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Abstract

Labeled data for the task of Coreference Res-
olution is a scarce resource, requiring signifi-
cant human effort. While state-of-the-art coref-
erence models rely on such data, we propose
an approach that leverages an end-to-end neu-
ral model in settings where labeled data is
unavailable. Specifically, using weak super-
vision, we transfer the linguistic knowledge
encoded by Stanford’s rule-based coreference
system to the end-to-end model, which jointly
learns rich, contextualized span representa-
tions and coreference chains. Our experiments
on the English OntoNotes corpus demonstrate
that our approach effectively benefits from the
noisy coreference supervision, producing an
improvement over Stanford’s rule-based sys-
tem (+3.7 F1) and outperforming the previous
best unsupervised model (+0.9 F1). Addition-
ally, we validate the efficacy of our method on
two other datasets: PreCo and Litbank (+2.5
and +5 F1 on Stanford’s system, respectively).

1 Introduction

Coreference resolution is an important problem in
language understanding. In the recent years, sig-
nificant progress has been made on this task with
coreference annotated corpora (Hovy et al., 2006)
and deep neural network architectures (Wiseman
et al., 2015; Clark and Manning, 2016a,b; Lee et al.,
2017). Further gains have been obtained by lever-
aging contextualized text encoders like ELMo (Lee
et al., 2018), BERT, SpanBERT, and Longformer
(Kantor and Globerson, 2019; Joshi et al., 2019,
2020; Wu et al., 2020; Kirstain et al., 2021).

The progress in supervised coreference resolu-
tion has not been accompanied by analogous im-
provements in unsupervised methods. The best
performing work in this domain is the unsuper-
vised mention-ranking systems proposed by Ma
et al. (2016). Approaches that do not rely on gold
annotation are highly desirable for this task, as

coreference corpora are expensive to create. Ad-
dressing this issue, weak supervision has been used
for multilingual coreference resolution to automati-
cally obtain labels for languages with no annotated
datasets (Wallin and Nugues, 2017).

In this paper, we introduce a simple yet effec-
tive approach for unsupervised coreference resolu-
tion, which leverages an end-to-end span-ranking
coreference model (Lee et al., 2018) and contextu-
alized span representations. The end-to-end model
is trained with weak supervision from Stanford’s
coreference system (Lee et al., 2011), which, in
turn uses a set of linguistic rules for coreference.
Previous works have used Stanford system’s rules
as feature extractors (Fernandes et al., 2012; Wise-
man et al., 2015; Ma et al., 2016). However, our
approach uses Stanford’s rule-based sieves to pro-
duce noisy labels that are subsequently used to train
the neural end-to-end resolver.

The rationale behind the use of Stanford’s re-
solver for producing noisy labels lies in its ease
of use and its modular structure, which allows us
to interpret the value of the linguistic knowledge
encoded in the system. Linguists building a coref-
erence resolver in a new domain can encode their
prior knowledge via rules and improve the Stan-
ford system. Our approach would further boost the
resolver by incorporating pre-trained representa-
tions. Nevertheless, our framework can be applied
in combination with any method able to produce
informative coreference labels.

We assess our approach on three coreference
corpora: English OntoNotes (Pradhan et al., 2012),
PreCo (Chen et al., 2018), and Litbank (Bamman
et al., 2020). Our experiments show that the imper-
fect information contained in the noisy labels can
be effectively used to train the end-to-end model,
producing an improvement over Stanford’s system.
Experimenting with different pre-trained language
models, we observe that using BERT boosts the
performance of the end-to-end resolver. Results
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further improve by using SpanBERT (Joshi et al.,
2020), which outperforms previous unsupervised
models (Ma et al., 2016) on the English OntoNotes
benchmark. We also evaluate the approach on two
other coreference datasets: PreCo and Litbank, and
show strong gains over the Stanford system. Fi-
nally, we present a set of analyses that examine
the information incorporated by weakly supervised
training.

2 Method

Our approach relies on the c2f-coref end-to-end
architecture proposed by Lee et al. (2018), and on
the classic rule-based Stanford coreference system
(Lee et al., 2011, 2013) for the CoNLL 2011 shared
task (Pradhan et al., 2011).

Overview of c2f-coref The end-to-end corefer-
ence resolution system (Lee et al., 2017) uses a
span-based neural model that learns a distribution
P (·) over antecedents y for each span i. Spans
are represented using fixed-length embeddings ob-
tained via bidirectional LSTMs (Hochreiter and
Schmidhuber, 1997) and taken as input by a pair-
wise scoring function.

Subsequent models revisited this approach: Lee
et al. (2018) proposed the c2f-coref method, intro-
ducing coarse-to-fine antecedent pruning and em-
bedding representations from ELMo (Peters et al.,
2018) at the input to the LSTMs. Later, Joshi et al.
(2019) used BERT to represent spans, demonstrat-
ing the power of pre-trained language models for
coreference resolution. Most recently, Joshi et al.
(2020) introduced SpanBERT and further improved
the state of the art.

Stanford’s Rule-based System Stanford’s sys-
tem is a deterministic coreference resolver consist-
ing of a set of sieves applied in a cascade fashion.
Initially, the Mention Detection considers all noun
phrases, pronouns, and named entity mentions as
candidate mentions, then filters them according to a
set of exclusion rules. Specifically, each identified
mention is considered as a singleton cluster. Then,
akin to agglomerative clustering, the clusters are
sequentially processed by the sieves. Each sieve
embodies a specific linguistic rule and builds on the
result of the previous sieve by merging a mention
into a partially-formed entity cluster, depending on
whether it satisfies a set of constraints. The archi-
tecture guarantees that high-precision constraints
are given high priority (e.g., exact string match,

head match), while rules with lower precision but
higher recall are applied later (e.g., the Pronominal
Coreference Sieve). We provide a description of
the most important sieves in Appendix A.

Weak Supervision using Linguistic Rules Al-
though Stanford’s sieve-based system is unsuper-
vised, it captures rich, task-specific coreference
information in English, and we hypothesize that
it could effectively serve as supervision for train-
ing the neural span-ranking model. By exploiting
contextualized span representations within the end-
to-end learning framework, the neural model can
exhibit stronger generalization capabilities.

Specifically, we employ Stanford’s system to
obtain cluster labels, representing a noisy (i.e., non-
gold) signal for both mention identification and
coreference. As in the supervised case, only clus-
tering information is observed. The training is car-
ried out by optimizing the marginal log-likelihood
of the antecedents ỹ implied by the noisy cluster
assignment:

log
N∏

i=1

∑

ỹ∈C(i)
P (ỹ)

where N is the total number of mentions in the
document and C(i) is the set of antecedents of span
i that are coreferent to i according to the cluster
assignment produced by Stanford’s system.

3 Experiments

We assess the proposed approach on three datasets:
the English OntoNotes v5.0 data from the CoNLL-
2012 shared task (Pradhan et al., 2012), PreCo
(Chen et al., 2018), and Litbank (Bamman et al.,
2020). We evaluate the c2f-coref model combined
with different pre-trained language models (ELMo,
BERT, and SpanBERT). These results are com-
pared to the ones produced by Stanford’s system,
in order to show the efficacy of the noisy super-
vision. Moreover, we examine the performance
of our weakly-supervised approach in contrast to
two previous unsupervised models: Multigraph
(Martschat, 2013) and the EM-based ranking model
by Ma et al. (2016).

3.1 Experimental Setup
We use the original implementations of the ELMo-
based c2f-coref1 (Lee et al., 2018) and of the
BERT/SpanBERT-based models2 (Joshi et al.,

1https://github.com/kentonl/e2e-coref
2https://github.com/mandarjoshi90/

coref
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MUC B3 CEAFφ4 CoNLL

P R F1 P R F1 P R F1 F1

Stanford (Lee et al., 2011) 64.3 65.2 64.7 49.2 56.8 52.7 52.5 46.6 49.4 55.6
Multigraph (Martschat, 2013) - - 65.4 - - 54.4 - - 50.2 56.7
Unsup. Ranking (Ma et al., 2016) - - 67.7 - - 55.9 - - 51.8 58.4

c2f-coref 65.7 68.0 66.9 50.9 59.4 54.8 52.9 49.1 50.9 57.5
BERT-base + c2f-coref 66.8 69.2 68.0 51.5 60.6 55.7 53.1 50.3 51.7 58.5
SpanBERT-base + c2f-coref 67.6 68.5 68.1 53.1 60.1 56.4 54.8 50.4 52.5 59.0
BERT-large + c2f-coref 67.2 69.7 68.5 52.3 61.2 56.4 54.0 51.0 52.5 59.1
SpanBERT-large + c2f-coref 67.4 69.8 68.6 52.4 61.8 56.7 54.1 51.4 52.7 59.3

Table 1: Results on the test set of the English CoNLL-2012 shared task3. The c2f-coref models were trained via
weak supervision. Scores for Multigraph and the Unsupervised Ranking model are reported in Ma et al. (2016).

2019), while using their original, respective hy-
perparameters. We use the implementation of Stan-
ford’s system provided with the Stanford CoreNLP
suite (Manning et al., 2014). Further training de-
tails are provided in Appendix B.

We report precision, recall, and F1 for the stan-
dard MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998), and CEAFφ4 (Luo, 2005) met-
rics. We use the CoNLL F1 score (average F1 of
the three metrics) as the main evaluation measure,
which is common practice in coreference3.

3.2 Results on OntoNotes

Table 1 shows that the c2f-coref model trained
with noisy supervision is able to produce a gain
over Stanford’s system. The incremental improve-
ment produced by the pre-trained language mod-
els highlights the importance of the representation
of spans for this task, and suggests that the end-
to-end model learns how to effectively exploit it
from the noisy supervision. The version of the
c2f-coref model augmented with SpanBERT-large
achieves 59.3 CoNLL F1, improving on the Unsu-
pervised Ranking model (Ma et al., 2016) by 0.9
F1. In contrast with what was observed in the super-
vised realm (Joshi et al., 2019), the score increase
produced by BERT-base over ELMo (+1.0 F1) is
larger than the gain yielded by the large versions of
BERT and SpanBERT over their base counterparts
(+0.6 and +0.3 F1, respectively). This might be ex-
plained as an effect of the weak supervision, which
is likely to reduce the marginal improvement pro-
duced by an increase in model complexity. Table
3 illustrates the mention detection performance of
Staford’s system and the c2f-coref models based

3The metrics are computed using the most recent version
of the official CoNLL scorer (Pradhan et al., 2014)

Dataset MUC B3 CEAFφ4 CoNLL

Stanford PC 59.7 49.7 45.2 51.5
SB-B + c2f PC 62.0 52.3 47.6 54.0

Stanford LB 65.8 41.6 26.8 44.7
SB-B + c2f LB 71.4 46.5 31.2 49.7

Table 2: F1 sccore comparison between Stanford’s sys-
tem and the c2f-coref model based on SpanBERT-base
(SB-B) on PreCo (PC) and Litbank (LB).

on SpanBERT-Base and SpanBERT-Large.

3.3 Results on PreCo and Litbank
An important feature of PreCo and Litbank is that
they contain annotations for singleton mentions, un-
like OntoNotes. However, both Stanford’s system
and the c2f-coref model present a recall-oriented
mention detection strategy, which tends to overes-
timate the number of proposed mentions, as sin-
gletons typically would be filtered out from the
response. Moreover, the training process of the
c2f-coref model does not take singleton mentions
into account. For this reasons, we adapt the eval-
uation on Litbank and PreCo to the OntoNotes
guidelines, which assert that predicted singleton
mentions should be ignored and non-coreferent
spans should be removed from the response. Ta-
ble 2 shows performance gains consistent with the
results on OntoNotes, with the weakly-supervised
c2f-coref model improving by 2.5 and 5 CoNLL
F1 on PreCo and Litbank, respectively.

4 Analysis

Performance on Different Types of Coreference
We investigate the capabilities of the weakly super-

3We observed a small discrepancy between the results
relative to Stanford’s system reported by Ma et al. (2016) and
the ones we obtained (~0.2 F1). Here we report the scores we
produce, which are the higher ones.
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P R F1

Stanford 88.7 40.2 55.4
SpanBERT-base + c2f-coref 76.2 77.1 76.6
SpanBERT-large + c2f-coref 75.3 77.8 76.5

Table 3: Comparison of mention detection precision
(P), recall (R) and F1 score on the development set of
the CoNLL-2012 shared task.

Link Type Stanford SB-L + c2f ∆ (%)

Nominal - Pronominal 35.7 38.9 +9.0
Nominal - Nominal 54.1 58.6 +8.3
Nominal - Proper 15.1 17.1 +13.2
Pronominal - Proper 60.2 60.4 +0.3
Pronominal - Pronominal 70.9 73.1 +3.1
Proper - Proper 80.8 82.8 +3.5

Table 4: Performance (F1 scores) on CoNLL-2012 de-
velopment set in terms of identification of coreference
links between different kinds of mentions.

vised end-to-end model in identifying the different
kinds of coreference links given by the combination
of three mention categories: proper, nominal, and
pronominal. We study the performance of the c2f-
coref model based on SpanBERT-large in compari-
son to Stanford’s system. The results are illustrated
in Table 4. We observe a global improvement in all
the considered types of links, with the most signifi-
cant gains from links involving nominal mentions.
This improvement is coherent with the observations
of Durrett and Klein (2013): coreference decisions
involving nominal mentions usually require richer
semantic inference, which in our setting is provided
by the contextualized span representations

Impact of Document Length We compare the
c2f-coref model to Stanford’s system on docu-
ments of different lengths. As reported in Table 5,
Stanford’s resolver performs better than the span-
ranking system on particularly short documents.
However, for all groups of documents longer than
64 tokens, we observe a consistent improvement
provided by the c2f-coref model. This could be ex-
plained by the contextualized span representations,
which were shown to be more informative when
larger context is available (Beltagy et al., 2020).

Varying the Amount of Training Data We as-
sess the performance of the model on PreCo when
the training is carried out on subsets of different
sizes (Fig. 1). We observe that the c2f-coref model
requires only 100 weakly-annotated documents to
outperform Stanford’s system, indicating that the
noisy signal is quickly incorporated by the model.

Doc Length # of Docs Stanford SB-L + c2f ∆ (%)

0 - 64 17 52.1 49.6 -4.8
64 - 128 39 57.2 58.6 +2.4

128 - 256 74 56.2 60.9 +8.4
256 - 512 76 58.9 62.3 +5.8
512 - 768 73 56.5 59.6 +5.5

768 - 1152 52 53.3 56.3 +5.6
1152+ 12 47.0 50.7 +7.9

Table 5: Average CoNLL F1 on the OntoNotes develop-
ment split for sets of documents with different lengths
(expressed as number of tokens).
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Figure 1: Performance on a held-out set of 1000 PreCo
documents using the c2f-coref model as the number of
documents used for training varies.

Using more than 1000 documents does not seem
to boost the score further. We suspect that this be-
havior might be caused by the homogeneity and
the small vocabulary size of the documents of the
PreCo dataset.

Using Different Linguistic Priors We study
how the performance of our approach is impacted
as we vary the complexity of the linguistic rules
used for the weak supervision. We do this by train-
ing the c2f-coref model on the noisy labels obtained
using three different implementations of Stanford’s
system: (1) 1-sieve, which considers only the
Exact String Match rule; (2) 3-sieve, which con-
sists of the three most effective sieves: Exact String
Match, Strict Head Match, and the Pronominal
Coreference sieve; and (3) complete, which im-
plements all ten sieves. Results in Table 6 show
that the improvement provided by the end-to-end
model increases as the noisy signal for the train-
ing becomes more accurate, suggesting that bet-
ter supervision helps the model benefit from the
knowledge-rich span representations.
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Rule Implementation Stanford SB-B + c2f ∆ (%)

1-sieve 27.9 27.6 -1.1
3-sieve 53.5 56.2 +5.0
complete 57.0 60.0 +5.3

Table 6: CoNLL F1 scores on the OntoNotes develop-
ment set using different combinations of sieves.

1

Directly facing [him]1 was [the box of old]2 Mrs.
Manson Mingott, whose monstrous obesity had long
since made [it]2 impossible for [her]3 to attend the
Opera...

Directly facing [him]1 was the box of [old Mrs. Man-
son Mingott]2, whose monstrous obesity had long
since made it impossible for [her]2 to attend the
Opera...

2

I persuaded [two]1 young neighbors to stop playing
basketball and to help us get the tree into the house
and set [it]1 correctly in the stand.

I persuaded two young neighbors to stop playing bas-
ketball and to help us get [the tree]1 into the house
and set [it]1 correctly in the stand.

Table 7: Example predictions by Stanford’s system (up-
per sub-row) and c2f-coref (lower sub-row) on Litbank
(sentence 1) and PreCo Dev (sentence 2). [·]x repre-
sents a mention assigned to cluster x.

Qualitative Analysis In order to better illustrate
how the end-to-end system profits from model-
ing choices unavailable to Stanford’s resolver (e.g.,
contextualized representations), in Table 7 we pro-
vide instances of coreference clusters predicted by
the two models. In the first example, the c2f-coref
model, unlike Stanford’s system, correctly identi-
fies the valid mention Mrs. Manson Mingott, links
it to the appropriate pronoun (her), and correctly ne-
glects the expletive pronoun it. This is perhaps be-
cause pre-trained models are known to strongly en-
code syntax (Goldberg, 2019). A similar improve-
ment is observed in the second sentence, where
the response produced by our weakly-supervised
model correctly identifies the noun phrase the tree
and correctly links it to the pronoun it. We present
additional examples of predicted chains in Ap-
pendix C.

5 Conclusion

We presented an approach for coreference reso-
lution that, while being simple, effectively lever-
ages the end-to-end span-ranking model in settings
where labeled data is unavailable. Experimental re-
sults highlight the efficacy of the weak supervision
that the method is based upon, and showed perfor-
mance gains over previous unsupervised systems.

6 Ethical Considerations

Since our approach is unsupervised and based on
the coreference signal produced by Stanford’s de-
terministic coreference system (Lee et al., 2011,
2013), it is prone to echoing biases present in the
linguistic rules embodied by Stanford’s resolver.
Moreover, as most coreference resolvers, the ap-
proach we presented is not designed for a partic-
ular use case, but it is rather expected to be em-
ployed within more complex NLP systems. Spe-
cific domains in which these systems are applied
(e.g., biomedical data, legal documents) might re-
veal potential fairness shortcomings in the underly-
ing Stanford’s sieve-based system. Depending on
the setting of application (e.g., voice assistants or
search engines), these possible defects could pro-
duce undesirable outcomes. For instance, wrongly
classifying two people as the same person is pos-
sible to affect information extraction results (e.g.,
search engines). Further studies on alternative do-
mains are needed to assess these aspects.

Contextual word embedding models such as
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019), and SpanBERT (Joshi et al., 2020) are pre-
trained with self-supervised procedures on large
portions of unlabeled text. These models are op-
timized to capture statistical dependencies and
might retain and amplify prejudices and stereotypes
present in the training data (Kurita et al., 2019).
Since the method we propose relies on such pre-
trained models, it inevitably inherits possible biases
that might affect its fairness.
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CoNLL F1

Stanford 57.0
c2f-coref 58.3
BERT-base + c2f-coref 59.1
SpanBERT-base + c2f-coref 60.0
BERT-large + c2f-coref 60.1
SpanBERT-large + c2f-coref 60.1

Table 8: CoNLL F1 scores computed on the develop-
ment set of the CoNLL-2012 shared task.

A Stanford’s System

The coreference method proposed by Stanford Uni-
versity at the CoNLL 2011 shared task (Pradhan
et al., 2011) is based on a succession of ten inde-
pendent coreference models (or sieves), applied
from highest to lowest precision. Here we report a
short description of the three most effective sieves,
according to Lee et al. (2013).

Exact String Match: links two mentions only if
they consist of the exact same text string;

Strict Head Match: implements multiple con-
straints that must all be matched in order to
yield a link. First, the mention head word
matches any head word of mentions in the
antecedent cluster. Then, all the non-stop
words4 in the cluster of the current mention to
be solved are included in the set of non-stop
words of the antecedent entity cluster. More-
over, the mention’s modifiers (e.g., possessive
and personal pronouns) must be all included
in the modifiers of the antecedent candidate.
Eventually, the two mentions cannot be in an
i-within-i construct, (i.e., one must not be a
child NP in the other’s NP constituent);

Pronominal Coreference Sieve: links pronouns
to their compatible antecedents enforcing
agreement constraints on a set of attributes,
such as gender, number, and animacy.

B Implementation and Training Details

As in previous unsupervised work (Ma et al., 2016),
we use the version of the OntoNotes corpus in
which the supplementary layers of annotation (e.g.,

4Stop words are, for instance, there, ltd., etc., ’s.

parse trees) were provided automatically using off-
the-shelf tools. Using Stanford’s system, we ob-
tained the noisy labels for the training and devel-
opment sets of the CoNLL-2012 shared task data
(2802 and 343 documents, respectively), for the
PreCo training split (36620 documents), and for
Litbank (100 documents). As common practice
(Toshniwal et al., 2020), on Litbank we perform
10-fold cross-validation, using sets of 80/10/10 doc-
uments for train/development/test.

We trained the models using a batch size of 1
document. On the OntoNotes corpus, the ELMo-
based c2f-coref model is trained for a maximum
of 150 epochs and the BERT and SpanBERT-based
models for 20 epochs. On PreCo and Litbank, the
SpanBERT-based c2f-coref model is trained for a
maximum of 2 and 400 epochs, respectively. Dur-
ing training, BERT and SpanBERT are fine-tuned.
The validation sets used to monitor the training
are the development set of OntoNotes and Litbank
and a held-out portion of 500 documents from the
PreCo corpus. For all datasets, the validation met-
rics were computed with respect to the Stanford’s
system-produced noisy labels (i.e., no gold corefer-
ence information was used in this process).

We keep the hyperparameter configurations as in
Lee et al. (2018) and in Joshi et al. (2020). In par-
ticular, for each version of BERT and SpanBERT,
we use the combination of max_segment_len
and learning rates illustrated in table 9.

Training the c2f-coref model based on ELMo,
BERT-base and SpanBERT-base took ~6 hours on a
24GB Nvidia TITAN RTX, while the training of the
models based on the large versions of BERT and
SpanBERT required ~12 hours on a 32GB Nvidia
Tesla V100.

C Qualitative Examples

Table 10 displays additional examples of corefer-
ence chain predictions. In the first example, the
weakly-supervised c2f-coref model shows an im-
proved response in terms of both mention identifica-
tion and cluster assignment, correctly establishing
the chains relative to Alice and book. In example
2, Stanford’s system incorrectly links the pronoun
her to Mother, while the neural model rightly asso-
ciates it with the speaker (Beth). Similar improve-
ments are illustrated in sentence 3. Finally, we
report an example of an error propagated from the
noisy supervision (sentence 4). Note that singleton
mentions were removed from the response cluster,
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Model max_segment_len bert_learning_rate task_learning_rate

BERT-base + c2f-coref 128 10−5 2 ·10−4
SpanBERT-base + c2f-coref 384 2 ·10−5 10−4

BERT-large + c2f-coref 384 10−5 2 ·10−4
SpanBERT-large + c2f-coref 512 10−5 3 ·10−4

Table 9: Hyperparameters used for the BERT/SpanBERT-based cef-coref models.

1

[CHAPTER I. Down [the Rabbit-Hole Alice]2 ]1 was beginning to get very tired of sitting by
[[her]2 sister ]3 on the bank, and of having nothing to do: once or twice [she]2 had peeped into the
book [[her]2 sister ]3 was reading, but [it]1 had [no pictures or conversations in [it]1 ]4, ‘and what
is the use of a book,’ thought Alice ‘without [pictures or conversations]4?’

CHAPTER [I.]1 Down the Rabbit-Hole [Alice]2 was beginning to get very tired of sitting by [[her]2
sister ]3 on the bank, and of having nothing to do: once or twice [she]2 had peeped into the [book]4
[[her]2 sister ]3 was reading, but [it]4 had no pictures or conversations in [it]4, ‘and what is the use
of a book,’ thought [Alice]2 ‘without pictures or conversations?’

2

"[We]1’ve got [Father]2 and [Mother]3, and each other," said [Beth]4 contentedly from [her]3
corner.

"[We]1’ve got [Father]2 and [Mother]3, and each other," said [Beth]4 contentedly from [her]4
corner.

3

At [most terrestrial men]1 fancied there might be other men upon [Mars]2, perhaps inferior to
[themselves]3 and ready to welcome a missionary enterprise.

At [most terrestrial men]1 fancied there might be other men upon [Mars]2, perhaps inferior to
[themselves]1 and ready to welcome a missionary enterprise.

4
To prevent [this]1, humans on [Mars]2 have to wear special shoes to make [themselves]1 heavier.

To prevent [this]1, humans on [Mars]2 have to wear special shoes to make [themselves]1 heavier.

Table 10: Example predictions by Stanford’s system (upper sub-row) and c2f-coref (lower sub-row) on Litbank
(examples 1-3) and PreCo Dev (example 4). [·]x represents a mention assigned to cluster x.
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and the mentions that appear as singletons in the
reported examples are predicted as coreferent to
mentions present in other portions of the text.

D Results on the OntoNotes
Development Set

We additionally report in Table 8 the results ob-
tained on the development set of the OntoNotes
corpus for the five c2f-models.
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