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Abstract

There have been many successful applications
of sentence embedding methods. However, it
has not been well understood what properties
are captured in the resulting sentence embed-
dings depending on the supervision signals. In
this paper, we focus on two types of sentence
embedding methods with similar architectures
and tasks: one fine-tunes pre-trained language
models on the natural language inference task,
and the other fine-tunes pre-trained language
models on word prediction task from its defini-
tion sentence, and investigate their properties.
Specifically, we compare their performances on
semantic textual similarity (STS) tasks using
STS datasets partitioned from two perspectives:
1) sentence source and 2) superficial similar-
ity of the sentence pairs, and compare their
performances on the downstream and probing
tasks. Furthermore, we attempt to combine
the two methods and demonstrate that combin-
ing the two methods yields substantially better
performance than the respective methods on
unsupervised STS tasks and downstream tasks.

1 Introduction

Sentence embeddings are dense vector representa-
tions of a sentence. A variety of methods have been
proposed to derive sentence embeddings, includ-
ing those based on unsupervised learning (Kiros
et al., 2015; Hill et al., 2016; Logeswaran and Lee,
2018; Cer et al., 2018; Wang et al., 2021) and super-
vised learning (Conneau et al., 2017). Pre-trained
Transformer-based (Vaswani et al., 2017) language
models, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), have been successfully
applied in a wide range of NLP tasks, and sentence
embedding methods that leverage pre-trained lan-
guage models have also performed well on seman-
tic textual similarity (STS) tasks and several down-
stream tasks. These methods refine pre-trained
language models for sophisticated sentence embed-
dings by unsupervised learning (Li et al., 2020;
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Figure 1: Overviews of SBERT (left) and DefSent (right).

Wang and Kuo, 2020; Giorgi et al., 2021; Carlsson
et al., 2021; Yan et al., 2021; Gao et al., 2021), or
supervised learning (Reimers and Gurevych, 2019;
Tsukagoshi et al., 2021; Gao et al., 2021).

Among them, Reimers and Gurevych (2019) pro-
posed Sentence-BERT (SBERT), which fine-tunes
pre-trained language models on the natural lan-
guage inference (NLI) task. SBERT performed
well on the STS and downstream tasks. Recently,
Tsukagoshi et al. (2021) proposed DefSent, which
fine-tunes pre-trained language models on the task
of predicting a word from its definition sentence in
a dictionary, and reported that it performed com-
parably to SBERT. Figure 1 shows overviews of
SBERT and DefSent. Although both methods fine-
tune the same pre-trained models and use the same
pooling operations to derive a sentence embedding,
the supervision signals for fine-tuning are different.
That is, SBERT leverages NLI datasets, whereas
DefSent leverages word dictionaries.

It is expected that the properties of the sentence
embeddings depend on their supervision signals.
However, since existing research has mainly fo-
cused on achieving better performance on bench-
mark tasks, it has not been revealed what prop-
erty differences the resulting sentence embeddings
have. Investigating the properties of sentence em-
beddings would give us a better understanding of
existing sentence embedding methods and help de-
velop further methods. In this paper, we empirically
investigate the influence of supervision signals on
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sentence embeddings. We focus on SBERT and
DefSent because they leverage different supervi-
sion signals but have very similar architectures, as
shown in Figure 1; thus, they would be appropri-
ate for analyzing the influence of the supervision
signals on sentence embeddings.

First, we partitioned the STS datasets (Agirre
et al., 2012, 2013, 2014, 2015, 2016; Cer et al.,
2017; Marelli et al., 2014) on the basis of two
different perspectives and examine what type of
meaning each type of sentence embeddings cap-
tures by analyzing the performance of each method
on these partitioned STS datasets. We then ap-
ply each type of embeddings to the downstream
and probing tasks of SentEval (Conneau and Kiela,
2018) and analyze what type of information is cap-
tured. Our results demonstrate that the supervision
signals have a significant impact on performance
on these tasks and that the properties of SBERT and
DefSent would be complementary. Thus, we fur-
ther explore whether combining the two methods
yields better sentence embeddings to confirm their
complementarity, and demonstrate that combining
the two methods yields substantially better perfor-
mance than the respective methods on unsupervised
STS tasks and downstream tasks of SentEval.

2 Preparation

In this section, we present detailed descriptions of
SBERT and DefSent, the two sentence embedding
methods compared in this study, and describe the
tasks and settings for the experiments.

2.1 Sentence-BERT

Sentence-BERT (SBERT) proposed by Reimers
and Gurevych (2019) is a sentence embedding
method that fine-tunes pre-trained language models
in a Siamese network architecture on the NLI task.
An overview of SBERT is given on the left side of
Figure 11. For fine-tuning of SBERT, NLI datasets,
such as the Stanford NLI (SNLI) dataset (Bow-
man et al., 2015) and Multi-Genre NLI (MultiNLI)
dataset (Williams et al., 2018), are used. These
datasets consist of sentence pairs labeled as either
entailment, contradiction, or neutral. The NLI task
is a classification task to predict these labels.

SBERT first inputs each sentence of a pair into
BERT and obtains sentence embeddings from the
output contextualized word embeddings by a pool-

1Actually, it is possible to use RoBERTa and others instead
of BERT, but for simplicity we refer to it as BERT here.

ing operation. SBERT uses three types of pooling
strategies: CLS, which uses the embedding of the
first token of the input sequence (e.g., the [CLS]
token for BERT); Mean, which uses the average
of all word embeddings; and Max, which uses the
max-over-time of all word embeddings. Let u and
v be the sentence embeddings obtained by such
pooling. SBERT composes a vector [u; v; |u− v|]
and inputs it into a three-way softmax classifier to
predict the label of the given sentence pair.

2.2 DefSent
DefSent proposed by Tsukagoshi et al. (2021) is
a sentence embedding method that fine-tunes pre-
trained language models on the task of predicting
a word from its definition sentence in a dictionary.
An overview of DefSent is given on the right side of
Figure 1. As well as SBERT, DefSent first inputs
a definition sentence into BERT and obtains the
sentence embedding by a pooling operation, which
uses CLS, Mean, and Max as the pooling strategies.
The derived sentence embedding is then input to the
word prediction layer and fine-tunes the model to
predict the corresponding word. The word predic-
tion layer is the one that was used for masked lan-
guage modeling during pre-training. Tsukagoshi
et al. (2021) reported that DefSent performed com-
parably to SBERT.

2.3 STS tasks
We use STS tasks to investigate the properties of
sentence embeddings. STS tasks evaluate how the
semantic similarity between two sentences calcu-
lated with a model correlates with a human-labeled
similarity score through Pearson and Spearman
correlations. There are two types of settings: super-
vised and unsupervised. In the supervised setting, a
model learns a regression function that maps a pair
of sentences to a similarity score using some of the
STS datasets. In the unsupervised setting, no train-
ing is performed on STS datasets, and we compute
the similarity between two sentence embeddings,
with a similarity score such as cosine similarity.

For the evaluation of the STS tasks, STS12–
STS16 (Agirre et al., 2012, 2013, 2014, 2015,
2016), STS Benchmark (Cer et al., 2017), and
SICK-R (Marelli et al., 2014) are often used. Each
dataset contains sentence pairs with their seman-
tic similarity scores as gold labels given by real
numbers ranging from 0 to 5. Each of the STS12–
STS16 datasets consists of sentence pairs from mul-
tiple sources. For example, STS12 consists of sen-
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Sources # Origin

STS12

MSRpar 750 newswire
MSRvid 750 videos

SMTeuroparl 459 WMT eval.
OnWN 750 glosses

SMTnews 399 WMT eval.

STS13
FNWN 189 glosses

headlines 750 newswire
OnWN 561 glosses

STS14

deft-forum 450 forum posts
deft-news 300 news summary
headlines 750 newswire headlines
images 750 image descriptions
OnWN 750 glosses

tweet-news 750 tweet-news pairs

STS15

answers-forums 375 Q&A forum answers
answers-students 750 student answers

belief 375 committed belief
headlines 750 newswire headlines
images 750 image descriptions

STS16

answer-answer 254 Q&A forum answers
headlines 249 newswire headlines
plagiarism 230 short-answer plag.
postediting 244 MT postedits

question-question 209 Q&A forum questions

Table 1: Statistics of STS datasets partitioned by source.
“#” denotes number of sentence pairs, and “Origin” de-
notes origin of dataset.

tence pairs from five sources: MSRpar, MSRvid,
SMTeuroparl, OnWN, and SMTnews. Table 1 lists
the sources of each dataset in STS12–STS16.

2.4 SentEval
We also compare SBERT and DefSent on SentEval
(Conneau and Kiela, 2018) tasks. SentEval is a
widely used toolkit to evaluate the quality of sen-
tence embeddings by measuring the performance
on classification tasks. Since SentEval provides var-
ious classification tasks, it is suitable for investigat-
ing the properties of sentence embeddings. SentE-
val consists of two types of tasks: downstream tasks
and probing tasks. Downstream tasks are binary or
multi-class classification tasks, such as sentiment
classification in movie reviews and question-type
classification. Probing tasks are classification tasks
for linguistic information, such as sentence length
and tense classification.

2.5 Experimental settings
In the experiments reported in Sections 3 and
4, we use BERT-base (bert-base-uncased), BERT-
large (bert-large-uncased), RoBERTa-base (roberta-
base), and RoBERTa-large (roberta-large) from
Transformers (Wolf et al., 2020) as the pre-trained
language models and adopt Mean as the pooling
strategy. We use the same settings as Reimers and
Gurevych (2019) and Tsukagoshi et al. (2021) for

fine-tuning. We provide further training details in
Appendix A, and report the fine-tuning time and
computing infrastructure in Appendix B.

3 Comparison of Sentence Embeddings

The supervision signal used for fine-tuning sen-
tence embeddings might affect their properties. For
example, since it is crucial to capture the differ-
ences in meaning even when the given sentence
pair is superficially similar in the NLI task, SBERT
is considered suitable for determining the semantic
similarity between superficially similar sentence
pairs. In this section, we attempt to reveal such
properties of each type of sentence embeddings.
First, we partition the STS datasets on the basis of
the source of the sentence pairs and the superficial
similarity of the sentence pair. We then apply each
type of embeddings to the downstream and probing
tasks of SentEval.

3.1 STS partitioned by source

We assume that each sentence embedding method
might better capture the meaning of sentences sim-
ilar to those in the dataset used for fine-tuning,
i.e., NLI datasets for SBERT and word dictionar-
ies for DefSent. Thus, we partition STS12–STS16
datasets in accordance with the source of the sen-
tences and measure the performance for each sub-
set. We adopt the unsupervised setting. We cal-
culate Spearman’s rank correlation coefficient (ρ)
between semantic similarity scores and each type
of sentence embeddings. For comparison, we con-
duct evaluations on the concatenation of all subsets,
i.e., the STS datasets without partitioning. We fine-
tune and evaluate SBERT and DefSent 10 times
with different seed values and report the average.
We also evaluate the model without fine-tuning (w/o

FT) for comparison.
Figure 2 shows the Spearman’s ρ for the sub-

sets of the STS12–STS16 datasets. It is worth
noting that since we use correlations, the evalua-
tion score on the concatenation of all subsets is
not the average of the other scores, and in extreme
cases it can be smaller than the minimum of the
other scores. We can see that both SBERT and
DefSent achieve higher scores than w/oFT on most
subsets. Although DefSent consistently performs
better than w/oFT in all subsets, SBERT performs
worse than w/oFT in some subsets. Comparing
SBERT and DefSent, when we focus on individ-
ual subsets, we can find that there are cases in
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Figure 2: Spearman’s ρ × 100 for STS12–STS16 datasets partitioned by source. “STS# ALL” denotes the
concatenation of all subsets for each STS dataset.

which SBERT achieves higher scores than Def-
Sent, but we can say that DefSent achieves slightly
higher scores as a whole. DefSent achieves no-
ticeably higher scores than SBERT on OnWN and
FNWN of STS13 and OnWN of STS14. OnWN
and FNWN of STS13 are datasets created using
definition sentences in OntoNotes, FrameNet, and
WordNet. These results, as expected, indicate that
DefSent is capable of adequately representing the
meaning of definition sentences. However, SBERT
achieves higher scores than DefSent on deft-forum
and headlines of STS14 and answer-students of
STS15. Regarding answer-students, since it is built
from a dataset that has a similar format to the NLI
datasets (Agirre et al., 2015), it is considered a
score such as the one observed is as expected for

SBERT, which is trained on the NLI datasets.

3.2 STS partitioned by Dice coefficient

We then explore how the similarity of sentence em-
beddings is affected by the superficial similarity
of the sentences. Generally speaking, it is con-
sidered difficult to correctly order the similarity
of a dataset consisting of pairs with high superfi-
cial similarity. However, since the NLI datasets
contain a relatively large number of superficially
similar sentences, SBERT built on such a dataset
is expected to be relatively robust to sentence pairs
with high superficial similarity. To verify whether
there is such a tendency, we partition STS Bench-
mark datasets in accordance with the superficial
similarity of the sentences and investigate the per-
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sentence 1 sentence 2 Human Dice w/oFT SBERT DefSent
A man is playing a guitar. The man is playing the guitar. 4.909 0.800 0.906 0.985 0.978
A man is playing a guitar. A guy is playing an instrument. 3.800 0.545 0.945 0.646 0.895
A man is playing a guitar. A man is playing a guitar and singing. 3.200 0.833 0.979 0.874 0.977
A man is playing a guitar. The girl is playing the guitar. 2.250 0.600 0.900 0.747 0.831
A man is playing a guitar. A woman is cutting vegetable. 0.000 0.400 0.890 0.290 0.595

Table 2: Example sentence pairs in STS Benchmark datasets and their scores. “Human” denotes human-labeled
similarity scores, “Dice” denotes Dice coefficients, and “w/oFT”, “SBERT”, and “DefSent” denote cosine similarities
between each sentence embedding computed with BERT without fine-tuning, SBERT, and DefSent, respectively.
The average cosine similarity for w/oFT is 0.816, for SBERT is 0.678, and for DefSent is 0.809.

formance of each embedding method on the par-
titioned datasets. Specifically, we use Dice coeffi-
cients between the sets of words in a sentence pair
as the superficial similarity, which is defined as

Dice(S1, S2) =
2|W1 ∩W2|
|W1|+ |W2|

,

where S1 and S2 are the sentence pair, and W1 and
W2 are the sets of words in S1 and S2, respectively.
We sort the sentence pairs in all STS Benchmark
datasets including training, development, and test
sets in accordance with the Dice coefficient, and
partition them into five subsets, that is, grouping
20% of the sentences from bottom to top.

Figure 3 shows the Spearman’s ρ for each sub-
sets. We can confirm that the subsets with larger
Dice coefficients, that is, a higher superficial simi-
larity, tend to be more difficult to rank the semantic
similarities. However, as expected, SBERT is more
robust to the subsets with higher superficial simi-
larity, and consequently, SBERT achieves a higher
score than DefSent for these subsets, whereas Def-
Sent achieved a higher score than SBERT for the
subsets with a lower superficial similarity.

For further investigation, we conduct a qualita-
tive analysis of how superficial similarity affects
the behavior of the methods. Table 2 shows exam-
ple sentence pairs from STS Benchmark datasets
with their human-labeled similarity scores, Dice co-
efficients, and cosine similarities between each sen-
tence embedding with the respective methods. As
shown in the second row from the top, we observe
that each sentence of the pair represents almost
the same thing except for minor details (“guitar”
or “instrument”), but SBERT assigns relatively a
much lower similarity than other examples. As
shown in the third row from the top, the similar-
ity score of DefSent is very high, even though the
human-labeled score is not that high. In summary,
we can say that SBERT is better at capturing the se-
mantic similarity of superficially similar sentences,

Figure 3: Spearman’s ρ × 100 for STS Benchmark
partitioned in accordance with the ratio of shared words.
Sentence pairs are more superficially similar to right.

while DefSent is better at capturing the similarity
of sentences with low superficial similarity.

3.3 SentEval donwstream tasks

We then apply each type of embeddings to the
downstream tasks of SentEval and analyze what
type of information each type of embeddings cap-
tures that is useful for the downstream task. We
train a logistic regression classifier with 10-fold
cross-validation, a batch size of 64, an epoch size
of 4, and Adam (Kingma and Ba, 2015) optimizer,
the same as the default configurations of SentEval.
Specifically, parameters of sentence embedding
models are fixed during training of the classifier.
We fine-tune and evaluate SBERT and DefSent
three times with different seed values and report
the average of accuracy for each downstream task.
We also evaluate w/oFT for comparison.

Figure 4 shows the accuracy for downstream
tasks. As a whole, SBERT and DefSent perform
comparably. SBERT performs best for MR, CR,
SST2, and MRPC. Since MR, CR, and SST2 are
sentiment prediction tasks, it suggests that SBERT
encodes the sentiment of sentences into the em-
bedding. Also, MRPC is a paraphrase-prediction
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Figure 4: Experimental results on each SentEval
downstream task with the accuracy (%).

task, which predicts whether two sentences have
the same meaning on the basis of their embeddings.
Therefore, MRPC is similar to the NLI task, and
thus it is not surprising that SBERT performs better.

DefSent performs best for MPQA and is com-
parable to w/oFT for SUBJ and TREC. MPQA is
a phrase-level opinion polarity classification task,
and it is necessary to compose the meaning of
phrases adequately. We conjecture that the perfor-
mance of DefSent is high because DefSent success-
fully composes the meaning of the corresponding
words from the definition sentences during fine-
tuning. It is worth noting that w/oFT performs best
for SUBJ and TREC, and SBERT performs much
worse for them. SUBJ is a subjectivity classifica-
tion task and TREC is a question-type classification
task. Since information about words in sentences
is particularly important for these tasks, SBERT is
considered to have less information about which
words are included in sentences than DefSent and
w/oFT. Therefore, we can say that SBERT encodes
mainly sentiment information into the sentence em-
bedding, and the sentence embedding is suitable
for determining whether the meaning is the same.
Also, DefSent successfully composes the meaning
of the sentence from its words and encodes infor-
mation about words the sentence has.

3.4 SentEval probing tasks
Finally, we apply each type of embeddings to the
probing tasks of SentEval and analyze what type
of linguistic information each type of embeddings
captures. We use the same setting as in Section 3.3.

Figure 5: Experimental results on each SentEval
probing task with the accuracy (%).

Figure 5 shows the accuracy for probing tasks.
Overall, w/oFT performs best on average, followed
by DefSent, and then SBERT. The overall perfor-
mance of SBERT is relatively low. SBERT encodes
the semantic information of sentences according to
the results of SentEval downstream tasks. These
results also indicate that SBERT encodes semantic
information rather than linguistic information such
as words in a sentence. DefSent is comparable to
w/oFT in WordContent, Tense, and SubjNumber.
This also indicates that the sentence embeddings
from DefSent have information about words the
sentence contains.

4 Combination of Sentence Embeddings

We have shown that SBERT and DefSent have dif-
ferent properties and that they may be complimen-
tary. This suggests that combining the two methods
may yield better sentence embeddings. Thus, we
attempt to combine SBERT and DefSent and evalu-
ate the resulting sentence embeddings on unsuper-
vised STS tasks and SentEval downstream tasks.
Specifically, we use the following five methods of
combining SBERT and DefSent for BERT2.

2The experimental results for RoBERT are given in Ap-
pendix C and D.
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Model Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERT-base w/oFT 30.88 59.90 47.74 60.29 63.73 47.29 58.22 52.58
BERT-base SBERT 69.78 72.51 70.42 77.95 73.45 75.96 72.26 73.19
BERT-base DefSent 67.31 81.76 71.83 78.18 76.91 76.98 73.47 75.20
BERT-base S+D 70.71 83.48 76.66 82.00 78.70 80.76 76.83 78.45
BERT-base D+S 68.68 73.65 70.60 76.96 72.54 75.30 72.46 72.89
BERT-base MULTI 63.10 74.34 70.30 77.64 74.08 77.35 73.42 72.89
BERT-base AVERAGE 72.40 81.36 75.80 81.90 77.64 79.74 75.87 77.81
BERT-base CONCAT 71.13 78.54 74.03 79.95 76.01 78.37 74.17 76.03
BERT-large w/oFT 27.69 55.78 44.48 51.67 61.85 47.00 53.85 48.90
BERT-large SBERT 70.76 73.68 72.56 79.00 74.61 77.11 72.47 74.31
BERT-large DefSent 63.30 82.16 72.67 79.06 77.52 77.40 74.02 75.16
BERT-large S+D 69.48 83.90 76.83 82.61 80.14 81.72 78.77 79.06
BERT-large D+S 71.25 75.71 73.39 79.68 75.20 77.67 73.78 75.24
BERT-large MULTI 70.33 81.16 75.84 80.02 76.52 78.65 74.30 76.69
BERT-large AVERAGE 71.85 82.60 77.33 82.52 79.12 80.71 76.30 78.63
BERT-large CONCAT 71.37 80.28 76.08 81.10 77.63 79.57 74.71 77.25

Table 3: Experimental results on unsupervised STS tasks with Spearman’s ρ× 100.

S+D Fine-tuning the pre-trained model with
SBERT then with DefSent sequentially.

D+S Fine-tuning the pre-trained model with Def-
Sent then with SBERT sequentially.

MULTI Multi-task learning with SBERT and Def-
Sent. The ratio of the size of the NLI dataset
to the dictionary dataset is about 19:1, so we
do 19 steps with SBERT and then 1 step with
DefSent for the same model.

AVERAGE Averaging embeddings of separately
fine-tuned models with SBERT and DefSent.

CONCAT Concatenate embeddings of separately
fine-tuned models with SBERT and DefSent.

4.1 Evaluation on unsupervised STS tasks

We first estimate the resulting sentence embed-
dings on unsupervised STS tasks. We use the
same settings described in Section 2.5. We use
STS12–STS16, STS Benchmark test set (STS-B),
and SICK-Relatedness (SICK-R) for the evalua-
tion. We compute sentence similarities by using
the cosine similarity of sentence embeddings de-
rived from the respective combinations and calcu-
late Spearman’s ρ with gold labels. We conduct
fine-tuning and evaluations 10 times with different
seed values and report the average.

Table 3 shows the experimental results. The com-
binations S+D, AVERAGE, and CONCAT always
outperform SBERT and DefSent. Among them,
S+D achieves the best average score for base and
large models. However we cannot confirm much
performance improvement with D+S and MULTI.
We leave an analysis of what affects this difference
in performances as future work.

4.2 Evaluation on the SentEval tasks

We then estimate the resulting sentence embed-
dings on the SentEval tasks. We use the same
settings described in Section 3.3. We conduct fine-
tuning and evaluations three times with different
seed values and report the average.

Table 4 shows the results. We can see that CON-
CAT achieves the highest average score but it should
be noted that since SentEval performed super-
vised learning of a logistic regression classifier, the
high dimensionality of the sentence embeddings
of CONCAT is advantageous. Other than CONCAT,
AVERAGE performs relatively well, which always
outperforms S+D, D+S, and MULTI, unlike in the
STS tasks. This suggests that fine-tuning the same
model with different tasks might degrade the gen-
eralization ability.

5 Related work

Sentence embedding has been studied intensively.
Kiros et al. (2015) proposed SkipThought, which
trains a sentence embedding model by predicting
the previous and next sentence from the embed-
ding of a given sentence. Conneau et al. (2017)
proposed InferSent, which trains a sentence embed-
ding model built on BiLSTM in a Siamese network
architecture on the NLI task. Cer et al. (2018) pro-
posed Universal Sentence Encoder (USE), which
is trained on an NLI dataset, and has also shown
the effectiveness of NLI datasets in obtaining so-
phisticated sentence embeddings.

Recently, methods that leverage pre-trained lan-
guage models to acquire sentence embeddings have
attracted much attention. Pre-trained language
models, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), acquire linguistic
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Model Method MR CR SUBJ MPQA SST-2 TREC MRPC Avg.
BERT-base w/oFT 81.50 86.94 95.22 87.72 85.94 90.60 73.68 85.94
BERT-base SBERT 82.67 89.43 93.44 89.66 88.12 85.93 76.19 86.49
BERT-base DefSent 81.77 87.97 94.91 89.90 86.27 90.07 75.38 86.61
BERT-base S+D 81.29 89.10 93.99 90.09 86.69 89.33 77.08 86.80
BERT-base D+S 82.43 89.22 93.24 90.16 88.98 83.33 75.27 86.09
BERT-base MULTI 81.73 88.80 93.17 89.27 87.28 87.87 75.54 86.23
BERT-base AVERAGE 83.17 89.50 94.67 90.35 88.50 89.67 76.41 87.47
BERT-base CONCAT 83.24 89.64 95.18 90.51 88.94 90.60 77.37 87.93
BERT-large w/oFT 84.30 89.16 95.60 86.65 89.29 91.40 71.65 86.86
BERT-large SBERT 84.76 90.61 94.08 90.04 90.77 85.47 75.90 87.38
BERT-large DefSent 84.54 89.40 95.55 90.04 89.49 88.73 74.82 87.51
BERT-large S+D 84.01 90.49 95.07 90.50 90.35 90.20 75.61 88.03
BERT-large D+S 84.55 90.68 93.46 90.22 90.21 84.73 75.01 86.98
BERT-large MULTI 84.63 90.56 94.10 89.85 90.23 88.70 76.56 87.80
BERT-large AVERAGE 85.46 90.92 95.20 90.53 91.27 88.27 77.00 88.38
BERT-large CONCAT 85.53 90.83 95.27 90.66 91.95 89.60 75.88 88.53

Table 4: Experimental results on each SentEval task with the accuracy (%).

knowledge by training on large texts and perform
well on downstream tasks. Pre-trained models
are also considered helpful for sentence embed-
ding. There are two types of methods based on
pre-trained models: unsupervised and supervised.

Unsupervised methods do not require labeled
text but exploit the properties of pre-trained lan-
guage models or create training data artificially. Li
et al. (2020) showed that the sentence embedding
space of BERT is anisotropic, and proposed BERT-
flow, which learns a map to an isotropic Gaussian
distribution to obtain sentence embedding. Sev-
eral studies have also been based on contrastive
learning, and are different in the way to make pos-
itive examples: DeCLUTR (Giorgi et al., 2021)
takes into account different spans of the same doc-
ument as positives; ConSERT (Yan et al., 2021)
takes into account a pair of an original sentence
and a collapsed sentence as positives; unsupervised
SimCSE (Gao et al., 2021) takes into account the
corresponding embeddings of the same sentence
with different dropout masks applied as positives.

Supervised methods use labeled text to encode
higher-level semantic information. Supervised
methods generally produce more sophisticated sen-
tence embeddings than unsupervised methods. In
addition to SBERT and DefSent, supervised Sim-
CSE (Gao et al., 2021) is one of the supervised
sentence embedding methods. Supervised SimCSE
fine-tunes BERT by contrastive learning using en-
tailment pairs in the NLI datasets as positives.

6 Conclusion

In this paper, we empirically investigated the in-
fluence of supervision signals used for obtaining
sentence embeddings. We focused on two methods:

SBERT, which uses NLI datasets, and DefSent,
which uses word dictionaries. We showed that there
is a difference in the ability to order the similarity of
sentences depending on their source or superficial
similarity by comparing their performances on sub-
sets of the STS datasets and tasks of SentEval. We
found that SBERT is suitable for superficially simi-
lar sentence pairs because SBERT is based on the
NLI datasets that contain a relatively large number
of superficially similar sentences, whereas DefSent
is suitable for sentence pairs that need to repre-
sent the compositional meaning because DefSent
is based on definition sentences of a dictionary.

We also showed that SBERT performed better in
tasks where sentiment information was important,
while DefSent performed better in tasks where in-
formation about words and the compositionality of
meaning were important by comparing their per-
formances on downstream and probing tasks of
SentEval. Finally, we demonstrated that combining
the two methods yielded substantially better perfor-
mance than the respective methods on unsupervised
STS tasks and downstream tasks of SentEval.

For future work, we will expand the scope of
our analysis to other pre-trained language mod-
els and sentence embedding methods to obtain in-
sights for better sentence embeddings. In addi-
tion, We will investigate how those combination
methods affect the properties of resulting sentence
embeddings and explore how to effectively com-
bine unsupervised sentence embedding methods,
which have recently achieved good performance,
such as DeCLUTR (Giorgi et al., 2021) and unsu-
pervised SimCSE (Gao et al., 2021), with super-
vised sentenece embedding methods. Moreover,
the combination of unsupervised methods, which
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have recently achieved good performance, such as
DeCLUTR (Giorgi et al., 2021) and unsupervised
SimCSE (Gao et al., 2021), and supervised meth-
ods should also be promising.
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A Training Details

For fine-tuning of SBERT and DefSent, we use a
batch size of 16, an epoch size of 1, Adam (Kingma
and Ba, 2015) optimizer with β1 = 0.9, β2 =
0.999, and a linear learning rate warm-up over 10%
of training steps for each, as the same setting as
Reimers and Gurevych (2019) and Tsukagoshi et al.
(2021). We choose the learning rate that achieves
the highest average score on the validation set for
each respective model by fine-tuning three times
with different seed values at each learning rate in
a range of x× 10−6, x ∈ {1, 2, 5, 10, 20, 50}. We
also use smart batching, and the max sequence
length is 128 for training efficiency.

B Average Runtime and Computing
Infrastructure

Fine-tuning of SBERT with BERT-base and
RoBERTa-base took about 120 minutes on a single
NVIDIA GeForce GTX 1080 Ti. Fine-tuning of
DefSent with BERT-base and RoBERTa-base took
about 10 minutes on a single NVIDIA GeForce
GTX 1080 Ti. Fine-tuning of SBERT with BERT-
large and RoBERTa-large took about 130 minutes
on a single Quadro GV100. Fine-tuning of DefSent
with BERT-large and RoBERTa-large took about
15 minutes on a single Quadro GV100.

C The details of evaluation on
unsupervised STS tasks of RoBERTa

Table 5 shows the average of Spearman’s rho for
RoBERTa-base and RoBERTa-large on unsuper-
vised STS tasks.

D The details of evaluation on SentEval
of RoBERTa

Table 6 shows the average of accuracy for
RoBERTa-base and RoBERTa-large on SentEval.
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Model Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
RoBERTa-base w/oFT 30.61 55.55 46.78 58.43 61.21 54.36 62.17 52.73
RoBERTa-base SBERT 70.20 74.44 71.86 78.70 74.47 76.92 72.11 74.10
RoBERTa-base DefSent 60.05 76.16 69.06 74.07 77.86 76.58 74.05 72.55
RoBERTa-base S+D 73.19 83.86 77.45 83.32 78.88 80.67 76.97 79.19
RoBERTa-base D+S 70.97 75.07 72.50 79.04 74.56 77.13 72.81 74.58
RoBERTa-base MULTI 69.27 77.34 73.10 80.68 76.08 77.97 73.61 75.44
RoBERTa-base AVERAGE 71.61 78.65 74.65 80.30 76.71 78.56 74.04 76.36
RoBERTa-base CONCAT 70.69 76.03 72.92 79.08 75.34 77.50 72.73 74.90
RoBERTa-large w/oFT 26.00 54.35 44.10 56.35 60.37 47.01 58.11 49.47
RoBERTa-large SBERT 74.04 79.47 75.47 82.77 79.50 80.49 74.19 77.99
RoBERTa-large DefSent 57.79 74.67 69.01 72.98 75.48 77.39 72.55 71.41
RoBERTa-large S+D 66.62 79.60 75.81 77.91 78.45 80.46 77.45 76.61
RoBERTa-large D+S 74.18 79.81 76.38 82.85 78.78 80.38 74.86 78.18
RoBERTa-large MULTI 61.34 57.43 60.17 75.56 73.78 74.92 70.10 67.62
RoBERTa-large AVERAGE 73.43 82.97 77.85 83.82 80.65 82.09 75.91 79.53
RoBERTa-large CONCAT 74.04 80.96 76.60 83.20 80.33 81.24 74.77 78.73

Table 5: Experimental results on unsupervised STS tasks with Spearman’s ρ× 100.

Model Method MR CR SUBJ MPQA SST-2 TREC MRPC Avg.
RoBERTa-base w/oFT 84.35 88.19 95.28 86.49 89.46 93.20 74.20 87.31
RoBERTa-base SBERT 85.35 91.50 93.15 90.95 92.06 87.07 76.62 88.10
RoBERTa-base DefSent 84.70 91.15 94.55 90.56 89.88 92.40 76.43 88.52
RoBERTa-base S+D 85.04 91.40 94.17 90.81 90.63 92.00 77.14 88.74
RoBERTa-base D+S 85.20 91.34 93.45 90.84 92.20 88.20 76.29 88.22
RoBERTa-base MULTI 85.15 91.00 93.25 90.69 91.47 89.67 77.08 88.33
RoBERTa-base AVERAGE 85.57 91.66 94.01 91.14 92.55 89.67 78.12 88.96
RoBERTa-base CONCAT 86.04 91.68 94.70 91.02 92.40 93.93 78.24 89.72
RoBERTa-large w/oFT 85.46 88.72 96.04 88.34 91.27 93.80 73.80 88.20
RoBERTa-large SBERT 87.35 92.56 94.13 90.99 92.77 92.20 76.00 89.43
RoBERTa-large DefSent 86.28 91.14 95.12 90.97 90.74 92.33 73.74 88.62
RoBERTa-large S+D 86.77 92.28 94.68 91.22 91.98 92.60 77.51 89.58
RoBERTa-large D+S 87.02 92.40 93.62 90.80 92.59 90.93 77.35 89.25
RoBERTa-large MULTI 87.52 92.56 94.39 91.09 93.15 91.60 76.69 89.57
RoBERTa-large AVERAGE 87.82 92.81 94.69 91.36 93.24 93.93 77.49 90.19
RoBERTa-large CONCAT 87.87 92.84 95.22 91.64 93.06 94.27 76.23 90.16

Table 6: Experimental results on each SentEval task with the accuracy (%).
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