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Abstract

The capabilities and limitations of BERT and
similar models are still unclear when it comes
to learning syntactic abstractions, in particu-
lar across languages. In this paper, we use
the task of subordinate-clause detection within
and across languages to probe these properties.
We show that this task is deceptively simple,
with easy gains offset by a long tail of harder
cases, and that BERT’s zero-shot performance
is dominated by word-order effects, mirroring
the SVO/VSO/SOV typology.

1 Introduction

Analysing the ability of pre-trained neural language
models, such as BERT (Devlin et al., 2019), to ab-
stract grammatical patterns from raw texts has be-
come a prominent research question (Jawahar et al.,
2019; Rogers et al., 2020). Results remain mixed.
While BERT-based models have been shown to
learn syntactic representations that are similarly
structured across languages (Chi et al., 2020), some
grammatical patterns, such as discontinuous con-
stituents, remain challenging for them even when
training data is plentiful (Kogkalidis and Winholds,
2022). In practical terms, zero-shot performance
of BERT-based models is lower for typologically
distant languages (Pires et al., 2019), and they can
profit from direct exposure to typological features
during fine-tuning (Bjerva and Augenstein, 2021).

In this study, we add another datapoint to the con-
versation by analysing the ability of BERT-based
models to capture the distinction between main
and subordinate clauses across languages. This
task is promising for two reasons. First, it high-
lights variability in the way main and subordinate
clauses are structured across languages, thus act-
ing as an informative probe into the relationship
between BERT and typological categories. Sec-
ond, the task is arguably relevant for downstream
performance on natural-language understanding,

where (some notion of) syntactic scope and compo-
sitionality should support tasks such as analysing
commitment (Jiang and de Marneffe, 2019; Zhang
and de Marneffe, 2021) or factuality (Lotan et al.,
2013), text simplification (Sikka and Mago, 2020),
or paraphrase detection (Timmer et al., 2021). In
order to operationalise it in a cross-lingual fash-
ion, we use the Universal Dependencies framework
(UD; Nivre et al., 2020) with its large multilingual
collection of corpora.

Our analysis proceeds in two stages. First, we
survey the performance of BERT models fine-tuned
and tested on the same language across 20 typo-
logically diverse languages (§ 3). For the majority
of languages, distinguishing main and subordinate
clauses is easily solved with base-size models and
relatively small training sets. However, some lan-
guages demonstrate a non-negligible number of
errors, which we analyse.

Then we study the performance of Multilingual
BERT (mBERT) in a zero-shot setting (§ 4), where
we fine-tune the model on labeled data in 10 differ-
ent languages and then test its performance on 31
datasets representing 27 different languages. We
find that the performance of mBERT is dominated
by word-order effects well known from the typo-
logical literature (Comrie, 1981): the Arabic model
shows best-in-class performance on Irish, and the
Japanese model has best-in-class performance on
Korean, while both have poor performance overall.
European languages with large training sets pro-
vide good inductive bias for typologically diverse
languages but fail on SOV languages.

2 Experimental Setup

Data To make our analysis maximally compa-
rable across languages, we start from the Parallel
Universal Dependencies (PUD) collection (Zeman
et al., 2017), which contains translations for a set
of 1000 English sentences. PUD only contains
test corpora. As these are too small to be further
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Language Mandarin Vietnamese Korean Arabic Hindi German Armenian Turkish Welsh Indonesian
Accuracy 88.7 90 90.4 91.2 93.6 94.1 94.3 95.1 95.6 96

Language Basque Spanish Irish English Hebrew Afrikaans French Japanese Czech Russian
Accuracy 96.9 97.1 97.4 97.9 98.2 98.8 99 99.1 99.6 99.7

Table 1: Performance of single-language models.

split into train/test subsets, we use other corpora to
fine-tune the models. We also add corpora for lan-
guages not covered by PUD for better typological
coverage. See Appendix § A.2 for the full list.

Model The experimental setup is identical in
the single-language and zero-shot settings. A pre-
trained mBERT model (a variant of bert-base)
and several pre-trained single-language BERT mod-
els, all provided by HuggingFace (Wolf et al.,
2020), are fine-tuned on the binary classification of
predicates into main vs. subordinate clauses. We
operationalize main clauses as those headed by
predicates with the UD label root and subordi-
nate clauses through the UD labels acl, ccomp,
advcl, csubj, and xcomp. The last hidden state
of the embedding model for the first subword of
each predicate is fed to a two-layer MLP with a
tanh activation after the first layer, and the model is
fine-tuned using cross-entropy loss. For the single-
language setup, the model is fine-tuned for five
epochs, and we report the best result on the vali-
dation set. Most models begin overfitting after the
second epoch, so in the zero-shot setting all models
are fine-tuned for two epochs.

3 Single-Language Models

The main results obtained by the models fine-tuned
and tested on the same language are shown in Ta-
ble 1. Results are above 90% for almost all lan-
guages, while a majority baseline (always assign
subordinate clause) attains an accuracy of 50–70%
depending on the language. (Table 3 in the Ap-
pendix provides more details about the models
and corpora, including exact baseline results.) At
first glance, neither the size of the training set nor
the size of the model seem to be a major factor:
mBERT demonstrates better performance when
fine-tuned on the small Afrikaans and Hebrew
datasets than when trained on a bigger Chinese
dataset. When fine-tuned on the English data, it
attains the same performance as an English-only
bert-large.1

1The mBERT result is reported in Table 2.

A more fundamental distinction seems to exist
between major European languages, the results on
which are generally at > 97% accuracy (except for
German), and Mandarin Chinese, Vietnamese, and
Korean where results are around 90%. Our analy-
sis indicates that these differences are partly due
to discrepancies in UD annotations across corpora
but also due to genuine syntactic differences. An
example of an annotation-related confound is the
treatment of quotations. The PUD corpora that we
use preferentially as test sets treat quotations as
sentential complements of communication verbs.
Some of the corpora we use for fine-tuning, how-
ever, analyse the cases where quotation precedes
the verb of speech as parataxis. The head predi-
cate of the quotation therefore receives the label
root and becomes the main predicate of the whole
sentence, leading to spurious mistakes in the anal-
ysis of PUD corpora, where they are annotated
as ccomp’s. This discrepancy accounts for the
lion’s share of classification mistakes in German
and some mistakes in Mandarin.

In contrast, an example of genuine ambiguity is
provided by the Mandarin gēnjù construction. This
construction means ‘according to’ and can incor-
porate both nominal and verbal constituents. Thus,
gēnjù shàng biǎogé zhōng qı̄ gè yuánsù de guānxì
from the Mandarin GSD corpus, which we used
for fine-tuning, means ‘based on the relationship
of the seven elements in the above table’, and the
annotation treats this construction as an oblique
prepositional phrase. Cf. the following example
from the Mandarin PUD corpus: gēnjù kěxíng xìng
yánjiū gūjì ‘according to the feasibility study / the
feasibility study estimates that / as the feasbility
study estimates’. The analysis of this sentence in
PUD makes gūjì ‘estimate’ the main predicate of
the sentence, while an alternative analysis would
make it the head of an adverbial clause, and yet an-
other analysis would label it as a nominal element.
The ability of Mandarin words to act as different
parts of speech in different contexts (especially in
case of verbs, which can act as clause heads, auxil-
iaries, complementisers, and compound elements)
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makes this kind of disambiguation difficult even
for human annotators, which in turn makes it hard
to formulate the exact rule that language models
are supposed to extract from the data. A similar
situation holds for Vietnamese.2

A different type of systematic ambiguity is pre-
sented by Korean, which also demonstrates poorer
performance. Korean has about sixty markers con-
necting two clauses, and many of those allow for
both coordinative and conjunctive readings, which
makes either the first or the second clause the main
one, respectively (Cho and Whitman, 2020, 220–
227). Examples of this type are responsible for a
large share of mistakes in Korean.

Overall, these results indicate that subordinate-
clause detection is a long-tail task: major easily
learnable patterns account for more than 90% of
test cases for all languages, but in some languages
there is an assortment of harder cases that prevent
language models from efficiently generalising.

4 Zero-Shot Setting

4.1 Quantitative Results

We now turn to the analysis of the performance
of the models in the zero-shot setting. The model
described in § 2 is fine-tuned for two epochs on
five European languages (English, Russian, Czech,
French, and German) and five Eurasian languages
(Standard Arabic, Mandarin Chinese, Turkish, Ko-
rean, and Japanese) with larger training corpora
(the ones shown in Table 3). Each of the fine-tuned
models is then applied in a zero-shot way to a range
of test corpora from the UD collection.3

Based on the results in Table 2, several obser-
vations can be made. First, there is a set of Euro-
pean languages with large training corpora that can
act as ‘general approximators’: they demonstrate
high performance across the board. The best over-
all performance is attained by Russian, which has
the second-largest training corpus (nearly 33k sen-
tences). German, with the largest training corpus
(nearly 56k sentences) performs worse than both
Russian and English (the second best, with only

2‘Syntactic category classification for Vietnamese is still
in debate. That lack of consensus is due to the unclear limit be-
tween the grammatical roles of many words as well as the fre-
quent phenomenon of syntactic category mutation’ (Nguyen
et al., 2004).

3Where available, we experiment with two test sets for the
same language to assess domain-induced variance. As Table 2
shows, the difference in scores between different testing cor-
pora for the same language can reach 5–6%, but it does not
change the overall pattern.

circa 6k training sentences). While this good re-
sult for English may be attributed to more informa-
tive pre-training (English Wikipedia is much larger
than the German one), such a bias would also have
favoured German compared to Russian. An alter-
native explanation is provided by the more idiosyn-
cratic German word-order patterns (V2 in main
clauses vs. V-last in subordinate clauses), which
help it achieve best-in-class performance on the
similar Afrikaans. Notably, Russian beats English
even though PUD corpora were translated from
English and therefore should contain some traces
of its morphosyntactic patterns (Rabinovich et al.,
2017; Nikolaev et al., 2020).

At the other end of the spectrum, we find
mediocre general approximators (Arabic, Turkish)
and outright bad ones (Japanese and Korean). At
first glance, their performance could be an artefact
of lower-quality annotations or suboptimal tokeni-
sation (Mielke et al., 2021). This, however, does
not explain a remarkable set of results that is clearly
due to word-order patterns. While the fine-tuned
model for Arabic, a VSO language, performs worse
on its own test corpus than models fine-tuned on
European languages, it provides best-in-class per-
formance on Irish, another VSO language (96%
accuracy). The English-based model is not far be-
hind (95%), but given the overall large gap in per-
formance between them across the board, it seems
that congruent word-order patterns provide a strong
inductive bias for subordinate-clause identification.

Unfortunately, VSO languages are rare,4 and
it is impossible to check if this pattern gener-
alises to other language pairs. However, our test-
corpus suite includes data on strict SOV languages
(Japanese, Korean) and languages where SOV is
the dominant (Hindi, Turkish) or a common (Man-
darin, Basque) pattern. These provide us with a
large number of language pairs with different de-
grees of word-order congruence and fairly clear
patterns of model performance. First, universal
approximators, despite good performance on VSO
languages, struggle on strict SOV languages, es-
pecially Japanese, while SOV languages demon-
strate consistently good performance among them-
selves. E.g., Korean demonstrates best-in-class
performance on Turkish, tied with Turkish itself,
while Japanese has best-in-class performance on
Korean. Turkish also demonstrates decent perfor-

4Out of 1376 languages in WALS (Dryer and Haspelmath,
2013), 95 are VSO, 564 are SOV and 488 are SVO.
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English 96 95 93 94 94 86 98 98 96 96 96 93 93 95 96 98
Russian 95 94 86 93 95 90 94 96 95 97 99 94 94 93 96 96
Czech 94 94 83 95 100 92 92 93 94 94 98 95 88 89 92 94
French 94 91 84 92 95 90 92 97 95 95 99 94 87 93 96 96
German 94 87 95 94 88 82 90 95 94 92 93 91 90 89 95 96
Arabic 90 96 76 85 84 90 85 87 86 85 84 87 84 85 89 85
Mandarin 86 84 85 87 87 85 85 86 86 89 87 87 81 83 86 87
Turkish 67 61 61 65 71 62 64 69 75 77 71 73 73 68 68 74
Korean 51 53 63 53 61 52 51 54 59 65 59 59 57 55 54 61
Japanese 55 56 41 39 52 63 51 52 52 54 55 54 58 53 51 54

pl
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ru
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ru
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sv
pud

eu
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hi
pud

tr
pud

ja
gsd

ja
pud

ko
pud

vi
vtb

th
pud

zh
gsd

zh
pud mean

English 95 97 93 93 96 88 87 83 66 70 67 82 84 67 71 88.9
Russian 98 95 100 99 95 88 90 90 68 72 70 79 80 64 69 89.2
Czech 97 93 94 96 92 87 88 88 64 66 68 78 79 65 71 87.5
French 98 96 96 97 94 85 89 86 54 61 66 77 76 63 69 87.0
German 89 94 93 88 97 81 86 78 59 62 57 78 78 67 68 85.2
Arabic 85 86 88 85 89 71 70 65 63 66 59 74 79 66 65 80.3
Mandarin 85 85 86 85 86 82 87 89 80 78 77 74 80 91 86 84.6
Turkish 76 73 71 71 69 79 83 94 82 83 88 63 68 72 71 72.3
Korean 66 58 59 59 53 74 76 94 87 88 88 52 61 67 66 63.1
Japanese 54 52 55 55 50 57 63 88 99 98 95 54 70 72 66 60.3

Table 2: Performance of zero-shot models. Rows: source languages; columns: target languages and corpora.
Underlined values fail to beat the majority-class baseline (always predict subordinate clause). See § A.1 for language
abbreviations and § A.2 for details about corpora.

mance on Hindi, with which it shares a relatively
flexible SOV order.

Another language with strong SOV tendencies
is Mandarin Chinese, which has been argued to
be in transition from SVO to SOV order (Sun and
Givón, 1985). Mandarin, which we already found
difficult to model in § 3, is very hard to generalise
to, with no source languages attaining accuracy
above 71–72%. Tellingly, Turkish is the only other
language with decent results on both Mandarin test
sets. Mandarin is also the only language to always
beat the majority-class baseline.

4.2 Case Study: English–Mandarin

In order to get a better understanding of the dif-
ficulties that models face in the zero-shot setting
we analysed the mistakes that the English-based
fine-tuned model made when making predictions
on Mandarin data.

Setting aside errors stemming from annotation
discrepancies,5 the major source of model mistakes
seems to be the fact that Mandarin complex sen-
tences are predominantly right-headed: 99% of

5E.g., as discussed in §3, the model expects direct quotes
to have the form ccomp (quote) + root (verb of speech)
and not root (quote) + parataxis (verb of speech).

advcl, 100% of acl, and 96% of dep6 have
their parent node to the right. In contrast, 75%
of English advcl and 98% of English acl are
left-headed in PUD. This makes an English-based
zero-shot model prejudiced against finding root
nodes in the final clause of the sentence, and it
incorrectly analyses a wide range of right-headed
Mandarin complex clauses. Statistically, there are
142 sentence-initial subordinate clauses mistakenly
analysed as main clauses and only 6 reverse er-
rors. By contrast, there are 278 sentence-final main
clauses mistakenly analysed as subordinate ones
and 82 reverse errors.

Sometimes this divergence further interacts with
ways in which English and Mandarin alternate be-
tween clause coordination and subordination. Thus,
Mandarin tends to describe sequences of events as
a pair of an adverbial clause and a main clause
(after having taken a shower, he dried himself )
instead of as two coordinated clauses (he took a
shower and dried himself ). English UD treats the
first conjoined clause as the matrix one, while it
is often advcl in Mandarin, and the absence of
overt unambiguous complementisers makes it hard

6dep labels different kinds of hard-to-analyse relations
and is frequent in Mandarin PUD (397 occurrences).
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for the model to see beyond mere frequencies.
A similar situation obtains with some English

postposed descriptive subordinate clauses, such as
it’s X–that Y constructions7 and non-restrictive rel-
ative clauses.8 In these cases, Mandarin uses a
coordinative construction, in which the head, ac-
cording to the UD analysis, is on the right conjunct,
corresponding to the English acl, and the first con-
junct is attached to it using the dep label. Again,
the English-based model expects to find the root
in the first of the two clauses, and there is no overt
complementiser to suggest otherwise.

4.3 Attention Patterns

An analysis of the properties of the models under-
lying these findings is beyond the scope of this
paper, but preliminary checks of the attention pat-
terns show that successful models strongly attend
to complementisers in the last two layers. As SVO
and VSO languages tend to have complementis-
ers before subordinate clauses and SOV languages
after (Hawkins, 1990), fine-tuning biases models
towards looking for them in only one direction.
The attention of subordinate-clause heads to main-
clause heads is weaker, presumably due to higher
lexical variety in that position.

5 Related Work

Both aspects of our analysis – subordinate-clause
detection and the study of word-order effects – have
been addressed but not in conjunction and not in
a multiple-source-language setting. Our study ex-
tends previous approaches by providing a ZS ‘up-
per baseline’ derived from the study of the per-
formance of several monolingual models and then
conducting a novel many-sources-to-many-target
analysis of zero-shot performance.

Lin et al. (2019) test BERT on the auxiliary-
classification task (main vs. subordinate clause)
as part of their investigation of BERT’s linguistic
knowledge. Rönnqvist et al. (2019) extend this
analysis to the multilingual setting with a focus on
Nordic languages.

Word-order differences have been shown to
impact the performance of English-based cross-
lingual models, especially in the domain of syn-
tactic parsing (Ahmad et al., 2019) and with tasks
that rely on syntactic information (Liu et al., 2020;

7It’s fantastic that they got the Paris Agreement, but...
8However, they could not find this same pattern in tissues

such as the bladder, which are not directly exposed.

Arviv et al., 2021), while reordering has been long
known to be an efficient preprocessing step in syn-
tactic transfer (Rasooli and Collins, 2019) and ma-
chine translation, both statistical (Wang et al., 2007)
and neural (Chen et al., 2019).

6 Conclusion

We extend previous work on syntactic capabilities
of BERT, mostly focusing on English, by provid-
ing a more comprehensive analysis of its perfor-
mance on the task of subordinate-clause detection
in multiple languages and language pairs in the
zero-shot setting. We show that the performance of
single-language models is uneven across languages:
East and Southeast Asian languages with less rigid
boundaries between POS categories and coordina-
tion and subordination prove harder to model. We
also show that mBERT’s performance in the zero-
shot setting, while being largely correlated with
the size of the pre-training and fine-tuning corpora,
with Russian being the best source language across
the board, is well aligned with the word-order ty-
pology: language pairs with congruent word orders
demonstrate better results, with both SVO and SOV
orders having higher in-group than across-group
accuracies. A single pair of VSO languages in the
data further corroborates this finding, showing that
the verb-final order is not important per se.

The clause-initial position of complementisers
in VSO languages partly blurs this effect and helps
SVO languages with large training corpora serve as
good sources for fine-tuning, but even Russian and
English fail on SOV languages, where complemen-
tisers tend to be postposed and dependent-clause
predicates never appear in the sentence-final po-
sition. This shows that at least for some tasks,
training on a single source language is not enough.
Moreover, our results from single-language mod-
elling seem to indicate that even superficially sim-
ple syntactic tasks vary in difficulty across lan-
guages, which imposes a hard limit on how well
cross-lingual projection can perform.
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A Appendix

A.1 Abbreviations

af Afrikaans

ar Standard Arabic

cs Czech

cy Welsh

de German

en English

es Spanish

eu Basque

ga Irish

fi Finnish

fr French

he Hebrew

hi Hindi

hy Eastern Armenian

id Indonesian

is Icelandic

it Italian

ja Japanese

ko Korean

pl Polish

pt Portuguese

ru Russian

sv Swedish

th Thai

tr Turkish

vi Vietnamese

zh Mandarin Chinese

A.2 Corpora

In addition to the Parallel Universal Dependencies
collection (Zeman et al., 2017), the following cor-
pora were used to train and/or validate models:

• Afribooms: UD Afrikaans-AfriBooms,
https://github.com/
UniversalDependencies/UD_
Afrikaans-AfriBooms

• ArmTDP: Universal Dependencies treebank
for Eastern Armenian,
https://github.com/
UniversalDependencies/UD_
Armenian-ArmTDP

• BDT: Basque UD treebank,
https://github.com/
UniversalDependencies/UD_
Basque-BDT

• CCG: Corpws Cystrawennol y Gymraeg
(Syntactic Corpus of Welsh),
https://github.com/
UniversalDependencies/UD_
Welsh-CCG

• EWT: Universal Dependencies English Web
Treebank,
https://github.com/
UniversalDependencies/UD_
English-EWT

• GSD (French): UD French GSD,
https://github.com/
UniversalDependencies/UD_
French-GSD (Guillaume et al., 2019)

• GSD (Japanese): UD Japanese Treebank,
https://github.com/
UniversalDependencies/UD_
Japanese-GSD

• GSD (Korean): Google Korean Universal
Dependency Treebank,
https://github.com/
UniversalDependencies/UD_
Korean-GSD (Chun et al., 2018)

• GSD (Mandarin): Traditional Chinese
Universal Dependencies Treebank,
https://github.com/
UniversalDependencies/UD_
Chinese-GSD
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• GSD (Spanish): Spanish UD treebank,
https://github.com/
UniversalDependencies/UD_
Chinese-GSD

• HDT: UD version of the Hamburg Depen-
dency Treebank,
https://github.com/
UniversalDependencies/UD_
German-HDT (Borges Völker et al.,
2019)

• HDTB: Hindi Universal Dependency Tree-
bank,
https://github.com/
UniversalDependencies/UD_
Hindi-HDTB (Bhat et al., 2017)

• HTB: Universal Dependencies Corpus for
Hebrew,
https://github.com/
UniversalDependencies/UD_
Hebrew-HTB (Tsarfaty, 2013)

• IDT: Irish UD Treebank,
https://github.com/
UniversalDependencies/UD_
Irish-IDT

• KENET: Turkish-Kenet UD Treebank,
https://github.com/
UniversalDependencies/UD_
Turkish-Kenet

• PADT: UD version of the Prague Arabic
Dependency Treebank,
https://github.com/
UniversalDependencies/UD_
Arabic-PADT (Hajič et al., 2009)

• PDT: UD version of the Prague Dependency
Treebank,
https://github.com/
UniversalDependencies/UD_
Czech-PDT (Bejček et al., 2013)

• Syntagrus: SynTagRus Dependency Tree-
bank,
https://github.com/
UniversalDependencies/UD_
Russian-SynTagRus

• VTB: UD version of the VLSP constituency
treebank,
https://github.com/

UniversalDependencies/UD_
Vietnamese-VTB (Nguyen et al., 2009)

A.3 Single-language model results
The results attained by the models fine-tuned and
tested on the same language are shown in Table 3.
See § A.2 for the details about the train and test
corpora.
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Language Train corpus Test corpus Model #Train #Test
Main-
Main

Main-
Sub

Sub-
Main

Sub-
Sub

Acc.

Mandarin GSD-Train PUD mBERT 3196 736 556 180 122 1364 86.4

Mandarin GSD-Train PUD
HFL-
BERT-
WWM

3196 736 570 166 85 1401 88.7

Vietnamese VTB-Train VTB-Dev mBERT 1105 619 510 109 90 1283 90
Korean GSD-Train PUD mBERT 2201 618 603 15 149 936 90.4
Arabic PADT-Train PUD mBERT 3755 520 436 84 31 752 91.2
Hindi HDTB-Train PUD mBERT 5167 565 506 59 32 831 93.6
German HDT-Train PUD mBERT 55938 441 427 14 49 578 94.1

Armenian
ArmTDP-
Train

ArmTDP-
Dev

mBERT 1165 149 145 4 21 269 94.3

Turkish KENET-Train PUD mBERT 6784 731 653 78 25 1338 95.1
Welsh CCG-Train CCG-Dev mBERT 377 341 315 26 27 824 95.6
Indonesian GSD-Train PUD mBERT 2770 572 553 19 42 923 96
Basque BDT-Train BDT-Dev mBERT 3181 1029 979 50 39 1758 96.9
Spanish GSD-Train PUD mBERT 7247 548 513 35 5 824 97.1
Irish IDT-Train IDT-Dev mBERT 2323 236 226 10 8 441 97.4

English EWT-Train PUD
BERT-
LARGE-
CASED

5968 556 529 27 4 915 97.9

Hebrew HTB-Train HTB-Dev mBERT 2342 206 201 5 4 297 98.2

Afrikaans
Afribooms-
Train

Afribooms-
Train

mBERT 643 97 96 1 2 142 98.8

French GSD-Train PUD mBERT 7712 572 563 9 6 956 99

Japanese GSD-Train PUD
TOHOKU-
BERT-
LARGE

5101 844 838 8 18 2090 99.1

Czech PDT-Train PUD mBERT 26277 504 502 2 3 779 99.6

Russian
Syntagrus-
Train

PUD mBERT 32851 595 593 2 2 961 99.7

Table 3: Performance of single-language models across languages. #Train and #Test denote the number of sentences
in the train and test corpus respectively. In the ‘Main-Main’, ‘Main-Sub’, ‘Sub-Main’, and ‘Sub-Sub’ columns, the
part before the hyphen is the gold label of a predicate (main/subordinate clause) and the second part is the guessed
label. Acc: Accuracy.
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