
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 44 - 54
July 14-15, 2022 ©2022 Association for Computational Linguistics

Compositional generalization with a broad-coverage semantic parser

Pia Weißenhorn and Lucia Donatelli and Alexander Koller
Department of Language Science and Technology

Saarland Informatics Campus
Saarland University, Germany

{piaw, donatelli, koller}@coli.uni-saarland.de

Abstract

We show how the AM parser, a compositional
semantic parser (Groschwitz et al., 2018),
can solve compositional generalization on the
COGS dataset. It is the first semantic parser
that achieves high accuracy on both naturally
occurring language and the synthetic COGS
dataset. We discuss implications for corpus
and model design for learning human-like gen-
eralization. Our results suggest that compo-
sitional generalization can be best achieved
by building compositionality into semantic
parsers.

1 Introduction

A growing body of recent research investigates
compositional generalization, the ability of a se-
mantic parser to predict the meaning of unseen sen-
tences by recombining training instances in novel
ways. Such generalization is thought to mimic the
Principle of Compositionality (Partee, 1984), es-
sential for human language learning and use. For
example, COGS (Kim and Linzen, 2020), a dataset
based on fragments of English, contains training in-
stances with sentences semantically annotated with
up to two recursive PPs; a semantic parser must
then predict meaning representations for sentences
with three or more recursive PPs (Table 1).

Previous work has shown that compositional
generalization on COGS is a difficult and com-
plex task. Intricate sequence-to-sequence (seq2seq)
models, which achieve very high accuracy on
broad-coverage semantic parsing tasks on natu-
rally occurring language (Bevilacqua et al., 2021),
achieve overall accuracy of 88% or less on COGS
(Akyürek and Andreas, 2021; Csordás et al., 2021;
Zheng and Lapata, 2021). Much of this accuracy
is due to lexical generalization, tasks that test for
generalization to new words in known structures
(Sec. 2); when evaluated only on structural gener-
alization cases that test novel structures such as the

PP example above, the accuracy of most of these
models drops to 10% or less.

In contrast, models that achieve high accuracy
on synthetic compositional generalization datasets
may not be able to generalize to naturally occur-
ring language. For instance, Shaw et al. (2021) de-
scribe a synchronous grammar induction approach
that achieves perfect accuracy on SCAN (Lake and
Baroni, 2018), but has very low accuracy on cor-
pora of naturally occurring text such as GeoQuery
(Zelle and Mooney, 1996) and Spider (Yu et al.,
2018). Similarly, the compositional LeAR parser
(Liu et al., 2021) solves COGS with near-perfect
accuracy and performs very well on other synthetic
datasets, but has not been evaluated on corpora of
naturally occurring text. This points to a funda-
mental tension between broad-coverage semantic
parsing on natural text and the ability to generalize
compositionally from structurally limited synthetic
training sets (see also Shaw et al., 2021). To our
knowledge, the only parser that does well on both
is the CSL-T5 system of Qiu et al. (2022), which
fine-tunes T5 using a complex data augmentation
(DA) method involving synchronous grammars.

In this paper, we show that the AM parser
(Groschwitz et al., 2018), a compositional semantic
parser that achieves high accuracy across a range of
different broad-coverage graphbanks (Lindemann
et al., 2019; Donatelli et al., 2019), can also solve
COGS at near-perfect accuracy. This high perfor-
mance is due in large part to handling cases of struc-
tural generalization much better than the seq2seq
models. The AM parser is thus the first semantic
parser shown to perform accurately both on nat-
urally occurring language and on COGS without
requiring DA. Given that all semantic parsers that
do well on COGS are either compositional (LeAR,
AM parser) or perform compositionality-based DA
(CSL-T5), we conjecture that building a semantic
parser on the Principle of Compositionality is ben-
eficial to solving compositional generalization. We
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discuss the challenge of structural, as opposed to
lexical, generalization for future work on this task.

2 Compositional Generalization in
COGS

Compositional generalization is the ability to de-
termine the meaning of unseen sentences using
compositional principles. Humans can understand
and produce a potentially infinite number of novel
linguistic expressions by dynamically recombin-
ing known elements (Chomsky, 1957; Fodor and
Pylyshyn, 1988; Fodor and Lepore, 2002). For
semantic parsers, compositional generalization re-
quires systems to recombine parts of multiple train-
ing instances to predict the meaning of a single test
instance by learning correct generalizations. Sev-
eral synthetic datasets for evaluating compositional
generalization now exist, notably SCAN (Lake and
Baroni, 2018) and CFQ (Keysers et al., 2020).

COGS (Kim and Linzen, 2020) is a synthetic se-
mantic parsing dataset in which English sentences
must be mapped to logic-based meaning represen-
tations. It distinguishes 21 generalization types,
each of which requires generalizing from training
instances to test instances in a particular systematic
and linguistically-informed way.

Lexical generalization cases (18 types) test how
known grammatical structures are recombined with
words that were not observed in these particular
structures during training. For instance, the com-
mon noun “hedgehog” is only exposed to the model
as subject at training time as part of an ‘exposure ex-
ample’ sentence, but generalization requires object
usage of the same word based on forming analo-
gies to other common nouns seen in both positions.
This is illustrated in Table 1.

Structural generalization cases (3 types) involve
generalizing to linguistic structures that were not
observed in training. The PP recursion example
above is of this type: the COGS training set con-
tains sentences and logic-based semantic represen-
tations with up two nested prepositional phrases.
In-domain development and test sets also consist
of sentences with PP nesting depth up to two, but
the generalization set contains sentences with 3–12
nested PPs. Additional structural generalization
includes CP recursion (predict deeply nested CPs
when trained on shallow examples, similar to PPs)
and “object PP to subject PP”, where PPs modify
only objects in training (e.g. “Noah ate the cake
on the plate.”) and only subjects at test time (“The

cake on the table burned.”).
Kim and Linzen themselves show that seq2seq

models based on LSTMs and Transformers do not
perform well on COGS, achieving exact-match ac-
curacies below 35%. Intensive subsequent work
has tailored a wide range of seq2seq models to
the COGS task (Tay et al., 2021; Akyürek and An-
dreas, 2021; Conklin et al., 2021; Csordás et al.,
2021; Orhan, 2021; Zheng and Lapata, 2021), but
none of these have reached an overall accuracy of
90% on the overall generalization set. On struc-
tural generalization in particular, the accuracy of
all these models is below 10%, with the exception
of Zheng and Lapata (2021), who achieve 39%
on PP recursion. By contrast, the compositional
model of Liu et al. (2021) and the model of Qiu
et al. (2022), which uses compositional data aug-
mentation, achieve accuracies upwards of 98% on
the full generalization set.

3 Parsing COGS with the AM parser

3.1 The AM parser

We adapt the broad-coverage AM parser to COGS.
The AM parser (Groschwitz et al., 2018) is a com-
positional semantic parser that learns to map sen-
tences to graphs. It was the first semantic parser to
perform with high accuracy across all major graph-
banks (Lindemann et al., 2019) and can achieve
very high parsing speeds (Lindemann et al., 2020).

Instead of predicting the graph directly, the AM
parser first predicts a graph fragment for each to-
ken in the sentence and a dependency tree that con-
nects them (Fig. 1a). This dependency tree is then
evaluated deterministically into a graph (Fig. 1b)
using the operations of the AM algebra. The “Ap-
ply” (APP) operation fills an argument slot of a
graph (drawn in red) by inserting the root node
(drawn with a bold outline) of another graph into
this slot; for instance, the APPs operation inserts
the “boy” node into the ARG0 of “want”. The
“Modify” (MOD) operation attaches a modifier to a
node; MODm attaches the “manner-sound” graph
to the “sleep” node. The dependency tree captures
how the meaning of the sentence can be composi-
tionally obtained from the meanings of the words.

AM parsing is done by combining a neural de-
pendency parser with a neural tagger for predicting
the graph fragments. We follow Lindemann et al.
(2019) and rely on the dependency parsing model
of Kiperwasser and Goldberg (2016), which scores
each dependency edge by feeding neural represen-
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Class : Type Training Generalization

Lexical:
Subj→Obj
(common
noun)

A hedgehog ate the cake.
*cake(x4); hedgehog(x1) ∧
eat.agent(x2, x1) ∧ eat.theme(x2, x4)

The baby liked the hedgehog.
*baby(x1); *hedgehog(x4);
like.agent(x2, x1) ∧ like.theme(x2, x4)

Structural:
PP recursion

Ava saw a ball in a bowl on the table.
*table(x9); see.agent(x1,Ava) ∧
see.theme(x1, x3) ∧ ball(x3) ∧
ball.nmod.in(x3, x6) ∧ bowl(x6) ∧
bowl.nmod.on(x6, x9)

Ava saw a ball in a bowl on the table on the floor.
*table(x9); *floor(x12); see.agent(x1,
Ava) ∧ see.theme(x1, x3) ∧
ball(x3) ∧ ball.nmod.in(x3, x6) ∧
bowl(x6) ∧ bowl.nmod.on(x6, x9)
∧ table.nmod.on(x9, x12)

Table 1: One example of a lexical and a structural generalization type from the COGS dataset.
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Figure 1: (a) AM dependency tree with (b) its value.
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Figure 2: Logical form to graph conversion for “Ava
saw a ball in a bowl on the table” (cf. Table 1).

tations for the two tokens to an MLP. We train the
parser using the setup of Groschwitz et al. (2021),
which does not require explicit annotations with
AM dependency trees.

3.2 AM parsing for COGS

We apply the AM parser to COGS by converting
the semantic representations in COGS to graphs.
The conversion is illustrated in Fig. 2.

Given a logical form of COGS, we create a
graph that has one node for each variable xi
and each constant (e.g. Ava). If a variable ap-
pears as the first argument of an atom of the
form pred.arg(x, y), we assign it the node label
pred in the graph. We also add an edge from
x to y with label arg. E.g. see.agent(x1,
Ava) turns into an ‘agent’ edge from ‘see’ to
‘Ava’. Each iota term *noun(xnoun) is treated
as an edge from a node for the preceeding “the”
token to the respective noun node. Preposition
meaning bowl.nmod.on(x6, x9) is represented
as a node (labeled ‘on’) with outgoing edges to
the two arguments/nouns (‘nmod.op1’ to “bowl”,
‘nmod.op2’ to “table”). By encoding the logical

form as a graph, we lose the ordering of the con-
juncts. The ‘correct’ order is restored in postpro-
cessing. More details and graph conversion exam-
ples are in Appendix C.

4 Experiments on COGS

4.1 Experimental setup

We evaluate the AM parser on COGS and compare
its accuracy against a number of strong baselines.
We follow standard COGS practice and evaluate
on both the (in-distribution) test set and the gen-
eralization set. We report exact match accuracies
averaged across 5 training runs with their standard
deviations.

Training regime. In addition to the regular
COGS training set (‘train’) of 24,155 training in-
stances, we also report numbers for models trained
on the extended training set ‘train100’ of 39,500
instances (Kim and Linzen, 2020, Appendix E.2).
These training sets allow to test 1-shot (train) or
100-shot (train100) lexical generalization. For in-
stance, for the “hedgehog” example in Table 1,
train contains exactly one sentence with this noun,
whereas there are 100 different sentences with
“hedgehog” in train100 (all in subject position). As
this change can only be done for lexical general-
ization (tied to specific lexical items), structural
generalization is not directly modulated by a train-
ing set change.

Compositional models. We train the AM parser
on the COGS graph corpus (cf. Section 3.2). Most
hyperparameter values come from Groschwitz et al.
(2021)’s training setup for AMR to make overfitting
to COGS less likely; see Appendix A for details.

The AM parser either receives pretrained word
embeddings from BERT (Devlin et al., 2019)
(‘AM+B’) or learns embeddings from the COGS
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train train100

Test Gen Test Gen

se
q2

se
q Kim and Linzen 2020 96 35 94 63

Csordás et al. 2021 100 81 - 75.4
Akyürek and Andreas 2021 - 83 99 84.5
Zheng and Lapata 2021 † - 89 - -

co
m

po
si

tio
na

l Qiu et al. 2022 - 99.5 - -
Liu et al. 2021: LeAR1 - 98.9±0.9 - -

AM 100 59.9± 2.7 100 91.1±2.3

AM+dist 100 62.6±10.8 100 88.6±4.9

AM+B † 100 79.6± 6.4 100 93.6±1.4

AM+B+dist † 100 78.3±22.9 100 98.4±0.9

Table 2: COGS exact match scores. †) models use pre-
training.

data only (‘AM’). We run the training algorithm
with up to three argument slots to enable the analy-
sis of ditransitive verbs. For evaluation, we reverse
graph conversion to reconstruct the logical forms.

To handle PP recursion, we hypothesize that ex-
plicit distance information between tokens could
help the AM parser: COGS eliminates potential PP
attachment ambiguities and assumes that each PP
modifies the noun immediately to its left. Instead
of passing only the representations of the potential
parent and child node to the edge-scoring model,
we also pass an encoding of their relative distance
in the string (Vaswani et al., 2017), yielding the
AM parser models with the “+dist” suffix. Dis-
tance information is then available as an explicit
feature for any dependency edge decision, and the
neural model learns how to weight this feature for
different edges.

Finally, we report evaluation results for LeAR,
the compositional COGS parser of Liu et al. (2021).
LeAR learns to predict trees of corpus-specific al-
gebraic operations using reinforcement learning
with an intricate training setup.

4.2 Results
The results are summarized in Table 2. Gray num-
bers are taken from original papers; black numbers
we reproduced in separate experiments. Table 3
shows results by structural and lexical generaliza-
tion type. See Appendix B for details.

Compositional models solve COGS. We find
that when trained on ‘train100’, the modified AM
parser solves COGS with near-perfect accuracy.
The evaluation results in Table 2 suggest a clear

1All LeAR numbers are based on our reproduction of their
COGS evaluation; they report an accuracy of 97.7.

split between compositional and seq2seq mod-
els, with both compositional models outperform-
ing all seq2seq models. This split becomes even
clearer when we distinguish different generaliza-
tion types. On the three structural generalization
types, no seq2seq model has an accuracy above
40%, whereas both LeAR and AM+B+dist still
achieve near-perfect accuracy.

PP vs. CP recursion. A closer error analysis on
PP recursion reveals (as hypothesized) that the ac-
curacy of the AM+B parser degrades with increas-
ing PP depth. The AM+B+dist parser maintains a
high accuracy across all embedding depths.

There is an interesting asymmetry between the
behavior of the AM parser on PP recursion and
CP recursion: The accuracy of AM+B is stable
across recursion depths for CP recursion, and the
distance feature is only needed for PPs. This can
be explained by the way in which the AM parser
learns to incorporate PPs and CPs into the depen-
dency tree: it uses APP edges to combine verbs
with CPs, which ensures that only a single CP can
be combined with each sentence-embedding verb.
By contrast, each NP can be modified by an ar-
bitrary number of PPs using MOD edges. Thus a
confusion over attachment is only possible for PPs.

Effect of training regime. Parsers on COGS are
traditionally not allowed any pretraining (Kim and
Linzen, 2020), in order to judge their ability to
generalize from limited observations. We see in the
experiments above that the use of pretrained word
embeddings helps the AM parser achieve accuracy
parity with LeAR, but is not needed to outperform
all seq2seq models on ‘train100’.

Training on ‘train100’ helps the AM parser more
than any other model in Table 2. The difference
between its accuracy on ‘train’ and ‘train100’ is
due to lexical issues: we found that when trained on
‘train’, the AM parser typically predicts the correct
delexicalized formulas and then inserts an incorrect
but related constant or predicate symbol.

For example, when tested on common nouns,
“kennel” may be used instead of “hedgehog”; when
tested on unaccusative to transitive generalization,
the model may choose another verb seen commonly
in that pattern instead of the target verb (e.g. “value”
instead of “shatter”).

We ablate the different model components (pre-
trained BERT embeddings, +dist) and training se-
tups (train100 vs. train) in Table 3. Trained on
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Class STRUCTURAL LEXICAL
Gen. type Obj to Subj PP CP recursion PP recursion mean of 18 other types Overall

co
m

po
si

tio
na

l

AM+B+dist train100 78 100 99 99 98
AM+B train100 49 100 41 99 94
AM+B+dist train 72 100 97 76 78
AM+B train 59 100 36 82 80
AM+dist train 26 100 98 61 63
AM train 38 100 61 59 60
LeAR train 93 100 99 99 99

se
q2

se
q

Kim and Linzen 2020 train 0 0 0 42 35
Akyürek and Andreas 2021 train 0 0 1 96 82
Zheng and Lapata 2021 train 0 12 39 99 89
Kim and Linzen 2020 train100 0 0 0 73 63
Csordás et al. 2021 train100 0 0 0 88 75

Table 3: Exact match accuracies on the individual generalization types.

‘train’, AM+B+dist achieves a mean accuracy on
structural generalization cases of 89.6 (compared to
92.1 for ‘train100’), whereas the mean accuracy on
lexical generalization cases drops to 76. This again
illustrates that the larger training set compensates
for a lexical weakness in the AM parser rather than
a structural one. Even without BERT and trained
on ‘train’, AM+dist gets 74.6 on structural cases,
drastically outperforming the seq2seq models.

5 Conclusion

The AM parser is the first compositional seman-
tic parser to solve COGS and achieve high accu-
racy on naturally occurring language.2 Particu-
larly on complex structural generalization cases,
compositionality-based parsers seem to outperform
seq2seq models systematically. By contrast, lexical
generalization cases are solved easily by most mod-
els and do not require a compositionality bias. We
suggest that future corpus design and evaluation
focus on model accuracy for structural generaliza-
tion types; an extension to COGS that incorporates
a greater variety of these types would allow more
insight on the overall task.

Though synthetic datasets like COGS allow fo-
cused probing parser performance on specific lin-
guistic phenomena, it remains unclear exactly how
accurate performance on such datasets transfers to
naturally occurring language, and vice-versa. An-
other strand of future work is thus extending the
broad-coverage AM parser to more compositional
generalization datasets. While COGS offers a good
starting point to test multiple types of both lexical
and structural generalization similar to what is at-
tested for humans, other datasets offer insight into
generalization less clearly connected to human lin-
guistic abilities (e.g. CFQ; Keysers et al., 2020) but

2Our code is available at https://github.com/
coli-saar/am-parser.

important for generalization abilities more gener-
ally. Additional assessment of models’ generaliza-
tion performance ought to combine broad-coverage
parsing and focused evaluation with hand-crafted
datasets in a systematic way, yet to be defined.
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A Training details of the AM parser

Hyperparameters. For the AM parser, we pri-
marily copy hyperparameter values from the AMR
experiments of Groschwitz et al. (2021). This helps
prevent overfitting on COGS, but we also note that
hyperparameter tuning for compositional general-
ization datasets can be difficult anyways since one
can typically easily achieve perfect scores on an in-
doman dev set. Copied values include for instance
the number of epochs (60 due to supervised loss for
edge existence and lexical labels), the batch size,
the number and dimensionality of neural network
layers and not using early stopping (but selecting
best model based on per epoch evaluation metric
on the dev set). Choosing 3 sources has worked
well on other datasets (Groschwitz et al., 2021) and
we adopt this hyperparameter choice. We note that
with ditransitive verbs (i.e. verbs requiring NPs
filling agent, theme, and recipient roles) present in
COGS we need at least three sources anyway to
account for these.

Deviations from Groschwitz et al. (2021)’s set-
tings. For training on train (but not train100), we
set the vocabulary threshold from 7 down to 1 to
account for the fact that the lexical generalizations
rely on a single occurrence of a word in the training
data; on train100 we keep 7 as a threshold since
trigger words (e.g. “hedgehog”) occur 100 times.
For word embeddings, we either use BERT-Large-
uncased (Devlin et al., 2019) like Groschwitz et al.
(2021) or learn embeddings from the dataset only
(embedding dimension 1024, same as for the BERT
model). We decrease the learning rate from 0.001
to 0.0001: we observed that the learning curves are
still converging very quickly and hypothesize that
COGS training set might also be easier than the
AMR one used in Groschwitz et al. (2021).

We use the projective A* decoder (Lindemann
et al., 2020, §4.2): in pre-experiments this showed
better results. In addition, it makes comparison to
related work (such as LeAR by Liu et al. (2021))
easier which uses only projective latent trees. We
use supervised loss for edge existence and lexical
labels.

Relative distance encoding. For the relative dis-
tance encodings we use sine-cosine interleaved en-
coding function introduced by Vaswani et al. (2017,
§3.5) and as input to it use the relative distance
dist(i, j) = i− j between sentence positions i and
j. We use a dimensionality of 64 for the distance

encodings (dmodel in Vaswani et al. (2017) is 512).
These distance encodings are then concatenated
together with the BiLSTM representations for pos-
sible heads and dependents used in the standard
Kiperwasser and Goldberg (2016) edge scoring
model. This constitutes the input to the MLP emit-
ting a score for each token pair. These models have
the suffix ‘dist’ in the tables.

Runtimes. Training the AM parser took 5 to 7
hours on train with 60 epochs and 6 to 9.5 hours
on train100. In general, training with BERT took
longer than without, same holds for adding relative
distance encodings. Inference with a trained model
on the full 21k generalization samples took about
15 minutes using the Astar decoder with the ‘ignore
aware’ heuristic. All AM parser experiments were
performed using Intel Xeon E5-2687W v3 10-core
processors at 3.10Ghz and 256GB RAM, and MSI
Nvidia Titan-X (2015) GPU cards (12GB).

Number of parameters. For their models, Kim
and Linzen (2020) tried to keep the number of pa-
rameters comparable (9.5 to 11 million) and there-
fore rule out model capacity as a confound. The
number of trainable parameters of the AM parser
model used is 10.7 to 11.5 million (lower one is
with BERT, higher without. Impact of relative dis-
tance encoding is rather minimal: < 17k), so the
improved performance is not just due to a higher
number of parameters.

Dev set performance. For compositional gener-
alization datasets, it is relatively easy to get (near)
perfect results on the (in domain) dev/test sets. We
observe this too: all AM parser models had an ex-
act match score of at least 99.9 on the dev set and
at least 99.8 on the (in distribution) test set.

Evaluation procedure. Kim and Linzen (2020)
do not provide a separate evaluation script but use
(string) exact match accuracy on the logical forms
as the main evaluation metric. This metric requires
models to learn the ‘correct’ order of conjuncts:
even if a logically equivalent form with a different
order of conjuncts would be predicted, string exact
match would count it as a failure. In lack of an
official evaluation script we implemented our own
evaluation script to compute exact match.

B Evaluation details

For descriptions of the generalization types we re-
fer to Kim and Linzen (2020, §3 and Fig. 1).
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AM parser. Full results for the 8 AM parser con-
figurations (two types of embeddings, two train-
ing sets, presence/absence of distance encodings)
are displayed in Table 4. Averages and standard
deviations were computed across 5 runs for each
configuration. For the AM+B+dist configuration
trained on the smaller train set, one outlier run was
observed with 39.9% overall generalization accu-
racy, and the other four runs ranging from 76.4%
to 96.6%. This outlier therefore greatly contributed
to the high variance for this configuration.

LeAR. Due to our reproduction experiment, we
can report a breakdown by generalization type for
Liu et al.’s LeAR model, displayed in Table 5. We
observed that the LeAR model skips 22 sentences
in the generalization set due to out-of-vocabulary
tokens.3 We include these sentences in the accuracy
computation (as failures) for the generalization set.
The published LeAR code does not convert its in-
ternally used representation back to logical forms,
therefore we evaluate on the logical forms like it is
done for other models, but have to rely on accuracy
computation done in the LeAR code for the inter-
nal representation. From inspecting the published
code,4 LeAR makes the preprocessing choice to
ignore the contribution of the definite determiner,
treating indefinite and definite NPs equally, result-
ing in a big conjunction without any iota (‘*’) pre-
fixes.

Model numbers copied from other papers.
Kim and Linzen (2020) provide three baseline mod-
els, among which the Transformer model reached
the best performance on train and train100. Per
generalization type results can be found in their
Appendix F (Table 5 on page 9105) from which we
report the Transformer model numbers.

The strongest model of Akyürek and Andreas
(2021) is ‘Lex:Simple:Soft’ (cf. their Table 5) with
a generalization accuracy of 83% (also reported in
our Table 2), whereas their Lex:Simple model lags
1 point behind. For the latter, the authors provide
per generalization type output: link. Numbers in
Table 3 are for Lex:Simple, not Lex:Simple:Soft.

For Zheng and Lapata (2021), our reported num-
ber was provided directly by the authors after pub-
lication of their paper.

3The words “gardener” and “monastery” occur zero times
in the train set, but in total in 22 sentences of the generalization
set. The majority (15) of these appear in PP recursion samples.

4https://github.com/thousfeet/LEAR

x2 / wantx0 / the

x1 / boy x4 / go

agent
xcomp

agent

iota

* boy(x1) ; want.agent(x2, x1) ∧
want.xcomp(x2, x4) ∧ go.agent(x4, x1)

Figure 3: Logical form to graph conversion for “The
boy wanted to go” (cf. (1)). For illustration only we
use node names (the part before the ‘/’) to outline the
token alignment.

Lexical vs. structural generalization. As said
above, structural generalization is underrepresented
in COGS (3 out of 21 generalization types), and
lexical generalization (the remaining 18 types) is
therefore dominating the evaluation. As a conse-
quence, an overall generalization accuracy above
80% can be achieved without even touching upon
structural generalization. In Table 6 we report the
average accuracy of both classes (by averaging over
all types of the respective class), along with the
overall generalization accuracy. Some models do
not report standard deviations.

C Additional information on COGS to
graph conversions

This is a more detailed explanation of the COGS
logical form to graph conversion described in Sec-
tion 3.2 based on four additional example sen-
tences:

(1) The boy wanted to go.
*boy(x1); want.agent(x2, x1) ∧
want.xcomp(x2, x4)
∧ go.agent(x4, x1)

(2) Ava was lended a cookie in a bottle.
lend.recipient(x2, Ava)
∧ lend.theme(x2, x4)
∧ cookie(x4)
∧ cookie.nmod.in(x4, x7)
∧ bottle(x7)

(3) Ava said that Ben declared that Claire slept.
say.agent(x1, Ava)
∧ say.ccomp(x1, x4)
∧ declare.agent(x4, Ben)
∧ declare.ccomp(x4, x7)
∧ sleep.agent(x7, Claire)

(4) touch
λa.λb.λe. touch.agent(e, b) ∧
touch.theme(e, a)

The first of these is used as the main example for
now. Its graph conversion can be found in Fig. 3.

Basic ideas. Arguments of predicates (variables
like xi or proper names like Ava) are translated
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train train100

Type AM AM+dist AM+B AM+B+dist AM AM+dist AM+B AM+B+dist

Subj to Obj (common noun) 65.8±43.4 88.3±10.9 99.7± 0.1 96.5± 6.8 99.9± 0.1 99.9± 0.1 100.0± 0.1 99.9± 0.2
Subj to Obj (proper noun) 69.9± 9.8 48.1±32.0 66.3±38.8 61.8± 47.3 98.9± 1.7 100.0± 0.0 89.6± 8.1 95.8± 9.3
Obj to Subj (common noun) 53.1±45.0 97.9± 4.4 99.9± 0.2 88.0± 26.7 99.9± 0.1 99.8± 0.2 100.0± 0.1 99.9± 0.1
Obj to Subj (proper noun) 90.0±21.4 88.3±25.9 88.9±11.2 78.8± 42.9 99.8± 0.0 99.8± 0.1 99.9± 0.0 99.9± 0.0

Prim to Subj (common noun) 3.4± 7.6 0.0± 0.0 76.2±42.2 80.3± 42.2 98.0± 4.5 59.9±54.7 100.0± 0.0 100.0± 0.0
Prim to Subj (proper noun) 4.7±10.6 1.0± 2.3 99.9± 0.1 100.0± 0.0 99.8± 0.3 99.9± 0.1 100.0± 0.0 100.0± 0.1
Prim to Obj (common noun) 0.2± 0.4 0.0± 0.0 74.5±32.5 80.1± 40.7 95.9± 8.9 59.9±54.7 100.0± 0.0 100.0± 0.0
Prim to Obj (proper noun) 10.4± 9.1 22.0±15.6 90.5± 9.9 94.9± 3.7 98.8± 2.4 99.8± 0.4 84.9± 9.1 94.4± 9.0
Prim verb to Infin. arg 59.7±54.2 55.2±50.5 100.0± 0.0 82.9± 38.2 17.6±30.8 1.0± 2.2 100.0± 0.0 100.0± 0.0

ObjmodPP to SubjmodPP 38.1±23.1 26.1±15.1 59.0±40.8 71.5± 24.0 48.0±17.3 44.8±23.9 49.1±27.5 77.7± 7.1
CP recursion 100.0± 0.0 100.0± 0.1 100.0± 0.0 100.0± 0.0 99.9± 0.1 100.0± 0.0 100.0± 0.0 100.0± 0.0
PP recursion 60.5± 4.2 97.6± 0.9 36.3± 8.0 97.3± 2.0 57.2± 8.3 97.0± 1.1 41.5±11.2 98.6± 0.5

Active to Passive 69.3±42.2 41.7±52.3 83.0±24.8 78.8± 31.3 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Passive to Active 51.6±45.2 46.6±50.2 45.5±27.2 52.0± 43.6 99.6± 0.7 99.9± 0.1 100.0± 0.0 100.0± 0.0
ObjOTrans. to trans. 79.6±33.6 77.8±28.2 22.3±24.0 35.6± 33.4 99.9± 0.1 100.0± 0.1 100.0± 0.0 100.0± 0.0
Unacc to transitive 33.2±36.1 51.2±47.2 48.2±35.8 48.9± 41.5 99.6± 0.7 100.0± 0.1 100.0± 0.0 100.0± 0.0
Dobj dative to PP dative 99.3± 0.8 98.8± 2.0 99.8± 0.1 95.0± 11.0 99.9± 0.1 99.9± 0.1 100.0± 0.0 100.0± 0.0
PP dative to Dobj dative 90.4±11.9 79.5±44.5 85.6±21.7 89.5± 11.5 99.7± 0.1 99.8± 0.1 100.0± 0.0 100.0± 0.0

Agent NP to Unacc Subj 78.5±43.4 99.7± 0.6 95.3± 6.4 78.2± 43.9 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Theme NP to ObjOTrans. Subj 99.9± 0.1 99.2± 1.7 99.9± 0.1 70.5± 41.9 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Theme NP to Unergative Subj 100.0± 0.1 96.6± 7.6 99.9± 0.1 64.4± 49.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

Total 59.9±21.1 62.7±18.7 79.6±15.4 78.3± 27.7 91.1± 3.6 88.6± 6.6 93.6± 2.7 98.4± 1.3

Table 4: Exact match accuracy on the generalization set by generalization type for all AM parser models.

train
Type LeAR

Subj to Obj (common noun) 99.8± 0.0
Subj to Obj (proper noun) 93.1±10.2
Obj to Subj (common noun) 100.0± 0.0
Obj to Subj (proper noun) 99.9± 0.0

Prim to Subj (common noun) 100.0± 0.0
Prim to Subj (proper noun) 100.0± 0.0
Prim to Obj (common noun) 99.8± 0.0
Prim to Obj (proper noun) 93.1±10.2
Prim verb to Infin. arg 100.0± 0.0

ObjmodPP to SubjmodPP 92.5± 9.4
CP recursion 100.0± 0.0
PP recursion 98.5± 0.0

Active to Passive 100.0± 0.0
Passive to Active 100.0± 0.0
ObjOTrans. to trans. 100.0± 0.0
Unacc to transitive 100.0± 0.0
Dobj dative to PP dative 99.9± 0.0
PP dative to Dobj dative 90.9± 0.0

Agent NP to Unacc Subj 100.0± 0.0
Theme NP to ObjOTrans. Subj 100.0± 0.0
Theme NP to Unergative Subj 100.0± 0.0

Total 98.9± 0.9

Table 5: Exact match accuracy on the generalization set
by generalization type for the LeAR reproduction runs
on train.

to nodes. The first part of each predicate name
(e.g. boy, want, go) is the lemma of the token
pointed to by the first argument (e.g. x1, x2, x4), we
strip this lemma (‘delexicalize’) from the predicate
and insert it as the node label of the first argument
(post-processing reverses this).

Binary predicates (i.e. terms with 2 ar-
guments) are translated into edges, pointing
from their first to their second argument,
e.g. want.agent(x2, x1) is converted to an
‘agent’ edge from node x2 (the ‘want’ node) to
node x1.

For unary predicates like boy(x1) the delex-

Model trained on Lexical Structural Overall

AM train 58.8± 2.7 66.2± 8.2 59.9± 2.7
AM+dist train 60.7±12.4 74.5± 5.2 62.7±10.8
AM+B train 82.0± 7.3 65.1±11.6 79.6± 6.4
AM+B+dist train 76.5±25.4 89.6± 8.7 78.3±22.9
AM train100 94.9± 2.1 68.4± 6.7 91.1± 2.3
AM+dist train100 90.0± 6.0 80.6± 8.2 88.6± 4.9
AM+B train100 98.6± 0.9 63.5± 9.2 93.6± 1.4
AM+B+dist train100 99.4± 1.0 92.1± 2.3 98.4± 0.9
LeAR train 99.2± 1.1 97 ± 3.1 98.9± 0.9

Kim and Linzen 2020 train 41.2± 0 ± 35 ±
Akyürek and Andreas 2021 train 75.7± 1.1 0.5± 0.6 82.1± 0.6
Zheng and Lapata 2021 train 99.8± 16.8± 87.9±
Kim and Linzen 2020 train100 73 ± 0 ± 63 ±
Csordás et al. 2021 train100 88 ± 0 ± 75 ±

Table 6: Lexical vs structural generalization for
seq2seq and compositional models

icalization already suffices, so we don’t add any
edge (in lack of a proper target node). We restore
unary predicates during postprocessing for nodes
with no outgoing edges.

For a definite NP covering input token positions
i− 1 and i (i.e. “thei−1 nouni”), COGS includes a
iota term *noun(xi); in the output. This def-
inite NP meaning is treated as if it was a con-
junction of the noun meaning (i.e. noun(xi))
and ‘definite determiner meaning’ binary predicate
the.iota(xi−1, xi).
The AM parser further requires one node to be the
root node. For non-primitives we select it heuristi-
cally as the node with no incoming edges (exclud-
ing preposition and determiner nodes).

Prepositions. We ‘reify’ prepositions so each be-
comes a node of the graph with outgoing ‘nmod’
edges to the modified NP and the argument NP.
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Alignments. For training the AM parser addi-
tionally needs alignments of the nodes to the input
tokens. Luckily all xi nodes naturally provide align-
ments (alignment to ith input token). For proper
names we simply align them to the first occurrence
in the sentence. The determiner node is aligned
to the token preceding the corresponding xnoun.
Edges are implicitly aligned by the blob heuristics,
which are pretty simple here; every edge belongs
to the blob of the node it originates from.

Primitives. For primitive examples (e.g. “touch”
(4)) we mostly follow the same procedure. Unlike
non-primitives, however, their resulting graph
can have open sources beyond the root node,
e.g. “touch” would have sources at the nodes b and
a (incoming ‘agent’ or ‘theme’ edge respectively).
These nodes can receive any source out of the
three available (S0,S1,S2)5, so the tree automaton
build as part of Groschwitz et al. (2021)’s method
would allow any combination of source names for
the unfilled ‘arguments’. Because there is only one
input token, alignment is trivial. Primitives quite
closely resemble the ‘supertags’ of the AM parser.

The graph conversion for (1) was already pre-
sented in Fig. 3. For the other three examples (2)–
(4), we present the graph conversions in Fig. 4.

5With the restriction that different nodes should have dif-
ferent sources to prevent the nodes from being merged. We
don’t consider non-empty type requests for these nodes here.

x2 / lend

x0 / Ava x4 / cookie

x5 / in

x7 / bottle

recipient theme nmod.op1 nmod.op2

(a) See also (2).

x1 / say

x0 / Ava

x4 / declare

x3 / Ben

x7 / sleep

x6 / Claire

agent

ccomp

agent

ccomp

agent

(b) See also (3).

e0 / touch

b0 / S0 a0 / S1

agent theme

(c) See also (4).

Figure 4: Results of the logical form to graph conver-
sion for (2)–(4). Actually for (c) the tree automaton
contained all possible source name combinations for
nodes a and b, not just 〈S0,S1〉.
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