim-
ple patterns, and there is not a straightforward way
to plug the simple rules that we were easily able to
describe in PaP in to improve its performance; PaP
solves the easy problems so that an ML model can
focus its effort on the more challenging problems
that truly require learning (e.g. object grounding).
Procedure Library Manipulation One advan-
tage of our approach is that it decouples the reac-
tors from the creation of the procedural knowledge,
thus allowing plug-in update of the procedure li-
brary without time-consuming redesigning or re-
training the reactors. Tab. 5 lists two versions of
the procedure that decides the list of receptacles
to enumerate, and the results of v0.1 are shown
at the bottom of Tab. 4. In v0.1, the agent stands
in its randomly initialized position, looks around,
and detects receptacles. Only the detected recepta-

72

v0.1: only scan at the start position
def udp_search_recep():

r = get_reactor("detect_recep")
receps = []
for rotation in range(0, 360, 90):

atomic_rotate(rotation)
for horizon in [−30, 0, 30]:

atomic_look(horizon)
receps += r()

return receps
now: navigate to every reachable point and scan
def udp_grid_search_recep():

if not done_search:
all_receps = [] # global var
for pos in reachable_pos:

atomic_navigate_pos(pos)
all_receps += udp_search_recep()

return all_receps

Table 5: Two versions for getting receptacles.

seen unseen

Singh et al. (2020) 5.4 0.2
Reactive 21.0 5.6

PaP-HMN 27.0 11.7

Reactive + Oracle MG 40.7 (48.6) 36.4 (45.0)
PaP-HMN + Oracle MG 54.5 (61.0) 51.3 (61.1)

Table 6: The full task success rate SR (the partial task
success rate, SSR, %) of the baseline reactive model
and our model. MG represents the mask generator.
bold shows the best performance for each setting.

cles are checked to answer the question. However,
since not all receptacles are visible to the agent at
the agent’s initial point, such checking could be
incomplete. We upgraded this function to the new
version where the agent searches all possible posi-
tions of the scene and memorizes the unmovable
receptacle positions. This process only happens
once for a scene, and the searched map is stored
for future uses. In this way, most receptacles are
covered. This simple modification without chang-
ing the remaining parts of the framework improved
the CT answer accuracy by 6.6% and improvement
of around 2.5% over the other two question types.

7.2 Results on ALFRED

Tab. 6 lists the results. Our model yields a consis-
tent gain over the baseline system on both splits.4

In our analysis, we find that the Mask R-CNN vi-
sion model is the main bottleneck of both end-to-
end systems, which we hypothesis is due to the
sub-optimal transfer from the MSCOCO (Lin et al.,
2014) to the ALFRED data. It frequently misclas-
sifies the object types or does not recognize the
object in the scene at all. This results in the failure
of object grounding and thus the failure of the task

4Singh et al. (2020) predicts atomic navigation sequences
(e.g.MoveAhead) instead of Navigate. The agent struggles to
navigate to destination with only high-level goal. This shows
the difficulty of navigation under our experiment setting.

completion. Since the development of a better ob-
ject detector is somewhat orthogonal to our main
contributions, to isolate the impact of using a weak
object detector on the end-to-end performance, we
replace the Mask R-CNN with an oracle object
mask generator, which always localize and inter-
act with the provided object name if the object is
in view for all experiments below. We observe
a larger performance gap using this oracle mask
generator as shown in the bottom half of Tab. 6.
This gap suggests that procedural knowledge that
could be summarized as several functions describ-
able within a short period of time (in this case, ten
functions in two hours) can still be difficult for a
reactive system to capture. While the same proce-
dural knowledge can be used in many cases with
different environment dynamics, a reactive system
struggle to distill such knowledge when interacting
with highly diverse and dynamic environments.

Performance w.r.t. Action Length In Fig. 2, we
further break down the results to buckets w.r.t the
length of atomic action sequences (without argu-
ments), which roughly represents the difficulty
of a task. We observe consistent improvements
over all buckets, This difference is even more ob-
vious for challenging tasks with over 21 atomic
actions. Our model maintains similar performance
for such cases on seen, and being able to accom-
plish 30% tasks successfully on unseen, while the
baseline can barely complete any task. These sug-
gest our framework’s stronger capacity to solve
long-horizon tasks of deeper hierarchies.

Data Efficiency The hierarchical procedural
knowledge could potentially allow the system to
learn task completion in a data-efficient manner.
We benchmark HMN with varying amounts of
training data. As shown in Fig. 2, with 20% of
the training data, our method exceeds the baseline
with the full training set by a large margin (7.7%
and 17.3% respectively). Furthermore, for seen,
the baseline only obtains less than 60% SR with
20% training data, compared to the full data; our
method could maintain around 90% SR of the full
data setting. These strongly demonstrate the data
efficiency of our method.

Few-shot Generalization Next, we test if our
framework can generalize to novel compositional
procedures with relatively supervised examples.
We design the few-shot experiments where a subset
of the executable procedural actions (ae) are held
out, and we sample at most 20 samples of each

73

Figure 2: The SR (%) with proportions of the full
training set (top) and on each length bucket of the
seen,unseen (bottom).

ae and add them to the training set. We evaluate
the model on these held-out ae. We use two strate-
gies to choose the held-out set; the first randomly
selects n ae; the other selects the longest n ae

(n = 4/19). PaP-HMN achieves 33.1 and 44.9 SR
with these two strategies while the reactive base-
line only reaches 13.9 and 3.3 respectively5. Our
method consistently outperforms the baseline by
a large margin on both settings, which strongly
demonstrates our method’s generalization ability in
the few-shot scenario. The significant gain under
the short to long setting shows our method’s strong
capacities in completing long-horizon tasks in a
data-efficient way compared to the baseline.
Analysis Our framework brings several advan-
tages. First, compared to low-level actions, the
high-level procedural functions are better aligned
with abstract NL inputs. This thus benefits the
learning and the prediction of PLANNER. Second,
programs maintain the consistency of the actions,
while a reactive agent might make inconsistent pre-
dictions, especially arguments, between actions. Fi-
nally, the modular design of PLANNER and the RE-
ACTORS improve the robust behavior of the agent.
More discussion with examples is in §D.1.

Next, we investigate failure cases. First, our abla-
tion study shows that PLANNER correctly predicts
80% of executable procedural actions ae, and the
failures are mainly due to rare words (e.g. soak
a plate). In addition, we manually annotated 50
failed examples whose ae are correct. We found
that 26 failures are due to the sub-optimal interac-
tion positions of the receptacles that we compute
during the pre-search phase (§C.1). This causes the
interaction with a visible object or receptacle to fail.
The pre-search map also missed some objects, and
navigating to these objects always failed. Besides,

5For random split, we average over four different splits.

def udp_heat_object(obj):
reactor = get_reactor("find_qualified_appliance")
app = reactor(obj) # (e.g. microwave, oven)
udp_navigation(app)
atomic_reactor = get_reactor("predict_atomic_action")
atomic_action = atomic_reactor(app)
while atomic_action != STOP:

env.call(atomic_action)
atomic_action = atomic_reactor(app)

Table 7: A potential rewriting of C1 of Tab. 3.

the REACTOR prediction errors fail on 18 exam-
ples; ambiguous annotations caused two errors, and
the wrong argument prediction of the PLANNER

caused four errors. §D.2 shows a comprehensive
discussion with potential solutions.

8 Limitations and Future Work

Overall, our experiments demonstrate the ben-
efit of our framework for encoding hierarchical
procedural knowledge, especially under low-data
or few-shot generalization regimes. One limita-
tion of the experiments here is that they covered
domains where it is relatively easy to enumerate
the tasks that must be solved in the domain. One
intuitive solution in situations where this is not pos-
sible is to manually create libraries that cover major
procedures but fall back to atomic/reactive control
when necessary. For example, as in Tab. 7, the pro-
gram can call a reactor implemented as a the neural
network (atomic_reactor) to predict atomic ac-
tions when using different appliance to heat an
object, instead of enumerating different conditional
branches. Another possibility is to automate pro-
cedure library creation through mining structured
procedural knowledge from Web (Tenorth et al.,
2010; Kunze et al., 2010), or through induction
of high-level procedures from corpora of atomic
action sequences (Ellis et al., 2020).

Another interesting note is that though hierarchi-
cal procedural knowledge is ubiquitous in human
daily life, most existing NL instruction following
benchmarks do not feature such complex, hierarchi-
cal procedures. Although there can be hierarchies
embedded in vision-language navigation tasks (An-
derson et al., 2018), game playing through reading
documentation (Zhong et al., 2019) or through NL
communication (Suhr et al., 2019; Jernite et al.,
2019) and mobile phone navigation (Li et al., 2020),
the hierarchies are shallow at best, or the occasional
complex ones are limited in their breadth. There-
fore, creating NL instruction following benchmarks
that feature more realistic and diverse procedures
is one final important direction for future work.

74

References
Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,

Mark Johnson, Niko Sünderhauf, Ian D. Reid,
Stephen Gould, and Anton van den Hengel.
2018. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real en-
vironments. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, pages 3674–
3683. IEEE Computer Society.

Jacob Andreas, Dan Klein, and Sergey Levine. 2017.
Modular multitask reinforcement learning with pol-
icy sketches. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 166–175. PMLR.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 39–48. IEEE Computer Society.

Yoav Artzi, Dipanjan Das, and Slav Petrov. 2014.
Learning compact lexicons for CCG semantic pars-
ing. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1273–1283, Doha, Qatar. Associa-
tion for Computational Linguistics.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017.
The option-critic architecture. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intel-
ligence, February 4-9, 2017, San Francisco, Califor-
nia, USA, pages 1726–1734. AAAI Press.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2011, San Francisco, California, USA,
August 7-11, 2011. AAAI Press.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn
Song, and Denny Zhou. 2020. Compositional gen-
eralization via neural-symbolic stack machines. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual.

Michele Colledanchise and Petter Ögren. 2018. Behav-
ior trees in robotics and AI: An introduction. CRC
Press.

Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi
Parikh, and Dhruv Batra. 2019. Neural Mod-
ular Control for Embodied Question Answering.
arXiv:1810.11181 [cs]. ArXiv: 1810.11181.

Matt Deitke, Winson Han, Alvaro Herrasti, Anirud-
dha Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi
Salvador, Dustin Schwenk, Eli VanderBilt, Matthew
Wallingford, Luca Weihs, Mark Yatskar, and Ali
Farhadi. 2020. Robothor: An open simulation-to-
real embodied AI platform. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 3161–3171. IEEE.

Kevin Ellis, Catherine Wong, Maxwell Nye, Math-
ias Sable-Meyer, Luc Cary, Lucas Morales, Luke
Hewitt, Armando Solar-Lezama, and Joshua B
Tenenbaum. 2020. Dreamcoder: Growing gen-
eralizable, interpretable knowledge with wake-
sleep bayesian program learning. arXiv preprint
arXiv:2006.08381.

Richard E Fikes and Nils J Nilsson. 1971. Strips: A
new approach to the application of theorem prov-
ing to problem solving. Artificial intelligence, 2(3-
4):189–208.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kush-
man, and Daniel Tarlow. 2017. Differentiable pro-
grams with neural libraries. In Proceedings of the
34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learn-
ing Research, pages 1213–1222. PMLR.

Daniel Gordon, Aniruddha Kembhavi, Mohammad
Rastegari, Joseph Redmon, Dieter Fox, and Ali
Farhadi. 2018. IQA: visual question answering in
interactive environments. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 4089–4098. IEEE Computer Society.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul
Sukthankar, and Jitendra Malik. 2017. Cognitive
mapping and planning for visual navigation. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 7272–7281. IEEE Computer So-
ciety.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and
Ross B. Girshick. 2017. Mask R-CNN. In IEEE In-
ternational Conference on Computer Vision, ICCV
2017, Venice, Italy, October 22-29, 2017, pages
2980–2988. IEEE Computer Society.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-

75

sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society.

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuan-
dong Tian, and Mike Lewis. 2019. Hierarchical
decision making by generating and following natu-
ral language instructions. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 10025–10034.

Srinivasan Iyer, Alvin Cheung, and Luke Zettlemoyer.
2019. Learning programmatic idioms for scalable
semantic parsing. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5426–5435, Hong Kong, China. As-
sociation for Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973, Vancouver, Canada.
Association for Computational Linguistics.

Yacine Jernite, Kavya Srinet, Jonathan Gray, and
Arthur Szlam. 2019. CraftAssist Instruction Pars-
ing: Semantic Parsing for a Minecraft Assistant.
arXiv:1905.01978 [cs]. ArXiv: 1905.01978.

Yiding Jiang, Shixiang Gu, Kevin Murphy, and Chelsea
Finn. 2019a. Language as an abstraction for hier-
archical deep reinforcement learning. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 9414–9426.

Yu-qian Jiang, Shi-qi Zhang, Piyush Khandelwal, and
Peter Stone. 2019b. Task planning in robotics: an
empirical comparison of pddl-and asp-based sys-
tems. Frontiers of Information Technology & Elec-
tronic Engineering, 20(3):363–373.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. 2011.
Hierarchical task and motion planning in the now.
In 2011 IEEE International Conference on Robotics
and Automation, pages 1470–1477. IEEE.

Siddharth Karamcheti, Dorsa Sadigh, and Percy Liang.
2020. Learning adaptive language interfaces
through decomposition. In Proceedings of the First
Workshop on Interactive and Executable Semantic
Parsing, pages 23–33, Online. Association for Com-
putational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Lars Kunze, Moritz Tenorth, and Michael Beetz. 2010.
Putting people’s common sense into knowledge
bases of household robots. In Annual Conference
on Artificial Intelligence, pages 151–159. Springer.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020. Mapping natural language instruc-
tions to mobile UI action sequences. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8198–8210, On-
line. Association for Computational Linguistics.

Yuan-Hong Liao, Xavier Puig, Marko Boben, Anto-
nio Torralba, and Sanja Fidler. 2019. Synthesizing
environment-aware activities via activity sketches.
In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 6291–6299. Computer Vi-
sion Foundation / IEEE.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan Al-
Regib, Zsolt Kira, Richard Socher, and Caiming
Xiong. 2019. Self-monitoring navigation agent
via auxiliary progress estimation. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind
Niklasson, Max Shatkhin, and Yoav Artzi. 2018.
Mapping instructions to actions in 3D environments
with visual goal prediction. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2667–2678, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Dipendra K Misra, Jaeyong Sung, Kevin Lee, and
Ashutosh Saxena. 2016. Tell me dave: Context-
sensitive grounding of natural language to manip-
ulation instructions. The International Journal of
Robotics Research, 35(1-3):281–300.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs. In 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, pages
8494–8502. IEEE Computer Society.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139–
1149, Vancouver, Canada. Association for Computa-
tional Linguistics.

76

Mukund Raghothaman, Y. Wei, and Y. Hamadi. 2016.
Swim: Synthesizing what i mean - code search and
idiomatic snippet synthesis. 2016 IEEE/ACM 38th
International Conference on Software Engineering
(ICSE), pages 357–367.

Joseph Redmon and Ali Farhadi. 2018. Yolov3:
An incremental improvement. arXiv preprint
arXiv:1804.02767.

Eui Chul Richard Shin, Miltiadis Allamanis, Marc
Brockschmidt, and Alex Polozov. 2019. Program
synthesis and semantic parsing with learned code id-
ioms. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
10824–10834.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020a. AL-
FRED: A benchmark for interpreting grounded in-
structions for everyday tasks. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 10737–10746. IEEE.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020b. ALFWorld: Aligning Text and
Embodied Environments for Interactive Learning.
arXiv:2010.03768 [cs]. ArXiv: 2010.03768.

Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi
Kim, Roozbeh Mottaghi, and Jonghyun Choi. 2020.
Moca: A modular object-centric approach for in-
teractive instruction following. arXiv preprint
arXiv:2012.03208.

Siddharth Srivastava, Eugene Fang, Lorenzo Riano,
Rohan Chitnis, Stuart Russell, and Pieter Abbeel.
2014. Combined task and motion planning through
an extensible planner-independent interface layer.
In 2014 IEEE international conference on robotics
and automation (ICRA), pages 639–646. IEEE.

Siddharth Srivastava, Lorenzo Riano, Stuart Russell,
and Pieter Abbeel. 2013. Using classical planners
for tasks with continuous operators in robotics. In
Intl. Conf. on Automated Planning and Scheduling,
volume 3. Citeseer.

Alane Suhr, Claudia Yan, Jack Schluger, Stanley Yu,
Hadi Khader, Marwa Mouallem, Iris Zhang, and
Yoav Artzi. 2019. Executing instructions in situ-
ated collaborative interactions. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2119–2130, Hong Kong,
China. Association for Computational Linguistics.

Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. 2020.
Program guided agent. In 8th International Confer-

ence on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Richard S Sutton, Doina Precup, and Satinder Singh.
1999. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1-2):181–211.

Moritz Tenorth, Daniel Nyga, and Michael Beetz. 2010.
Understanding and executing instructions for every-
day manipulation tasks from the World Wide Web.
In 2010 IEEE International Conference on Robotics
and Automation, pages 1486–1491, Anchorage, AK.
IEEE.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 2692–2700.

Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman,
and Josh Tenenbaum. 2017. Learning to see physics
via visual de-animation. In Advances in Neural
Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA,
pages 153–164.

Nancy Xu, Sam Masling, Michael Du, Giovanni Cam-
pagna, Larry Heck, James Landay, and Monica Lam.
2021. Grounding open-domain instructions to auto-
mate web support tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1022–1032, Online.
Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Licheng Yu, Xinlei Chen, Georgia Gkioxari, Mohit
Bansal, Tamara L. Berg, and Dhruv Batra. 2019.
Multi-target embodied question answering. In IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2019, Long Beach, CA, USA, June 16-
20, 2019, pages 6309–6318. Computer Vision Foun-
dation / IEEE.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911–3921, Brussels, Belgium. Association for
Computational Linguistics.

77

Luke Zettlemoyer and M. Collins. 2005. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. In UAI.

Victor Zhong, Tim Rocktäschel, and Edward Grefen-
stette. 2019. Rtfm: Generalising to novel en-
vironment dynamics via reading. arXiv preprint
arXiv:1910.08210.

Victor Zhong, Caiming Xiong, and R. Socher. 2017.
Seq2sql: Generating structured queries from natu-
ral language using reinforcement learning. ArXiv,
abs/1709.00103.

Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiaodan
Liang. 2020. Vision-language navigation with self-
supervised auxiliary reasoning tasks. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, pages 10009–10019. IEEE.

78

A Full Procedural Library

The full procedural library for IQA is listed
in Tab. 9 and that for ALFRED is listed in Tab. 10.

B User-issued Procedural Library

Fig. 3 shows the screenshot of the annotation guide-
line. We purposefully avoid any dataset-related ex-
amples. The programmer takes around 90 minutes
to complete the annotation. The procedural library
created by a programmer without prior knowledge
to the ALFRED dataset is in Tab. 11. The program-
mer could issue reasonable procedural functions
that highly resemble our own creations. The reac-
tors can be added to detect the properties of the
objects before the condition clauses.

C Experiment Settings

In this section of the appendix, we describe the
detailed implementation of the pre-search map, the
heuristic induction of supervisions from existing
annotation of the AFLFRED dataset and the imple-
mentation of the baseline and our HMN for repro-
duce purpose.

C.1 Pre-search Map Procedure

We treat each scene as a grid map with grid size
0.25. The agent stands on each point, turn around
90 degrees a time and move its camera with de-
gree [-30, 0, 30] and scan. The best position for
a receptacle satisfy (1) the agent can open/close
the receptacle, can pick up/put an object from/to it.
(2) the visual area of the receptacle is the largest
compared to other positions. A threshold is used to
avoid standing too closed. For ALFRED only, we
record the positions of movable objects (e.g. apple).
This is done by enumerating all the receptacle posi-
tions, open them if needed and select the receptacle
position that makes the object most visible.

The map creation also requires an object detec-
tion model to detect objects for each scan. For
IQA, we use the fine-tuned YOLO-v3 detector as
describe in §6.1 and the area of an object is cal-
culated by its bounding box. For ALFRED, we
instead use an oracle object detector to minimize
the pre-search performance loss.

Notably, there are many existing works that ap-
ply the similar replacement (Shridhar et al., 2020b;
Karamcheti et al., 2020). For example, Shridhar
et al. (2020b) pre-search the map, records the co-
ordinates of each object and uses an A* planner

to navigate between two positions. This replace-
ment that allows the agent to proceed to a location
without fail.

C.2 Reactive Baseline
IQA The reactive baseline is implemented as a
pointer network (Vinyals et al., 2015) whose output
sequence corresponds to the positions in an input
sequence. To make a fair comparison with our
method, we provide this baseline with the available
receptacle IDs of each scene, the question type, and
the targeted objects. For instance, given the ques-
tion how many mugs in the fridge for scene i, we
list all the receptacles (e.g. fridge_1, cabinet_2) in
the order of distance to the agent’s initial position
as well as the question type “contains” and the two
working objects “mug” and “fridge”. The fixed set
of actions and the answers are added at the begin-
ning of the input so that the model does not need
an extra generation component. The reactive agent
needs to navigate to each receptacle, operate them
properly and generate an answer at the end. The
images are encoded and the objects are detected
with the same YOLO-v3 detector as in HMN.

While an action sequence is not provided in the
release of the dataset, we heuristically create such
action sequences by enumerating the input recep-
tacle list of each sample. The size for each ques-
tion type is 7000 and a total of 21000 samples
are used in the training. We additionally compare
with the HIMN proposed in Gordon et al. (2018)
that designs a meta-controller that calls different
controllers to accomplish different tasks (e.g. nav-
igation, manipulation), and an A3C agent imple-
mented in the same work.
ALFRED We follow Shridhar et al. (2020a) to
setup our reactive baseline. This baseline takes
the natural language instruction x as input, then it
predicts an atomic action at each time step, condi-
tioned on the vision, the previous generated atomic
action, and the attended language. The baseline
also has a progress monitor component to track the
task completion progress (Ma et al., 2019). We
make the same replacement of the atomic naviga-
tion actions with Navigate destination. The
original mask generator is replaced by the same
Mask R-CNN used in our HMN.

For both datasets, we use seen and unseen
validation set for the evaluation. The floorplans of
the unseen split are held-out in the training data.
Each floorplan defines the appearance of the envi-
ronment as well as the arrangement of the objects.

79

Annotation Guideline

Assuming you are creating a library written in Python that could be used to describe how to accomplish a set of tasks.

To understand the tasks, you are given 7 task categories and in each category, you are given 3 trajectories to achieve a
specific goal stated as natural language. Each trajectory consists of a sequence of atomic actions(e.g. GotoLocation) and
their arguments(e.g. Desktop).

One key feature of the function you create is reusable. For example, if an action sequence (e.g. atomic_action_1,
atomic_action_2 and atomic_action_3) is frequently observed, you can compose super_action_1 that consists of these
three actions. In addition, you can use any composed super_action to compose other super_actions. For example, if there
is a super_action_2 that consists of atomic_action_1, atomic_action_2 and atomic_action_3 and atomic_action_4, you
can define this super_action_2 as super_action_1, atomic_action_4. Their corresponding Python functions are listed
below. You can freely name the arguments, which can be as simple as ‘object_1’, ‘object_2’

def super_action_1(arg1, arg2):

atomic_action_1(arg1)

atomic_action_2(arg2)

atomic_action_3(arg2)

def super_action_2(arg1, arg2):

super_action_1(args1, args2)

atomic_action_4(arg2)

Another key feature of the function you create is good coverage/generalizable. As in your daily life, you can take
different actions to accomplish the same goal. The different action might be due to the diverse nature of accomplishing the
task (e.g. you can either order online or go to a local supermarket to buy some food). Or it is due to the dynamic
environment (e.g. when you buy the food in the supermarket that only accepts cash, you have to withdraw money if you
don’t have any, but you can skip this withdrawal process if you have cash with you). This is defined through conditions

def shop_in_super_market:

if not_have_cash:

withdraw_cash()

shopping, a super_action

super_action_i()

The reason why we treat this function as a more generalizable function is that, if you do not write in this way, you will have
to compose two distinct functions even though they achieve the same goal in the end:

def shop_in_super_market_with_cash:

shopping

def shop_in_super_market_without_cash:

withdraw_cash()

shopping

Figure 3: The annotation guideline for a programmer to create procedural functions with 21 examples from the
ALFRED dataset.

For IQA, we measure the answer accuracy, and
we follow Shridhar et al. (2020a) to measure the
task success rate (SR), which defines the percent-
age of whole task completion; and sub-task success
rate (SSR), which measures the ratio of individual
sub-task completion for ALFRED.

C.3 HMN Implementation

IQA Since the natural language questions x are
generated with a limited number of templates, we
use a rule-based HMN-PLANNER that recognizes
each template and classifies a template to one of
the three question types whose corresponding pro-
cedural actions are listed as the top three functions
in Tab. 9.

We model the two reactors ATTRCHECKER and
RELCHECKER as two multi-classes classifiers. We
first follow Gordon et al. (2018) to use a YOLO-v3
(Redmon and Farhadi, 2018) that is fine-tuned on

the images sampled from THOR for object detec-
tion. This object detector scan each visual input
and generate a bounding box and a class name for
each detected object. Since there are only seven
receptacles, the ATTRCHECKER uses the predicted
class name of a receptacle to decide whether the re-
ceptacle is openable or not. It then marks the recep-
tacle as is_open=True after the atomic open action
is launched for the receptacle. The RELCHECKER

use bounding box to heuristically decide the spatial
relation between an object and a receptacle. The
RELCHECKER considers that an object is inside a
receptacle if its bounding box has over 70% overlap
with the receptacle’s bounding box.

ALFRED We use a sequence-to-sequence model
with attention (Bahdanau et al., 2015) as our PLAN-
NER. The input to the encoder is the natural
language x. The decoder generates one func-
tion ai at a time from a constrained vocabulary

80

Ap
⋃Aa, conditioned on x and the action history

{a1, ..., ai−1}.
We adopt the pre-trained Mask R-CNN (He et al.,

2017) that is fine-tuned on the ALFRED dataset
from Shridhar et al. (2020b) as our MGENERATOR.
It returns the name and the bounding box for all
detected objects in the visual input. Its parame-
ters are frozen. We design ATTRCHECKER and
REFINDER as two multi-classes classifiers. The
inputs to these two reactors are the object name ho

encoded by a BI-LSTM, the immediate vision hi

encoded by a frozen RESNET-18 CNN (He et al.,
2016) following Shridhar et al. (2020a), the called
action sequence ha encoded with a LSTM and the
attended input hl with ha. These four vectors are
concatenated together as hf . A fully connected
layer and a non-linear activation function are added
to predict class probabilities.

C.4 AFLRED Supervision Induction
We induced the ground truth labels for each com-
ponent of the HMN from ALFRED with the
help of atomic action sequences and the sub-
goal sequences provided by the dataset so that
the HMN can be trained in a supervised fash-
ion to maximize the log-likelihood of the la-
bel. First, we used the subgoal sequences to
annotate the executable procedural actions for
the planner. For example, a subgoal sequence
Goto, Pick, Clean, Goto, Put was annotated with
udp_clean_object, udp_put_object. A differ-
ent subgoal sequence Goto, Pickup, Goto Clean,
Put was annotated with the same procedural ac-
tion sequence. The first author annotated 30 most
frequent subgoal sequences of the training set of
ALFRED and resulted in 19 different executable
procedural actions6. Next, we used the atomic ac-
tion sequences of the dataset to generate the labels
for the reactors. For example, if there is an Open
before a Pickup in the atomic action sequence, the
attribute of the corresponding object is labeled as
openable=True and is_open=False.

When doing the sanity check to verify the cov-
erage of our created procedural library, we assign
an executable procedural action ae to each sample,
we then check whether the atomic action sequence
of ae match the annotated atomic action sequence
provided by the dataset. Unmatched examples are
reviewed and the procedural library is updated as

6We discarded a training example if its subgoal sequence is
not annotated with the procedure library. About 500 samples
among 21k training data are discarded.

in §6.2.

C.5 Hyperparameters

IQA Baseline The embedding size is 100, the
hidden size of the BI-LSTM and LSTM are 256
and 512. We take the same three feature vec-
tors before the YOLO detection layer and con-
vert the channel size to 32 with convolution lay-
ers to encode an image. The flatted features are
concatenated with dropout rate of 0.5. We use
Adam (Kingma and Ba, 2015) with learning rate
1e-4.
ALFRED We follow Shridhar et al. (2020a) for
the hyperparameter selection of the baseline and
our model if they are applicable (e.g. embedding
size, optimizer). We observe that training longer
yields better task completion, and thus we train
the baseline for 15 epochs and ours for 10 epochs.
For our method only, the size of ho, ha and hl is
512. The activation function of ATTRCHECKER is
Sigmoid and the output size is 3 (i.e. is_openable,
is_open, is_close). The activation function of RE-
FINDER is Softmax and the output size equals the
object vocabulary size.

D Analysis

In this section, we present concrete examples to
demonstrate the benefit of our proposed pipeline.
We also show a few failures of our pipeline to en-
courage future developments.

D.1 Advantage of HMN

The above results suggest that our proposed frame-
work with modularized task-specific components
and predefined procedure knowledge is effective
in controlling situated agents via complex natu-
ral language commands. Compared with the re-
active agent, this framework brings several bene-
fits. First, instead of directly controlling an agent
using low-level atomic actions, it predicts holis-
tic procedural programs, which are better aligned
with high-level input NL descriptions. For in-
stance, in Examples 1 and 2 in Tab. 8, common
NL phrases like put · in · naturally map to the pro-
cedure udp_pick_put_object, while the reactive
baseline could struggle at interpreting the corre-
spondence between the NL intents and the verbose
low-level atomic actions, resulting in incomplete
predictions. Second, using procedures could help
maintain consistency of actions. Specifically, given
a procedure (e.g.udp_pick_put_object), and its

81

Task: Put a chilled egg in the sink
Reactive: Navigate egg Pickup egg Navigate fridge Open fridge STOP
HMN-PLANNER: udp_cool_object(egg), udp_pick_put_object(egg, sink)

Task: Put CDs in a safe. (*requires to put two CDs)
Reactive: Navigate cd Pickup cd Navigate safe Open safe Put cd safe Close safe STOP
HMN-PLANNER: udp_pick_put_object(cd, safe), udp_pick_put_object(cd, safe)

Task: Place a cooked potato slice in the fridge
Reactive: Navigate knife Pickup knife Navigate potato Slice potato Navigate fridge
Put knife countertop Navigate potato Close potato ...
HMN-PLANNER: udp_slice_object(potato), udp_heat_object(potato), udp_pick_and_put(potato, fridge)

Table 8: Common failures of the reactive baseline. All actions of the reactive baseline are atomic actions.

arguments (e.g.knife, fridge), the HMN agent is
guaranteed to coherently carry out the specified
action without being interfered, while the reac-
tive baseline could predict inconsistent atomic ac-
tions in-between (e.g. the underscored arguments
of Navigate and Put should be the same in Exam-
ple 3). Finally, we remark that procedures also
improve the robust behavior of the agent. For
instance, when interacting with container objects
(e.g. fridge), HMN would call the dedicated AT-
TRCHECKER to decide whether to open the ob-
ject first (e.g. C4,Fig. 1), and it mis-predicts once,
while the reactive baseline fails to perform the Open
action 33 times on the unseen split.

D.2 Error Analysis
We first did an ablation study on the PLANNER

on the unseen split. PLANNER correctly predicts
80% executable procedural actions ae, and the fail-
ures are mainly due to rare words in utterances
(e.g. soak a plate. Next, we manually annotated
50 failed examples among samples whose ae are
correctly predicted by the PLANNER. We found
that 26 failures are due to the sub-optimal interac-
tion positions of the receptacles that we compute
during the pre-search phase (§C.1). This results in
the failures of putting an object in-hand to a visi-
ble receptacle or picking up a visible object. The
pre-search map also missed some objects and navi-
gating to these objects always failed. This problem
can be alleviated either by adding additional proce-
dural actions to move around and attempt to pick
up or put an object until success, or by doing more
careful engineering to create the map. Addition-
ally, 18 examples are caused by prediction errors
of reactors. For instance, REFINDER could given
incorrect predictions of the containing receptacle
of an object. The receptacle is not correctly oper-
ated before the targeted object is visible. While
such errors are inevitable due to imperfect reac-
tors, it could be potentially mitigated by designing
more robust procedures, e.g., enumerating over the

top-n most likely receptacles for a target object
instead of the best scored one by the reactor. Other
approaches, like introducing object-centric repre-
sentations to the reactors (Wu et al., 2017; Singh
et al., 2020), could also be helpful. The remainder
of the errors are caused by ambiguous annotation
(2 examples), and wrong argument predictions of
the planner (4 examples).

E Related Work

Procedure-guided Learning The idea of using
predefined procedures for agent control has been
explored in the literature. For example, Andreas
et al. (2017); Das et al. (2019) use high-level sym-
bolic program sketches to guide an agent’s explo-
ration; Gordon et al. (2018); Yu et al. (2019) de-
sign meta-controller to call different low-level con-
trollers. There only exists one explicit level of the
hierarchy. Sun et al. (2020) show that programs can
assist agent’s task completions. They require the
presence of the program for each task, while our
programs are generated by the planner. There is
no nested function in their provided programs too.
Programs are used to represent procedures in Puig
et al. (2018), but no hierarchy is considered. Later
Liao et al. (2019) annotate the dataset with program
sketches and propose a graph-based method to gen-
erate executable programs. Their work requires
a fully observed environment while we only con-
sider egocentric visions. Recent works also explore
representing hierarchies with natural language (Hu
et al., 2019; Jiang et al., 2019a) and visual goal rep-
resentation (Misra et al., 2018) instead of symbols.
Another related area is probabilistic programming,
where procedures serve as symbolic scaffolds to de-
fine the control flow of learnable programs (Gaunt
et al., 2017). Our work is related to these research
in using predefined procedural knowledge to assist
learning, while we focus on leveraging such pro-
cedures to synthesize executable programs from
natural language commands.

82

Semantic Parsing Our work is also related to
semantic parsing, where executable programs are
generated from natural language inputs. This in-
cludes mapping NL to domain-specific logical
forms (e.g. lambda calculus, (Zettlemoyer and
Collins, 2005)) or programs (e.g. SQL, (Zhong
et al., 2017; Yu et al., 2018)). Recently there
has also been a burgeoning of developing models
that could transduce natural language intents into
general-purpose programs (e.g. Python, (Yin and
Neubig, 2017; Rabinovich et al., 2017)). Our work
also considers program generation from NL, with
a focus on the command and control of situated
agents.

Research in semantic parsing has also explored
leveraging idiomatic program structures, which
are fragments of programs that frequently appear
in training data, to aid generation (Raghothaman
et al., 2016). Such idiomatic programs are mined
from corpora (Iyer et al., 2019; Shin et al., 2019).
Our work focuses on designing flexible and id-
iomatic procedures which interact with situated
components (e.g. reactors) to adapt to environment-
specific situations. This work also uses manually-
curated procedures, because in our problem setting
we do not have a readily available corpus of high-
level procedural programs to automatically collect
such idioms. We leave extracting procedures from
low-level atomic actions as interesting future work.

Robotics Planning and Hierarchical Control
Our procedure library shares the design philosophy
with the macro-actions in the STRIPS representa-
tion in the robotics planning (Fikes and Nilsson,
1971). However, we do not define the pre-condition
and the post-effect of the actions, and instead leave
the models to learn the consequences. The task-
level planning has been studied extensively (Kael-
bling and Lozano-Pérez, 2011; Srivastava et al.,
2013, 2014). These methods often work with high-
level formal languages in low-dimensional state
space, and they are typically designed for a spe-
cific environment and task. Our framework can be
applied to various tasks and only partial observa-
tions are required. Previous works also leverage
PDDL and the answer set planner (ASP) for task
planning. PDDL+ASP is conceptually different
from our formalism. PDDL+ASP aims at planning
the actual execution sequences. The PDDL planner
searches the action sequences based on the initial
and the final state. Meanwhile, our formalism fo-
cuses on describing the procedure to accomplish

a task. We use the HMN-Planner to predict the
executable procedure sequence given the NL. It is
possible to integrate them into one system. E.g.,a
procedure function can call a PDDL planner if the
pre/post conditions are clearer given NL. Finally,
many works design mechanism to learn hierarchies
automatically from supervisions of only the end-
task (Sutton et al., 1999; Bacon et al., 2017), which
might suffer from collapsing to trivial atomic ac-
tions.

check the existence of an object in the scene
def udp_check_obj_exist(obj):

all_recep = udp_grid_search_recep()
for recep in all_recep:

rel = udp_check_relation(obj, recep)
if rel == OBJ_IN_RECEP:

return True
return False

check whether a receptacle contains an object
def udp_check_contain(obj, recep):

all_recep = \
udp_grid_search_tar_recep(recep.desc)
for recep in all_recep:

rel = udp_check_relation(obj, recep)
if rel == OBJ_IN_RECEP:

return True
return False

count how many objects in the scene
def udp_count_obj(obj):

tot = 0
all_recep = udp_grid_search_recep()
for recep in all_recep:

rel = udp_check_relation(obj, recep)
tot += int(rel == OBJ_IN_RECEP)

return tot

check object inside receptacle
def udp_check_relation(obj, recep):

atomic_navigate(recep)
r1 = get_reactor("check_obj_attr")
r2 = get_reactor("check_obj_recep_rel")
attr = r1(recep)
if attr.is_openable and attr.is_closed:

atomic_open_object(recep)
rel = r2(obj, recep)
atomic_close_object(recep)

else:
rel = r2(obj, recep)

return rel

get a list of target receptacles
def udp_grid_search_tar_recep(desc):

recep_list = udp_grid_search_recep()
tar_recep_list = [x for x in recep_list \\
if x.desc == desc]
return tar_recep_list

navigate and search at every reachable points
def udp_grid_search_recep():

if not done_search:
all_receps = [] # global var
for pos in reachable_pos:

atomic_navigate_pos(pos)
all_receps += udp_search_recep()

return all_receps

Table 9: Procedural functions defined for IQA

83

close an object if it is open
def udp_close_if_needed(obj):

reactor = get_reactor("check_obj_attr")
attr = reactor(obj)
if attr.is_openable and attr.is_open:

atomic_close_object(obj)
"postpare" the receptacle
def udp_postpare_recep(obj):

reactor = get_reactor("check_obj_attr")
attr = reactor(obj)
if attr.is_openable and attr.is_open:

atomic_close_object(obj)
pickup an object
def udp_pick_object(obj):

reactor = get_reactor("find_obj_recep")
udp_navigation(obj)
recep = reactor(obj)
udp_prepare_recep(recep)
this is for pickup laptop only
udp_close_if_needed(obj)
atomic_pick_object(obj)
udp_postpare_recep(recep

put an object to a receptacle
def udp_put_object(obj, dst):

udp_navigation(dst)
udp_prepare_recep(dst)
atomic_put_object(obj, dst)
udp_postpare_recep(dst)

clean an object in the fauucet
def udp_clean_object(obj):

sink and faucet are global variables
udp_pick_object(obj)
udp_put_object(obj, sink)
atomic_toggleon_object(faucet)
atomic_toggleoff_object(faucet)
udp_pick_object(obj)

slice an object with a knife
def udp_slice_object(obj, tool_dst):

knife is a global variable
udp_pick_object(knife)
udp_navigation(obj)
reactor = get_reactor("find_obj_recep")
recep = reactor(obj)
udp_prepare_recep(recep)
atomic_slice_object(obj)
udp_postpare_recep(recep)
udp_put_object(tool, tool_dst)

pick an object and then put it to a receptacle
def udp_pick_and_put_object(obj, dst):

udp_pick_object(obj)
udp_put_object(obj, dst)

cool an object with fridge
def udp_cool_object(obj):

fridge is a global variable
udp_pick_and_put_object(obj, fridge)

heat an object with microwave
def udp_heat_object(obj):

udp_pick_and_put_object(obj, microwave)
atomic_toggleon_object(microwave)

prepare a receptacle for interaction
def udp_prepare_recep(obj):

reactor = get_reactor("check_obj_attr")
attr = reactor(obj)
if attr.is_openable and attr.is_closed:

atomic_open_object(obj)

Table 10: Procedural functions defined for ALFRED

udp_pick_object(obj):
def udp_pick_up(object, loc):

udp_navigation(loc)
if loc.is_open:

atomic_pickup_object(object)
else:

atomic_open_object(loc)
atomic_pickup_object(object)
atomic_close_object(loc)

def udp_pick_up_to(object, loc, loc_to):
udp_pick_up(object, loc)
udp_navigation(loc_to)

udp_put_object(obj, dst):
def udp_put_to(object, loc_to):

udp_navigation(loc_to)
if loc.is_open:

PutObject(object)
else:

atomic_open_object(loc_to)
atomic_put_object(loc_to)
atomic_close_object(loc_to)

udp_pick_and_put_object(obj, dst):
def udp_pick_put_to(object, loc, storage):

udp_pick_up(object, loc)
udp_put_to(object, storage)

def udp_look_under_light(object, loc, light_source):
udp_pick_up_to(object, loc, light_source)
atomic_toggleon_object(light_source)

udp_slice_object(obj, tool_dst):
def udp_slice(object, loc, slicer):

udp_pick_up_to(slicer, loc, object)
atomic_slice_object(object)

def udp_toggle(object):
atomic_toggleon_object(object)
atomic_toggleoff_object(object)

udp_cool_object(obj):
def udp_cool(object, loc):

udp_pick_put_to(object, loc, fridge)

udp_heat_object(obj):
def udp_heat(object, loc):

udp_pick_put_to(object, loc, microwave)
udp_toggle(microwave)
udp_pick_up(object, microwave)

udp_clean_object(obj):
def udp_clean(object, loc):

udp_pick_put_to(object, loc, Faucet)
udp_toggle(Faucet)

Table 11: Procedural functions defined by a program-
mer without ALFRED domain knowledge. The com-
ments could roughly map to functions in Tab. 10.

84

Author Index

Amoake, Michael, 17

Basu, Samyadeep, 17
Bechet, Frederic, 47
Bharadwaj, Akshay Ganesh, 1

Chen, Xiaofeng, 9
Chen, Yirong, 9

El-Hammamy, Hazem, 17

Fischer, Alex, 17

Han, Benjamin, 17
Han, Wenjing, 9
Heinecke, Johannes, 47

Ip Kiun Chong, Karine, 17

Jiang, Zhengbao, 36

Kumar, Aman, 1

Lynch, Collin, 1

Mo, Lingbo, 55
Montella, Sebastien, 47
Morrison, Clayton, 26

Nasr, Alexis, 47
Neubig, Graham, 36, 67
Noriega-Atala, Enrique, 26
Nosakhare, Ehi, 17
Nyberg, Eric, 36

Ramani, Vijay, 17
Rohra, Vishal, 17
Rojas-Barahona, Lina Maria, 47

Sharaf, Amr, 17
Starly, Binil, 1
Sun, Huan, 55
Surdeanu, Mihai, 26

Tie, Qianfeng, 9

Wang, Zhen, 55
Wang, Zhiruo, 36

Xing, Xiaofen, 9
Xu, Xiangmin, 9

Yin, Pengcheng, 67

Zhao, Jie, 55
Zhou, Shuyan, 67

85

