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Keynote Talk: Parsing continuous speech into lexically bound
phonetic sequences

Laura Gwilliams
University of California, San Francisco

Abstract: Speech consists of a continuously-varying acoustic signal. Yet human listeners experience it
as sequences of discrete speech sounds, which are used to recognise words. To examine how the human
brain appropriately sequences the speech signal, we recorded two-hour magnetoencephalograms from
21 subjects listening to short narratives. Our analyses show that the brain continuously encodes the three
most recently heard speech sounds in parallel, and maintains this information long past the sensory input.
Each speech sound has a representation that evolves over time, jointly encoding both its phonetic features
and time elapsed since onset. This allows the brain to represent the relative order and phonetic content
of the phonetic sequence. These dynamic representations are active earlier when phonemes are more
predictable, and are sustained longer when lexical identity is uncertain. The flexibility in the dynamics
of these representations paves the way for further understanding of how such sequences may be used to
interface with higher order structure such as morphemes and words.

Bio: Laura Gwilliams received her PhD in Psychology with a focus in Cognitive Neuroscience from
New York University in May 2020. Currently she is a post-doctoral researcher at UCSF, using MEG
and ECoG data to understand how linguistic structures are parsed and composed while listening to con-
tinuous speech. The ultimate goal of Laura’s research is to describe speech comprehension in terms
of what operations are applied to the acoustic signal; which representational formats are generated and
manipulated (e.g. phonetic, syllabic, morphological), and under what processing architecture.
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Keynote Talk: Deep Phonology: Modeling language from raw
acoustic data in a fully unsupervised manner

Gasper Begus
University of California, Berkeley

Abstract: In this talk, I propose that language and its acquisition can be modeled from raw speech data in
a fully unsupervised manner with Generative Adversarial Networks (GANs) and that such modeling has
implications both for the understanding of language acquisition and for the understanding of how deep
neural networks learn internal representations. I propose a technique that allows us to “wug-test” neural
networks trained on raw speech, analyze intermediate convolutional layers, and test a causal relation-
ship between meaningful units in the output and latent/intermediate representations. I further propose
an extension of the GAN architecture in which learning of meaningful linguistic units emerges from a
requirement that the networks output informative data and includes both the perception and production
principles. With this model, we can test what the networks can and cannot learn, how their biases mat-
ch human learning biases in behavioral experiments, how speech processing in the brain compares to
intermediate representations in deep neural networks (by comparing acoustic properties in intermediate
convolutional layers and the brainstem), how symbolic-like rule-like computation emerges in internal
representations, and what GAN’s innovative outputs can teach us about productivity in human language.
This talk also makes a more general case for probing deep neural networks with raw speech data, as de-
pendencies in speech are often better understood than those in the visual domain and because behavioral
data on speech (especially the production aspect) are relatively easily accessible.

Bio: Gašper Beguš an Assistant Professor at the Department of Linguistics at UC Berkeley where he
directs the Berkeley Speech and Computation Lab. Before coming to Berkeley, he was an Assistant
Professor at the University of Washington and before that he graduated with a Ph.D. from Harvard.
His research focuses on developing deep learning models for speech data. More specifically, he trains
models to learn representations of spoken words from raw audio inputs. He combines machine learning
and statistical modeling with neuroimaging and behavioral experiments to better understand how neural
networks learn internal representations in speech and how humans learn to speak.
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On Building Spoken Language Understanding Systems for Low
Resourced Languages

Akshat Gupta
J.P.Morgan AI Research

New York, USA
akshat.x.gupta@jpmorgan.com

Abstract

Spoken dialog systems are slowly becoming
and integral part of the human experience due
to their various advantages over textual inter-
faces. Spoken language understanding (SLU)
systems are fundamental building blocks of
spoken dialog systems. But creating SLU sys-
tems for low resourced languages is still a chal-
lenge. In a large number of low resourced lan-
guage, we don’t have access to enough data
to build automatic speech recognition (ASR)
technologies, which are fundamental to any
SLU system. Also, ASR based SLU systems
do not generalize to unwritten languages. In
this paper, we present a series of experiments
to explore extremely low-resourced settings
where we perform intent classification with
systems trained on as low as one data-point
per intent and with only one speaker in the
dataset. We also work in a low-resourced set-
ting where we do not use language specific
ASR systems to transcribe input speech, which
compounds the challenge of building SLU sys-
tems to simulate a true low-resourced setting.
We test our system on Belgian Dutch (Flem-
ish) and English and find that using phonetic
transcriptions to make intent classification sys-
tems in such low-resourced setting performs
significantly better than using speech features.
Specifically, when using a phonetic transcrip-
tion based system over a feature based system,
we see average improvements of 12.37% and
13.08% for binary and four-class classification
problems respectively, when averaged over 49
different experimental settings.

1 Introduction

Spoken Language Understanding (SLU) systems
form an integral part of any spoken dialog system.
A traditional SLU pipeline is made up of two mod-
ules (Figure 1) - a speech to text module which
converts input audio into textual transcripts, and
a natural language understanding (NLU) module
which aims to understand the semantic content in

the user utterance from the textual transcripts (Tur
and De Mori, 2011; Lugosch et al., 2019). The
conventional two-module SLU pipeline is prone to
making speech recognition errors which propagate
through the system. To minimize these errors, a
lot of recent research has been focused on creating
end-to-end spoken language understanding (E2E-
SLU) systems (Qian et al., 2017; Serdyuk et al.,
2018).

Building E2E-SLU systems requires an even
larger amount of task-specific annotated data when
compared to the two-module split SLU pipelines
(Lugosch et al., 2019; Bastianelli et al., 2020; Wu
et al., 2020). While high resourced languages like
English are moving towards E2E-SLU, the chal-
lenges presented by low resourced languages are
very different. Low resourced languages operate in
a regime where we have access to only tens or hun-
dreds of labelled utterances, which are not enough
to build robust E2E-SLU systems. Creating robust
automatic speech recognition (ASR) systems for
low resourced languages is itself a challenge as
these require large amounts of manual annotation.
For many low resourced languages, we might not
even have ASR technologies. Creating ASR tech-
nologies for unwritten languages or languages that
have only a few hundred or a few thousand speak-
ers alive is not even a viable option. But can we
create spoken dialog systems for such languages?

‘Low-resourced-ness’ of a particular language is
a very broad term often used loosely to describe var-
ious types of inadequacies when creating language
technologies. It affects creating speech technolo-
gies in mainly two ways. For the purpose of this pa-
per, we explicitly define and differentiate between
these two scenarios. The first scenario is what we
call language-specific low-resourced-ness, where
we do not have enough resources to create robust,
language specific speech recognition technologies.
Speech recognition systems are fundamental to cre-
ating various kinds of speech technologies includ-

1



Figure 1: A traditional spoken language understanding system consisting of a speech-to-text system followed by a
natural language understanding module.

ing dialog systems, speech emotion recognition
systems, keyword spotting systems, speaker recog-
nition and diarization systems. When creating di-
alog systems, ASR systems allow us to convert
input speech to text, after which text based lan-
guage models like BERT (Devlin et al., 2018) can
be used to understand the content of speech and
build NLU modules. This allows us to create SLU
systems with smaller amounts of task-specific an-
notated data. But in settings where we do not have
access to speech recognition systems, it becomes
important to have enough annotated task-specific
data to compensate for the lack of ASR systems
and text-based language models. This introduces
the second source of ‘low-resourced-ness’, which
we call task-specific low-resourced-ness - where
we do not have enough annotated data for a particu-
lar task. Two challenges occur in this scenario - one
where we do not have enough speakers to create a
task-sepcific speech corpus, and another where we
do not have enough recordings per speaker. Not
having enough annotated data for a particular task,
when combined with lack of speech recognition
technologies compounds the problem of creating
speech technologies for such languages. We work
in this compounded low-resource setting, where
we assume language specific and task-specific low-
resourced-ness.

In this paper, we present a series of experiments
to empirically re-create language-specific and task-
specific low-resourced-ness scenarios and work in
the compounded setting where we tackle both chal-
lenges at the same time. As we assume language
specific low-resourced-ness, we work in a setting
where we don’t have access to language specific
ASR systems. One way to tackle this setting is to
use an ASR system built for a higher resourced
language and use the transcriptions generated to
perform downstream tasks as used in (Buddhika
et al., 2018; Karunanayake et al., 2019b,a). It was
later shown in (Gupta et al., 2021; Yadav et al.,
2021) that using language and speaker indepen-
dent systems trained on many languages to ex-

tract speech features works much better than using
ASR systems built for a different language, as a
different language usually contains a different set
of phonemes with a different phone to phoneme
set mapping. When this setting is compounded
by task-specific low-resourced-ness, we are at an
extremely low resourced setting where each data
point becomes valuable. To simulate this setting,
we pose an I-class intent classification problem
(I = 2, 4) where we have a varying number speak-
ers (S) available for recording training data. Each
speaker provides only k-utterances per intent for
training. In this k-shot setting, we evaluate our sys-
tem in a granular manner for very small values of
S and k. Specifically, we evaluate our system for
S = 1, 2, 3, 4, 5, 6, 7 number of speakers, where
each speaker records k = 1, 2, 3, 4, 5, 6, 7 utter-
ances per intent. We evaluate our SLU system on
robust test sets containing hundreds of utterances
collected from multiple speakers which are not
present in the training set.

We find that using language independent or mul-
tilingual speech recognition systems performs sig-
nificantly better in such low-resourced settings.
Furthermore, what works even better is to generate
a language independent symbolic representation
of input speech and create NLU systems for this
symbolic representation. This hints that creating
SLU systems for even extremely low-resourced
settings is likely trace conventional SLU pipelines
where we represent input speech symbolically in
the form of text and then build NLU blocks on
top of this. The symbolic representation of speech
used here is the phonetic transcription. We find
that using a phonetic transcription based system
is significantly better than using speech features
for classification for low-resourced settings. We
see average improvements of 12.37% and 13.08%
for binary and four-class classification problems
respectively, when averaged over 49 different ex-
perimental settings, for Belgian Dutch (Flemish)
language.
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2 Related Work

English has been the most widely studied language
for creating SLU systems. Various datasets have
been released to aid this development (Hemphill
et al., 1990; Saade et al., 2018; Lugosch et al., 2019;
Bastianelli et al., 2020). There have been many
previous works on creating SLU systems in a two-
module split fashion (Gorin et al., 1997; Mesnil
et al., 2014). A typical SLU pipeline, as shown in
Figure 1, consists of an ASR system that converts
input speech to text and an NLU module that pro-
cesses the input text to understand the user query.
As with any system composed of multiple modules,
errors that occur in one part of the system propa-
gate through the system. To prevent this, a large
amount of recent work has been focused on creat-
ing E2E-SLU systems (Qian et al., 2017; Serdyuk
et al., 2018; Chen et al., 2018). The caveat with
making such systems to work is that they require
an even larger amount of task-specific annotated
data, which is usually not a luxury available to
low-resourced languages.

Apart from English, there are many other spo-
ken dialog datasets available for various languages
including French (Devillers et al., 2004; Saade
et al., 2018), Dutch (Tessema et al., 2013; Ons
et al., 2014; Renkens et al., 2014), Chinese Man-
darin (Zhu et al., 2019; Guo et al., 2021), Sinhala
and Tamil (Karunanayake et al., 2019b), and cross-
lingual SLU datasets exist for English, Spanish
and Thai (Schuster et al., 2019). In this paper, we
work with two languages - Belgian Dutch (Flemish)
(Tessema et al., 2013; Ons et al., 2014; Renkens
et al., 2014) and English (Lugosch et al., 2019).

One of the major bottlenecks in creating SLU
systems for low-resourced languages is the creation
of ASR systems in such low data scenario. This
scenario is what we refer to as a language-specific
low-resourced setting. Previous works have tried to
use English-based ASR systems for languages like
Tamil and Sinhala. In these sytems, input speech
in Sinhala/Tamil is converted into English script
using an English speech recognition system that
is then processed by an NLU system (Buddhika
et al., 2018; Karunanayake et al., 2019b,a). We
use a similar idea as baseline and use Wav2Vec
(Schneider et al., 2019; Baevski et al., 2020) to
extract speech features for Flemish. Wav2Vec is a
self-supervised speech recognition system trained
on large amounts of unlabelled speech data which
boasts to learn superior language representations

for English. In this work, we use Wav2Vec 2.0
(Baevski et al., 2020) to extract speech features.

A series of recent works (Gupta et al., 2020b,a,
2021; Yadav et al., 2021) replace the ASR module
in the SLU pipeline by a universal phone recog-
nition system called Allosaurus (Li et al., 2020).
Allosaurus is a universal phonetic transcription
system that creates language and speaker indepen-
dent representations of input speech. Allosaurus
is trained to recognize and transcribe input speech
into a series of phones contained in the utterance,
providing superior representations of input audio
which can also be used for languages linguistically
distant from high resourced languages like English.
(Yadav et al., 2021) show that using embeddings
generated from Allosaurus to encode speech con-
tent outperforms previous state-of-the-art methods
for Sinhala and Tamil by large margins, while main-
taining high performance on high resourced lan-
guages like English (99.08% classification accu-
racy for a 31-class intent classification problem).
But the performance drops as the dataset size de-
creases and is not optimal for the task-specific low
resourced settings that we are dealing with in this
paper. To tackle this, we convert input speech into
phonetic transcriptions using Allosaurus as pro-
posed in (Gupta et al., 2020a) for our compounded
low resourced setting.

In our paper, we explore a novel and rather un-
explored language-specific low-resourced setting
compounded with task-specific low-resourced-ness.
Our aim it to push the limits and demonstrate
performance of using existing technologies in ex-
tremely low resourced settings, where each data
point becomes crucial.

3 Dataset

In our paper, we work with two languages - Bel-
gian Dutch (Flemish) and English. We use two
popular SLU datasets for our experiments - the
Fluent Speech Commands (FSC) dataset (Lugosch
et al., 2019) for the English language and the Grabo
dataset (Tessema et al., 2013; Ons et al., 2014;
Renkens et al., 2014) for Flemish.

The primary reason behind the choice of the
datasets was that each utterance in the two datasets
had clear speaker identities associated with each
utterance. Our aim is to test true low resourced set-
tings where getting speaker recordings is extremely
hard. Intent recognition datasets in other languages
like French (Devillers et al., 2004; Saade et al.,

3



Figure 2: A generic SLU system for language-specific low-resourced setting where we do not have access to speech
recognition technologies.

Dataset Number of
Intents

Chosen Intents Speakers in
Validation Set

Utterances in
Validation Set

Speakers in
Test Set

Utterances
in Test Set

FSC (English) 2 ‘bring newspaper’, ‘activate
washroom lights’

10 194 10 232

FSC (English) 4 ‘bring newspaper’, ‘activate
washroom lights’, ‘change

language to German’, ‘decrease
volume’

10 519 10 634

Grabo (Flemish) 2 approach’, ‘lift’ 2 106 2 108
Grabo (Flemish) 4 approach’, ‘lift’, ‘point’, ‘grab’ 2 212 2 216

Table 1: Validation and Test Set statistics for chosen intents for the FSC and Grabo dataset.

2018), Chinese Mandarin (Zhu et al., 2019; Guo
et al., 2021), Sinhala and Tamil (Karunanayake
et al., 2019b) do not maintain speaker identities
and hence were not suitable for our work. Main-
taining a mapping of (anonymized) speaker iden-
tities allowed us to create validation and test sets
with no speaker overlap with the training set. This
allows us to do the most robust evaluation of our
systems. Moreover, these datasets also allow us to
create large test sets such that the results are robust
enough to evaluate the system performance and yet
have no overlapping speakers with the training set.
We choose Flemish as our low-resourced language
since Flemish is not used to train Allosaurus or
Wav2Vec 2.0.

FSC is a large and well maintained SLU dataset
for the English language. The dataset contains 19
hours of speech data collected from 97 different
speakers. The dataset contains commands suitable
for a smart home system. An example command
would be asking the system to ‘change language to
Chinese’ or to ‘turn off the lights in the kitchen’.
Each utterance has a clear, anonymized speaker
identity associated with it. This allows us to cre-
ate large validation and test sets with no speakers
overlap with the training set. The intents chosen
for our experiments and the corresponding number
of samples in the validation and test sets are shown
in Table 1.

The Grabo dataset contains 11 speakers and is
much smaller than FSC. The dataset consists of
commands given to a robot such as ‘moving right’
or ‘drive backwards fast’. We use speaker IDs 2-

8 to create the training set, speakers 9 and 10 for
the validation set, and speakers 11 and 12 for the
test set. Thus there is no speaker overlap between
the training, validation and test sets. The chosen
intents and the validation and test set statistics are
shown in Table 1.

4 System and Model

To simulate a language-specific low-resourced set-
ting, we do not use a language specific ASR sys-
tem. We tackle this challenge by exploring two
experimental settings. First we use a generic SLU
pipeline as shown in Figure 2. The first step in
this pipeline is to extract speech features. We use
Wav2Vec 2.0 to extract speech features for Flem-
ish, which represents using a speech recognition
system built for a different language. Then, we use
the SLU system proposed in (Gupta et al., 2020a)
as shown in Figure 3. It replaces a language spe-
cific ASR system with Allosaurus (Li et al., 2020),
which is a universal phonetic transcription system.
We use Allosaurus to convert input speech to pho-
netic transcriptions. We then build an NLU system
from these phonetic transcriptions to perform intent
recognition.

The model used in this work is very similar to the
model used in (Gupta et al., 2020a) which is a char-
acter level model built for a sequence of phones
generated by Allosaurus. The model creates its
own embeddings using the annotated task-specific
dataset and uses Convolutional Neural Networks
(CNN) (LeCun et al., 1998) to extract contextual
information from phonetic input, and a Long-Short
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Figure 3: Phonetic transcription based SLU system as proposed in (Gupta et al., 2020a).

Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) network to make utterance level decision
and account for sequential information. This model
achieved state-of-the-art intent classification per-
formance for low-resourced languages like Tamil
and Sinhala when used without language specific
ASR. We keep the model used across experiments
constant to identify difference in performance oc-
curring due to difference in feature extraction meth-
ods.

We reduce the model size to account for the
scarcity of data. We use a 256-dimensional embed-
ding layer with just one CNN layer of kernel size 3
and one or two LSTM layers of hidden dimension
256 depending on the dataset size. For the case
of the generic SLU, the embeddings are removed
and input feature dimension is dependent on the
features extracted. For Wav2Vec 2.0, the feature di-
mensions are 768. A detailed description of model
architecture is provided in the appendix A. Batch
normalization (Ioffe and Szegedy, 2015) layer is
removed because there are scenarios where we are
working with a training set of as low as 2 samples,
which are not enough to learn batch statistics and
give unstable performance.

5 Experiments

In this paper, we try to emulate a real world low-
resourced data collection scenario. A challenging
aspect of building SLU systems for low resourced
languages is having access to language specific
ASR systems. To tackle this, we experiment with
two alternatives. We first use a speech recognition
systems created for a higher resourced language
(English) to extract speech features and use those
features for intent recognition on Flemish data (Sec-
tion 5.1). Then, we create an intent recognition
system using a phonetic transcription generated
by Allosaurus (Section 5.2). The input audio is
converted to language independent phonetic tran-
scriptions, and intent classification is done using
the phonetic transcriptions generated.

Data collection is expensive and difficult, even
more so in extremely low resourced languages.

For example, Canadian Indigenious languages like
Inuktitut or Siksika have only a few thousand living
speakers. Native speakers of such languages are
hard to catch hold of for data collection process.
This makes every data point collected crucial. This
task-specific low-resourced setting compounds the
difficulty in making speech technologies for low-
resourced languages.

We pose two I-class intent classification prob-
lems, where I = 2, 4. The columns of each of the
Tables 2-9 in the following sections show results for
different values of k, where k is the number of utter-
ances recorded by a speaker per intent. This means
that if k = 3, each speaker provided 3 recordings
for each intent, which amounts to a total of 3 ∗ I
recordings per speaker. In general, each speaker
records k ∗ I audios, where k is the number of au-
dios recorded by a speaker per intent, and I is the
number of intents. The rows for each of the tables
represent the number of speakers (S) involved in
creating the dataset. The total training dataset size
is S ∗ k ∗ I . All data points in all the following
tables represent an average classification accuracy
over 3 different random selections of dataset and
training the model from scratch on top of it.

5.1 Experiments with Wav2Vec Features

First, we use Wav2Vec 2.0 (Baevski et al., 2020)
to extract representations of input speech and use
those to perform intent classification on Flemish
data. The results for the binary classification set-
ting are shown in Table 2 and for the four-class
classification setting is shown in Table 3.

One obvious trend to notice here is that increas-
ing the number of total training samples in general
increases the accuracy of the models. This trend
is consistently seen in the four-class classification
results ( Table 3). We also notice a saturation in per-
formance on increasing the number of utterances
per speaker. This usually occurs around k = 4, 5.
For each value of S, we see that adding number of
recordings for the same speaker increases the per-
formance significantly, but the rate of this increase
starts to reduce when we have 4− 5 utterances per
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 72.53 74.69 69.44 72.83 74.07 74.38 74.07
S = 2 69.75 74.69 67.90 63.27 78.70 67.59 69.13
S = 3 68.20 76.85 82.40 80.86 76.85 74.38 72.83
S = 4 78.39 64.50 69.13 71.60 75.92 76.85 75.30
S = 5 70.98 74.07 75.92 78.39 82.09 78.70 76.23
S = 6 79.62 75.61 87.03 83.95 84.56 83.33 93.82
S = 7 75.00 76.85 89.19 85.49 91.66 91.97 94.44

Table 2: Two class classification results for the Grabo
dataset with 768 dimensional features from Wav2Vec
2.0.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 35.49 37.03 37.19 37.80 39.96 40.12 42.28
S = 2 39.19 45.21 45.21 45.83 48.76 49.69 53.08
S = 3 41.82 47.83 53.70 61.57 55.55 63.88 67.59
S = 4 49.22 45.06 51.23 52.93 60.80 65.27 64.50
S = 5 44.59 53.39 56.32 66.04 64.96 70.83 66.82
S = 6 48.14 52.77 58.64 71.91 74.07 74.69 75.30
S = 7 52.77 56.66 67.12 72.83 79.62 80.09 76.69

Table 3: Four class classification results for the Grabo
datasetwith 768 dimensional features from Wav2Vec
2.0.

speaker.

5.2 Experiments with Phonetic
Transcriptions using Allosaurus

The performance in the compounded low-resourced
intent classification setting using Wav2Vec features
as seen in the previous was encouraging. In this sec-
tion, we use Allosaurus to generate phonetic tran-
scriptions of user audio, using the pipeline shown
in Figure 3. We then build intent classification
systems on top of these phonetic transcriptions.
The results for the binary classification setting are
shown in Table 4 and for the four-class classifica-
tion setting in Table 5.

We consistently see better classification perfor-
mances for almost all experiments when using pho-
netic transcriptions. We see an average improve-
ment of 12.37% for the binary classification prob-
lem and 13.08% for the four-class classification
problem, when averaged over 49 different experi-
ments performed in each I-class classification prob-
lem. Each experiment represents a accuracy av-
eraged over 3 different random selections of the
dataset. Note that the test sets in all the experiments
for the binary classification problem are exactly the
same with no speaker overlap with the training or
the validation set, irrespective of the size of the
training set. The same is true for the four-class
classification problem.

For the binary classification in Flemish, we see
that the improvement in performance when using

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 75.30 81.17 73.45 79.93 76.23 82.40 78.39
S = 2 84.87 85.49 93.82 89.81 87.65 91.35 89.50
S = 3 79.94 95.37 87.65 92.90 90.12 94.75 92.59
S = 4 83.33 90.74 93.20 95.06 88.58 95.37 92.28
S = 5 86.11 92.59 92.90 91.35 96.29 94.75 97.83
S = 6 91.04 91.97 92.28 94.13 96.91 91.97 92.28
S = 7 85.80 90.74 90.74 90.43 94.44 91.66 95.06

Table 4: Two class classification results for the
GRABO (Flemish) dataset using phonetic transcrip-
tions.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 47.83 50.61 50.92 53.85 50.77 52.31 50.00
S = 2 56.48 64.50 66.82 65.89 67.74 72.22 68.82
S = 3 59.87 63.58 68.36 69.90 69.75 72.22 70.52
S = 4 63.88 64.19 68.36 67.43 72.22 71.75 73.76
S = 5 64.66 67.28 69.44 74.84 72.22 77.31 76.69
S = 6 66.51 69.59 77.93 77.46 79.62 80.55 82.56
S = 7 68.51 80.55 81.01 82.09 85.33 85.64 88.73

Table 5: Four class classification results for the
GRABO (Flemish) dataset using phonetic transcrip-
tions.

phonetic transcription becomes more significant
as the dataset size reduces. This can be observed
when we look at the first 3 columns of Table 4 when
compared to Table 2. For example, when S = 7
and k ∈ [5, 7], the performance of the Wav2Vec
system is comparable to the phonetic transcription
based system. In all other experiments, the pho-
netic transcription based system outperforms the
Wav2Vec feature based system. Table 4 also shows
that using just 2-3 speakers are enough to learn
generalizable speaker independent features when
using Allosaurus phonetic transcription, which al-
lows the classification performance on the test set
to be in the 90’s. A similar performance requires 6-
7 speakers when using Wav2Vec features as shown
in Table 2. This can be seen if we look at a system
developed with 3 speakers recording 4 utterances
each using phonetic transcriptions in Table 4, it
is comparable to a 7 speaker system where each
speaker records 7 utterances per intent when using
Wav2Vec features (Table 2) . We attribute this ef-
fect to Allosaurus that creates speaker independent
embeddings of input audio. These embeddings
when projected to the space of a universal set of
phones is more robust to speaker variations.

The performance improvement observed for
Flemish when using phonetic transcriptions gets
amplified in the four-class classification problem.
We see significant improvements when using pho-
netic transcriptions for all experiments. We see an
average improvement of 13.08% over the 49 exper-
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 72.84 82.32 84.48 86.20 79.45 83.90 86.78
S = 2 84.05 89.79 91.23 86.20 94.10 94.10 95.11
S = 3 77.29 87.78 93.82 95.40 98.27 96.55 97.98
S = 4 84.33 89.51 93.10 94.97 98.41 98.85 98.13
S = 5 86.20 89.65 95.25 97.27 98.13 98.70 98.27
S = 6 86.06 95.25 96.55 98.56 98.70 97.70 99.13
S = 7 96.69 95.97 96.26 98.70 99.13 98.85 98.85

Table 6: Two class classification results for the FSC
(English) Dataset using speech features extracted from
Wav2Vec 2.0.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 38.53 42.79 50.36 58.41 59.20 56.15 62.19
S = 2 46.58 53.73 62.56 64.30 75.23 77.97 84.01
S = 3 48.63 58.25 75.44 85.80 81.65 81.80 92.74
S = 4 51.84 76.39 77.70 87.22 89.53 94.00 96.89
S = 5 77.86 81.59 86.33 91.48 95.58 96.79 96.31
S = 6 72.02 90.37 81.75 95.58 95.58 95.58 97.05
S = 7 65.87 85.06 92.32 94.21 95.26 97.21 94.79

Table 7: Four class classification results for the FSC
(English) Dataset using speech features extracted from
Wav2Vec 2.0.

iments when using phonetic transcriptions. This
improvement is large when the amount of data is
small which we can check by comparing the first
three columns of Tables 3 and 5. If we calculate the
improvement when S ≤ 3 and k ≤ 3, which we
call the 3×3 matrix of the tables, we get an average
improvement of 16.25% over the 9 experimental
settings. But we also see significant improvement
when the amount of data is larger. For example,
phonetic transcription based system performs sig-
nificant better for 7 speakers and 7 recording per
speaker when compared to the Wav2Vec features
based system. Thus, as the task complexity in-
creases, we see that using phonetic transcriptions
is a significantly better option when compared to
features from speech-to-text systems created for a
different language.

The pipeline proposed in Figure 3 is analo-
gous to the traditional SLU pipline as shown in
1. High resourced languages allows the use of
ASR systems which project speech, which is a
very long sequence of high dimensional input
into a much shorter, 1-dimensional sequence of
characters. Thus, ASR systems try to give a
1-dimensional symbolic representation to input
speech. This sequence of characters is usually
grouped into words or sub-words, which we re-
fer to as tokens in general, and are then projected
back into a higher dimensional space as word-
embeddings, encoding meaning and context. This
is usually done using pre-trained models like BERT

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 91.98 93.27 95.56 95.27 95.85 96.71 96.56
S = 2 95.13 97.99 97.99 98.56 98.56 98.14 97.28
S = 3 95.85 98.28 97.85 97.65 99.14 99.71 99.28
S = 4 97.28 98.42 98.14 98.88 98.99 98.85 98.71
S = 5 98.56 97.56 98.99 98.71 99.28 98.85 99.28
S = 6 96.71 97.85 98.42 98.56 98.56 98.71 99.58
S = 7 97.42 99.57 99.42 99.71 99.85 99.57 99.42

Table 8: Two class classification results for the FSC
(English) using phonetic transcriptions.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 61.06 62.06 62.79 70.59 69.75 72.29 72.21
S = 2 65.04 63.99 72.05 77.18 80.06 78.64 81.84
S = 3 67.13 74.72 75.35 77.91 83.72 85.55 85.29
S = 4 68.60 79.74 77.18 84.66 84.51 88.54 87.75
S = 5 72.05 79.59 80.58 87.85 88.27 91.57 92.67
S = 6 70.80 82.20 83.41 90.16 89.84 91.05 92.83
S = 7 75.56 80.48 86.65 89.48 91.10 90.99 93.98

Table 9: Four class classification results for the FSC
(English) dataset using phonetic transcriptions.

(Devlin et al., 2018), where the different layers of
the model encode and understand various possible
meanings and contexts in which a token can be
used (Tenney et al., 2019). Thus, these pre-trained
models can be seen as functions that map an input
token into vectors that encode all possible ways
the token has been used in the dataset the model is
trained on.

The projection by ASR systems into a lower
dimensional space of characters causes loss of in-
formation and results in errors which is not always
compensated by the re-projection of words into the
space of word-embeddings, which is why recent
research in high resourced languages is moving
towards creating E2E models. But this process
of projecting high-dimensional and long speech
input into a much smaller transcription of sym-
bols, and then re-projecting into the space of word-
embeddings encoding meaning and context allows
us to create SLU systems with a very small amount
of annotated task-specific data.

Our experiments show that the analogous pro-
cess of projecting down speech into a symbolic
transcription of phones and then re-projecting the
symbols into a vector space of symbolic embed-
dings created from the phonetic transcription data
performs significantly better than using high dimen-
sional feature representations of input speech, as
done with Wav2Vec in section 5.1. The large size
of Wav2Vec vectors (768) requires a larger amount
of task-specific data to infer content and meaning
of input utterances when compared to using pho-
netic transcription. Using phonetic transcriptions
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also allow us to create our own vector spaces of
symbolic embeddings which are very specific to
our dataset and encode the meaning and context
in which each phone has been used for the partic-
ular task. This is why the pipeline that uses pho-
netic transcriptions outperforms Wav2Vec based
embeddings. (Yadav et al., 2021) show that this is
true even when Allosaurus embeddings are com-
pared to phonetic transcriptions generated by Al-
losaurus. As the amount of available data decreases,
intent classification systems built using phonetic
transcriptions begin to outperform systems based
on Allosaurus embeddings, thus showing that pro-
jecting input speech into phonetic transcriptions is
the most exhaustive way to use the scarce amount
of labelled data in the compounded low-resourced
settings.

We verify this by performing the same set of
experiment on the English dataset (FSC). We first
use Wav2Vec features to extract input speech. The
binary classification, the results are shown in Table
6 and for the four-class classification problem, the
results are shown in Table 7. Note that Wav2Vec
is specifically trained on large amounts of English
speech data and thus the features extracted from
Wav2Vec are likely to perform much better for
English than they worked for Flemish. This experi-
mental setting is thus not a language-specific low-
resourced setting anymore, and only a task-specific
low-resourced setting. We then create an intent
classification system using phonetic transcriptions,
as shown in Table 8 and 9. We see an average
improvement of 5.42% for the binary classifica-
tion problem and 2.09% for the four-class classi-
fication problem, when averaged over 49 experi-
ments. These improvements are amplified when
we compare the 3× 3 matrices (when S ≤ 3 and
k ≤ 3, ) for the two classification problems be-
tween Wav2Vec based and phonetic transcription
based methods. We find an average improvement
of 11.14% for the binary classification problem and
an average improvement of 14.15% for the four-
class classification problem, when averaged over
9 experiments. This shows that a phonetic tran-
scription based SLU pipeline outperforms a speech
feature-based pipeline in the low-resourced sce-
narios, especially when we lack language specific
speech recognition technologies.

6 Conclusion

In this paper, we provide a series of experiments
to empirically recreate a real-world, low-resourced,
SLU system building scenario. We work in
the compounded setting of language-specific low-
resourced-ness and task-specific low-resourced-
ness. The challenge posed by a language-specific
low-resourced setting is the absence speech recog-
nition technologies. We bypass this in two ways -
firstly, we use a speech recognition system built for
a different higher resourced language. Secondly,
we use a universal phone recognition system to
convert input speech to phonetic transcriptions. To
simulate the task-specific low-resource scenario,
we present intent classification results at a gran-
ularity where we see the effects of changing the
number of speakers and the utterances recorded
by each speaker. We simulate these settings for
Belgian Dutch (Flemish) and English.

We find that using Allosaurus, a universal
phone recognition system that creates language
and speaker independent representations of in-
put speech, performs better than using Wav2Vec
for Flemish dataset. When using Allosaurus, we
convert input speech into phonetic transcriptions
and use these transcriptions to build NLU mod-
els. We find that using phonetic transcription based
model performs better than using Wav2Vec fea-
tures. For Flemish, we see an average improvement
of 12.37% for a binary classification problem and
an average improvement of 13.08% for a four-class
classification over using Wav2Vec features, when
averaged over 49 different experimental settings.
All results are calculated on a large test set con-
taining hundreds of utterances that has no speaker
overlap with the training or validation set. Also,
we find that as the dataset size decreases, phonetic
transcription based method consistently outperform
Wav2Vec feature based methods. Phonetic tran-
scription based models also need fewer speakers to
generalize to a test set with no speaker overlap.

Finally, we recommend converting input speech
into phonetic transcriptions as an intermediate step
for creating SLU systems in such low resourced
settings. Doing such conversion allows us to create
a task-specific embedding space that uses the small
annotated dataset most efficiently.

Disclaimer. This paper was prepared for infor-
mational purposes by the Artificial Intelligence Re-
search group of JPMorgan Chase Co and its af-
filiates (“JP Morgan”), and is not a product of the
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and disclaims all liability, for the completeness, ac-
curacy or reliability of the information contained
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ment research or investment advice, or a recom-
mendation, offer or solicitation for the purchase
or sale of any security, financial instrument, finan-
cial product or service, or to be used in any way
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A Implementation Details

All models are trained using the NVIDIA GeForce
GTX 1070 GPU using python3.7. The training is
very quick due to the small dataset sizes, with each
epoch taking 1-2 seconds. For each experiment, a
validation set identical to the test set was used. For
the FSC dataset, the validation set had 10 speakers
with no speaker overlap with the training or the test
set. Similarly for the GRABO dataset, the valida-
tion set had 2 speakers that were not present in the
training or the test set. Each experiment in Tables
2-9 was repeated 3 times with a different training
set and the average accuracy has been reported.

As mentioned in section 4, we use a
CNN+LSTM architecture, as proposed in (Gupta
et al., 2020a). We performed a grid search over
various parameters of the architecture. The best
performing models varied slightly for each experi-
ment. The exact model parameters for the results
reported in Tables 2-9 are shown in Table 10. For
larger amounts of utterances recorded per speaker,
we found better results with 2 LSTM layers instead
of one.

10

https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/P19-1452


Model Parameters Value
Embedding Size 256
CNN kernel size 3

No. of CNN filters 256
No. of LSTM layers 1 ( or 2)
LSTM hidden size 256

Batch Normalization False

Table 10: Model Parameters
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Abstract

We present an extension of the Morfessor Base-
line model of unsupervised morphological seg-
mentation (Creutz and Lagus, 2007) that in-
corporates abstract templates for reduplication,
a typologically common but computationally
underaddressed process. Through a detailed in-
vestigation that applies the model to Māori, the
Indigenous language of Aotearoa New Zealand,
we show that incorporating templates improves
Morfessor’s ability to identify instances of redu-
plication, and does so most when there are
multiple minimally-overlapping templates. We
present an error analysis that reveals important
factors to consider when applying the extended
model and suggests useful future directions.

1 Introduction

Unsupervised models that can learn to segment
words into morphemes without requiring extensive
hand-written rules have two important advantages
(see Creutz and Lagus, 2007, for discussion). First,
their unsupervised nature allows them to capture a
key facet of human morphological learning: learn-
ing despite the lack of both direct and negative
evidence. Second, their lack of hand-written rules
makes them very flexible: they can be deployed in
a range of applications, across diverse languages.

However, in order to learn effectively, unsuper-
vised models must make general assumptions about
underlying morphological processes, and their suc-
cess in part reflects the appropriateness of these
assumptions for the language(s) under investiga-
tion. This can cause the underlying assumptions
to become tuned to the morphological processes of
high-resource languages used in development and
evaluation (Bender, 2009), leading models to over-
look processes that do not occur in such languages,
even if they are typologically common.

Recent work has highlighted the advantages
to such models of incorporating expert linguistic
knowledge, such as language-specific morphemes
and/or abstract morphological templates (Butler,
2016; Eskander et al., 2016; Godard et al., 2018;
Xu et al., 2020). We explore the value added to a
standard baseline model, Morfessor (Creutz and La-
gus, 2007; Virpioja et al., 2013), by incorporating
templates for reduplication, a typologically com-
mon but computationally underaddressed process.
We conduct a detailed analysis of the successes and
challenges in using an enriched model to capture
reduplication in Māori (Polynesian), the Indige-
nous language of Aotearoa New Zealand, which
reveals a promising path for unsupervised morpho-
logical segmentation of languages with reduplica-
tion more broadly.

2 Background

2.1 Unsupervised morphological segmentation

Morphological segmentation aims to identify
boundaries within words by splitting them into
parts, as in de + forest + ation. In unsupervised
approaches, the inventory of parts is inferred from
the training data, by identifying the morphs – se-
quences of characters, phonemes, or larger ‘atoms’
– that recur across words with statistical regularity.
There are several models for unsupervised morpho-
logical segmentation, many permitting fine-grained
structural assumptions about underlying morpho-
logical processes (e.g. Goldsmith, 2001; Johnson
and Griffiths, 2007; Eskander et al., 2016; Godard
et al., 2018; Xu et al., 2018, 2020).

We focus on the Morfessor family of models
(Creutz and Lagus, 2007), often used as a baseline
due to its extremely simple assumptions. Morfes-
sor uses a Minimum Description Length framework
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(Rissanen, 1978): it aims to identify the smallest
and simplest set of morphs (the lexicon) that gener-
ates the training data with highest probability. The
lexicon is treated as a bag of morphs, where the cost
of adding a given morph to the lexicon in training
is based on the complexity of its form as well as the
frequency with which it recurs across words. The
training data are assumed to be generated from the
lexicon by concatenating morphs that are drawn
independently from it, with no consideration of
contraints based on position, sequencing, or mor-
phosyntactic category. Morfessor is particularly
suited to languages that make heavy use of concate-
native morphological processes with limited or no
phonological alternations. We explore whether it
can be expanded to account for reduplication, by
extending the Python implementation of Morfessor
2.0 (Virpioja et al., 2013).

2.2 Reduplication and Morfessor

Reduplication is defined by Rubino (2005) as
“the systematic repetition of phonological material
within a word for semantic or grammatical pur-
poses”. Informally, it is often described as a pro-
cess by which a reduplicant phonologically ‘copies’
part of a base to which it is morphologically at-
tached. The reduplicant may copy the entire base,
as in the Māori pakipaki ‘to clap’ (from paki ‘to
slap’), or only part of it, as in Māori nunui ‘big.PL’
(from nui ‘big.SG’). In formal linguistic theory, the
reduplicant is commonly treated as a morpheme,
RED, which has little or no inherent phonological
content, and copies content from the base in order
to satisfy prosodic wellformedness templates (e.g.
Marantz, 1982; McCarthy and Prince, 1996). In
this view, the reduplicant attaches to the base in the
same way as any other morpheme would. However,
for clarity, we notate these kinds of morphologi-
cal attachment differently, using ⊕ to represent a
boundary between a reduplicant and its base, and
+ to represent all other boundaries.

Rubino (2013) reports that 85% of languages
documented in the World Atlas of Language Struc-
tures include some productive form of reduplica-
tion. Yet, despite its prominence, reduplication is
not typically given special treatment in unsuper-
vised approaches to morphological segmentation.
For Morfessor, we are only aware of one system
incorporating reduplication (Butler, 2016); how-
ever, it identifies and rewrites potential instances
of reduplication outside of Morfessor, following a

heuristic, rather than within Morfessor, according
to statistical evaluation. It treats reduplication as a
feature of the data rather than of the probabilistic
grammar of the language, limiting the ability to
leverage knowledge of reduplication to navigate
ambiguity or generalize beyond the training set.1

The lack of integrated special treatment of redu-
plication limits Morfessor’s ability to consistently
identify reduplicants, due to their variable form.
In turn, the repeated failure to isolate reduplicants
from their bases limits Morfessor’s ability to iden-
tify these bases as independent morphs elsewhere,
outside of reduplication. The incorporation of spe-
cial treatment of reduplication into Morfessor thus
stands to vastly improve its reliability, not only in
reduplicated words but also in general.

2.3 The Māori language

Māori is an ideal test case for four reasons. First, its
orthography maps to phonemes unambiguously2,
enabling morphological segmentation to be applied
straightforwardly to written words. Second, it has
clear atoms for morphological segmentation, as
morpheme boundaries typically coincide with the
boundaries of (C)V units (Bauer, 1993). Third,
its morphology predominantly includes concatena-
tive processes (Krupa, 1968) and makes heavy use
of compounding, alongside a few highly produc-
tive affixes (Bauer, 1993; Harlow, 1993). Fourth,
approximately 25% of its word types include redu-
plication (often alongside other morphological pro-
cesses; Todd et al., 2019), implying that it stands to
gain a lot from the incorporation of reduplication
into morphological segmentation systems.

Māori has many kinds of reduplication (see Kee-
gan, 1996), all requiring the base to contain at least
2 morae, where a syllable with a short vowel has
1 mora and a syllable with a long vowel has 2
(Harlow, 1991). We focus on the 5 most common
kinds: full, in which the reduplicant copies the
whole base; left-1, in which it copies the first mora
from the base; left-1L, in which it copies the first
mora and lengthens its vowel; left-2, in which it
copies the first 2 morae from a base containing at
least 3 morae; and right, in which it copies the last
2 morae from a base containing 4 morae, where the
first syllable has a long vowel (see Table 1).

1A direct comparison between our extension to Morfessor
and alternative models is left for future work.

2Each phoneme is represented by a single character, except
for the digraphs ⟨wh⟩ (/f/) and ⟨ng⟩ (/N/). Macrons ⟨ā, ē, ı̄, ō,
ū⟩ designate long vowels.
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Kind Examples

full pakipaki, whiuwhiu, tōtō
left-1 nunui, hahana, huhū
left-1L kākahu, mı̄miro, rērere
left-2 huahuaki, kuikuia, māmāika
right tākaikai, hāmamamama, ūkuikui

Table 1: Common kinds of Māori reduplication.

3 Extending Morfessor to reduplication

3.1 General approach

Consistent with the common approach within lin-
guistic theory, we treat all reduplicants as corre-
sponding to one morph, RED, which has no phono-
logical content. We add RED to the lexicon under-
lying the Morfessor training and testing algorithms,
such that identifying a new instance of reduplica-
tion allows the algorithms to ignore the form-based
component of the cost of the reduplicant, and to re-
duce its usage-based cost by pooling counts across
all other reduplicants in already-identified instances
of reduplication. Importantly, we do not assume
that all potential instances of reduplication are ac-
tual instances of reduplication, either in training
(Section 3.2) or in testing (Section 3.3).3

We use manually-defined templates to identify
potential instances of reduplication, which are as-
sessed by Morfessor for their statistical support as
actual instances. The templates are loosely spec-
ified, to permit them to capture arbitrary copying
in any language. Given the side of reduplicant
attachment and the minimum size of the base, po-
tential instances of reduplication are flagged by
string comparison of adjacent sequences of atoms
(phonemes, syllables, etc.). Additional specifica-
tions can be added on a language-by-language ba-
sis, leveraging expert knowledge for tighter control;
these may include constraints on size or shape of
the reduplicant or base, or even systematic alter-
nations between correspondents in the reduplicant
and base (e.g. Māori left-1L reduplication, kākahu).

For Māori, we define three mutually-exclusive
templates as generalizations over the kinds and con-
straints described in Section 2.3. In all templates,
the base must be at least bimoraic. In the full-
reduplication template, the reduplicant and base

3Code for our approach, consisting of a patch to Mor-
fessor 2.0 (Virpioja et al., 2013), is available at https:
//github.com/sjtodd/morfessoRED. At the time
of writing, detailed documentation is still under development.

must be the same size; in the left-reduplication tem-
plate, the reduplicant may be any size smaller than
the base, and, if monosyllabic, may consist of a
single syllable that lengthens the vowel of its corre-
spondent in the base; and in the right-reduplication
template, the reduplicant must be at least bimoraic
and shorter than the base, which must have a long
vowel in the first syllable. Because the templates
are mutually exclusive, each may be included in
the model or excluded, independent of the others.4

We also make the (Māori-specific) assumption
that the base must be morphologically simplex (fol-
lowing Krupa, 1968). Thus, when Morfessor com-
mits to analyzing a word as an instance of redupli-
cation (e.g. of analyzing tākaikai as tākai⊕ RED),
we block it from considering any future placement
of boundaries within the minimal base (tākai).

3.2 Training models with reduplication

Training in Morfessor uses the recursive splitting al-
gorithm (henceforth, RS; Creutz and Lagus, 2002).
For a given input, RS evaluates all possible anal-
yses that split the input into two parts, as well as
the analysis that leaves it unsplit. It chooses the
analysis for which the associated parameter update
permits lowest-cost generation of the training data.
If the chosen analysis splits the input into parts,
the algorithm recurses to evaluate analyses of each
part; otherwise, it moves on to evaluate the next
input. It cycles through all words in a training set
once per epoch, and repeats until the epoch-wise
decrease in cost falls below a threshold.

We extend RS to consider reduplication. When
the analysis under consideration splits a potential
reduplicant at the edge of the input from its appar-
ent base (e.g. nu⊕ nui), we consider an analysis
that replaces the reduplicant with RED (RED⊕ nui).
This analysis will be chosen if it is associated with
lower cost than any alternative.

We do not automatically consider an analysis
involving reduplication if the potential reduplicant
is not at the edge of the input, as in many words in-
volving compounding or affixation (e.g. whārarahi,
whā + [RED⊕ rahi]). If the compound component
or affix (whā) is split off first, leaving the redupli-
cant at the edge of one part (rarahi), we consider
reduplication as above. Otherwise, we only con-

4The full-reduplication template assumes that the ‘default’
side on which the reduplicant attaches is the left, unless the
left-reduplication template is not included in the model and
the right-reduplication template is, in which case it assumes
attachment on the right for parsimony.
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sider reduplication if RS finds no binary-splitting
analysis that is better than leaving the input unsplit
(whārarahi), in which case we evaluate whether the
ternary-splitting analysis implied by reduplication
is associated with lower cost than the unsplit anal-
ysis. This allows reduplication to be leveraged as
a cue to the presence of compounding or affixa-
tion, but ensures that we do not overgeneralize by
relying on this cue too strongly.

Finally, if it is ambiguous whether an
edge-aligned reduplicant corresponds to full-
reduplication or another kind of reduplication
(e.g. whether huahuaki is [RED⊕ hua] + ki or
RED⊕ huaki), we leave both options open by nei-
ther enforcing nor restricting a boundary placement
after the apparent full-reduplication base (hua). If
RS goes on to place a boundary here, we analyze
it as full-reduplication; otherwise, we analyze it
as the other kind of reduplication. This is consis-
tent with the use of loosely-specified templates that
allow arbitrary copying.

3.3 Applying models to seen and unseen data

In testing, Morfessor uses the segmentation ob-
tained from RS if the word was observed in training.
Otherwise, it uses the Viterbi algorithm (Viterbi,
1967) to find the optimal path through potential
boundary sites (see Virpioja et al., 2013).

The standard Viterbi algorithm proceeds ‘hor-
izontally’ through potential boundary sites in a
word, identifying at each site the optimal previ-
ous site to have come from in left-to-right order
(Figure 1(a)). We extend the algorithm by adding a
‘vertical’ dimension, which holds partial analyses
matching different reduplication templates (Figure
1(b)). At each potential boundary site in the word,
the set of ‘horizontal’ candidates for optimal pre-
vious site is augmented with a small number of
directly neighboring ‘vertical’ sites representing
partial analyses based on reduplication templates.
As in RS, the reduplicant is replaced by RED in the
evaluation of reduplication partial analyses.

4 Experiments

4.1 Data

The models were trained on a set of 19,595 word
types from the Te Aka Dictionary (Moorfield,
2011), with all kinds of morphological structures
(i.e. not just reduplication). To form this set, we
took all headwords, together with their listed inflec-
tions. When a headword was composed of words

Figure 1: Segmentation traces for whakapōhanehanetia
from the Viterbi algorithm. Solid circles indicate re-
quired boundaries. We extend the standard algorithm
(a) by adding a dimension for reduplication paths (b).

Data full left-1 left-1L left-2 right

Training 816 588 169 786 1191
Test 747 314 79 56 693

Table 2: Distribution of words across different kinds of
reduplication. The training data also contains 16,045
other words, many of which combine reduplication with
compounding and/or affixation.

separated by whitespace or hyphens, we split it into
components. We then removed (capitalized) proper
nouns, because they are likely to be place name
borrowings, or are otherwise unlikely to follow the
same morphological grammar as other words.

The models were tested on a set of 1,889 word
types categorized by Keegan (1996, Appendices A–
D) as clear instances of the kinds of reduplication
under investigation. Based on Keegan’s categoriza-
tion, we inferred a gold standard segmentation for
each word. We removed words where the apparent
base was likely morphologically complex, as deter-
mined by consisting of more than 4 morae or more
than 3 syllables (cf. Krupa, 1968; de Lacy, 2003),
to allow us to focus on the ability to capture redu-
plication without influence of other morphological
processes. We cross-referenced the final test items
with the Te Aka Dictionary (Moorfield, 2011) in
order to ensure consistency in the identification of
long vowels. 83.5% of the test items were in the
dictionary (i.e. the training data).

Table 2 shows the distribution of words across
reduplication templates in the two datasets.

4.2 Metrics

We report four metrics: accuracy, recall, and
two versions of precision. Each metric is macro-
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Segmentation Acc. Rec. Prec.0 Prec.1

tākai⊕ kai 1 1 1 1
tā + kaikai 0 0 0 0
tā + kai⊕ kai 0 1 0.5 0.5
tākaikai 0 0 0 1

Table 3: Example metrics for various segmentations of
tākaikai, where + designates a boundary and ⊕ desig-
nates the gold boundary between reduplicant and base.
This designation is for ease of reference only; all pre-
dicted boundaries are treated alike in calculations.

Model Acc. Rec. Prec.0 Prec.1

original 0.23 0.34 0.28 0.59
extended 0.83 0.98 0.91 0.91

Table 4: Test metrics for original Morfessor (no redupli-
cation templates) and extended model (all templates).

averaged, i.e. calculated on a per-word basis and
then averaged across all words in the test set. All
metrics are calculated based on the morph bound-
aries contained within the segmentation of a word.
Since the words in the test set have morphologically
simplex bases for reduplication, the gold standard
segmentation contains only a single boundary.

For a given word, accuracy (Acc.) is 1 if the
model predicts a single boundary matching the
gold boundary, and 0 otherwise. Recall (Rec.) is
1 if the model’s predicted boundaries include the
gold boundary, and 0 otherwise. When the model
predicts n ≥ 1 boundaries, both versions of pre-
cision (Prec.0 and Prec.1) are 1/n if one of those
boundaries is the gold boundary, and 0 otherwise.
When the model leaves a word unsplit, predicting
no boundaries for it, Prec.0 is 0, while Prec.1 is 1.5

The metrics are illustrated in Table 3.

4.3 Overall effects of reduplication templates
Our results show that incorporating reduplication
templates leads to substantial improvements over
the original Morfessor model (see Table 4). The
original model has two main issues. First, it pre-
dicts no boundaries for a lot of test items (571 items
/ 30.2%). Second, the boundaries it does predict
usually do not match the gold boundary; for exam-

5Prec.1 is the version of precision in the Morfessor 2.0
Python implementation (Virpioja et al., 2013). It artificially
rewards models that leave words unsplit; introducing Prec.0
allows us to make comparisons that account for this. To avoid
ambiguity of interpretation resulting from the presence of two
versions of precision, we do not calculate an F-score.

n Templates Acc. Rec. Prec.0 Prec.1

0 -F -L -R 0.23 0.34 0.28 0.59
1 -F +L -R 0.34 0.44 0.39 0.67
1 -F -L +R 0.47 0.53 0.50 0.77
1 +F -L -R 0.48 0.83 0.65 0.72
2 +F -L +R 0.54 0.87 0.70 0.75
2 +F +L -R 0.59 0.97 0.78 0.79
2 -F +L +R 0.65 0.71 0.68 0.86
3 +F +L +R 0.83 0.98 0.91 0.91

Table 5: Test metrics for models with different numbers
(n) and types of reduplication templates.

ple, it predicts a single boundary for 1,094 items
(57.9%), but this only matches the gold boundary
39.9% of the time (437 items). Even when it (in-
correctly) predicts multiple boundaries (224 items),
the gold boundary is not among them 9.4% of the
time (21 items). By contrast, the extended model
predicts no boundaries for very few test cases (14
items / 0.7%) and a single boundary for most (1,579
items / 83.6%), matching the gold boundary 99.4%
of the time (1,570 items). It (incorrectly) predicts
multiple boundaries slightly more often than the
original (296 items), but it is rarer for the gold
boundary not to be among them (13 items / 4.4%).

4.4 Effects of individual templates
Table 5 gives a comparison of models with differ-
ent combinations of templates. It clearly shows
that all templates are needed in order to attain best
model performance. It also shows that performance
generally increases with the number of templates
included, especially if they cover a diverse and
minimally-overlapping range of situations.

When the model contains only a single redupli-
cation template, its performance is largely driven
by the prevalence of that template in the test data.
When the model contains two templates, perfor-
mance is no longer driven entirely by prevalence,
because the templates may interact: both may
match the same test item and compete over it,
while neither matches a large class of other items.
For example, the two-template model containing
right- and full-reduplication templates performs
worse than the model containing left- and full-
reduplication templates, despite there being more
right test items than left test items.

The templates interact here for two main reasons.
The full-reduplication template interacts with any
other because it allows the reduplicant to attach on
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Figure 2: Performance metrics for models with different
reduplication templates on test items with different basic
kinds of reduplication.

a ‘default’ side set by the other template. Combin-
ing the left- and full-reduplication templates causes
competition over left-2 test items (e.g. RED⊕ huaki
vs. [RED⊕ hua] + ki for huahuaki) and coercion of
all right test items to the full-reduplication template
(e.g. tā + [RED⊕ kai] for tākaikai), and vice versa
for combining the right- and full-reduplication tem-
plates. The full- and right-reduplication templates
also interact because they both allow reduplicants
of the same size. Combining them in a single model
causes some right test items to be coerced to the
full-reduplication template (e.g. tā + [RED⊕ kai]
for tākaikai), while left-1 items (e.g. nunui) are left
unmatched to any template.

Above and beyond such interactions, a consistent
property of the full-reduplication template shines
through: it consistently closes the gap between the
two versions of precision. This suggests that, in the
absence of relevant templates, full test items such
as pakipaki are typically predicted not to contain
a boundary. To a human, this failure to predict a
boundary is remarkable, as full reduplication is a
highly salient cue to morphological structure.

4.5 Kinds of reduplication captured

To confirm the idea that the model performs well
with the addition of new templates because they
allow more (and more diverse) test items to be
matched to a template, we explored performance
across items representing different kinds of redu-
plication. The results (Figure 2) confirm three key
patterns noted earlier. First, the model containing
all templates performs best because it can capture
all kinds of reduplication well. Second, models gen-
erally perform better on a given kind of reduplica-
tion when they include the corresponding template;
for example, left items are best captured if models
contain the left-reduplication template. Third, inter-
actions between templates can cause competition,

reducing performance on certain kinds of items.
For example, when the model contains the right-
reduplication template but not the left-reduplication
template, accuracy and precision for right items de-
crease with the inclusion of the full-reduplication
template, as discussed in Section 4.4.

There is also a fourth pattern, which elaborates
on the observation that performance generally in-
creases with the number of templates included. In
Figure 2, it is clear that the increase is not driven
just by the diversification of templates, but also
by the increased statistical support that more tem-
plates bring for the recognition of RED as a morph.
Since the same RED morph is shared across all
templates, increased ability to identify RED in test
items matching one template may also increase the
ability to identify it in test items matching a dif-
ferent template. This can be seen in the way that
adding the right-reduplication template to a model
already including the left-reduplication template
causes an improvement on left test items.

The same patterns are revealed by detailed break-
downs within a given kind of reduplication, as
shown for left-reduplication in Figure 3. This
breakdown also shows that different subkinds ex-
hibit the patterns to different extents. For ex-
ample, left-1 items benefit more from the inclu-
sion of the left-reduplication template than left-1L
items do, because the CV̄ reduplicant in left-1L
cases typically has the same form as one of sev-
eral (fossilized) prefixes that recur across a num-
ber of words (Krupa, 1968; Harlow, 2007), so it
has sufficient statistical support to be segmented
away from the base without recourse to reduplica-
tion. Similarly, left-2 items are uniquely affected
by an interaction that sees them coerced to a full-
reduplication template (e.g. [RED⊕ horo] + i in-
stead of RED⊕ horoi for horohoroi), because only
they have a bimoraic reduplicant that is identical to
its correspondent in the base.

These results show that careful thought is needed
when adding reduplication templates to the model.
If templates are attuned to distinct reduplication
patterns in the language, they can allow the model
to perform well both specifically, on items match-
ing these templates, and generally, across all items
containing reduplication. But, if the templates are
too general or too numerous, they can interact with
each other and endanger the ability to capture par-
ticular subsets of test items.
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Figure 3: Performance metrics for models with differ-
ent reduplication templates on test items with different
kinds of left-reduplication.

5 Error analysis and improvements

5.1 Coercion to full reduplication

As previously noted, different reduplication tem-
plates can interact (Section 4.4), affecting model
performance on items with certain kinds of redu-
plication (Section 4.5). In particular, including the
full-reduplication template can limit accuracy and
precision on left-2 and right test items, as these
items are coerced to match the full template rather
than their own. Since the best model includes all
templates, it shows these interactions: coercion of
left-2 and right test items to the full-reduplication
template accounts for 88.4% of errors (221 of 250).
Nevertheless, because there are so many full items
in the test set, and because the identification of RED

in these highly salient items offers increased statisti-
cal support for the identification of RED elsewhere,
it is still better to include the full-reduplication tem-
plate than not, as shown in Table 5.

One strategy for reducing coercion of left-2 items
to the full-reduplication template might be to re-
quire that, when the left-reduplication template is
matched, the base must be longer than the redu-
plicant. Currently, the base must contain at least
2 morae, but it is not required to be longer if the
reduplicant is bimoraic. However, this would likely
cause problems for items involving full redupli-
cation alongside compounding or affixation, such
as tomotomokanga ([RED⊕ tomo] + kanga), which
are omitted from the current test set but frequent in
the language. These would only be able to be rec-
ognized as containing full reduplication if the part
of the word that is not reduplicated is split off prior
to the reduplication template being matched, which
is unlikely as RED has more statistical support than
any single affix or compound component.

This strategy would not apply to right items,
as that template already requires that the base be

Figure 4: Partial confusion matrix for classification of
left-2 and right test items, based on whether the item
was in the training data.

longer than the reduplicant. These items are co-
erced to the full-reduplication template mainly be-
cause the initial CV̄ has the same form as one of
several prefixes (cf. Section 4.5). A strategy for
mitigating this might be to introduce a penalty for
overzealous splitting off of monosyllabic morphs.
The size of such a penalty would have to be tuned
carefully so that an initial CV̄ syllable can still be
split off outside of right items, where it has no
better alternative analysis than as a prefix.

5.2 Coercion-blocking and Viterbi decoding

As described in Section 3.3, segmentations are ob-
tained for test items in different ways. For items ob-
served in training, the segmentation obtained from
RS is used, while for items not observed in training,
a segmentation is obtained from the Viterbi algo-
rithm. As shown in Figure 4, it is test items that
were not observed in training that show the most
coercion to the full-reduplication template.6

RS blocks coercion to the full-reduplication tem-
plate because it commits to boundaries one at a
time. In RS, a right item such as tākaikai will usu-
ally have its first boundary placed in-between the
reduplicant and base (tākai⊕ RED), which commits
the algorithm to a right-reduplication template and
prevents any further boundaries from being placed
within the base (tākai). The only way RS could
end up coercing the item to the full-reduplication
template (tā + [RED⊕ kai]) is if it placed the first
boundary after the initial CV̄ syllable (tā + kaikai)
instead, but this is unlikely because the CV̄ syllable
is much less common than RED and thus has less
statistical support for being split off.

By contrast, the Viterbi algorithm does not

6The extended model still outperforms original Morfessor
on items not observed in training, in spite of the large amount
of coercion, through improved treatment of other kinds of
reduplication. Metrics on untrained items (Acc. / Rec. / Prec.0
/ Prec.1) for original: 0.29 / 0.49 / 0.38 / 0.41; for extended:
0.51 / 0.94 / 0.72 / 0.72.
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Figure 5: Partial confusion matrix for classification of
right test items from the training data, based on whether
the base was separately observed in training.

block coercion to the full-reduplication template
because it does not commit to boundaries inde-
pendent of each other. When evaluating the best
segmentation for a right item such as tākaikai,
it will typically end up comparing the complete
full-reduplication segmentation (tā + [RED⊕ kai])
with the complete right-reduplication segmentation
(tākai⊕ RED). Because the initial CV̄ syllable (tā)
recurs across words much more than the actual
base (tākai), the full-reduplication template will
typically have more statistical support.

This difference suggests two possible strategies
for improving model performance. One is to train
the model on as many different word types as pos-
sible, increasing the chance that any given test item
will have been observed in training and will there-
fore get its segmentation through RS. An alterna-
tive strategy is to develop a recursive segmentation
algorithm that can be used in testing without trig-
gering changes to trained model parameters.

5.3 Independence of the base

While right test items that were observed in train-
ing are coerced to the full-reduplication template
much less often than those that were not observed,
they are still coerced sometimes (see Figure 4). As
shown in Figure 5, RS coerces right test items to
the full-reduplication template more often when the
base for reduplication was not separately observed
in training. This is because it considers the sta-
tistical support for both word-parts created by the
insertion of a boundary: the base and the redupli-
cant. When the base is listed independently in the
training set, both parts have some support, and the
segmentation is likely to be accepted. But when the
base is not listed in the training set – for example,
for the word pānekeneke – only RED has support,
and the algorithm penalizes the right-reduplication
segmentation for having to add the base to the lex-
icon. By contrast, the placement of a boundary
after the initial CV̄ syllable (pā + nekeneke) can
yield two word-parts that are already listed in the

training set (pā and nekeneke), offering a penalty-
free alternative segmentation. Because RS inher-
its pre-identified substructure of word-parts, and
because one of the parts in this case is likely to
have been pre-identified as an instance of full redu-
plication (RED⊕ neke), the alternative segmenta-
tion amounts to coercion to the full-reduplication
template. Both the right-reduplication segmenta-
tion and the alternative segmentation therefore gain
equally strong statistical support from RED, and the
alternative segmentation typically wins because it
does not enforce a new-morph penalty.

One strategy that might limit errors when the
base for reduplication is not in the training set is to
alter RS to block the inheritance of pre-identified
substructure pertaining to a reduplication template.
However, it is possible that this would limit the
ability to use reduplication as a cue to the internal
structure of a compound such as pōpōroroa.

6 Experiments on complex words

To see how incorporating reduplication templates
affects segmentation of morphologically complex
words, we now compare the extended model (all
templates) with the original (no templates) on a
broader subset of training data, examining their
agreement with fluent-speaker segmentations.

Data. We analyze model segmentations of 4,213
words of 3+ morae on which two fluent speakers
of Māori agreed. None of these words contain
long vowels, since we have documented elsewhere
that these speakers show an extreme sensitivity
to long vowels (Todd et al., 2019; Panther et al.,
under review); for example, they segmented hāro
(which is morphologically simplex) as hā + ro, and
routinely split off the initial long-vowel syllable
of right reduplication items, as in kā + witi⊕witi
and hā + upaupa. As such, the dataset contains no
instances of right or left-1L reduplication, which re-
quire a long vowel, and reduced instances of left-2
reduplication, for which the reduplicant may con-
tain a long vowel. It also contains no instances of
full reduplication alone (e.g. pakipaki), as the orig-
inal data collection purposes did not require seg-
mentations for words with transparent structures.

Methods. We treat the fluent-speaker segmenta-
tions as a reference set, such that performance met-
rics describe agreement between models and speak-
ers. This approach is imperfect; for example, the
speakers failed to segment a number of instances of
left-1 reduplication (e.g. ririki instead of ri⊕ riki)
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and missegmented others (e.g. hoho + rea instead
of ho⊕ hore + a). In particular, due to the concen-
tration of speaker errors on reduplicated words and
the omission of a large host of reduplicated words
from the dataset, this approach under-rewards mod-
els that correctly handle reduplication. Neverthe-
less, it gives a sense of how the models perform in
more complex settings than our previous test set.

Results. On this subset, the models have very
similar accuracies (agreement with speakers): 0.68
for the original model, and 0.70 for the extended
model. Thus, incorporating reduplication templates
does not hurt model performance in general.

Figure 6 breaks down the results by morpho-
logical process for the 3,380 words judged by the
speakers to involve affixation and/or compounding.
The extended model performs much better than the
original on complex reduplicated words, generaliz-
ing advantages seen previously for simple words.
While it performs slightly worse than the original
on complex non-reduplicated words, particularly
affixed words, this decrease is small relative to the
increased performance on reduplicated words, and
does not decrease performance overall.

Error analysis. There are 228 words for which
the extended model is discrepant with the speakers
but the original is not. We could unambiguously
infer a correct segmentation from Te Aka (Moor-
field, 2011) for 191 words, highlighting three main
reasons for discrepancies. First, the speakers failed
to segment reduplicant in 39 reduplicated words.
This reflects imperfections of the reference set, not
failures of the model. Second, the model identifies
reduplication in 31 non-reduplicated words (e.g.
ni⊕ nia instead of nini + a). False positives like
these are to be expected, and can be tolerated be-
cause they are few in relation to the true positives.
Third, the model undersegments in 102 words, in-
cluding failing to segment out affixes in 71 words.
This is not a major cause for concern, as the under-
segmentation is not systematic: the missed affixes
are correctly segmented in other words.

7 Conclusion

We have described a method to incorporate abstract
reduplication templates into the Morfessor baseline
model of unsupervised morphological segmenta-
tion (Creutz and Lagus, 2007; Virpioja et al., 2013).
Our test on Māori shows three main results. First,
incorporating templates allows Morfessor to better
identify instances of reduplication. Second, the

Figure 6: Performance metrics for original and extended
Morfessor models against fluent-speaker segmentations
of 3,380 words involving affixation and/or compound-
ing, with (top) or without (bottom) reduplication.

more distinct templates incorporated, the better the
model performs. Third, the benefits of incorpo-
rating additional templates are strongest for items
matching those templates, but also present for items
matching other templates, due to the pooling of sta-
tistical support for the reduplicant morph, RED.

We have also discussed factors that should be
considered when applying the extended model.
First, care should be taken to minimize interac-
tions between templates, to avoid competition that
coerces multiple kinds of reduplication to the same
template. Second, the training set should be as
large and as similar to the test set as possible, be-
cause coercion between templates is more prevalent
in the Viterbi algorithm used for untrained items
than it is in the recursive algorithm used for trained
items. Third, the training set should include both
reduplicated forms and their (apparent) bases of
reduplication, as excluding the base can preclude
it from being identified in the reduplicated form,
which can in turn increase the risk of coercion to
an incorrect reduplication template.

Our results clearly show the value of incorporat-
ing expert linguistic knowledge into unsupervised
morphological segmentation. We have shown how
this improves segmentation of reduplicated words
in Māori, while still permitting accuracy on non-
reduplicated words. While we have focused on
Māori, we expect performance gains to transfer to
other Polynesian languages with similar reduplica-
tion templates, and we expect the higher level mod-
eling approach and insights to extend more broadly
to any language that has productive reduplication
processes. Given the high typological prominence
of reduplication (Rubino, 2013), the incorporation
of reduplication templates offers a promising av-
enue for improving the cross-linguistic adequacy
of unsupervised morphological segmentation.

20



Acknowledgments

We thank the three anonymous reviewers for their
feedback. We are grateful to Te Puawai Wilson-
Leahy and Tamahou Thoms for providing fluent-
speaker segmentations, and to John C. Moorfield
for permission to use data from Te Aka. This work
was supported by funding from Te Pūtea Rangahau
a Marsden / The Marsden Fund (UOC1502).

References
Winifred Bauer. 1993. Maori. Routledge, London.

Emily M. Bender. 2009. Linguistically naïve != lan-
guage independent: Why NLP needs linguistic typol-
ogy. In Proceedings of the EACL 2009 Workshop
on the Interaction between Linguistics and Compu-
tational Linguistics: Virtuous, Vicious or Vacuous?,
pages 26–32.

Steven R. Butler. 2016. Infixer: A Method for Segment-
ing Non-Concatenative Morphology in Tagalog. Un-
published MA thesis, City University of New York.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Proceedings of the ACL-
02 Workshop on Morphological and Phonological
Learning, pages 21–30. Association for Computa-
tional Linguistics.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphology
learning. ACM Transactions on Speech and Lan-
guage Processing, 4(1):1–34.

Paul de Lacy. 2003. Maximal words and the Maori
passive. In Proceedings of AFLA VIII: The eighth
meeting of the Austronesian Formal Linguistics As-
sociation, volume 44, pages 20–39, Cambridge, MA.
MIT Linguistics Department.

Ramy Eskander, Owen Rambow, and Tianchun Yang.
2016. Extending the use of adaptor grammars for
unsupervised morphological segmentation of unseen
languages. In Proceedings of COLING 2016, the
26th International Conference on Computational Lin-
guistics, pages 900–910.

Pierre Godard, Laurent Besacier, François Yvon, Mar-
tine Adda-decker, Gilles Adda, Hélène Maynard, An-
nie Rialland, and Inria Grenoble. 2018. Adaptor
grammars for the linguist: Word segmentation ex-
periments for very low-resource languages. In Pro-
ceedings of the 15th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 32–42.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics, 27(2):153–198.

Ray Harlow. 1991. Consonant dissimilation in Maori.
In Robert Blust, editor, Currents in Pacific Linguis-
tics: Papers in Austronesian Languages and Eth-
nolinguistics in honour of George W. Grace, pages
117–128. Australian National University, Canberra.

Ray Harlow. 1993. Lexical expansion in Maori. Journal
of the Polynesian Society, 102(1):99–107.
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Université Paris-Saclay

LISN-CNRS (UMR 9015)
Bât 507, 91405 Orsay, France

mathilde.hutin@lisn.fr

Marc Allassonnière-Tang
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Abstract

Data-driven research in phonetics and phonol-
ogy relies massively on oral resources, and ac-
cess thereto. We propose to explore a question
in comparative linguistics using an open-source
crowd-sourced corpus, Lingua Libre, Wikime-
dia’s participatory linguistic library, to show
that such corpora may offer a solution to typol-
ogists wishing to explore numerous languages
at once. For the present proof of concept, we
compare the realizations of Italian and Span-
ish vowels (sample size = 5000) to investigate
whether vowel production is influenced by the
size of the phonemic inventory (the Inventory
Size Hypothesis), by the exact shape of the in-
ventory (the Vowel Quality Hypothesis) or by
none of the above. Results show that the size of
the inventory does not seem to influence vowel
production, thus supporting previous research,
but also that the shape of the inventory may
well be a factor determining the extent of vari-
ation in vowel production. Most of all, these
results show that Lingua Libre has the potential
to provide valuable data for linguistic inquiry.

1 Introduction

One of the main challenges in data-driven research
on the phonetics-phonology interface is the access
to reliable, exploitable oral resources in sufficient
amounts. While linguists working on other lin-
guistic levels such as semantics or syntax can use
written data as a proxy for language production,
phoneticians and phonologists are limited to oral
data, thus relying on audio recordings for vocal lan-
guages or video recordings for signed languages.
Accessing massive amounts of such data is difficult
enough, especially for studies in language compar-
ison, that require such amounts in not one, but at
the very least two languages.

To overcome this challenge, researchers devel-
oped two strategies. On the one hand, they can col-
lect their own corpora, e.g., the CMU Wilderness

Corpus (Black, 2019) or its emanation, the VoxCla-
mantis corpus (Salesky et al., 2020), or other types
of language-specific laboratory recordings such as
the TIMIT database for English (Garofolo et al.,
1993) or NCCFr for French (Torreira et al., 2010).
On the other hand, they can gather audio record-
ings from other sources such as TV or radio shows,
as was done for instance in the framework of the
international project OSEO Quaero (www.quaero.
org/), or from audio books, as exemplified by
the LibriSpeech corpus for English (Panayotov
et al., 2015, www.openslr.org/12). Both options
have the disadvantage of being overly costly, both
in money and human resources, and sometimes
not freely accessible to the community. A third
path has been recently explored: crowd-sourced
data, recorded by volunteers and therefore much
less costly in time and money and generally open-
source. The project Common Voice (Ardila et al.,
2020, https://commonvoice.mozilla.org) for
instance was launched in 2017 by Mozilla for the
intended purpose of creating a free database for the
development of speech recognition software. In
March 2022, it contains ∼18,000 hours of speech,
14,000 of which have been validated by other speak-
ers, in 87 languages.

In the present paper, we explore a similar project:
Lingua Libre, a participatory linguistic media li-
brary developed by Wikimedia France (https:
//lingualibre.org). It was launched in 2015,
and, in March 2022, it counts ∼700,000 record-
ings in 148 languages across 775 speakers. This
database is interesting to explore because it differs
from Common Voice in the fact that its aim is not
primarily the development of new technologies, or
even linguistic inquiry in general, but patrimonial
conservation of languages. Lingua Libre was used
only once for academic purposes, i.e., to automat-
ically estimate the transparency of orthographies
in 17 languages (Marjou, 2021). With this study,
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we aim to show that such data can be easily pro-
cessed and useful to answer phonological questions
in linguistic typology. In this proof of concept, we
explore the realization of vowels by comparing two
Romance languages: Italian and Spanish.

The outline of the paper is as follows. In Section
2, we describe our research question to justify our
choice of languages. In Section 3, we present our
corpus and methodology. In Section 4, we provide
an analysis of the vowels in Italian and Spanish.
Section 5 concludes and discusses the results.

2 The Inventory Size Hypothesis vs the
Vowel Quality Hypothesis

In this paper, we offer to use Lingua Libre to tackle
the question of vowel production with regards to
vowel inventory. Our research question stems from
various theories regarding the shape of vowel inven-
tories in the world’s languages. Our study however
focuses on synchronic phonetic variation with re-
gards to phonological systems (on the phylogeny
of vowel systems in the languages of the world, see
Zhang and Gong (2022) and references therein).

The original Vowel Dispersion Theory (Liljen-
crants and Lindblom, 1972; Lindblom, 1986) and
a few years later the Adaptive Dispersion Theory
(Lindblom, 1990), stem from the H&H (”Hypo-
and Hyperspeech”) model of communication, that
assumes that speakers tend toward minimal and suf-
ficient perceptual contrast, i.e., operate a trade-off
between articulatory economy (hypospeech) and
perceptual distinctiveness (hyperspeech). In the
original works, these theories are the foundation
for phylogenetic research on the distribution of
vocalic categories in the languages of the world,
for instance to explain why three-vowel systems
usually display /a, i, u/ and not, say, /a, y, u/. Pho-
neticians however have particularly focused on one
hypothesis that emerges from this model: The more
vocalic categories the language has in its phone-
mic inventory, the less phonetic variation the cor-
responding vowel realizations will display. This is
the hypothesis we ourselves focus on in the present
paper, to which we will refer as the Inventory Size
Hypothesis, henceforth ISH.

This hypothesis has been tested in a number of
studies, with contradictory results. Jongman et al.
(1989) on American English, Greek and German,
Al-Tamimi and Ferragne (2005) on French and
two dialects of Arabic and Larouche and Steffann
(2018) on Quebec French and Inuktitut support the

ISH while Bradlow (1995) on English and Span-
ish, Meunier et al. (2003) on English, Spanish and
French, Recasens and Espinosa (2009) on 5 dialects
of Catalan, Lee (2012) on 5 dialects of Chinese and
Heeringa et al. (2015) on 3 German languages, do
not provide evidence in favor of the ISH, which can
be due, for the last three at least, to the genetic and
geographical closeness of the languages and possi-
ble bilingualism of the speakers. Studies on larger
sets of languages however tend to invalidate the
hypothesis: Engstrand and Krull (1991) found in-
conclusive results on 7 languages across 6 language
families; Livijn (2000) on 28 languages, Gendrot
and Adda-Decker (2007) on 8 languages across 4
families, and Salesky et al. (2020) on 38 languages
across 11 families, found no evidence for an effect
of inventory size on the global acoustic space.

Building on these negative results, we suggest
that it may not so much be the number of categories
but their actual quality that influences the vowel’s
realizations. For instance, between two imaginary
languages A and B displaying /a, e, i, o, u/ vs /a,
e, i, y, o, u/ respectively, it is also possible that
not all the categories in language B will display
less variation than those in language A: Only [i]
and possibly [u], which compete with /y/ in B but
not in A, would show less variation in B than in A.
We propose to refer to this restatement of the orig-
inal hypothesis, as the Vowel Quality Hypothesis,
henceforth VQH.

In this paper, we aim to test this alternative: Ei-
ther the ISH is valid, and all the vowels of the
system will be affected by the size of the inventory,
or the VQH is more accurate, and only some vow-
els or some acoustic parameters will be affected
depending on the other vowels comprised in the
system. The third possible outcome is that neither
the ISH nor the VQH is accurate.

To test our hypothesis, we focus on the F1 and
F2 values of the vowels in two Romance languages:
Spanish and Italian. Spanish has a limited vowel
inventory, with only 5 categories /a, e, i, o, u/ while
Italian has 7: /a, E, e, i, o, O, u/. Their inventories
differ only in the number of degrees of aperture
(Spanish has open, mid and closed vowels while
Italian has open, mid-open, mid-closed and closed
vowels), which manifest as variation on the first
frequency, F1. If the ISH is valid, we expect vowel
productions from each language to differ in both
F1 and F2, while if the VQH is valid, we expect
Spanish and Italian vowels to differ only in F1.
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3 Materials and Methodology

As a crowd-sourcing tool, Lingua Libre allows
any speaker to log in, fill in a profile with basic
metadata for themselves of for other speakers, and
record themselves or their guests reading lists of
words in their language. The device detects pauses,
which allows for the recording to end when the
word has been read and the next recording to start
automatically after, therefore effortlessly generat-
ing relatively short audio files for each word. Each
audio file is supposed to be titled on the same
template of ‘Language - Speaker - Item’. For
example, for the recording ‘spa.-Marreromarco-
solucionar.wav’, the language is Spanish (‘spa’),
the speaker ID is ‘Marreromarco’, and the recorded
item is ‘solucionar’, ‘solve’. All audio files are un-
der a Creative Commons licence, i.e., open-source.

First, the recordings are scrapped from the Lin-
gua Libre database. In the present study, we extract
a subsample of 500 items for /a, e, i, o, u/ in each
language, to counter the fact that both languages
have different amounts of data points and to also
control for number of speakers (5) in each language.
In total, we have 500 occurrences for each of the 5
vowels in both Italian and Spanish, which results in
5000 tokens. To avoid a potential sample bias, the
sampling of tokens is conducted 10 times. We also
took care to limit our investigation to the European
variety of Spanish, to avoid any mismatch with the
more limited geographical expansion of Italian.

Second, the recordings are segmented and
aligned using WebMAUS (Kisler et al., 2017), the
online open-access version of the MAUS software
(Schiel, 2004). MAUS creates a pronunciation hy-
pothesis graph based on the orthographic transcript
of the recording (extracted from the name of the
audio file) using a grapheme-to-phoneme converter.
During this process, the orthographic transcription
is converted to the Speech Assessment Methods
Phonetic Alphabet (SAMPA). The signal is then
aligned with the hypothesis graph and the align-
ment with the highest probability is chosen. Ex-
periments have shown that the MAUS-based align-
ment is 95% accurate compared to human-based
alignments (Kipp et al., 1997).

Third, the selected vowels are extracted from the
recordings and analyzed in terms of formants. For
each recording of each vowel, the mean F1 and
F2 of the entire sound are calculated. The mean
formants are considered to attenuate the effect of
co-articulation with the left and right contexts.

Vowel a i o
ID 9309 4238 48269
iso ita ita spa
F1 664 315 628
F2 1451 2494 1153

Speaker LangPao LangPao Rodelar
Item rosa chimica todo

Table 1: Example of the data extracted and compiled
from Lingua Libre. Each column represents one data
point.

Table 1 shows an example of the extracted and
compiled data used in this study. Each occurrence
of vowel is given a unique identifier to allow track-
ing it within a word that has several vowels. The
language iso code is provided along with the values
of F1 and F2. Finally, the recorded word and its
contributor are also noted. For the whole process,
the following R packages are used: emuR (Winkel-
mann et al., 2021), PraatR (Albin, 2014), and
tidyverse (Wickham, 2017).

4 Results: Shape of the inventory, more
than size, influences vowel production

We focus on the F1 and F2 values for the 5 vowels
that Spanish and Italian have in common, /a, e, i, o,
u/. Our hypothesis is that, if the ISH is valid, we
will find variation in both F1 and F2 for all vowels,
while if the VQH is valid, we will find variation
only in F1, especially in /a/, /e/ and /o/, which are
in direct competition with /E/ and /O/.

Figure 1: Distribution of formants for each of the 500
[a], [e], [i], [o], and [u] across the Italian and Span-
ish data extracted from Lingua Libre. The significance
labels indicate the output of a wilcoxon test with bon-
ferroni correction.

As general information, Figure 1 provides the
mean values for F1 (top tier) and F2 (bottom tier) in
Italian (left brackets) and Spanish (right brackets)

25



for all 5 vowels of interest. It shows that F1 is sig-
nificantly lower in Spanish for all 5 vowels, while
F2 is statistically higher only for back vowels.

To test our hypotheses, however, we are less in-
terested in F1 and F2 values in general than in their
variation. Figure 2 shows the variation coefficient
(standard deviation divided by the mean) of F1 (top
tier) and F2 (bottom tier) for each replication of
each vowel category in Italian (left brackets) and
Spanish (right brackets). Each point represents the
variation coefficient of a formant and a vowel for a
replication. These results show that there is signifi-
cantly less variation in F1 in Italian /a/, /e/, /o/ and
/u/ than in Spanish, thus supporting the VQH. The
difference between F2 variation coefficients is also
significant but inverted for /e/, /i/, and /u/ where we
observe more variation for Italian than for Spanish,
thus invalidating the ISH.

Figure 2: The distribution of the variation coefficient
for each of the 500 [a], [e], [i], [o], and [u] across the
Italian and Spanish data extracted from Lingua Libre in
each of the replications. The significance labels indicate
the output of a wilcoxon test with bonferroni correction.

These results are also supported by the linear
mixed models we conducted (in both Bayesian
and non-Bayesian versions) based on the 500 data
points from each of the 10 replications. First, Ta-
ble 2 shows that the estimate for the variation of
Spanish for F1 is five times larger than the one for
F2. Furthermore, we also observe that the varia-
tion is generally larger for most of the vowels in
F1 (except for /a/), while the variation varies for
F2, in which the estimates are negative for /e/ and
/i/. The same observation is found when comparing
the overall areas covered by the polygons formed
by the contours of F1 and F2. We conduct a 2D ker-
nel density estimation (Venables and Ripley, 2002)
to extract the contours of the area covered by the

Dep.Var Pred Est t value p value
CV F1 spa 0.05 6.97 ***
CV F1 /e/ 0.06 5.79 ***
CV F1 /i/ 0.07 6.36 ***
CV F1 /o/ 0.04 3.41 ***
CV F1 /u/ 0.12 11.19 ***
CV F2 spa 0.01 3.35 **
CV F2 /e/ -0.04 -6.87 ***
CV F2 /i/ -0.07 -11.64 ***
CV F2 /o/ 0.11 16.56 ***
CV F2 /u/ 0.15 23.45 ***
Area spa 212 8.981 ***
Area /e/ -88 -2.35 *
Area /i/ -210 -5.63 ***
Area /o/ 230 6.16 ***
Area /u/ 196 5.25 ***

Table 2: The output of linear mixed models based on the
output of 10 vowel samplings with 500 tokens for each
vowel in Italian and Spanish. The areas are counted as
units of thousands. The abbreviations are read as fol-
lows: Pred = predictor, Est = estimate, CV = coefficient
of variation, Dep.Var = Dependent variable.

occurrences of each vowel in the two-dimensional
space from F1 and F2. While there is generally
more variation in Spanish than in Italian, this varies
across vowels, as /e/ and /i/ tend to have a smaller
formant space in general.

5 Conclusion and discussion

We used crowd-sourced data to test two competing
hypotheses in language typology: The production
of vowels is influenced either by the size of the
inventory, or by its shape. Our proof-of-concept on
Italian and Spanish shows that the size of the inven-
tory does not influence the realization of vowels,
but the exact quality of the vowels at hand does.

Our study also points to several caveats. First,
all audio files were not properly labeled and were
thus unusable. Moreover, from a human point of
view, it should be noted that crowd-sourced data
heavily rely on the participants’ good will and that
researchers have no choice but to trust the provided
metadata. One possible solution to that last prob-
lem would be for Lingua Libre to propose a veri-
fication tool, as does Common Voice, to improve
the reliability of the data and metadata. However,
crowd-sourced data proved to be a promising tool
for linguistic inquiry, especially to investigate lan-
guage universals, and could thus be tested on more
substantial sets of languages.
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Abstract

Given the empirical landscape of possible
prosodic parses, this paper examines the compu-
tations required to formalize the mapping from
syntactic structure to prosodic structure. In par-
ticular, we use logical tree transductions to define
the prosodic mapping of ditransitive verb phrases
in SVO languages, building off of the typology de-
scribed in Kalivoda (2018). Explicit formalization
of syntax-prosody mapping revealed a number of
unanswered questions relating to the fine details of
theoretical assumptions behind prosodic mapping.

1 Introduction

Within computational and mathematical phonology,
there is ample work on formalizing segmental and
suprasegmental phonological processes that are
word-bounded, such as by using finite state acceptors
(FSAs) and transducers (FSTs) (Kaplan and Kay,
1994; Roche and Schabes, 1997; Hulden, 2009;
Chandlee, 2014; Heinz, 2018), or using equivalent
logical transductions (Potts and Pullum, 2002; Jardine,
2016; Strother-Garcia, 2019; Dolatian, 2020; Dolatian
et al., 2021b).

Until recently however, there was little work on the
computational machinery required by sentence-level
or phrase-level phonology (prosodic phonology). This
gap may be because early work on prosodic phonol-
ogy found that some common aspects of prosody
were computationally regular over strings, and can be
formalized with FSAs (Pierrehumbert, 1980). How-
ever, the abstract representations that are the target
of prosodic processes are subject to extensive debates
in the linguistic literature, and they play a crucial
role for questions about the nature of the linguistic
phenomena at the phonology-syntax interface (Nespor
and Vogel, 1986; Selkirk, 1982, 2011; Yu, 2021).

It is an established fact that phonological processes
can refer to domains larger than a word. These
domains form hierarchical layers: the prosodic word

(w or PW), the prosodic phrase (p or PPh)1, and
the intonational phrase (i or iP). These prosodic
constituents show systemic relations with syntactic
constituents. However, such relations have been ar-
gued not to be strictly isomorphic — that is, prosodic
constituency cannot be read directly from syntactic
constituency. The characteristics of the mapping
between syntactic structure and prosodic structure
are important to theoretical approaches that consider
prosodic constituency to be relevant for phonological
generalizations. In this sense, distransitive construc-
tions — verbs with multiple internal arguments
(e.g. gave Mary books) — are a core example of
prosodic-syntax mismatches cross-linguistically.

Building on the systematic report of such mis-
matches in SVO languages provided by Kalivoda
(2018), this paper works out a formalization of the
typology of attested syntax-prosodic mappings for di-
transitive constructions in terms logical transductions
(Courcelle, 1994; Courcelle and Engelfriet, 2012).
In other linguistic domains, the rigor provided by
computational/mathematical formalization has helped
researchers commit to details of their theoretical
assumptions, and fully understand the impact of
particular representational choices. In line with this
observation, this paper contributes to recent work
laying the ground for mathematical investigations
of the syntax-prosody interface (Yu, 2017, 2022,
2021; Dolatian et al., 2021a). These first steps
already shed light on how a variety of theoretical
details often unspecified in the literature need further
clarification before extensive logical formalization of
the syntax-prosody interface can be achieved.

The paper is organized as follows. Section 2 goes
over the basic empirical typology of ditransitive
prosody. Section 3 presents the formal preliminaries
for the logical notation. Section 4 formally defines the

1Although a prosodic phrase is traditionally marked as ϕ,
in what follows we will use p. We will instead use ϕ to indicate
logical predicates.
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bulk of syntactic information relevant for ditransitive
prosody. Section 5 shows how such information can
be used to formally define the mapping from syntax
to prosody. We then discuss (§6) and conclude (§7).

2 Typology of ditransitive prosody

In prosodic phonology, syntactic constituents (e.g.
XP’s) are said to map onto prosodic constituents (e.g.
prosodic phrases). These two types of constituents
are often mis-aligned, meaning that an XP can be
larger or smaller than its corresponding prosodic
phrase. Unsurprisingly, different languages have
different rules for how XPs are mapped. In this paper,
we focus on a formal exploration of the prosody of
ditransitive sentences in SVO languages, given that
there is data available on their typology (Dobashi,
2003; Kalivoda, 2018).

2.1 What is prosodic structure
In a ditransitive sentence, the verb phrase includes two
internal arguments: colloquially, the direct object and
the indirect object. Cross-linguistically, ditransitive
sentences can have different types of prosodic phras-
ings (Dobashi, 2003). In some SVO languages like
English, a typical phrasing is to make the verb be in
the same prosodic phrase p as the first object, while the
second object is a separate prosodic phrase (Kalivoda
2018, 46 citing Selkirk (2000); examples are our own).

1. (p she gave a book) (p to Mary)

(p she gave Mary) (p books)

Note that throughout the paper, we only focus
on the mapping of syntactic constituents to prosodic
constituents (= prosodic phrases). Within a given
language, the edges of these prosodic constituents
should be retrievable from the acoustic signal, such as
via some language-specific phonological or phonetic
rule that references these edges.

2.2 Types of ditransitive phrasings
For a language like English, ditransitive verb
phrases are phrased as two separate prosodic phrases:
(VN)(N). In a survey of work on ditransitive prosody,
Kalivoda (2018, 38) finds that SVO languages can
prosodically parse ditransitive phrases in one of four
ways.2 The names of the distinct ‘prosodic types’ we
refer to throughout the paper are our own (see Table 1).

2For SOV languages like Korean, Kalivoda (2018) finds only
one possible phrasing: (N)(NV). They acknowledge though that
the SOV gaps may be accidental gaps that are due to the smaller
number of studied SOV languages. We set aside SOV languages
from our current formalization.

Table 1: Kalivoda (2018)’s typology of prosodic phrasing
in ditransitives

Syntax Prosodic Type Phrasing Language
SVO separated (V) (N) (N) Ewe
SVO closest-merged (V N) (N) Chimwiini
SVO recursive ((V N) N) Kimatuumbi
SVO all-merged (V N N) Zulu

In a language like Ewe, the verb and two objects
are each phrased separately: (V)(N)(N). In Chimwini,
the verb and closest noun are phrased together, while
the second object is phrased separately, like English:
(VN)(N). In Kimatuumbi, the VOO sequence is
phrased recursively: ((VN)N). In Zulu, all three items
are phrased together: (VNN).

2.3 Syntactic structure of ditransitives

For the input syntactic structure of the verbal cluster
that we want to map to the output prosodic structure,
we follow (Kalivoda, 2018). As consistent with most
modern generative work, we assume that a surface
VOO sequence is made up of two VP-like layers (VP
shell, Larson, 1988; Aoun and Li, 1989; Harley, 2002,
a.o.). The lower VP layer consists of the two objects:
the first object in spec-VP and the second object in
the complement of VP. The verb undergoes head-
movement from its base position within VP to adjoin
to v in the higher layer. We illustrate this in Figure 1.

For illustration, assume that the subject is in a
higher position in the clause (TP or CP). The CP is
mapped to an intonational phrase, while intermediate
functional levels are ignored (Dobashi, 2003). The
intonational phrase dominates the prosodic phrases of
the VP. We omit the subject’s prosodic phrase because
it is irrelevant to the issue of correctly mapping the
verb + objects cluster into prosodic constituents.

2.4 Formal
relationship between syntax and prosody

Given this set of relations between the input syntax
and the output prosodic representation (Figure 1),
different analyses can be given for the correspondence
of individual syntactic phrases with specific prosodic
phrases. Indexes on each tree in Figure 1 illustrate
these possible associations. These indexes can
be thought of as numeral shorthand for the Gorn
addresses of nodes in the syntactic tree. For instance,
the CP node at index 9 is mapped to the intonational
phrase at index 9′. Overt terminal nodes (1,2,4) each
get mapped to a prosodic word (1′,2′,4′).

Crucially, there is ambiguity in the literature about
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Figure 1: Syntactic and prosodic structure of a ditransitive phrase in an SVO language

Input Syntax Separated Closest-merged Recursive All-merged
Ewe Chimwiini Kimatuumbi Zulu

[V [N N]] (V)(N)(N) (VN) (N) ((VN)N) (VNN)
CP9
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VP7

V’

NP6
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the exact input-output correspondences for prosodic
phrases. In the Ewe (V)(N)(N) system, for example,
the two noun phrases (5,6) each get mapped to a
prosodic phrase (5′,6′). As for the verb, its surface
prosodic phrase can be argued to either be a) epenthe-
sized/inserted or created from no existing syntactic
phrase (e′), or b) derived from the vP (index 12). In
the latter case, the vP is phrased to a small prosodic
phrase that excludes its arguments; such mismatches
in the size of an XP and its prosodic phrase have been
called underparsing or undermatch in the literature
(Elfner, 2015; Guekguezian, 2017, 2021).

3 Logical Tree Transductions

In this section, we illustrate the use of Monadic
Second Order (MSO) logic to define tree-to-tree
transductions. MSO transductions are equivalent
to regular functions (Filiot, 2015), and have been
commonly employed to model both segmental and
autosegmental phonological processes (Jardine, 2016;
Chandlee and Jardine, 2019a; Strother-Garcia, 2018).
For the current discussion, we assume familiarity with
logic (boolean connectives, first-order quantification,
etc.) and set notation on the reader’s part.

With logical transductions, the input tree model is
defined in terms of a signature ⟨D,R⟩. The segments
are defined in terms of a set of domain elements D
taken from the set of positive integers. For tree models,
the common practice is to use Gorn-addresses. The
domain elements satisfy a set of relations R which
can be unary or binary. Unary relations designate the
labels L of these domain elements, e.g. the label V(x)
designates domain elements which are nodes labeled
V (for verb). Domain elements are connected via

Figure 2: Example tree transduction
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binary relations. Two binary relations are standardly
considered to be relevant for trees, immediate
dominance �(x,y) and left-of≺(x,y). In our current
discussion, only immediate dominance will be used.

As a toy example, take a tree transduction that
changes root nodes that are labeled a into root nodes
that are labeled b (Figure 2). We first illustrate the
logical definition of a tree for the input tree in this
example transduction, with more extended illustration
of each logical statement in Equation 2 in Figure 3.
The model definition first establishes the domain of
the structure, here using Gorn addresses. Each unary
relation corresponds to labels and is the set of nodes
for whom that label applies. For instance, the set for
a(x) are the nodes which are labeled a: these are the
nodes with Gorn addreses ε,0,1,00,01,10,11, as can
also be seen in Figure 3. Each binary relation is a set
of pairs for which the binary relation holds: Equation
2 thus states that the dominance relation � holds for
nodes ϵ and 0, meaning that the node with addres ϵ
dominates the node with address 0, and so on. Proper
dominance (�+) is defined as the transitive closure
of immediate dominance (�).

2. Tree model for input tree in Figure 2
Domain D={ε,0,1,00,01,10,11}
Unary relations L⊂R:
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Figure 3: Illustration of the tree model for the input tree
in Figure 2
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• a(x)={ε,0,01,12}
• b(x)={1,00}
• c(x)={11}

Binary relations in R:

• �(x,y)=
{⟨ϵ,0⟩,⟨ϵ,1⟩,⟨0,00⟩,⟨0,01⟩,⟨1,10⟩,⟨1,11⟩}

• ≺(x,y)={⟨0,1⟩,⟨00,01⟩,⟨10,11⟩}

In order to transform input trees into output trees,
MSO logical transductions define a copy set C of
some fixed size k. The k members of the copy set
act as indexes for copies of the input. If the output
structure needs less than or equal nodes as the input,
then a copy set of size 1 is sufficient: |C|=1. If the
output has a larger number of nodes than the input,
then a larger copy set is needed.

Output functions define segments in the output
copies in terms of the input segments. The apostrophe
marks output elements. We mark these functions using
ϕthis font. For example, to change a root node a
to b, we need a transduction with a copy set of size 1,
since the output tree has the same number of nodes as
the input tree. In order to make the transduction easier
to read, we define the root a segment with the pred-
icate in (1) as a shorthand, using this font. Crucially,
every pair of segments has the same dominance rela-
tion in the output as in the input (2). Nodes in the out-
put are labeled a if they are labeled a in the input and
they are not the root (3). The label b is generated for all
underlying b’s and for underlying root a’s (4). Nodes
labeled c in the input stay c in the output (5). We
visualize an example of this transduction in Figure 2.

root a(x)
def
= a∧¬∃y[�(y,x)] (1)

�(x′,y′) def
= �(x,y) (2)

ϕa(x′) def
= a(x)∧¬root a(x) (3)

ϕb(x′) def
= b(x)∨root a(x) (4)

ϕc(x′) def
= c(x) (5)

For representational ease, in what follows we use
simple integers like {1,2,3,...} as numeral shorthands
for Gorn addresses.

4 Formalizing core syntactic information

In ditransitives, prosodic phrasing is sensitive to some
but not all aspects of the syntactic structure (Nespor
and Vogel, 1986; Selkirk, 1986, 2011; Inkelas and
Zec, pages; Truckenbrodt, 1995, 1999, 2007; Elfner,
2015; Bennett and Elfner, 2019). These aspects are
overtness, headedness, tree geometry, arguments, and
linearity. It ignores category labels.

In this section, we define predicates that pick out
these aspects of syntactic structure. These predicates
will be later used to define the logical mappings from
syntax to prosody.

Note that existent prosodic mapping studies have
not directly addressed adjunction, namely the nature of
the prosodic mapping when an unbounded number of
adjoining phrases are added to the sentence. Addition-
ally, unbounded adjunction introduces non-locality be-
tween a head and its argument. Because of the lack of
data and these non-trivial open issues related to adjunc-
tion, we set it aside in our preliminary formalization.

4.1 Overt material

Prosody works over overt or pronounced terminal
items. Predicate Trm(x) defines terminal syntactic
items (N, V, v). oTrm(x) defines the overt items
(thus excluding the trace of the verb once it moves
to v, assuming V-to-v movement in all cases).

Trm(x)
def
= N(x)∨V(x)∨v(x) (6)

oTrm(x)
def
= N(x)∨v(x) (7)

4.2 Headedness

For headedness, we assume that we can reconstruct
which terminal node x is the head of a maximal
projection y based on the local geometry of the tree
(hence, on their indexes).3

mxPrj(x)
def
= NP(x)∨VP(x)∨ (8)

vP(x)

hdOf(x,y) is TRUE if (x,y)∈ (9)

{(1,8),(2,5),(3,7),(4,6)}
3Though it is possible to define a predicate hdOf(x,y) with

MSO logic, such definition requires an explicit list of the syntactic
features on each lexical item, which is outside the scope of this
paper. In lay terms, terminal node x is the head of the phrase
represented by node y, if y is the result of the Merge operation
that checks off the last selector feature on x during the derivation.
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A maximal projection is then headed if it contains an
overt head.

hdedPhr(x)
def
= mxPrj(x)∧∃y (10)

[hdOf(y,x)∧oTrm(y)]

unhdedPhr(x)
def
= mxPrj(x)∧∃y (11)

[hdOf(y,x)∧¬oTrm(y)]

4.3 Tree geometry

For tree geometry, phrasing is sensitive to whether a
pair of nodes x,y are structurally sisters, and arguably
to c-command.

sisOf(x,y)
def
= x≠y∧∀z (12)

[z�x↔z�y]

ccom(x,y)
def
= x≠y∧∀z (13)

[�+(z,x)→�+(z,y)]

4.4 Argument structure and head movement

For argument structure, we distinguish two types of
configurations: with and without head-movement.
Without head-movement, a maximal projection XP
has at most two arguments: a complement and a
specifier. Thus the VP7 has the two noun phrases NP5
and NP6 as arguments. The head X of XP (the covert
V3) can then claim the arguments of its maximal
projection.

cmpOf(x,y)
def
= mxPrj(x)∧mxPrj(y) (14)

∧∃z[hdOf(z,y)∧sisOf(x,z)]

spcOf(x,y)
def
= mxPrj(x)∧mxPrj(y) (15)

∧y�x

argOf(x,y)
def
= ∃z[(cmpOf(x,z)∨ (16)

spcOf(x,z))∧hdOf(y,z)]

The above predicates capture the fact that the covert
V3 has two arguments. However, this V is covert be-
cause its lexical item gave underwent head movement
to v1. Based on observations made in the prosodic
literature Kalivoda (2018), we make the (syntactically
anomalous) assumption that when some item under-
goes head-movement, its final landing slot inherits the
arguments of its base position. Thus the verb ‘gave’
as v1 inherits the arguments of the covert V3.

For simplicity, we assume that the movement path
of head movement is defined a priori in terms of in-
dexes or Gorn addresses. V3 is the base position,
while v1 is the target or landing position. This is not

a problem given that the head-movement relations ob-
served in the typology work we rely on are always
local, but we will come back to this point in Section 6.

mvPth(x,y) is TRUE if (17)

(x,y)=(1,3)

mvBase(x)
def
= ¬oTrm(x) (18)

mvLand(x)
def
= ∃(y)[mvBase(y) (19)

∧mvPth(x,y)]

Thus, the argument x of some terminal node y is
either a) the direct argument of y, if y did not move, or
b) the argument that y inherited via head-movement
from a node z moved into y from its base position.

genArg(x,y)
def
= argOf(x,y)∨ (20)

[mvLand(y)∧∃z
(mvPth(y,z)∧mvBase(z)

∧argOf(x,z))]

4.5 Linearity

The final syntactic property that prosody is sensitive
to is linearity. In a ditransitive phrase, the verb can
be phrased with its closest argument. We define
‘closeness’ in terms of c-command. We assume
that if a node underwent head movement, then
it c-commands all its arguments from its landing
position.4 Using c-command, we can define the first
and second argument of a ditransitive verb.

arg1(x,y)
def
= genArg(x,y)∧ (21)

ccom(y,x)∧¬∃z
[ccom(y,z)∧ccom(z,x)

∧genArg(z,y)]

arg2(x,y)
def
= genArg(x,y)∧ (22)

¬arg1(x,y)

4.6 Avoiding category labels

As observed during our earlier discussion of the
prosodic typology of ditransitives, in the SVO lan-
guages under analysis, vPs and NPs behave differently
with respect to what kind of nodes they are mapped
into in the output prosodic trees. However, syntax-
prosody mappings are generally taken to be blind to
category labels (except for CP). Thus, the prosody
should not be able to distinguish between vPs and

4We define the first argument of a head as the the one that
follows the head after linearization. That is, the first argument
of the verb head is the direct object, not the subject.
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NPs based on the labels of their heads, but possibly
only in terms of argument structure and linearity.

While from a modern syntactic perspective it is
debatable that the verbal and nominal domain actually
differ in terms of the geometry of their argument
structure, the examples reported by Kalivoda (2018)
are of NPs without arguments. We thus do not know
how more complex NPs (e.g. NPs with a complement
prepositional phrase) would be mapped into prosodic
constituents. Given the preliminary nature of our
formalization attempt and our reliance on existing
work on prosodic parsing, in what follows we define
predicates that pick out headed phrases that have
arguments (the vP) and headed phrases that lack
arguments (NPs).

hasArg(x)
def
= ∃y[genArg(y,x)](23)

hdedWArg(x)
def
= hdedPhr(x) (24)

∧hasArg(x)

hdedWoArg(x)
def
= hdedPhr(x) (25)

∧¬hasArg(x)

5 Logical transductions
for the syntax-to-prosofy typology

With all the preliminary predicates in place, in this
section we define tree-to-tree logical transductions for
each type of prosodic mapping laid out in Section 2
As discussed before, for each case there are multiple
possible choices for the exact node-to-node maps. For
reasons of space, here we only showcase predicates
for one option per language, and focus on highlighting
the necessary formal mechanisms that arise due to
differences in the typology of the mappings.

5.1 Commonalities
Some node-to-node relations are common across all
the typological examples. In particular, the iP node
is mapped from the CP node at index 9.

ϕiP(x′) def
= CP(x) (26)

Additionally, all the overt terminal items (N and V)
map to prosodic words (PW).

ϕPW(x′) def
= oTrm(x) (27)

5.2 Ewe: (V)(N)(N)
For Ewe-type languages, the NPs each map to a
prosodic phrase. The V is also part of a separate
prosodic phrase. Let us assume that the V is phrased
in a prosodic phrase PPh8’, mapped from the vP8.

Figure 4: Structure of Ewe: (V)(N)(N)
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Thus, each overtly headed phrase (vP and NP) is
mapped to a prosodic phrase.

ϕPPh(x′) def
= hdedPhr(x) (28)

In terms of dominance relations, each PPh (p, mapped
from an overt headed phrase) dominates its overt head
(mapped into a w). The iP then dominates every p.

ϕ�(x′,y′) def
= [ϕPW(x′)∧�(y,x)]∨ (29)

[ϕPPh(x′)∧hdOf(y,x)]∨
[ϕiP(x′)∧ϕPPh(y′)]

5.3 Zulu: (VNN)

Figure 5: Structure of Zulu (VNN)
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For Zulu-type languages, only one prosodic phrase
is created. Assume this phrase is mapped from the
vP at index 8. The vP is the only headed phrase that
has arguments. Only this XP gets its own PPh.

ϕPPh(x′) def
= hdedWArg(x) (30)
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In terms of dominance, the sole PPh dominates every
PWord.

ϕ�(x′,y′) def
= [ϕPW(x′)∧�(y,x)]∨ (31)

[ϕPPh(x′)∧ϕPW(y′)]∨
[ϕiP(x′)∧ϕPPh(y′)]

5.4 Chimwiini: (VN)(N)

Figure 6: Structure of Chimwiini (VN) (N)
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For the Chimwiini system, there is an ambiguity in the
syntactic origins of the first PPh. This PPh can map
either from the vP, the first NP, or be epenthetic. To
make it easier to contrast this system with the one for
Kimatuumbi (in the following section), we here only
illustrate how this PPh can be mapped from the NP.

In this system, the two PPhrases originate from NPs,
thus from XPs that have overt heads but no arguments.

ϕPPh(x′) def
= hdedWoArg(x) (32)

In terms of prosodic dominance: PPhrases dominate
the PWords that are the heads of the PPhrase’s XP
(second disjunct). Additionally (third disjunct), the
PPhrase of the first NP (the first argument) dominates
the PW of the vP (the argument-taking XP).

ϕ�(x′,y′) def
= [ϕPW(x′)∧�(y,x)]∨ (33)

[ϕPPh(x′)∧hdOf(y,x)]∨
∃z[hdedWArg(z)∧
hdOf(y,z)∧arg1(x,z)]∨
[ϕiP(x′)∧ϕPPh(y′)]

5.5 Kimatuumbi: ((VN)N)

Figure 7: Structure of Kimatuumbi ((VN)N)
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In the Kimatuumbi system, we need to allow for
prosodic recursion. The highest PPhrase is mapped
from the vP. The bottom PPhrase must be mapped
either from the first NP or be epenthetic. We assume
it is mapped from the first NP: the first argument of
the headed phrase.

ϕPPh(x′) def
= hdedWArg(x)∨∃y (34)

[hdedWArg(y)∧arg1(x,y)]

Even in this bounded context, the use of recursion
requires more convoluted contexts for prosodic
dominance. The bottom PPhrase is mapped from the
NP, the PPhrase dominates the head of the vP (second
disjunct) and the head of the first NP (third disjunct).
The top PPh is mapped from vP: it dominates the
lower PPhrase and the head of the second argument
(fourth disjunct).

ϕ�(x′,y′) def
= [ϕPW(x′)∧�(y,x)]∨ (35)

[∃z[hdedWArg(z)∧
hdOf(y,z)]∨
[∃z[hdedWArg(z)∧
arg1(x,z)∧hdOf(y,x)]∨
[∃z[hdedWArg(x)∧
arg2(z,x)∧hdOf(y,z)]∨
[ϕiP(x′)∧ϕPPh(y′)]

The logical formulation of prosodic dominance
relations in this system would likely be more
straightforward if we defined both of the two surface
prosodic phrases as mapped from the same vP . This
would require one-to-many associations for prosodic
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mappings, such that an input XP can correspond to
two output PPhrases — however, such one-to-many
associations are usually avoided in prosodic theory
(Ito and Mester, 2019).

6 Discussion

In this paper, we used logical tree transductions
to characterize mappings between syntactic and
prosodic structure in ditransitive constructions.
Based on the cross-linguistic typology of prosodic
mappings reported in Kalivoda (2018), we showed
that logical transductions seem appropriate to derive
the alignment mismatches between syntactic and
prosodic constituents. In doing so, we highlighted
how details of prosodic and syntactic structures
often left unspecified in the linguistic literature
become fundamental in deciding the linguistic
naturalness of such mappings. These results then
provide a baseline for future, extensive formalization
of syntax-prosody mismatches and open the way for
a vast array of computationally informed questions
and computationally-driven empirical predictions.

6.1 Head-movement and locality

In this paper we relied on Gorn addresses (node in-
dexes) to handle the discontinuity created by head
movement of V into v. While seemingly ad-hoc, this
move was justified by the assumption that the ob-
served head-movement dependency is — in the ex-
amples provided in the prosodic literature — always
bounded within the vP domain. Hence, the infor-
mation relevant to that a particular syntax-prosodic
relation could be deterministically inferred from the
geometry of the trees, and Gorn addresses were just
a convenient shorthand. Theoretically, if we adopt
a fully explicit syntactic formalism (e.g. Minimalist
Grammars, Stabler, 1996), then it should be possible
to extend our predicates to account for unbounded
head-movement paths explicitly, for example by rely-
ing on feature chains (Kobele et al., 2007; Graf, 2012).

However, the open linguistic question is whether
we can find cases where unbounded head-movement
of the verb is relevant for prosodic structure, and what
exactly would the resulting prosodic constituents
be. Similarly, it is unclear whether the approach we
adopted for the “recursive” structure in Kimatuumbi
would work as straightforwardly for additional levels
of embedding. Potential issues related to unbounded
prosodic recursion that are not tied to local contexts
have been pointed out by other work on prosodic
transductions (Yu, 2021; Dolatian et al., 2021a).

6.2 Category Blindness

Throughout the paper, we had to make assumptions
about properties of the syntactic/prosodic represen-
tations based on what had been observed/assumed
in the existing literature on prosodic constituency.
Among these, a non-trivial issue was the hypothesis
that prosody is blind to category information — and
thus, that mappings can only rely on tree geometry.
For instance, based on this hypothesis we defined
mappings that differentiated vPs from NPs based on
the number of arguments they have in the trees. This
allowed us to be faithful to the observation that, in
the examples studied by Kalivoda (2018), vPs and
NPs behaved strikingly differently with respect to
prosodic mappings. Crucially though, such examples
only reported bare NPs without complements nor
specifiers — and it is thus possible that what we are
observing is a prosodic sensitivity to syntactic phrases
with and without complements.

Additionally, modern linguistic theory tends to
assume that the verbal and nominal domain are similar
in terms of domain-internal syntactic relations, and we
would not predict a difference in behavior with respect
to systems that are blind to category information. We
can thus ask whether “category-blindness” is actually
a real property of prosodic mappings, or whether it
is just an epiphenomenon arising from the particular
type of observations collected in the literature. If
category blindness is indeed a core property, and if
syntax-prosody mappings are tied to tree geometry,
we would predict that complex nominal domains
(e.g. NPs with prepositional complements) should be
parsed the same way as vP.

6.3 Broad complexity considerations

From a formal perspective, this paper looks at the
computational requirements of prosodic transductions
via logical transductions (cf. logical formalizations
in Dolatian, 2020). Following a rich tradition in
model-theoretic syntax and phonology, we started out
with the intent of using MSO to express the syntax-
prosody relations. However, if we go back and look at
the predicates we defined, we will note that we only
make use of quantification to scope over individual
variables. Thus, our mappings are essentially just first-
order logic predicates. In this respect, recent work on
phonological transformations has shown that they can
be handled with Quantifier-Free string transductions
(Chandlee and Lindell, in in review; Strother-Garcia,
2019; Chandlee and Jardine, 2019b), and in the future
it would be interesting to see if our mappings could

36



be further refined to work in terms of Quantifier-Free
tree transductions (Ikawa et al., 2020; Dolatian, 2020).

Similarly, it is important to note that while logical
transductions allow us to focus on the global proper-
ties of the representations we cast our mappings onto,
existing computational work on prosody has made
use of tree transducers (in particular, multi-bottom
up tree transducers, Dolatian et al., 2021a; Yu, 2022).
Multi-bottom up tree transducers have been shown
to be relevant to syntactic processes (specifically
involving copying, Kobele et al., 2007) and their com-
putational properties are relatively well-understood.
Moreover, tree transducers can be incorporated within
a variety of parsing algorithms, and therefore offer
a way to more deeply integrate prosodic and syntactic
parsing (Yu and Stabler, 2017; Graf and De Santo,
2019; Yu, 2019). On the other side, the specification
of tree transducers is more focused on the procedural
requirements of the transformations and might, for in-
stance, put stricter constraints on the relation between
constituent rewriting and unboundedness (Yu, 2021).

7 Conclusion

This paper offers a contribution to the scarce
existing literature on the formal characterization of
prosodic processes, and their relation to syntactic
representations. While much work remains to be done,
our results further show how careful mathematical
formalization can help up refine long-standing
theoretical questions, suggest the need for more
and different types of data, and make us more
critical of theoretical assumptions about linguistic
representations across subdomains.
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Abstract

We introduce a Masked Segmental Language
Model (MSLM) for joint language model-
ing and unsupervised segmentation. While
near-perfect supervised methods have been de-
veloped for segmenting human-like linguis-
tic units in resource-rich languages such as
Chinese, many of the world’s languages are
both morphologically complex, and have no
large dataset of “gold” segmentations for su-
pervised training. Segmental Language Mod-
els offer a unique approach by conducting un-
supervised segmentation as the byproduct of
a neural language modeling objective. How-
ever, current SLMs are limited in their scalabil-
ity due to their recurrent architecture. We pro-
pose a new type of SLM for use in both unsu-
pervised and lightly supervised segmentation
tasks. The MSLM is built on a span-masking
transformer architecture, harnessing a masked
bidirectional modeling context and attention,
as well as adding the potential for model scal-
ability. In a series of experiments, our model
outperforms the segmentation quality of recur-
rent SLMs on Chinese, and performs similarly
to the recurrent model on English.

1 Introduction

Outside of the orthography of English and lan-
guages with similar writing systems, natural lan-
guage is rarely overtly segmented into meaningful
units. Languages such as Chinese, are written with
no spaces in between characters, and Chinese Word
Segmentation remains an active field of study (e.g.
Tian et al., 2020). Running speech is also highly
fluent with no meaningful pauses existing between
“words” like in orthography.

Tokenization schemes for large modern lan-
guage models are now largely passed off to greedy
information-theoretic algorithms like Byte-Pair
Encoding (Sennrich et al., 2016) and the subse-
quent SentencePiece (Kudo and Richardson, 2018),
which create subword vocabularies of a desired size

by iteratively joining commonly co-occuring units.
However, these segmentations are usually not sen-
sical to human readers (Park et al., 2021). Given
the current performance of models using BPE-type
tokenization, the nonsensical nature of these seg-
mentations does not necessarily seem to inhibit the
success of neural models.

Nevertheless, BPE does not necessarily help
in situations where knowing a sensical segmen-
tation of linguistic-like units is important, such as
attempting to model the ways in which children
acquire language (Goldwater et al., 2009), segment-
ing free-flowing speech (Kamper et al., 2016; Rasa-
nen and Blandon, 2020), creating linguistic tools
for morphologically complex languages (Moeng
et al., 2021), or studying the structure of an endan-
gered language with few or no current speakers
(Dunbar et al., 2020).

While near-perfect supervised models have been
developed for resource-rich languages like Chinese,
most of the world’s languages do not have large
corpora of training data (Joshi et al., 2020). Es-
pecially for morphologically complex languages,
large datasets containing “gold” segmentations into
units like morphemes are very rare.

To help mitigate this problem, we propose a
novel variant of the unsupervised Segmental Lan-
guage Model (Sun and Deng, 2018; Kawakami
et al., 2019). Segmental Language Models (SLMs)
function as neural LMs that can also be used for un-
supervised segmentation correlating with units like
words and morphemes (Kawakami et al., 2019).

Traditional (recurrent) SLMs provide a good
tradeoff between language-modeling performance
and segmentation quality. However, in order to em-
brace a fully bidirectional modeling context, atten-
tion, and the scalability afforded by parallelization,
we present a Masked Segmental Language Model
(MSLM), built on a span-masking transformer ar-
chitecture (Vaswani et al., 2017). As far as we are
aware, we are the first to introduce a non-recurrent
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architecture for segmental modeling.
In this paper, we seek to compare our model

to recurrent baselines across two standard word-
segmentation datasets in Chinese and English, with
the hope of expanding to more languages and do-
mains (such as speech) in future work. We con-
strain the scope of our work to comparison with
recurrent SLMs both because standard Bayesian
models have been compared to SLMs elsewhere
(Kawakami et al., 2019, Section 2), and because
SLMs have different use cases from Bayesian algo-
rithms, which tend to be weaker language models
and lack continuous character representations that
are invaluable in settings such as transfer learning.

In what follows, we overview baselines in unsu-
pervised segmentation as well as other precursors
to SLMs (Section 2), provide a formal character-
ization of SLMs in general, as well as the archi-
tecture and modeling assumptions that make the
MSLM distinct (Section 3), present our experimen-
tal method comparing recurrent and masked SLMs
(Section 4), and finally show that the MSLM out-
performs its recurrent counterpart on Chinese seg-
mentation, and performs similarly to the recurrent
model on English (Sections 5-6). Section 7 lays
out directions for future work.

2 Related Work

Segmentation Techniques and SLM Precursors
An early application of machine learning to unsu-
pervised segmentation is Elman (1990), who shows
that temporal surprisal peaks in RNNs provide a
heuristic for inferring word boundaries. Subse-
quently, Minimum Description Length (MDL) (Ris-
sanen, 1989) was widely used. The MDL model
family underlies well-known segmentation tools
such as Morfessor (Creutz and Lagus, 2002) and
other notable works (de Marcken, 1996; Goldsmith,
2001).

More recently, Bayesian models have proved
some of the most accurate in their ability to model
word boundaries. Some of the best examples are
Hierarchical Dirichlet Processes (Teh et al., 2006),
e.g. those applied to natural language by Goldwater
et al. (2009), as well as Nested Pitman-Yor (Mochi-
hashi et al., 2009; Uchiumi et al., 2015). However,
Kawakami et al. (2019) notes most of these do not
adequately account for long-range dependencies in
the same capacity as modern neural LMs.

Segmental Language Models follow a variety of
recurrent models proposed for finding hierarchi-

cal structure in sequential data. Influential among
these are Connectionist Temporal Classification
(Graves et al., 2006), Sleep-Wake Networks (Wang
et al., 2017), Segmental RNNs (Kong et al., 2016),
and Hierarchical Multiscale Recurrent Neural Net-
works (Chung et al., 2017).

In addition, SLMs draw heavily from character
and open-vocabulary language models. For exam-
ple, Kawakami et al. (2017) and Mielke and Eisner
(2019) present open-vocabulary language models
in which words are represented either as atomic
lexical units, or built out of characters. While the
hierarchical nature and dual-generation strategy of
these models did influence SLMs (Kawakami et al.,
2019), both assume that word boundaries are avail-
able during training, and use them to form word
embeddings from characters on-line. In contrast,
SLMs usually assume no word boundary informa-
tion is available in training.

Segmental Language Models The next section
has a more technical description of SLMs; here we
give a short overview of related work. The term
Segmental Language Model seems to be jointly
due to Sun and Deng (2018) and Kawakami et al.
(2019). Sun and Deng (2018) demonstrate strong
results for Chinese Word Segmentation using an
LSTM-based SLM and greedy decoding, competi-
tive with and sometimes exceeding state of the art
for the time. This study tunes the model for seg-
mentation quality on a validation set, which we will
call a “lightly supervised” setting (Section 4.3).

Kawakami et al. (2019) use LSTM-based SLMs
in a strictly unsupervised setting in which the
model is only trained to optimize language-
modeling performance on the validation set, and is
not tuned on segmentation quality. Here they report
that “vanilla” SLMs give sub-par segmentations
unless combined with one or more regularization
techniques, including a character n-gram “lexicon”
and length regularization.

Finally, Wang et al. (2021) very recently intro-
duce a bidirectional SLM based on a Bi-LSTM.
They show improved results over the unidirectional
SLM of Sun and Deng (2018), test over more su-
pervision settings, and include novel methods for
combining decoding decisions over the forward and
backward directions. This study is most similar to
our own work, though our transformer-based SLMs
utilize a bidirectional context in a qualitatively dif-
ferent way, and do not require an additional layer
to capture the reverse context.
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3 Model

3.1 Recurrent SLMs
A schematic of the original Recurrent SLM can be
found in Figure 1. Within an SLM, a sequence of
symbols or time-steps x can further be modeled as
a sequence of segments y, which are themselves
sequences of the input time-steps, such that the
concatenation of segments π(y) = x.

SLMs are broken into two levels: a Context En-
coder and a Segment Decoder. The Segment De-
coder estimates the probability of the jth character
in the segment starting at index i, yij , as:

p(yij |yi0:j , x0:i) = Decoder(hij−1, y
i
j−1)

where the indices for xi:j are [i, j). The Context
Encoder encodes information about the input se-
quence up to index i. The hidden encoding hi is

hi = Encoder(hi−1, xi)

Finally, the Context Encoder “feeds” the Seg-
ment Decoder: the initial character of a segment
beginning at i is decoded using (transformations
of) the encoded context as initial states (gh(x) and
gstart(x) are single feed-forward layers):

p(yi0|x0:i) = Decoder(hi∅, start
i)

hi∅ = gh(hi−1)

start i = gstart(hi−1)

For inference, the probability of a segment yi:i+k

(starting at index i and of length k) is modeled as
the log probability of generating yi:i+k with the
Segment Decoder given the left context π(y

0:i
) =

x0:i. Note that the probability of a segment is
not conditioned on other segments / segmentation
choice, but only on the unsegmented input time-
series. Thus, the probability of the segment is

p(yi0|hi∅, start i)
k∏

j=1

p(yij |hij−1, yij−1)

where yik is the end-of-segment symbol.
The probability of a sentence is thus modeled

as the marginal probability over all possible seg-
mentations of the input, as in equation (1) below
(where Z(|x|) is the set of all possible segmenta-
tions of an input x). However, since there are 2|x|−1

possible segmentations, directly marginalizing is
intractable. Instead, dynamic programming over

a forward-pass lattice can be used to recursively
compute the marginal as in (2) given the base con-
dition that α0 = 1. The maximum-probability seg-
mentation can then be read off of the backpointer-
augmented lattice through Viterbi decoding.

p(x) =
∑

z∈Z(|x|)

∏

i

p(yi:i+zi) (1)

p(x0:i) = αi =
L∑

k=1

p(yi−k:i|x0:i−k)αi−k (2)

Figure 1: Recurrent Segmental Language Model

3.2 New Model: Masked SLM

We present a Masked Segmental Language Model,
which leverages a non-directional transformer as
the Context Encoder. This reflects recent ad-
vances in bidirectional (Schuster and Paliwal, 1997;
Graves and Schmidhuber, 2005; Peters et al., 2018)
and adirectional language modeling (Devlin et al.,
2019). Such modeling contexts are also psycholog-
ically plausible: Luce (1986) shows that in acoustic
perception, most words need some following con-
text to be recognizable.

A key difference between our model and stan-
dard Masked LMs like BERT is that the latter pre-
dict single tokens based on the rest, while for SLMs
we must predict a segment of tokens based on all
other tokens outside the segment. For instance, to
predict the three-character segment starting at xt,
the modeled distribution is p(xt:t+3|x<t, x≥t+3).

Some recent pre-training techniques for trans-
formers, such as MASS (Song et al., 2019) and

41



BART (Lewis et al., 2020) mask out spans to be
predicted. A key difference between our model and
these approaches is that the pre-training data for
large transformer models is usually large enough
that only about 15% of training tokens are masked,
while we need to estimate the generation probabil-
ity for every possible segment of x. Since the usual
method for masking is to replace the masked to-
ken(s) with a special symbol, only one span can be
predicted with each forward pass. However, each
sequence contains O(|x|) possible segments, so re-
placing each one with a mask token and recovering
it would require as many forward passes.

These design considerations motivate our Seg-
mental Transformer Encoder, and the Segmen-
tal Attention Mask around which it is based. Each
forward pass of the encoder generates an encoding
for every possible start-position in x, for a segment
of up to length k. The encoding at timestep t− 1
corresponds to every possible segment whose first
timestep is at index t. Thus with maximum seg-
ment length of k and total sequence length n, the
encoding at each index t− 1 will approximate

p(xt:t+1, xt:t+2, ...xt:t+k|x<t, x≥t+k)

This encoder leverages an attention mask that
conditions predictions only on indices outside the
predicted segment. An example of this mask with
k = 3 is shown in Figure 2. For max segment
length k, the mask is given by:

αi,j =

{
−∞ if 0 < j − i ≤ k
0 else

Figure 2: Segmental Attention Mask with segment-
length (k) of 3. Blue squares are equal to 0, orange
squares are equal to −∞. This mask blocks the posi-
tion encoding the segment in the Queries from attend-
ing to segment-internal positions in the Keys.

This solution is similar to that of Shin et al.
(2020), developed independently and concurrently

with our work, which uses a custom attention mask
to “autoencode” each position without needing a
special mask token. One key difference is that their
masking scheme is used to predict single tokens,
rather than spans. In addition, their mask runs di-
rectly along the diagonal of the attention matrix,
rather than being offset. This means that to pre-
serve self-masking in the first layer, the Queries are
the “pure” positional embeddings.

To prevent information leaking “from under the
mask”, our encoder uses a different configuration
in its first layer than in subsequent layers. In the
first layer, Queries, Keys, and Values are all learned
from the original input embeddings. In subsequent
layers, the Queries come from the hidden encod-
ings output by the previous layer, while Keys and
Values are learned directly from the original em-
beddings. If Queries and either Keys or Values both
come from the previous layer, information can leak
from positions that are supposed to be masked for
a particular query position. Shin et al. (2020) come
to a similar solution to preserve their auto-encoder
masking.

The encodings learned by the segmental encoder
are then input to an SLM decoder in exactly the
same way as previous models (Figure 3).

Figure 3: Masked Segmental Language Model, k = 2.

To tease apart the role of an adirectional model-
ing assumption itself, vs the role of attention, we
additionally define a Directional MSLM, which
uses a directional (“causal”) mask instead of the
span masking type. Using the directional mask, the
encoder is still attention-based, but the language
modeling context is strictly “directional”, in that
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positions are only allowed to attend over a mono-
tonic “leftward” context (Figure 4).

Finally, to add positional information to the en-
coder, we use static sinusoidal encodings (Vaswani
et al., 2017) and additionally employ a linear map-
ping f to the concatenation of the original and
positional embeddings to learn the ratio at which
to add the two together.

g = 1.0 + ReLU (f([embedding , position]))

embedding ←− g ∗ embedding + position

4 Experiments

Our experiments assess SLMs across three dimen-
sions: (1) network architecture and language mod-
eling assumptions, (2) evaluation metrics, specifi-
cally segmentation quality and language-modeling
performance, and (3) supervision setting (if and
where gold segmentation data is available).

4.1 Architecture and Modeling
To analyze the importance of the self-attention ar-
chitecture versus the bidirectional conditioning con-
text, we test SLMs with three different encoders:
the standard R(ecurrent)SLM based on an LSTM,
the M(asked)SLM introduced in 3.2 with a seg-
mental or “cloze” mask, and a D(irectional)MSLM,
with a “causal” or directional mask. The RSLM
is thus (+recurrent context, +directional), the DM-
SLM is (-recurrent context, +directional), and the
MSLM is (-recurrent context, -directional).

Figure 4: Directional MSLM

For all models, we use an LSTM for the segment
decoder, as a control and because the decoded se-
quences are relatively short and may not benefit

as much from an attention model. See also Chen
et al. (2018) for hybrid models with transformer
encoders and recurrent decoders.

4.2 Evaluation Metrics
Part of the motivation for SLMs is to create strong
language models that can also be used for segmen-
tation (Kawakami et al., 2019). Because of this,
we report both segmentation quality and language
modeling performance.

For segmentation quality, we get the word-F1
score for each corpus using the script from the
SIGHAN Bakeoff (Emerson, 2005). Following
Kawakami et al. (2019), we report this measure
over the entire corpus. For language modeling per-
formance, we report the average Bits Per Character
(bpc) loss over the test set.

4.3 Supervision Setting
Because previous studies have used SLMs both in
“lightly supervised” settings (Sun and Deng, 2018)
and totally unsupervised ones (Kawakami et al.,
2019), and because we expect SLMs to be deployed
in either use case, we test both. For all model types,
we conduct a hyperparameter sweep and select both
the configuration that maximizes the validation seg-
mentation quality (light supervision) and the one
that minimizes the validation bpc (unsupervised).

4.4 Datasets
We evaluate our SLMs on two datasets used in
Kawakami et al. (2019). For each, we use the same
training, validation, and test split. The sets were
chosen to represent two relatively different writing
systems: Chinese (PKU) and English (PTB). Statis-
tics for each are in Table 1. One striking difference
between the two writing systems can be seen in the
character vocabulary size: phonemic-type writing
systems like English have a much smaller vocabu-
lary of tokens, with words being built out of longer
sequences of characters that are not meaningful on
their own.

Corpus PKU PTB

Tokens/Characters 1.93M 4.60M
Words 1.21M 1.04M
Lines 20.78k 49.20k
Avg. Characters per Word 1.59 4.44
Character Vocabulary Size 4508 46

Table 1: Statistics for the datasets
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Peking University Corpus (PKU) PKU has
been used as a Chinese Word Segmentation bench-
mark since the International Chinese Word Seg-
mentation Bakeoff (Emerson, 2005). One minor
change we make to this dataset is to tokenize En-
glish, number, and punctuation tokens using the
module from Sun and Deng (2018), to make our
results more comparable to theirs. Unlike them, we
do not pre-split sequences on punctuation.

Penn Treebank (PTB) For English, we use
the version of the Penn Treebank corpus from
(Kawakami et al., 2019; Mikolov et al., 2010).

4.5 Parameters and Trials
For all models, we tune among six learning rates on
a single random seed. After the parameter sweep,
the configuration that maximizes validation seg-
mentation quality and the one that minimizes vali-
dation bpc are run over an additional four random
seeds. All models are trained using Adam (Kingma
and Ba, 2015) for 8192 steps.

All models have one encoder layer and one de-
coder layer, as well as an embedding and hidden
size of 256. The transformer-based encoder has a
number of trainable parameters less than or equal
to the number in the LSTM-based encoder.1

One important parameter for SLMs is the max-
imum segment length k. Sun and Deng (2018)
tune this as a hyperparameter, with different val-
ues for k fitting different CWS standards more or
less well. In practice, this parameter can be chosen
empirically to be an upper bound on the maximum
segment length one expects to find, so as to not
rule out long segments. We follow Kawakami et al.
(2019) in choosing k = 5 for Chinese and k = 10
for English. For a more complete characterization
of our training procedure, see Appendix A.2

5 Results

5.1 Chinese
For PKU (Table 2), Masked SLMs yield better seg-
mentation quality in both the lightly-supervised
and unsupervised settings, though the advantage
in the former setting is much larger (+12.4 median
F1). The Directional MSLM produces similar qual-
ity segmentations to the MSLM, but it has worse
language modeling performance in both settings

1592,381 trainable parameters in the former, 592,640 in
the latter

2The code used to build SLMs and conduct these experi-
ments can be found at (url redacted)

(+0.23 bpc for lightly supervised and +0.11 bpc
for unsupervised); the RSLM produced the second-
best bpc in the unsupervised setting.

The RSLM gives the best bpc in the lightly-
supervised setting. However for this setting, the
strict division of the models that maximize segmen-
tation quality and those that minimize bpc can be
misleading. In between these two configurations,
many have both good segmentation quality and low
bpc, and if the practitioner has gold validation data,
they will be able to pick a configuration with the
desired tradeoff.

In addition, there is some evidence that “under-
shooting” the objective in the unsupervised case
with a slightly lower learning rate may lead to
more stable segmentation quality. The unsuper-
vised MSLM in the table was trained at rate 2e-3,
and achieved 5.625 bpc (validation). An MSLM
trained at rate 1e-3 achieved only a slightly worse
bpc (5.631) and resulted in better and more stable
segmentation quality (69.4 ± 2.0 / 70.4).

5.2 English

Results for English (PTB) can also be found in
Table 2. By median, results remain comparable be-
tween the recurrent and transformer-based models,
but the RSLM yields better segmentation perfor-
mance in both settings (+4.0 and +4.7 F1). How-
ever, both types of MSLM are slightly more sus-
ceptible to random seed variation, causing those
means to be skewed slightly lower. The DMSLM
seems more susceptible than the MSLM to outlier
performance based on random seeds, as evidenced
by its large standard deviation. Finally, the RSLM
gives considerably better bpc performance in both
settings (-0.29 and -0.31 bpc).

6 Analysis and Discussion

6.1 Error Analysis

We conduct an error analysis for our models based
on the overall Precision and Recall scores for each
(using the character-wise binary classification task,
i.e. word-boundary vs no word-boundary).

As can be seen in Table 3, all model types trained
on Chinese have a Precision that approaches 100%,
meaning almost all boundaries that are inserted
are true boundaries. On first glance the main dif-
ference in the unsupervised case seems to be the
RSLM’s relatively higher Recall. However, the
higher Precision of both MSLM types seems to
be more important for the overall segmentation
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Dataset Model
Tuned on Gold Unsupervised

F1 Mean / Median BPC F1 Mean / Median BPC

PKU
RSLM 61.2 ± 3.6 / 60.2 5.67 ± 0.01 59.4 ± 1.9 / 58.7 5.63 ± 0.01
DMSLM 72.2 ± 2.0 / 72.7 6.08 ± 0.31 62.9 ± 2.6 / 63.4 5.67 ± 0.03
MSLM 72.3 ± 0.7 / 72.6 5.85 ± 0.12 62.9 ± 2.8 / 64.1 5.56 ± 0.01

PTB
RSLM 77.4 ± 0.7 / 77.6 2.10 ± 0.04 75.7 ± 2.6 / 76.2 1.96 ± 0.00
DMSLM 70.6 ± 6.4 / 73.3 2.36 ± 0.07 67.9 ± 10.6 / 73.8 2.27 ± 0.04
MSLM 71.1 ± 5.6 / 73.6 2.39 ± 0.06 69.3 ± 5.6 / 71.5 2.27 ± 0.01

Table 2: Results on the Peking University Corpus and English Penn Treebank (over 5 random seeds)

performance.3 In the lightly-supervised case, the
MSLM variants learn to trade off a small amount
of Precision for a large gain in Recall, allowing
them to capture more of the true word boundaries
in the data. Given different corpora have different
standards for the coarseness of Chinese segmenta-
tion, this reinforces the need for studies on a wider
selection of datasets.

Because the English results (also in Table 3)
are similar between supervision settings, we only
show the unsupervised variants. Here, the RSLM
shows a definitive advantage in Recall, leading to
overall better performance. The transformer-based
models show equal or higher Precision, but tend to
under-segment, i.e. produce longer words. Exam-
ple model segmentations for PTB can be found in
Table 4. Some intuitions from our error analysis
can be seen here: the moderate Precision of these
models yields some false splits like be + fore
and quest + ion, but all models also seem to
pick up some valid morphological splits not present
in the gold standard (e.g. +able in questionable).
Predictably, rare words with uncommon structure
remain difficult to segment (e.g. asbestos).

6.2 Discussion

For Chinese, the transformer-based SLM exceeds
the recurrent baseline for segmentation quality, by a
moderate amount for the unsupervised setting, and
by a large amount when tuned on gold validation
segmentations. The MSLM also gives stronger
language modeling. Given the large vocabulary
size for Chinese, it is intuitive that the powerful
transformer architecture may make a difference

3This table also shows that though character-wise segmen-
tation quality (i.e. classifying whether a certain character has
a boundary after it) is a useful heuristic, it does not always
scale straightforwardly to word-wise F1 like is traditionally
used (e.g. by the SIGHAN script).

in this difficult language-modeling task. Further,
though the DMSLM achieves similar segmentation
quality, the bidirectional context of the MSLM does
seem to be the source of the best bpc modeling
performance.

In English, on the other hand, recurrent SLMs
seem to retain a slight edge. By median, segmen-
tation quality remains fairly similar between the
three model types, but the RSLM holds a major
language-modeling advantage in our experiments.
Our main hypothesis for the disparity in modeling
performance between Chinese and English comes
down to the nature of the orthography for each. As
noted before, Chinese has a much larger charac-
ter vocabulary. This is because in Chinese, almost
every character is a morpheme itself (i.e. it has
some meaning). English, on the other hand, has a
roughly phonemic writing system, e.g. the letter c
has no inherent meaning outside of a context like
cat.

Intuitively, one can see why this might pose a
limitation on transformers. Without additive or
learned positional encodings, they are essentially
adirectional. In English, cat is completely differ-
ent from act, but this might be difficult to model
for an attention model without robust positional
information. To try to counteract this, we added
dynamic scaling to our static positional encodings,
but without deeper networks or more robust po-
sitional information, the discrepancy in character-
based modeling for phonemic systems may remain.

7 Conclusion

This study provides strong proof-of-concept for
the viability of transfomer-based Masked Segmen-
tal Language Models as an alternative to recurrent
SLMs in their ability to perform joint language
modeling and unsupervised segmentation. MSLMs
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Dataset Model Avg. Word Length Precision Recall

PKU

Gold 1.59 - -
RSLM (unsup.) 1.93 ± 0.02 98.2 ± 0.1 80.8 ± 0.6
DMSLM (unsup.) 1.99 ± 0.04 98.6 ± 0.1 78.5 ± 1.8
MSLM (unsup.) 2.00 ± 0.05 98.5 ± 0.1 78.1 ± 1.9
RSLM (sup.) 1.92 ± 0.02 98.2 ± 0.1 81.3 ± 0.7
DMSLM (sup.) 1.83 ± 0.04 97.5 ± 0.5 84.6 ± 1.5
MSLM (sup.) 1.83 ± 0.01 97.6 ± 0.1 84.5 ± 0.4

PTB

Gold 4.44 - -
RSLM (unsup.) 4.02 ± 0.08 86.1 ± 1.9 95.5 ± 0.1
DMSLM (unsup.) 4.27 ± 0.17 85.4 ± 5.4 88.9 ± 4.6
MSLM (unsup.) 4.29 ± 0.12 86.2 ± 1.5 89.5 ± 3.5

Table 3: Error analysis statistics (over 5 random seeds)

Examples

Gold we ’re talking about years ago before anyone heard of asbestos having any questionable...

RSLM Median we’re talking about years ago be fore any one heard of as best os having any question able
DMSLM Median we’re talking about years ago be fore any one heard of as bestos having any quest ion able
MSLM Median we’re talking about years ago be fore any one heard of as bestos having any quest ion able

Table 4: Example model segmentations from the Penn Treebank

provide the advantage of a parallelizable architec-
ture, and have several open avenues for extending
their utility. To close, we lay out directions for
future work.

The most obvious next step is evaluating
MSLMs on additional segmentation datasets. As
mentioned, the criteria for “wordhood” in Chi-
nese are not agreed upon, thus more experiments
are warranted using corpora with different stan-
dards. Prime candidates include the Chinese Penn
Treebank (Xue et al., 2005), as well as those in-
cluded in the SIGHAN segmentation bakeoff: Mi-
crosoft Research, City University of Hong Kong,
and Academia Sinicia (Emerson, 2005).

The sets used here are also relatively formal
orthographic datasets. An eventual use of SLMs
may be in speech segmentation, but a smaller step
in that direction could be using phonemic tran-
script datasets like the Brent Corpus, also used in
Kawakami et al. (2019). This set consists of phone-
mic transcripts of child-directed English speech
(Brent, 1999). SLMs could also be applied to the
orthographies of more typologically diverse lan-
guages, especially ones with complicated systems
of morphology (e.g. Swahili, Turkish, Hungarian,
Finnish).

Further, though we only test shallow models

here, one of the main advantages of transformers
is their ability to scale to deep architectures due to
their short derivational chains. Thus, extending seg-
mental models to “deep” settings would be more
feasible using MSLMs than RSLMs.

Lastly, Kawakami et al. (2019) propose regular-
ization techniques for SLMs due to low segmen-
tation quality from their “vanilla” models. They
report good findings using a character n-gram “lex-
icon” jointly with expected segment length regu-
larization based on Eisner (2002) and Liang and
Klein (2009). Both techniques are implemented
in our codebase, and we have tested them in pilot
settings. Oddly, neither has given us any gain in
performance over our “vanilla” models. A more ex-
haustive hyperparameter search with these methods
may produce a future benefits as well.

In conclusion, the present study shows strong
potential for the use of MSLMs. They show par-
ticular promise for writing systems with a large in-
ventory of semantic characters (e.g. Chinese), and
we believe that they could be stable competitors of
recurrent models in phonemic-type writing systems
given some mitigation of the relative weakness of
the positional information available in transform-
ers.
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A Training Details

A.1 Data
The datasets used here are sourced from
Kawakami et al. (2019), and can be downloaded
at https://s3.eu-west-2.amazonaws.
com/k-kawakami/seg.zip. Our PKU data
is tokenized slightly differently, and all data used
in our experiments can be found in our project
repository (url redacted).

A.2 Architecture
A dropout rate of 0.1 is applied leading into both
the encoder and the decoder. Transformers use 4
attention heads and a feedforward size of 509 (cho-
sen to come out less than or equal to the number
of parameters in the standard LSTM). This also
includes a 512-parameter linear mapping to learn
the combination proportion of the word and sinu-
soidal positional embeddings. The dropout within
transformer layers is 0.15.

A.3 Initialization
Character embeddings are initialized using CBOW
(Mikolov et al., 2013) on the given training set for
32 epochs, with a window size of 5 for Chinese and
10 for English. Special tokens like <eoseg> that
do not appear in the training corpus are randomly
initialized. These pre-trained embeddings are not
frozen during training.

A.4 Training
For PKU, the learning rates swept are {6e-4, 7e-4,
8e-4, 9e-4, 1e-3, 2e-3}, and for PTB we use {6e-
4, 8e-4, 1e-3, 3e-3, 5e-3, 7e-3}. For Chinese, we
found a linear warmup for 1024 steps was useful,
followed by a linear decay. For English, we apply
simple linear decay from the beginning. Check-
points are taken every 128 steps. A gradient norm
clip threshold of 1.0 is used. Mini-batches are sized
by number of characters rather than number of se-
quences, with a size of 8192 (though this is not
always exact since we do not split up sequences).
The five random seeds used are {2, 3, 5, 8, 13}.

Each model is trained on an Nvidia Tesla M10
GPU with 8GB memory, with the average per-batch
runtime of each model type listed in Table 5.

A.5 Optimal Hyperparameters
The optimal learning rate for each model type,
dataset, and supervision setting are listed in the
Table 6. Parameters are listed by the validation

Model
s / step

PKU PTB

RSLM 2.942 2.177
DMSLM 2.987 2.190
MSLM 2.988 2.200

Table 5: Average runtime per batch in seconds

objective they optimize: segmentation MCC or
language-modeling BPC.

Dataset Model by MCC by BPC

PKU
RSLM 6e-4 9e-4

DMSLM 6e-4 2e-3
MSLM 6e-4 2e-3

PTB
RSLM 7e-3 3e-3

DMSLM 1e-3 8e-4
MSLM 1e-3 6e-4

Table 6: Optimum learning rates
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Abstract

Linguists disagree on whether morphological
representations should be strings or trees. We
argue that tree-based views of morphology can
provide new insights into morphological com-
plexity even in cases where the posited tree
structure closely matches the surface string.
Our argument is based on a subregular case
study of morphologically conditioned allomor-
phy, where the phonological form of some
morpheme (the target) is conditioned by the
presence of some other morpheme (the trigger)
somewhere within the morphosyntactic context.
The trigger and target can either be linearly
adjacent or non-adjacent, and either the trig-
ger precedes the target (inwardly sensitive) or
the target precedes the trigger (outwardly sensi-
tive). When formalized as string transductions,
the only complexity difference is between lo-
cal and non-local allomorphy. Over trees, on
the other hand, we also see a complexity differ-
ence between inwardly sensitive and outwardly
sensitive allomorphy. Just as unboundedness
assumptions can sometimes tease apart patterns
that are equally complex in the finitely bounded
case, tree-based representations can reveal dif-
ferences that disappear over strings.

1 Introduction

Morphology can be taken to operate over either
strings or trees. Consider the simple case of En-
glish undoable, which is ambiguous between not
doable with un- scoping over doable, and can be
undone with -able scoping over undo. If one’s
primary concern is morphotactics, i.e. how mor-
phemes can be arranged to obtain a well-formed
word, then it is sufficient to represent undoable as a
string un+do+able, consisting of three morphemes
in a particular order. But this representation does
not encode the scopal relations between the affixes
un- and -able. Linguists instead use trees to encode
the scopal relations between the affixes un- and

-able, giving us [un[do able]] and [[un do]able]
for each respective interpretation of undoable. But
strings and trees are vastly different data structures
that greatly affect computational complexity. For
instance, every dependency that is context-free over
strings is only regular over trees. This paper ex-
plores the typology of allomorphy to probe how
the choice between strings and trees can affect mor-
phological complexity. Our key insight is that even
in cases where trees seem to add little over strings,
trees can reveal complexity differences between
empirical phenomena that are opaque at the string
level.

Tree-based models are still rare in computa-
tional morphology, where morphological phenom-
ena are usually modeled with finite-state machinery
(Koskenniemi, 1983; Beesley and Karttunen, 2003;
Roark and Sproat, 2007). From this perspective,
morphological dependencies form regular string
languages, and morphological processes can be
computed by 1-way finite-state transducers.1 In
fact, many aspects of morphology are subregular
over strings and fall within remarkably simple sub-
classes of regular string languages and finite-state
transductions (Chandlee, 2014, 2017; Aksënova
et al., 2016; Dolatian et al., 2021).

There is little formal work on evaluating the ex-
pressivity of morphological dependencies and pro-
cesses over tree-based representations. In particu-
lar, the fine-grained notions of subregular complex-
ity have not been applied to tree-based views of
morphology even though many subregular classes
can easily be generalized from strings to trees. Pre-
vious analyses of morphology that implicitly posit
tree structure (Selkirk, 1982, Trost, 1991, a.o.), do
not explore the implications of tree structure for
complexity, either. This paper seeks to demonstrate

1The only major exception is total reduplication (Culy,
1985), which we set aside throughout this paper; see Dolatian
and Heinz (2020) for detailed discussion.
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that this focus on string representations to the exclu-
sion of tree structure means that subtle complexity
differences between phenomena may be missed. It
is not just cases like undoable where trees are use-
ful, but even phenomena where the tree structure
provides seemingly no additional information over
the string representation.

To this end, we contrast string-based and tree-
based views of morphologically conditioned allo-
morphy in terms of their subregular complexity.
Morphologically conditioned allomorphy covers
phenomena where some morpheme (the target)
has multiple possible realizations, the choice of
which is conditioned by the presence of another
morpheme (the trigger) within the word. Cross-
linguistically, morphologically-conditioned allo-
morphy can be parameterized in terms of direction-
ality and the degree of locality between the target
and trigger morpheme (Carstairs, 1987; Bobaljik,
2000, 2012; Bonet and Harbour, 2012; Embick,
2015).2

Table 1: Parameters for morphologically-conditioned
allomorphy between trigger x and target y

Adjacency
Direction

Inward Outward

Local x < y y < x
Non-adjacent x < . . . < y y < . . . < x

If the trigger x is structurally lower than the tar-
get y, then allomorphy is inwardly-sensitive. If
the trigger x is structurally higher than the target
y, then allomorphy is outwardly-sensitive. If the
target and trigger are structurally adjacent, then
allomorphy is locally computed. If the target and
trigger are non-adjacent, and if there can be one
or more intervening morphemes, then the process
is long-distance or non-local. Typologically, local
allomorphy is the most common in both directions.
Non-adjacent allomorphy is significantly less com-
mon, but attested (Božič, 2019).

We find that these four types do not pattern the
same way depending on whether one models them
over strings or trees (see Table 6). When mod-
eled over strings, there is no complexity difference

2Bobaljik (2000) suggest that the directionality difference
correlates with the distinction between phonologically con-
ditioned and morphologically conditioned allomorphy. Fol-
lowing Paster (2006), we take these two splits to form two
separate axes of variation and consider only directionality. The
phonological nature of the trigger should be examined inde-
pendently from the formal characteristics of the computation
involved.

between inwardly and outwardly sensitive allomor-
phy. The only relevant split is whether the trigger
and target are in a local configuration, which corre-
sponds to a difference between input strictly local
(ISL) transductions and sequential transductions.
Over trees, we find the same split. But in addi-
tion we also see a difference between non-local
inwardly sensitive allomorphy and non-local out-
wardly sensitive allomorphy, with the former but
not the latter constituting a sequential tree transduc-
tion.

The paper is organized as follows. Section 2
defines relevant families of string and tree transduc-
ers, including the (to the best of our knowledge)
novel classes of bottom-up and top-down sequen-
tial tree transductions. In §3 and §4, we illustrate
the typological parameters of allomorphy with at-
tested examples from natural languages. In each
section we formalize the respective type of allomor-
phy over strings as well as trees and contrast their
complexity. We then synthesize the main insights
in §5. We conclude in §6.

2 Mathematical preliminaries

We cover several classes of subregular string and
tree transductions in this paper. Due to space con-
straints, we cannot give full definitions of each
class, but the discussion in the subsequent sections
is sufficiently straightforward on a formal level that
the reduced rigor should not impact clarity.

2.1 Subregular string transductions

Subregular string transductions are computed by
finite-state transducers (FSTs) that obey additional
restrictions. One well-known class is the class of
subsequential transductions, but for our purposes
the even more restrictive class of sequential trans-
ductions will do.3

Definition 1 (Sequential) An FST T is left-to-
right sequential iff T is deterministic and all states
are final. We use τ(T ) to denote the transduction
computed by T . An FST T is right-to-left sequen-
tial iff there is a left-to-right sequential FST T ′

such that τ(T ) = {⟨i, o⟩ | ⟨i−1, o−1⟩ ∈ τ(T ′)},
where s−1 is the mirror image of string s. We say
that T (or τ(T )) is sequential iff it is left-to-right
sequential or right-to-left sequential.

3Our definition of sequential is derived from the non-
standard definition of subsequential transducers in Chandlee
(2014), which requires all states to be final.
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If one further limits the state space of a sequen-
tial transducer so that it consists of all and only
those states that record the previous k symbols
in the input string, one obtains an input strictly
k-local (ISL-k) transducer. As pointed out in Chan-
dlee et al. (2018), a transduction is guaranteed to
be ISL-k if it can be described by a finite set of
rewrite rules of the form a → b | u v such that
a, b ∈ Σ, u, v ∈ Σ∗, and the combined length of u
and v is at most k − 1. Crucially, the output of one
rewrite rule cannot serve as the input for another
rewrite rule. All the rules apply in parallel. We say
that a transduction is ISL iff it is ISL-k for some
k ≥ 1.

2.2 Subregular tree transductions
Since the tree transductions encountered in this pa-
per are exceedingly simple, we introduce bottom-
up and top-down tree transductions via examples.
Our generalizations of sequential transductions
from strings to trees then are easily defined as spe-
cial cases of these two well-known types of tree
transducers, full definitions of which can be found
in Comon et al. (2008) and Gécseg and Steinby
(1984), among others.

Suppose our input trees are strictly binary
branching and all nodes are either labeled a, b, or
c. Now consider a transduction that leaves almost
all nodes the same, except that something special
happens to the root of each subtree that contains an
even number of as (not counting the root itself). If
the label of the subtree’s root is b, then it should be
relabeled d. If the label is a, then the left subtree
will be deleted. In addition, every leaf node c in
the input tree is rewritten as v(w,w). Hence the
input tree on the left would become the output tree
on the right.

b

a

b

a a

c

b

a a

b

a

v

w w

d

a a

This transduction can be computed by a bottom-
up tree automaton. We use two states, qo and qe,
which keep track of whether a subtree contains an
odd or an even number of as. Next, we define
transition rules for the leafs: a() → qo(a), b() →
qe(b), and c() → qe(v(w,w)). Let us also add a
rewrite rule for interior node b: b(qo(x), qo(y))→
qe(d(x, y)) expresses that when we encounter a
node labeled b such that the left subtree and the

right subtree both contain an odd number of as (and
thus the whole subtree contains an even number of
as), b should be replaced with a d while keeping
the left subtree x and the right subtree y in the same
position. With these rules, we can already begin to
rewrite the input tree.

b

a

b

qo

a

qo

a

qe

v

w w

b

qo

a

qo

a

b

a

qe

d

a a

qe

v

w w

qe

d

a a

We also need rewrite rules for a as an interior node.
For the concrete case at hand, the relevant tran-
sition rule is a(qe(x), qe(y)) → qo(a(y)), which
removes the left subtree x. We then add a few more
rules to handle the remaining cases. For example,
b(qo(x), qe(y)) → qo(b(x, y)) ensures that noth-
ing is changed when a subtree rooted in b does not
contain an even number of as.

b

qo

a

v

w w

qe

d

a a

qo

b

a

v

w w

d

a a

If qo is a final state, then the subtree beneath it is
chosen as the output of the transformation, other-
wise it is rejected.

Now consider instead the case of a top-down
transducer, which rewrites the input tree from the
root towards the leafs. Assume the same input tree
as before, but this time something special happens
when the root of a subtree is dominated by an odd
number of bs (not counting the root itself). In this
case, b is rewritten as d, and c is replaced with
v(w,w). In addition, a with two daughters has the
left one deleted. This will produce the very same
output tree as before, but it does so in a different
manner. First, we always start with an initial state
qe, and we set qe(b(x, y))→ b(qo(x), qo(y)).

qe

b

a

b

a a

c

b

a a

b

qo

a

b

a a

c

qo

b

a a
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Next we add one rule for a and one for b:
qo(a(x, y)) → a(qo(y)) and qo(b(x, y)) →
d(qe(x), qe(y)). This leaves us will only leaf
nodes to rewrite, which is handled by the rules
qo(c())→ v(w,w) and qo(a())→ a.

b

a

qo

c

b

qo

a

qo

a

b

a

v

w w

b

a a

The tree is a valid output for the input because we
were able to process the whole tree from the root
to all its leaves.

Of course we would have to add more rules to
both transducers to also cover the configurations
that do not arise in our toy examples. But even
then the transducers would still be deterministic:
given two transitions rules of the form a→ u and
b → v, u ̸= v implies a ̸= b (and in addition, the
top-down tree automaton has exactly one initial
state). In fact, our two example transductions sat-
isfy additional properties that make them natural
analogs of sequential string transductions.
Definition 2 (Tree sequential) A deterministic
bottom-up tree transducer is bottom-up sequential
iff all its states are final. A deterministic top-down
tree transducer is top-down sequential iff it holds
for every state q and every leaf symbol σ that the
transducer has a transition rule q(σ())→ t, where
t is some tree not containing any states.

Finally, we also need a tree analogue of ISL
string transductions. We adopt the definition in
Graf (2020), but since it spans multiple pages, we
only convey the intuition here. An ISL tree trans-
duction is state-free in the sense that what a given
node should be rewritten as is fully determined by
its label and the local context. For the purposes
of this paper, we can limit this even further to just
the class of ISL tree transductions that only relabel
nodes but do not change the structure of the input
tree. As a concrete example, consider this rewrite
rule:

b

c a

d e

→ f

This says that a node that is labeled a is relabeled
as f if the node has b as its mother, c as its left sister,
d as its left daughter, e as its right daughter, and
the node has no other sisters or daughters.

3 Inwardly-sensitive allomorphy

We now turn to local (§3.1) and non-local
(§3.2) inwardly-sensitive allomorphy, followed
by outwardly-sensitive allomorphy in §4. Lo-
cal inwardly-sensitive allomorphy can be modeled
with ISL FSTs and by ISL tree-transducers, sug-
gesting that the choice between strings and trees
is innocuous here. Non-local inwardly-sensitive
allomorphy only falls within those classes if one
assumes a finite upper bound. Otherwise, if no
finite bound is assumed, then ISL is insufficient,
but the allomorphy phenomena can still be cap-
tured by left-to-right sequential string transducers
or bottom-up sequential tree transducers.

3.1 Local and inwardly-sensitive

As previously indicated in Table 1, an allomorphic
pattern is local and inwardly-sensitive iff the con-
ditioning morpheme (the trigger x) is structurally
below the alternating morpheme (the target y) and
x is structurally adjacent to y. Table 2 illustrates
this with the past suffix alternation in Latin.

Table 2: Local inwardly-sensitive allomorphy from
Latin (Embick, 2015, ch4.6)

imperfect pluperfect
laud-ā-ba-m laud-ā-ve-ra-m
praise-v-PSTy-1SG praise-v-ASPx-PSTy-1SG

T[+past]→-ba T[+past]→-ra / ASP[perf]

Following Embick (2015), the Latin past suffix
is by default -ba. After the aspect suffix -ve, it is
instead realized as -ra. In terms of rewrite rules,
we have the following:

1. (a) PST ⇒ -ra | ASP

(b) PST ⇒ -ba |W

Here, and throughout the rest of the paper, we
use W to denote any morpheme that is irrelevant
to the alternation, e.g. any morphemes that are not
ASP or PST in this example. Since the alternation
can be described by finitely many rewrite rules with
a context of size 1, it is an ISL-2 string transduc-
tion.

The allomorphy is also ISL over trees, but the
size of the window increases slightly to ISL-3. Sup-
pose that the two forms in Table 2 have the under-
lying tree structures below.
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2. (a) (b)

laud v
PST

1SG

laud v
ASP

PST
1SG

In order to derive the pattern in Table 2 given this
tree structure, an ISL tree transducer has to include
the rewrite rules below. They are ISL-3 rewrite
rules because the depth of the tree on the left-hand
side is 3.

3. ISL-3 rewrite rules for Latin Past

(a)
ASP

PST
7→ ra

(b)
W PST

7→ ba

3.2 Non-adjacent and inwardly-sensitive
We now turn to non-adjacent inwardly-sensitive
allomorphy. Recall that in these cases, the trigger
x and target y are not adjacent, and x is structurally
above y. We illustrate this with an example from
Kiowa.

Table 3: Non-adjacent inwardly-sensitive allomorphy
from Kiowa (Bonet and Harbour, 2012, 231)

hé́ib-e-gųų-mOO-tOO hé́ib-é-gųų-mOO-t!OO
enter-TRx-DISTR-NEG-MODy enter-INTRx-DISTR-NEG-MODy

MOD→-tOO / TR . . . MOD→-t!OO / INTR . . .

The modality suffix (target y) surfaces as -tOO
(-t!OO) if the verb is transitive (intransitive). Transi-
tivity is marked on the post-root suffix (trigger x).
The trigger and target are not adjacent.

Over strings, the alternation for the attested
Kiowa examples would be ISL-4. The context must
span at least four 4 morphemes because the target
and trigger are separated by at most 2 interveners.
Similarly, over a tree, this function can be captured
by an ISL-5 transduction. The crucial rewrite rules
are shown below. These rules indicate that MOD

is rewritten as tOO if there is a TR with (i) no inter-
vener, or (ii) one intervener or (iii) two interveners.
In all other cases, MOD is rewritten as tOO.

4. (a)
TR MOD

7→ -tOO

(b)

TR
MOD

7→ -tOO

(c)

TR

MOD
7→ -tOO

(d)

W W W
W

MOD
7→ -t!OO

This treatment works for the observed cases as
there is necessarily an upper bound on how far the
trigger and the target can be apart. But it fails to
capture the fact that the interveners do not affect
the allomorphy at all. Instead, we may assume that
there is no upper bound on the number of interven-
ing morphemes. In that case, Kiowa allomorphy is
no longer ISL, neither over strings nor over trees.

That said, over strings the Kiowa allomorphy
pattern still falls within the class of left-to-right
sequential transductions. The corresponding trans-
ducer is shown in Figure 1.

Figure 1: Sequential FST (left-to-right) for Kiowa

q0 qTR

W:W
MOD:t!OO

TR:TR

W:W
TR:TR

MOD:tOO

Over trees, it is also a fairly simple transduc-
tion and is, in fact, bottom-up sequential. In order
to capture the allomorphy conditioned by TR, the
transducer has to distinguish between a state qTR
where it has already processed TR and a state qW
where it has not. If the transducer sees MOD in
state qTR, MOD is rewritten as tOO. Whereas if it
sees MOD in state qW , MOD is transformed into
t!OO.

Note, however, that the crucial morphemes, MOD

and TR, do not stand in a dominance relation if
one assumes a phrase structure tree as depicted in
Figure 2.

Figure 2: The phrase structure tree for the Kiowa modal-
ity suffixes

√
TR

(D)
(N)

MOD

Thus, even if a bottom-up sequential transducer
processes TR and moves to the state qTR, the trans-
ducer reads MOD separately from that state transi-
tion. The transducer thus needs to delay its output
when it reads MOD: instead of immediately choos-
ing an output for MOD, it switches to a state qMOD
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without outputting anything. Then, at the next node,
if the state from the left branch is qTR, the trans-
ducer outputs a tree such that its right branch is
tOO. If the state from the left branch is not qTR, on
the other hand, then the transducer outputs a tree
with the right branch t!OO. The relevant transition
rules are shown below, with · as the label of interior
nodes.

5. (a) MOD()→ qMOD()

(b) TR()→ qTR(TR)

(c) W ()→ qW (W )

(d) ·(qTR(x), qMOD(y))
→ qTR(·(x, -tOO))

(e) ·(qW (x), qMOD(y))
→ qW (·(x,-t!OO))

In sum, the move from a local to a non-local
phenomenon continues the parallelism already ob-
served in the local case. Local inwardly-sensitive
allomorphy is ISL over strings as well as trees, and
its non-local counterpart is left-to-right sequential
over strings or bottom-up sequential over trees. The
only noteworthy difference is that the bottom-up
sequential transducer has to make use of a delayed
output strategy. While this may seem innocuous,
this will be the decisive reason in §4.2 why non-
local outwardly-sensitive allomorphy over trees is
more complex.

4 Outwardly-sensitive allomorphy

Mirroring inwardly-sensitive allomorphy,
outwardly-sensitive allomorphy is either local
(§4.1) or non-local (§4.2). As we will see, local
patterns are once again ISL over strings as well as
trees. If we model non-local patterns as involving
potentially unbounded distances between the target
and trigger, then these patterns are sequential over
strings, but not necessarily over trees.

4.1 Local and outwardly-sensitive

An allomorphic pattern is local and outwardly-
sensitive iff the conditioning morpheme (the trigger
x) is structurally above the alternating morpheme
(the target y), and x is structurally adjacent to y.
Table 4 gives an example from Hungarian: the plu-
ral suffix surfaces as -k by default but must be -ai
before the 1SG possessive suffix -m.

Table 4: Local outwardly-sensitive allomorphy from
Hungarian (Carstairs 1987, 165; Embick 2010, 62)

ruhá-m ruhá-k ruha-ái-m
dress-POSSx dress-PLy dress-PLy-POSSx

Over strings, the above phenomenon is ISL-2 as
it can be described by the following rewrite rules:

6. (a) PL → ai | POSS1SG

(b) PL → k | W (where W may also de-
note the end of the string).

Over trees, the Hungarian plural suffix alterna-
tion is ISL-3. Assume once again a right-linear
structure where each affix is the right sibling of a
subtree containing all the material to its left. The
possessive affix is the right sibling of the interior
node that immediately dominates the plural suffix.
Hence an ISL tree transduction for the pattern in
Table 4 must include the plural alternation rules
shown in 7 (⋊ indicates that the node is the root).
The depth of the context specified in the left-hand
side of these rules is at most 3, and hence the plural
alternation is ISL-3.

7. (a)
PL

POSS
7→ ai

(b)
PL

W
7→ k

(c) ⋊

PL

7→ k

4.2 Non-adjacent and outwardly-sensitive
We now consider the case of outwardly-sensitive
allomorphy where the trigger x is still above the
target y, but no longer string-adjacent to it. We
illustrate with Slovenian.

Table 5: Non-adjacent outwardly-sensitive allomorphy
from Slovenian (Božič, 2016, 2019, 501)

žanj-e-∅-m ž-e-l-a
reapy-ASP-PRES-2P.SG reapy-ASP-PTCx-F.SG√
reap→žanj

√
reap→ž / . . . PTC

The root ‘reap’ surfaces as žanj by default. It
surfaces as ž when the participle suffix -l is present.
The root and suffix are not adjacent but are sepa-
rated by an aspect suffix.

As with Kiowa’s inwardly-conditioned non-
adjacent allomorphy in §3.2, the above case can be
analyzed as ISL-k with a larger value for k. Over
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strings, it would be ISL-3, with the central rewrite
rule being

√
reap→ W PTC. Over trees, the alter-

nation is also ISL-3, as is evidenced by the relevant
rewrite rules below.

8. (a)
√
reap

POSS
7→ ž

(b)
√
reap

W
7→ žanj

If, for the sake of argument, we treat this allomor-
phy as truly long-distance, then ISL is no longer
sufficient. But as in the case of inwardly-sensitive
non-local allomorphy, the parallel between strings
and trees remains as we are dealing with a se-
quential transduction in both cases. The sequen-
tial string transducer is shown in Figure 3. Note
that this transducer operates right-to-left, whereas
inwardly-sensitive non-local allomorphy is left-to-
right sequential.

Figure 3: Sequential transducer (right-to-left) for Slove-
nian root allomorphy

q0 qPOSS

W:W√
reap:žanj

POSS:POSS

W:W
POSS:POSS√
reap:ž

When operating with trees, we observe a curi-
ous split: sequentiality hinges on whether interior
nodes are labeled with projections of affixes. Sup-
pose that trees are labeled in the manner shown
in Figure 4, where the the tree’s root has the label
PTCP and the suffix has PTC.

Figure 4: A phrase structure tree for Slovenian root
allomorphy

PTCP

žanj (ASP)
PTC

In this case, it is easy to provide a top-down
sequential tree transducer for the Slovenian root
allomorphy. By default, the transducer is in state
qW . When encountering the node PTCP, the trans-
ducer changes to a new state qPTC, which then
gets passed down into the subtrees along both

branches. We then have two distinct rewrite rules
such that qW (

√
reap) is rewritten as žanj, whereas

qPTC(
√
reap) results in ž. If PTCP is present in

the tree, then the transducer, by virtue of moving
from the tree root towards the leaves, must have en-
countered it before reaching the morphological root√
reap. The transducer will thus correctly rewrite

it as ž in these cases, and only these cases. The key
transition rules are explicitly listed in 9a–9c.

9. (a) qW (PTCP (x, y))
→ PTCP [qPTC(x), qPTC(y)]

(b) qW (
√
reap)→ žanj

(c) qPTC(
√
reap)→ ž

But on the other hand, without labels like PTCP,
the alternation is not top-down sequential. In fact,
it is not even top-down deterministic. The prob-
lem is that top-down transition rules are of the
form q(σ(x1, . . . , xn)) → ω(q1(x1), . . . , q2(x2)).
This means that the state assigned to a daughter
xi depends only on the label of its mother, and
the state assigned to the mother. Neither the la-
bel of xi itself, nor the labels of any of its sib-
lings are taken into consideration. But this is
exactly what is needed in the case of Slovenian.
Without interior labels like PTCP, the rewrite rules
would have to be qW (·(x,W )→ ·(qW (x),W ) and
qW (·(x, PTC))→ ·(qPTC(x), PTC). The state that
controls the processing of the subtree x must be
contingent on the label of the right daughter (like
PTC), and this is not possible with deterministic
top-down transducers, which top-down sequential
transducers are a proper subclass of.

However, one could equip the transducer with
a finite look-ahead of depth 1, which would al-
low it to inspect the labels of daughters, too, before
assigning states. This would be a sensing tree trans-
ducer as defined in Graf and De Santo (2019). Note
that the need for look-ahead does not arise with
sequential string transductions because they can
emulate finite look-ahead by delaying their output;
and to a more limited extent, this is also an option
for the sequential bottom-up transducer. Inwardly-
sensitive and outwardly-sensitive allomorphy thus
seem to exhibit exactly the same complexity in the
string case, but diverge at least for non-local phe-
nomena if one switches from strings to trees. The
additional complexity of trees brings to light an
additional challenge that is not readily apparent in
the string case.
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Table 6: Summary of formal results for directionality and locality of allomorphy types; patterns marked with ∗ are
ISL if one does not assume unboundedness

Pattern String-based computation Tree-based computation
Inward & local ISL ISL
Inward & non-local Left-to-right sequential∗ bottom-up sequential∗
Outward & local ISL ISL
Outward & non-local Right-to-left sequential∗ top-down sequential

or STFTT∗ (sensing)

5 Discussion

This paper surveyed the attested categories of local
and non-local allomorphy, with the key findings
summarized in Table 6. Our central insight is that
even though the choice between strings and trees
seems innocuous given how closely our right-linear
tree structures mirror the strings, it does reveal a dif-
ference in complexity between inwardly-sensitive
and outwardly-sensitive allomorphy. Hence the
use of trees can be motivated on the same grounds
as unboundedness assumptions, namely that it re-
veals complexity differences that would be missed
otherwise.

The relevant complexity difference may seem
minor compared to, say, the difference between reg-
ular and context-free dependencies, which greatly
matters for practical purposes such as parsing.
However, this is true for most subregular complex-
ity differences. Since all subregular dependencies
and transductions can be handled with finite-state
machinery, subregular distinctions do not impact
efficiency. That does not mean, though, that the
distinctions are irrelevant. They affect learnabil-
ity, and they make different typological predictions
about what kind of patterns we should expect to
find across languages. One way to construe our
finding, then, is that it urges us to look for em-
pirical differences between inward non-local and
outward non-local allomorphy that can be traced
back to the gap in computational complexity.

Of course this argument hinges on the assump-
tion that these phenomena are indeed unbounded
and operate over trees. Unboundedness is far from
a given because inflectional morphology in natural
language morphology usually exhibits limits on the
linear distance between the targets and triggers of
allomorphy. What is unclear is whether this is an
intrinsic limitation of allomorphy itself or an acci-
dental confluence of multiple independent factors.

Our findings provide a modus tollens argument
to address this: if we do find differences between

inwardly-sensitive and outwardly-sensitive allo-
morphy that can be explained in terms of the sub-
regular complexity split, then that argues in favor
of underlying unboundedness and morphological
tree structures because that is the only case where
we find a difference in subregular complexity. If
there are no discernible differences, then either un-
boundedness or tree structure should be jettisoned
for inflectional morphology.

If there is evidence for both unboundedness and
tree structure, that would be an interesting paral-
lel to syntax. In fact, the split between inwardly-
sensitive and outwardly-sensitive allomorphy al-
ready has a connection to syntax. The sensing tree
transducers of Graf and De Santo (2019) were mo-
tivated by the desire to address shortcomings of de-
terministic top-down transducers for syntax, so it is
interesting that they are also needed for tree-based
morphology with the unboundedness assumption.

While the argument we present can be made
with the coarse split between ISL and sequential
transductions, it would be interesting to explore
a possible middle-ground between the two. Tier-
based strict locality has been explored in various
areas — including phonology, morphology, and
syntax — as an extension of the strict locality un-
derpinning ISL (Heinz et al., 2011; Aksënova et al.,
2016; Graf, 2018; Burness et al., 2021; Dolatian
and Guekguezian, 2021). The non-local case of
allomorphy discussed in this paper may be describ-
able along those lines. So far, no counterpart has
been defined for tree transductions, but once this
happens, the issues explored in this paper should
be revisited from the perspective of tier-based strict
locality.

6 Conclusion

We have investigated four types of allmorphy from
the perspective of strings and trees: local and non-
local inwardly-sensitive allomorphy, and local and
non-local outwardly-sensitive allomorphy. Even
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though our tree structures closely track the sur-
face strings, our findings are not the same over
the two types of representations. While the split
between local and non-local allomorphy always
leads to a complexity difference if one assumes
unboundedness, inwardly- and outwardly-sensitive
allomorphy are equally complex over strings but
not over trees. If there are empirical differences
between these allomorphy types that can be derived
from the split in complexity, that would provide
evidence for both unboundedness and tree struc-
ture in inflectional morphology. Our study thus
highlights the importance of representations even
in cases where the difference of representations
seems innocuous at a first glance. An approach
firmly rooted in trees and unboundendess may re-
veal subtle computational differences that would
be missed otherwise.

Acknowledgments

Thomas Graf’s work on this project was supported
by the National Science Foundation under Grant
No. BCS-1845344.

References
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Abstract
Word embeddings are growing to be a crucial
resource in the field of NLP for any language.
This work introduces a novel technique for
static subword embeddings transfer for Indic
languages from a relatively higher resource lan-
guage to a genealogically related low resource
language. We primarily work with Hindi-
Marathi, simulating a low-resource scenario
for Marathi, and confirm observed trends on
Nepali. We demonstrate the consistent benefits
of unsupervised morphemic segmentation on
both source and target sides over the treatment
performed by fastText. Our best-performing
approach uses an EM-style approach to learn-
ing bilingual subword embeddings; we also
show, for the first time, that a trivial “copy-
and-paste” embeddings transfer based on even
perfect bilingual lexicons is inadequate in cap-
turing language-specific relationships. We find
that our approach substantially outperforms the
fastText baselines for both Marathi and Nepali
on the Word Similarity task as well as WordNet-
Based Synonymy Tests; on the former task,
its performance for Marathi is close to that of
pretrained fastText embeddings that use three
orders of magnitude more Marathi data.

1 Introduction

Subword-level embeddings are useful for many
tasks, but require large amounts of monolingual
data to train. While about 15 Indian languages
such as Hindi, Bengali, and Marathi have the re-
quired magnitudes of data, most Indian languages
are highly under-resourced; they have very little
monolingual data and almost no parallel data, and
not much digitization. For example, to the best
of our knowledge, Marwadi, spoken by 14M peo-
ple, has no available monolingual corpus; Konkani,
spoken by about 3M people, has a monolingual cor-
pus containing 3M tokens, and no parallel data.1

1The Opus Corpus (Tiedemann, 2012), one of the most
popular collection of parallel texts, contains no parallel data
for languages such as Konkani or Bundeli.

However, many of these languages have very close
syntactic, morphological, and lexical connections
to surrounding languages including the mentioned
high-resource languages. Our approach aims to
leverage these connections in order to build embed-
dings for these low-resource languages, in the hope
that this will aid further development of other NLP
tools for these languages.2

While there is a growing interest in shifting
towards contextual embeddings with BERT (De-
vlin et al., 2018), as well as extending them to
low-resource languages, static embeddings retain
value in being lightweight and less computation-
ally expensive, especially as studies show that
they can perform comparably to contextual em-
beddings in certain settings (Arora et al., 2020)
and encode similar linguistic information (Miaschi
and Dell’Orletta, 2020). Thus, an efficient method
to develop static embeddings for languages with
minimal or no NLP research remains a relevant
step to building a basic range of resources in these
languages. In this study, we primarily work with
Hindi-Marathi as our genealogically and cultur-
ally related language pair, and use asymmetric
resources (large data for Hindi, artificially small
monolingual data for Marathi), confirming our final
results for Nepali.

Most languages of the Indic/Indo-Aryan family,
spoken over most parts of North India, are mor-
phologically rich, including Hindi, Marathi, and
Nepali. This means that while related language
pairs may have a high number of cognates, these
may be “disguised” by surrounding inflectional
or derivational morphemes. Therefore, even with
an identical underlying syntactic structure, lexi-
cal correspondences between languages may be
obscured or rendered incongruent. Further, when
working with small data, the corpus frequencies of

2While some languages may have a little parallel data,
we assume none, so as to cater to languages that are just
undergoing digitization.
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fully inflected surface forms would be much less
reliable than those of stem and affix morphemes,
intuitively resulting in a less robust embeddings
transfer. These factors add weight to the intuition
that many Indic languages share morpheme-level
correspondences with each other. This motivated
us to apply unsupervised morphemic segmentation
on both the source and target language data; we
demonstrate the benefits of doing so in our evalua-
tions. Note that this also makes it natural to work
with subword-level embeddings rather than word
embeddings; studies show that the former have an
advantage over word embeddings especially for
morphologically rich languages. (Chaudhary et al.,
2018; Zhu et al., 2019b; Li et al., 2018).

The idea of the transfer is to project the low-
resource language (LRL) subwords into a shared
bilingual space with the high-resource language
(HRL). We first attempt a trivial transfer that simply
finds the “closest” HRL subword for each LRL sub-
word, and copies its embedding. We demonstrate
that this approach, while tempting, is not enough
to capture the relationships between even identi-
cal words in both languages; embeddings spaces
appear to encode more complex information that
this approach would suggest. For our best perform-
ing approach, we adapt the EM-style algorithm
described in Artetxe et al. (2017) to a subword-
setting; the algorithm alternately optimizes the dis-
tance between pairs belonging to a bilingual map-
ping, and generates a bilingual mapping between
words from the resulting bilingual embeddings. As
far as we know, our work is the first to apply this
algorithm in the context of embeddings transfer.
We compare the resulting bilingual embeddings
to data-intensive fastText models using the Word
Similarity and WordNet-Based Synonymy Tests
for Marathi; for Nepali, we evaluate on the latter
task due to the lack of a Word Similiarity dataset.

2 Previous Work

2.1 Subwords in Embedding Spaces

In a seminal work, Bojanowski et al. (2017) present
fastText embeddings, that work at a subword level
by representing words as bags of chargrams. Kudo
and Richardson (2018) present a subword tokenizer
for neural text processing, and Kudo (2018) shows
the benefits of using multiple subword segmenta-
tions in neural machine translation, especially in
low-resource settings. Zhu et al. (2019b) look at the
segmentation of a word, such as using chargrams,

Byte Pair Encoding (BPE) (Gage, 1994; Sennrich
et al., 2016), Morfessor, as well as the composi-
tion of the subword embeddings (addition, averag-
ing, etc.) to construct the final word vector, and
conclude that the best performing configuration is
highly language and task dependent. A subsequent
work (Zhu et al., 2019a) focuses on LRLs and finds
the combination of BPE and addition largely robust,
although they once again note language-dependent
variability. They also find that encoding “affix” in-
formation with positional embeddings is beneficial,
hinting that the embedding space may distinguish
the importance of different kinds of subwords.

2.2 Cross-lingual embeddings
The problem of learning bilingual embeddings has
usually been studied in a symmetric resources sce-
nario. Xu et al. (2018) propose an unsupervised
method of mapping two sets of monolingual static
embeddings into a shared space; they present re-
sults for English paired with Spanish, Chinese, and
French, evaluated on the bilingual lexicon induc-
tion and Word Similarity tasks. Chaudhary et al.
(2018) experiment with joint and transfer learn-
ing for training bilingual subword embeddings for
pairs of Indic LRLs from scratch, by projecting
different scripts into the International Phonetic Al-
phabet (IPA). Kayi et al. (2020) present an exten-
sion of the BiSkip cross-lingual learning objec-
tive that leverages subword information to train
English-paired bilingual embeddings for LRLs, us-
ing around 30K parallel sentences. We describe
Artetxe et al. (2017) in some detail below, since we
use this algorithm in our approach. There is also
growing interest in multilingual contextual embed-
dings (Devlin et al., 2018; Kakwani et al., 2020;
Ruder et al., 2019) such as multilingual BERT;
Wang et al. (2020) propose an approach to extend
multilingual BERT to low-resource languages with-
out retraining it, Pfeiffer et al. (2020) suggest an
approach towards incorporating previously unseen
scripts into a multilingual BERT model.

2.3 Bilingual Lexicon Induction
This task is closely related to that of embeddings
transfer; we see that these two tasks leverage each
other in the literature. Older works such as Koehn
and Knight (2002) and Haghighi et al. (2008) use
monolingual features such as frequency heuristics,
orthographic features, tags, and context vectors in
order to find bilingual mappings for mainly Eu-
ropean language pairs. Hauer et al. (2017) use
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word2vec embeddings (Mikolov et al., 2013) in
order to iteratively train a translation matrix.

2.4 Summarizing Artetxe et al. (2017)

Artetxe et al. (2017) present an EM-style approach
to training bilingual embeddings from monolingual
embeddings without parallel data; however, it as-
sumes high quality monolingual embeddings for
both languages trained on at least 1 billion word
corpora each. Given the two sets of word embed-
dings, they find a bilingual dictionary D by choos-
ing the closest target word for each source word
with respect to the cosine distance between source
and target word embeddings. In the next step, they
use the dictionary D to calculate a linear transfor-
mation matrix that minimizes the sum of cosine
distances of the embeddings of all word pairs in
D. They apply an orthogonality constraint on the
transformation matrix in order to preserve mono-
lingual invariance i.e. to prevent the degradation
of the monolingual relationships in the resulting
embedding space. These steps are repeated until
convergence.

3 Note on languages

Hindi, spoken by about 340M people, is related
to other large Indic languages such as Marathi,
Punjabi, and Bangla, and has 48 recognized “di-
alects” over India, which makes it a good choice
for the HRL in this project. Hindi is written
in the Devanagari script, which is also used for
over 120 other (often related) languages, including
Marathi and Nepali. Hindi, Marathi, and Nepali
share morpho-syntactic properties common within
the Indic language family, such as (split) erga-
tivity and primarily SOV structure with reorder-
ing allowed under constraints. For all three lan-
guages, (some) nouns inflect for case and num-
ber, verbs inflects for tense, number, gender, and
person, and adjectives inflect for gender and num-
ber, and case in Hindi and Marathi. Some differ-
ences are that Marathi and Nepali exhibit more
agglutinative tendencies than Hindi, both allow-
ing suffix stacking with certain boundary changes.
For example, a Marathi token may be a sequence
of verb+nominalizing-morpheme+case-marker or
noun+postposition+genitive, whereas Hindi sepa-
rates these morphemes into tokens in many cases
(while still exhibiting inflectional and some deriva-
tional morphology). See Figure 1.

Figure 1: Tokens in Marathi and Hindi. The stem for
“do” is the same (i.e. “kar”) in both languages; Marathi
uses one token whereas Hindi uses three.

4 Data and Resources

4.1 Training Data

For Hindi, we used 1M sentences containing
roughly 18M tokens from the HindMonoCorp 0.5
(Bojar et al., 2014). For Marathi, we used 50K
sentences containing 0.8M tokens from the Indic-
Corp Marathi monolingual dataset (Kakwani et al.,
2020)3, and for Nepali, we use 1.4M tokens from
the Wortschatz corpus (Goldhahn et al., 2012). We
choose these numbers for Marathi and Nepali be-
cause it seems to be the ballpark of the amount
of monolingual data collected for newly digitized
Indic languages.4 All the above corpora, as well as
following resources, are in the Devanagari script.

4.2 Pretrained Embeddings

We use pretrained fastText embeddings for Hindi,
presented by Grave et al. (2018), in line with the
assumption that we have good quality resources for
the HRL. These embeddings (HIN-PRETR-2G5) are
trained on the Wikipedia corpus as well as Com-
mon Crawl, containing a total of about 2G tokens.
We also use the pretrained fastText embeddings
(MAR-PRETR-334M, NEP-PRETR-393M) presented in
the same work, solely for the purpose of evalua-
tion; these embeddings are trained on 334M tokens
(Marathi) and 393M tokens (Nepali).

4.3 Evaluation datasets

4.3.1 Word Similarity Dataset
A Word Similarity dataset is a set of word pairs,
each annotated by humans according to the de-

3Note that we do not lemmatize our data; good-quality
lemmatizers are a scarce resource that we cannot assume for
the LRL.

4See https://www.ldcil.org/
resourcesTextCorp.aspx for efforts on collect-
ing data on under-resourced languages such as Bodo, Dogri,
Santhali, etc.

5We use the following shorthand to refer to our mod-
els unless otherwise specified: <language>-<method_label>-
<tokens_of_training_data>. There may be two data slots
in the case of bilinugal embeddings, containing amount of
Marathi/Nepali and Hindi data respectively.
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gree of similarity (integers ranging from 1 to 10)
between the two words. Evaluation is usually per-
formed by finding the cosine similarity between the
two words vectors, and calculating the Spearman’s
Rank Correlation between the human and model
“similarity” judgments for all word pairs. We report
this correlation multiplied by 100.

We present results on the Marathi Word Sim-
ilarity dataset presented by Akhtar et al. (2017),
containing 104 word pairs. This dataset is cre-
ated by translating a subset of the WordSimilarity-
353 English dataset into Marathi by native Marathi
speakers, and re-evaluating the similarity scores by
8 native speaker annotators.6

4.3.2 WordNet-Based Synonymy Tests
We also perform WordNet-Based Synonymy Tests
(WBST) (Piasecki et al., 2018) for Marathi and
Nepali. A WBST consists of a set of “questions”
consisting of one “query word”, and N options, all
of which occur MIN times in the corpus. One of
the options is a synonym or closely related to the
query word, while the rest are “distracters”, or ran-
domly selected words. The task is to identify the
synonym; we do this by calculating the cosine dis-
tances between the query word vector and each of
the options and selecting the closest. The reported
score is the percentage of correctly answered ques-
tions. We use the IndoWordNet,7 built by Sinha
et al. (2006); Debasri et al. (2002), for generating
the WBST.

5 Segmentation

5.1 Motivation

Due to the fusional/agglutinative nature of the lan-
guages, as well as the morphological and tokeniza-
tion differences as discussed in Section 3, we ap-
ply unsupervised morphemic segmentation to both
source and target side data. This is motivated by
the need to handle data scarcity on the LRL side,
since fully inflected tokens are much rarer than
their constituent subwords; we see that the unseg-
mented Marathi and Nepali data have 100K and
140K distinct tokens respectively, but only 20K
and 40K distinct “morphemes”, respectively, post-
segmentation.

The morphemic segmentation is also an attempt
to isolate the morphs in the language data since,

6not available for Nepali.
7See http://www.cfilt.iitb.ac.in/

WordNet/webmwn/

Figure 2: Shared subwords in Hindi and Marathi cor-
pora; numbering up to 17.23% of the total # of sub-
words in the Hindi corpus. Common subwords are well-
distributed over the range.

according to our hypothesis, it is easier to find cor-
respondences between the two languages at this
level rather than at the token level. This is clear in
the fact that 50% of the subwords in the Marathi
segmented data also occur in the Hindi corpus,
whereas for the unsegmented data, this is only 20%
of tokens. For Nepali, the difference is lower, in
particular, 40% and 20% respectively. See Fig-
ures 2 and 3 for a visualisation of the frequency
range of the common subwords over that of all
subwords in the Hindi and Marathi corpora respec-
tively. Finally, we see that while the mean length
of subwords in the Marathi and Hindi corpora are
5.02 and 4.72 respectively, the mean length of com-
mon subwords is 3.95; this indicates that shorter
subwords are (naturally) more likely to be common
than longer counterparts. We see similar numbers
for Nepali.

The most obvious fallout to attempting static
embedding transfer at the subword level is morpho-
logical homonymy i.e. morphs that may have more
than one “meaning”, and therefore deserve more
than one static embedding.8 There are many ex-
amples of such morphs, e.g. /te/ is both the (free)
third person plural pronoun, as well as the (bound)
first person female present tense morph in Marathi.

5.2 Tools and evaluation

We experimented with BPE and Morfessor and de-
cided to use the latter, since BPE seemed unable to
preserve longer morphs regardless of parameter set-
tings. However, this decision may vary according
to language type. We perform a manual evaluation

8This is of course a general problem with static embed-
dings; however, it is exacerbated at the level of subwords,
especially imperfectly segmented, since they are shorter and
more multifunctional, as it were, than longer lexemes.
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Figure 3: Shared Hindi-Marathi subwords, numbering
up to 40.39% of the total # of subwords in the Marathi
corpus. As in Figure 2, we see a distribution over the fre-
quency range with the bulk in the mid-to-low frequency
range.

of the resulting Marathi segmentation9 over 100
words sampled by frequency, which shows 72.6%
precision and 64.9% recall. True and false posi-
tives are counted with respect to morph boundaries
rather than at the word level, and each boundary
prediction contributes equally to precision/recall.
61% of words are segmented completely correctly.

6 Approach

As baseline, we train fastText models on the avail-
able tokenized data (MAR-BASE-0.8M, NEP-BASE-

1.4M) for both languages. We work with 300-
dimensional embeddings for all experiments.10

6.1 Normalized Edit Distance (NED)
Approach (Marathi)

Our initial experiments were performed on Hindi-
Marathi. The NED approach is based on finding
a bilingual subword-level mapping; it takes advan-
tage of the high number of cognates and borrowings
between related languages as well as the common
script. Its primary intuition is that since the lan-
guages share not only lexical items but also syn-
tactic and morphological properties, embedding
vectors can essentially be “copied” over to the LRL
from the HRL.

For each Marathi morph, we choose the Hindi
subword with the minimum NED from it. NED is
calculated in the following way:

NED(l, h) =
edit_distance(l, h)

max(length(l), length(h))

9The authors do not speak Nepali and are therefore unable
to provide a manual evaluation.

10Repeating some experiments for 100 dimensional em-
beddings spaces, we observe similar trends, with a generally
lower performance.

To obtain the embedding of any Marathi word,
we first segment it. For each subword, we look for
the closest Hindi subword by NED, and retrieve the
corresponding Hindi subword embedding. Finally,
we compose the subword embeddings, using addi-
tion, to give the word embedding. See Algorithm 1
for a depiction.11

Algorithm 1: NED Approach
l_word← LRL word;
H_EMB← HRL embeddings;
l_morphs← segment_lrl(l_word);

l_subwords_emb← empty list;
for l_morph in l_morphs do

h_closest← closest_HRL_morph(l_word);
append(l_subwords_emb, H_EMB(h_closest));

end
l_emb← compose_subwords(l_subwords_emb);
return l_emb ;

6.2 Iterative approach (Marathi, Nepali)

Although the approach presented in Artetxe et al.
(2017) is intended to generate bilingual word em-
beddings for equally well-resourced languages (See
Section 2.4), we hypothesize that the algorithm
will maintain its quality at the subword level for
morphologically rich languages; further, that in
our data-asymmetry situation, this approach will
serve to “transfer” some of the higher quality of the
HRL embedding space to the LRL embeddings, by
leveraging a bilingual mapping to induce the rela-
tionships already encoded in the HRL embeddings.

We apply this approach to both Marathi and
Nepali. As the initial set of LRL embeddings, we
use fastText vectors trained on available segmented
data (MAR-SEGM-0.8M, NEP-SEGM-1.4M). For the
HRL, we can use any available resource. We try us-
ing pretrained fastText vectors (HIN-PRETR-2G); we
also retrain fastText on the segmented Hindi data
(HIN-SEGM-18M). For all runs, we set the initial seed
dictionary as identical words12 in the source and
target corpora.13 See Algorithm 2 for a depiction
of OOV handling for this approach. For compos-
ing the subword embeddings of a word, we tried

11Of course, an NED-based approach is highly limited to
related words in the language. However, testing it out gives us
an interesting insight about cognates and identical words (see
Section 9.1)

12This is only possible because the languages share a script.
13Note that this approach does not use any parallel data

or bilingual lexicons; this aligns with our assumptions about
parallel data. However, in the case that parallel data does exist,
it can be used to find a good quality bilingual seed lexicon in
lieu of using identical words; this has been shown to improve
the quality of the resulting bilingual embeddings.
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Algorithm 2: Bilingual embeddings with
MAR-SEGM-0.8M/NEP-SEGM-1.4M as backoff

l_word← LRL word;
L_EMB← Bilinual LRL embeddings;
L_EMB_backoff←Monolingual LRL embeddings;
l_morphs← segment_lrl(l_word);
l_subwords_emb← empty list;
for l_morph in l_morphs do

l_morph_emb← empty list ;
if l_morph in L_EMB then

l_morph_emb← L_EMB(l_word);
end
else

l_morph_emb←L_EMB_backoff(l_morph);
end
append(l_subwords_emb, l_morph_emb);

end
l_emb← compose_subwords(l_subwords_emb);
return l_emb ;

Approach Score
MAR-BASE-0.8M 24.64
MAR-SEGM-0.8M 43.23
BI-MAR-JOINT-0.8M-18M 35.48

Table 1: Marathi monolingual and Marathi-Hindi Joint
results on Marathi WordSim task. Notation of models
explained in Section 4.2.

addition, averaging, and picking the first subword
embedding while discarding the rest. The idea be-
hind the last method is that this approximates the
word stem, and also reduces the noise created by
summing different subword embeddings.

7 Results: Word Similarity (Marathi)

7.1 Baseline and Comparison Models

In Table 1, we show the performance of MAR-BASE-

0.8M and MAR-SEGM-0.8M. taking motivation from
Chaudhary et al. (2018), we also try a joint ap-
proach i.e. we train bilingual embeddings jointly
on the segmented Hindi and Marathi data (BI-MAR-

JOINT-0.8M-18M). We observe that simple segmen-
tation of the data causes an improvement of over
20 points, outdoing not only MAR-BASE-0.8M but
MAR-SKIPGR-27M (See Table 2). Surprisingly, the
joint model BI-MAR-JOINT-0.8M-18M dips in perfor-
mance in comparison to the MAR-SEGM-0.8M. We
discuss this effect of the Hindi data on the bilingual
embeddings in Section 9.1.

In Table 2, we show the performance of pre-
trained fastText Marathi embeddings mentioned in
Section 4.2 (MAR-PRETR-334M), as well as the best
performing model score from Akhtar et al. (2017)
on this evaluation dataset. Akhtar et al. (2017) test

Embeddings Score
MAR-PRETR-334M 54.89
MAR-SKIPGR-27M 41.12
HIN-PRETR-2G 39.94

Table 2: Scores of high-resource Marathi and Hindi
models on Marathi WordSim task for comparison.

Embeddings Identical
Word Score

HIN-PRETR-2G 41.17
MAR-PRETR-334M 50.38

Table 3: Scores of pretrained embeddings on word pairs
from the Marathi WordSim dataset that are identical in
both languages

different sets of embeddings including Skip-gram,
CBOW (Mikolov et al., 2013) and fastText (Bo-
janowski et al., 2017) algorithms, all trained on a
corpus with 27M tokens, of which the Skip-Gram
(MAR-SKIPGR-27M) performed best.

Finally, Table 3 shows the performance of the
MAR-PRETR-334M and HIN-PRETR-2G on certain
word pairs in the Marathi WordSim dataset such
that both words are also used identically in Hindi.14

These word pairs were manually identified from
the Marathi evaluation dataset; we found that there
were 64 such word pairs.15 Surprisingly, we see a
significant dip in the performance of HIN-PRETR-2G

on these word pairs as compared to MAR-PRETR-

334M, indicating that while the word pairs appear
identical in both languages to a native speaker, their
usage in the corpora or interaction with other words
from the language is different.16

7.2 Normalized Edit Distance (NED)

Our NED models use only Hindi embeddings,
and project Marathi morphs onto Hindi morphs as
shown in Algorithm 1. For further simplicity, we
also tried a self-mapping; i.e. we simply calculate
the (Hindi) embeddings of the Marathi morphs ob-
tained by segmentation, as they are. Note that this

14That is, both of the words in the word pair must be both
Hindi and Marathi words with the same spelling, and near-
identical senses.

15Many of these are transliterations of English words. 24 of
the total 135 unique words are transliterations, and they occur
40 times i.e. 19.6% times in the 104 word pairs.

16Note that HIN-PRETR-2G performs very well on the
Hindi WordSim dataset; its monolingual quality is not the
problem.
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Approach Score
BI-MAR-SELF-SEGM-0.8M-18M 43.62
BI-MAR-SELF-PRETR-0.8M-2G 42.72
BI-MAR-NED-PRETR-0.8M-2G 41.85
BI-MAR-NED-SEGM-0.8M-18M 39.37

Table 4: Scores on Marathi WordSim for self-mapping
and NED strategies, using different Hindi embeddings.
Notation: Bi-<lrl>-<mapping_method>-<hin_embs>-
<lrl_tokens>-<hin_tokens>.

is only possible because Marathi and Hindi share a
common script. The resulting embeddings are com-
posed by addition unless otherwise mentioned. See
Table 4 for the results on different combinations of
embeddings and mappings.

Firstly, we observe that the self-mapping per-
forms better than NED in general.17 This is un-
surprising; NED would only perform better for
Marathi words that are cognates with Hindi words
and show a slight difference in spelling; it will per-
form competitively with self-mapping for identical
words in Hindi and Marathi. As we discuss in Sec-
tion 7.1, such words form a large part of the evalu-
ation dataset. As for the remaining words, it seems
that the Hindi embeddings are able to capture the
meaning of the unknown Marathi morphs, perhaps
due to similarities at a subword level. Applying
the NED mapping, however, can result in Marathi
words being mapped to arbitrary Hindi words that
may share no semantics with the Marathi word.

Another interesting observation is that the BI-

MAR-SELF-SEGM-0.8M-18M performs a little better
than BI-MAR-SELF-PRETR-0.8M-2G. This affirms our
intuition in Section 5 that segmentation on the
Hindi side may facilitate the correspondence be-
tween commmon subwords, leading to better per-
formance on a Marathi evaluation set despite orders
of magnitude less (Hindi) data.

7.3 Iterative Approach

There are several points of interest in the re-
sults, given in Table 5. Firstly, we see that the
BI-MAR-ITER-SEGM-0.8M-18M outperforms BI-MAR-

ITER-PRETR-0.8M-2G; i.e. once again, we find that it
is better to use embeddings trained on segmented
Hindi data for the transfer, even though HIN-SEGM-

17Note that there is a difference between the self-mapping
model and directly applying HIN-PRETR-2G as in Table 2 In
the former, we segment the Marathi word ourselves and apply
Hindi embeddings to the resulting subwords; in the latter, we
leave it up to fastText. We note that the former does better.

Approach Comp. Score
(MAR-BASE-0.8M - 24.64)
BI-MAR-ITER-PRETR-0.8M-2G Sum 44.28
BI-MAR-ITER-SEGM-0.8M-9M Sum 49.49
BI-MAR-ITER-SEGM-0.8M-18M Sum 49.21
BI-MAR-ITER-SEGM-0.8M-18M FM 50.06
BI-MAR-ITER-SEGM-0.8M-36M FM 50.10

Table 5: Iterative approach results on Marathi Word-
Sim task using different sets of Hindi embeddings
for the crosslingual transfer. Format of the ap-
proach name: Bi-<lrl>-Iter-<hin_embs>-<lrl_tokens>-
<hin_tokens>. Comp.: Composition function. FM (first
morph) refers to the strategy of simply using the embed-
ding of the first morph

18M is trained on two orders of magnitude fewer
data than HIN-PRETR-2G. Since this approach is
explicitly bilingual and attempts to project the
Marathi and Hindi embeddings into a shared space,
this is a much more direct affirmation that the sim-
ilarities between Hindi and Marathi are best ex-
ploited at the subword level from both sides. Sec-
ondly, we see that the “first-morph” manner of
composition does slightly better than summing or
averaging18 the subword embeddings.19 Finally,
note that doubling the amount of Hindi data used
to train the initial Hindi embeddings does not help.
This indicates that the Hindi data is only useful up
to a point.

8 Results: WordNet-Based Synonymy
Tests (Marathi, Nepali)

See Table 6 and Table 7 for the Marathi and Nepali
scores respectively. These results confirm some of
the findings from the WordSim results for Marathi,
while showing similar trends for Nepali. We see
once more that segmentation helps: MAR-SEGM-

0.8M and NEP-SEGM-1.4M consistently outperform
the baselines; further, the iterative method is the
best among the low-resource embeddings. We also
note that doubling the Hindi data for the iterative
approach (e.g. with BI-MAR-ITER-0.8M-36M) seems
not to have much effect on the resulting embed-
dings for both Marathi and Nepali. It is interest-
ing to observe that Nepali is slightly less respon-

18We do not report averaging scores since they are almost
identical to the summing scores.

19This could be for several reasons; for example, if the first
subword approximates the root of the word, then it may cap-
ture most of the meaning, whereas the remaining information
may be irrelevant or add noise.
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(MIN, N) Test size MAR-BASE

-0.8M
MAR-SEGM

-0.8M
BI-MAR-ITER

-SEGM-0.8M-18M
BI-MAR-ITER

-SEGM-0.8M-36M
MAR-PRETR

-334M

(10,6) 1183 51.23 58.92 61.62 57.06 84.70
(10,5) 1183 51.90 54.78 58.66 61.54 84.87
(20,6) 684 48.98 53.65 59.94 58.19 84.50
(20,5) 684 57.89 59.94 64.47 64.33 87.57
(50,5) 293 58.02 63.14 67.24 68.94 81.23

Table 6: WBST Results. MIN : min. freq. of the question and options in the corpus, N : number of total options,
Test size: number of questions. The two best-performing models have been bolded.

(MIN, N) Test size NEP-BASE

-1.4M
NEP-SEGM

-1.4M
BI-NEP-ITER

-SEGM-1.4M-18M
BI-NEP-ITER

-SEGM-1.4M-36M
NEP-PRETR

-393M

(10,6) 1414 58.20 63.93 65.28 65.06 74.11
(10,5) 1414 61.10 67.75 69.17 69.10 76.37
(20,6) 974 62.32 69.30 69.71 69.10 76.38
(20,5) 974 63.86 69.51 70.74 70.12 78.23
(50,5) 451 66.29 70.29 71.62 71.84 77.16

Table 7: WBST Results for Nepali. Formatted similarly to Table 6.

sive to the iterative approach than Marathi; this
can perhaps be explained by its lower shared sub-
word vocabulary with Hindi (approximately 40%
as compared to 50% for Marathi-Hindi). Finally,
as MIN increases, the performance of the low-
resource methods generally increases; they natu-
rally perform better on words seen more frequently
in the corpus.

9 Discussion

Some of the clearer findings of our experiments
are as regards segmentation and the benefits of a
non-trivial bilingual embeddings transfer.

We see repeatedly that segmentation on both
sides of the transfer helps the quality of the LRL
embeddings. Segmenting the Marathi data causes a
large boost in monolingual performance (Table 1);
furthermore, when transferring from Hindi embed-
dings, BI-MAR-ITER-SEGM-0.8M-18M outperforms
BI-MAR-ITER-PRETR-0.8M-2G (Table 5); the Hindi
embeddings used in the latter are trained on 2 or-
ders of magnitude higher (unsegmented) data.20

This suggests that the interaction between the two
languages is indeed facilitated at a subword level,
validating our bilingual native speaker intuition
about the same. We also see that the iterative ap-

20Note that we are talking about performance in terms of
the resultant Marathi bilingual embeddings rather than the
direct evaluation of the Hindi embeddings.

proach consistently outperforms both monolingual
models MAR-BASE-0.8M and MAR-SEGM-0.8M, indi-
cating that bilingual interaction between the related
languages is indeed beneficial. In general, this is a
good sign for the project of building NLP tools for
low-resource languages, although it invites explo-
ration of the impact of different typologies on the
observed bilingual effect.

Finally, we find that, in agreement with the find-
ings of the papers that investigate subword com-
position functions (Zhu et al., 2019a,b), the best-
performing composition function for subword em-
beddings seems to be task and data dependent;
even discarding everything except the first subword
seems to work better sometimes than aggregating
all subword embeddings.

9.1 Using Hindi data

To the best of our knowledge, this is the first work
that clearly demonstrates that a trivial “copy-and-
paste” transfer approach, such as our NED models,
is not adequate, even when working with two cul-
turally related languages that share a very high per-
centage of vocabulary as well as morphosyntactic
properties. Our experiments with identical words
pairs in Table 3 especially show that even identical
words that are not false friends may behave dif-
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ferently depending on the language;21 using Hindi
embeddings directly, even for identical words, is
problematic. We believe that this is an important
insight into embeddings transfer that rejects relying
on trivial or simplistic approaches.

Many of our experiments are intended to indi-
cate how useful the Hindi data and embeddings
are to the LRL; e.g. we evaluate HIN-PRETR-2G di-
rectly on the Marathi WordSim task (Table 2), we
experiment with different amounts of Hindi data
for both tasks (Tables 5 and 6), and we try a self-
mapping with the NED model (see Table 4). We
see that doubling the amount of Hindi data some-
times even harms performance;22 we also see that
BI-MAR-JOINT-0.8M-18M performs worse than MAR-

SEGM-0.8M (see Table 1). In conjunction, these re-
sults imply that under the current transfer paradigm,
adding more Hindi data may sometimes hurt rather
than benefit; too much Hindi data for the purpose of
training bilingual embeddings may actually “con-
ceal” Marathi word interactions. We also applied
the iterative approach on Konkani-Hindi, with a
mere 100K tokens of Konkani data and 18M to-
kens of Hindi data as before; however, the bilin-
gual effect was less clearly visible with this setup,
supporting the need for investigation into the opti-
mal balance of LRL-HRL data. We invite further
investigation of this effect.

10 Future Work

This work is intended to be the pilot in a series
of similar studies. We hypothesize that we can
obtain similar results for other genealogically re-
lated LRL-HRL pairs. We intend to repeat these
experiments for language pairs (simulating LRL
environments) such as Punjabi-Hindi, Assamese-
Bengali, Konkani-Marathi, and others. Some of
the issues we will be working against are different
scripts, morphemic segmentation of typologically
different languages, and the lack of evaluation data.
We would also like to experiment with the integra-
tion of parallel data into this approach. Finally, we
also think it would be interesting to extend our so-

21This is to say even if words a and b occur identically and
with the same senses in both languages, the word pair (a, b)
may have a different relationship depending on the language.

22Our particular “doubled” dataset actually shows roughly
the percentage of shared subwords as before doubling; it is
possible that data introducing new subwords will perform
better. However, in any case, it is interesting to note that the
transfer is not improved by having more HRL data for the
same subwords which we might intuitively hope would help
the quality of the HRL embeddings and therefore the transfer.

lution from a bilingual to a multilingual one, with
multiple sources for a target language. This would
be highly pertinent in the case of Indic languages,
where even major Indic languages may be intercon-
nected, and regional languages may benefit from
the resources of more than one HRL.

11 Conclusion

Embeddings transfer from a high-resource lan-
guage to a low-resource related language is an
important task in today’s scenario of data inequal-
ity across languages. We target a family of geo-
graphically and genealogically related languages,
including some high-resource languages and other
low-resource languages, possibly undergoing dig-
itization and data collection. We take two Indic
language pairs, Hindi-Marathi/Nepali, simulating
a low-resource scenario for Marathi and Nepali,
and present an approach to embeddings transfer
that uses very little monolingual data on the LRL
side, and no parallel data. We demonstrate the
benefits of unsupervised morphemic segmentation
on both source and target sides for subword-level
embeddings transfer. Our final approach improves
substantially over monolingual fastText baselines
for the Marathi WordSim task, and the WBST task
for Marathi and Nepali. Further, we show that a
“copy-and-paste” embeddings transfer fails even
with a perfect bilingual dictionary for a closely re-
lated language pair, establishing the need for more
sophisticated methods of low-resource bilingual
transfer.
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Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019.
A survey of cross-lingual word embedding models.
Journal of Artificial Intelligence Research, 65:569–
631.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725.

Manish Sinha, Mahesh Reddy, and Pushpak Bhat-
tacharyya. 2006. An approach towards construction
and application of multilingual Indo-Wordnet. In 3rd
Global Wordnet Conference (GWC 06), Jeju Island,
Korea. Citeseer.

Jörg Tiedemann. 2012. Parallel Data, Tools and In-
terfaces in OPUS. In Proceedings of the Eight In-
ternational Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey. European
Language Resources Association (ELRA).

Zihan Wang, Stephen Mayhew, Dan Roth, et al. 2020.
Extending multilingual BERT to low-resource lan-
guages. arXiv preprint arXiv:2004.13640.

Ruochen Xu, Yiming Yang, Naoki Otani, and Yuexin
Wu. 2018. Unsupervised cross-lingual transfer of
word embedding spaces. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2465–2474.

Yi Zhu, Benjamin Heinzerling, Ivan Vulić, Michael
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Abstract
Vowels are typically characterized in terms of
their static position in formant space, though
vowels have also been long-known to undergo
dynamic formant change over their timecourse.
Recent studies have demonstrated that this
change is highly informative for distinguish-
ing vowels within a system, as well as pro-
viding additional resolution in characterizing
differences between dialects. It remains un-
clear, however, how both static and dynamic
representations capture the main dimensions
of vowel variation across a large number of
dialects. This study examines the role of
static, dynamic, and duration information for
5 vowels across 21 British and North Amer-
ican English dialects, and observes that vow-
els exhibit highly structured variation across
dialects, with dialects displaying similar pat-
terns within a given vowel, broadly corre-
sponding to a spectrum between traditional
‘monophthong’ and ‘diphthong’ characteriza-
tions. These findings highlight the importance
of dynamic and duration information in captur-
ing how vowels can systematically vary across
a large number of dialects, and provide the
first large-scale description of formant dynam-
ics across many dialects of a single language.

1 Introduction

Both the classification and measurement of vowels
have long been central, intersecting, issues for pho-
netic research. Vowels are dynamic in production,
yet language-specific vowel descriptions typically
use broad categories referring to more or less gen-
eral ‘movement’ of a vowel, such as distinguishing
between monophthongal and diphthongal vowel
realizations. At the same time, it is still unclear
in what low-dimensional space vowels themselves
vary: which acoustic properties best capture differ-
ences between vowels, and how securely categories
like ‘monophthong’ and ‘diphthong’ can be estab-
lished empirically within and across languages. Do
these discrete categories reflect the ways in which

vowels vary, or are vowel distinctions better char-
acterized by a spectrum, reflecting various degrees
of ‘movement’? This study addresses this question
by examining vowel variation within a language –
across dialects – to consider how both static and
dynamic properties of vowels capture dialectal vari-
ation across English.

Static measurements of formants, taken at a sin-
gle time-point within the vowel, have long provided
useful approximations for cues to vowel properties
such as height and backness (e.g. Peterson and Bar-
ney, 1952; Hillenbrand and Gayvert, 1993), and
have been central to previous descriptions of how
vowels vary across dialects (e.g., Hagiwara, 1997;
Clopper et al., 2005; Labov et al., 2006). Beyond
single-point measurements of vowels, however, the
importance of time-dependent dynamic informa-
tion – such as spectral change and duration – has
also been recognized since the earliest phonetic
studies of vowel production and perception (e.g. Pe-
terson and Barney, 1952; House, 1961; Gay, 1968).

Research on English has shown that this dynamic
information may be utilized for better distinguish-
ing vowels within a language (Harrington and Cas-
sidy, 1994; Watson and Harrington, 1999; Williams
and Escudero, 2014; Docherty et al., 2015), can re-
flect detailed dialectal and sociolinguistic meaning
(Risdal and Kohn, 2014; Farrington et al., 2018;
Williams et al., 2019), play a role in the develop-
ment of dialect-specific vowel shifts (Evans, 1935;
Labov, 1991; Clopper et al., 2005; Labov et al.,
2006; Fox and Jacewicz, 2017), and constitute a ro-
bust source of variation across speakers (e.g. Mac-
Dougall, 2006; Morrison, 2009). Studies on single
dialects have demonstrated that vowels vary in their
average duration (House and Fairbanks, 1953; Pe-
terson and Lehiste, 1960; Crystal and House, 1982),
though our understanding of how vowel durations
systematically vary across dialects is relatively lim-
ited (e.g., Bailey, 1968; Wetzell, 2000; Fridland
et al., 2014; Tauberer and Evanini, 2009).
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Looking across many English dialects, however,
it still remains unclear how best to characterize, on
one hand, vowel variability across multiple acous-
tic dimensions (including how robustly monoph-
thong/diphthong categories hold up across dialects),
and on the other hand, the extent to which dynamic
representations compare with static measures for
characterizing differences between dialects on the
basis of vowel realization. This study takes a com-
putational and exploratory approach to addressing
these issues, by considering the following research
question: to what extent do dynamic representa-
tions of vowels (formant trajectories, duration)
capture additional information (over static F1/F2
position) in describing vowel variation across En-
glish dialects? Concretely, answers to this ques-
tion are addressed in two ways: 1. through an ex-
ploratory analysis of English vowel variability (Sec-
tion 3.1), which enables inspection of the ‘same’
vowel across different dialects, including the evi-
dence for monophthong/diphthong classification; 2.
through a dialect classification experiment, where
different combinations of formant position, trajec-
tory shape, and duration are compared in their abil-
ity to correctly classify the dialect of a given vowel
(Section 3.2). The exploratory analysis is moti-
vated by the phonetic literature discussed above,
which uses formant dynamics to characterize the
vowel space of a given dialect, while the classi-
fication experiment is inspired by by the compu-
tational literature on dialect classification, where
different kinds of acoustic information have been
found to independently help differentiate dialects
(e.g. Woehrling et al., 2009; Hanani et al., 2013;
Chittaragi and Koolagudi, 2019).

The study takes a ‘large-scale’ approach, through
the consistent extraction of the same measures for
a large amount of data collected from speech cor-
pora of 21 English dialects. Scaling up the anal-
ysis across multiple dialects is made possible by
tools for automatic annotation (e.g. Schiel, 1999;
Fromont and Hay, 2012; McAuliffe et al., 2017a),
acoustic analysis (Rosenfelder et al., 2014; Mielke
et al., 2019), and integrating information across
idiosyncratic data formats (McAuliffe et al., 2017b,
2019). To our knowledge, this is the largest cross-
dialect study to date of formant dynamics.

Vowels for the study were selected to provide
a spectrum of qualities which are described in the
English dialectological literature as ranging from
largely monophthongal through to usually diph-

thongal, varying dialectally by the presence of a
glide (Ladefoged and Maddieson, 1993), reflected
in the degree of formant change over their time-
course. Specifically, the vowels were the following,
as represented in terms of lexical sets (a charac-
teristic word of a particular vowel) (Wells, 1982):
FLEECE, FACE, PRICE, MOUTH, and CHOICE.
FLEECE is expected to be monophthongal across
dialects; MOUTH, PRICE, and CHOICE are expected
to be diphthongs, which vary across dialects in both
the degree of dynamic change and overall position
(e.g. ‘monophthongization’ of PRICE in Southern
US varieties, ‘Canadian raising’ of MOUTH in some
Canadian/US varieties: Thomas, 2001; Labov et al.,
2006; Boberg, 2010). FACE is expected to be inter-
mediate between monophthongs and diphthongs,
dependent on the specific dialect (e.g. Trudgill,
1999; Labov et al., 2006; Haddican et al., 2013).

2 Data

This study examines variation in stressed vow-
els from 21 British and North American En-
glish dialects, using corpus data collated as
part of the SPeech Across Dialects of En-
glish (SPADE) project (Sonderegger et al., 2022,
https://spade.glasgow.ac.uk/), including multi-
dialect corpora from the United Kingdom (Cole-
man et al., 2012; Grabe, 2004; Anderson et al.,
2007) and North America (Godfrey et al., 1992;
Greenbaum and Nelson, 1996), as well as multiple
individual English dialect corpora (Pitt et al., 2007;
Dodsworth and Kohn, 2012; Stuart-Smith et al.,
2017; Rosen and Skriver, 2015; Fabricius, 2000;
Holmes-Elliott, 2015). Here, North American di-
alects refers to dialects in Canada and the United
States as outlined in The Atlas of North American
English (Labov et al., 2006). Due to the relative
sparsity of Canadian data compared with United
States and British dialects, Canadian dialects were
distinguished along rural and urban dimensions
instead of geographical location (Greenbaum and
Nelson, 1996; Rosen and Skriver, 2015). Dialec-
tal distinctions for British English used Trudgill’s
(1999) modern dialectal groupings, based on both
phonological and lexical distinctions. Speakers
for Scottish dialects were grouped based on in-
formation from The Scottish National Dictionary
(Skretkowicz and Rennie, 2005).

Tokens with a duration shorter than 50 millisec-
onds were not extracted, in line with previous stud-
ies of vowel formants (Dodsworth, 2013; Frue-
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Figure 1: Schematic of all dynamic measures (dashed
lines) used in the study mapped to a hypothetical
CHOICE vowel trajectory (solid line).

hwald, 2013). Vowels with a duration longer than
500 milliseconds were also excluded. Formants
were extracted in Hertz at 21 equally-spaced points,
and were automatically measured with PolyglotDB
(McAuliffe et al., 2017b) using the measurement
scheme described in Mielke et al. (2019). The first
and last 20% of the vowel was excluded to min-
imise the influence of surrounding segments (Fox
and Jacewicz, 2009; Williams and Escudero, 2014;
Williams et al., 2019). The remaining middle 60%
of the vowel (13 points) was then z-score normal-
ized against all vowels produced by the speaker
(‘Lobanov normalization’, Lobanov, 1971).

In order to inspect spectral change across di-
alects more easily, and to allow comparison of our
exploratory formant-based analyses with existing
cross-dialect research (Section 3.1), we calculated
a set of measures which are based on calculations
of ‘vowel section length’ (VSL): the Euclidean dis-
tance between two formant points (n,m):

V SLn,m =
√

(F1n − F1m)2 + (F2n − F2m)2

A measure of the overall spectral change (called
‘Vector Length’) is derived from calculating the
VSL of the vowel onset and offset, whilst more
complex representations of the trajectory can be
derived from the summation of VSLs calculated
from subsets of the points, such as onset to mid-
point + midpoint to offset (Fox and Jacewicz, 2009).
Figure 1 illustrates these measures on a hypotheti-
cal formant trajectory. A wide range of measures
have been utilized within the vowel dynamic lit-
erature for capturing the dynamic properties of a
formant trajectory, such as polynomial functions

(MacDougall and Nolan, 2007; Van der Harst et al.,
2014; Themistocleous, 2017), discrete cosine trans-
forms (Watson and Harrington, 1999; Williams and
Escudero, 2014), target-locus scaling (Broad and
Clermont, 2017), and additive models (Kirkham
et al., 2019; Renwick and Stanley, 2020) – the
choice to use vector-based measurements of for-
mant trajectories was motivated by their use in
numerous studies of dialectal variation in English
(Fox and Jacewicz, 2009; Cardoso, 2015; Farring-
ton et al., 2018) and other languages (Mayr and
Davies, 2011; Schoorman et al., 2015). Whilst
these methods have not been explicitly compared,
the decision to make use of the vector-based mea-
surements in this study is based around the rela-
tive comparability with the previous cross-dialectal
work using this measure, as well as its relative in-
terpretability as a representation of spectral change.
More information about the data, vowel formant
extraction, and measurement calculation methods
used in this study can be found in Tanner (2020). In
total, 323,060 tokens (6259 types), corresponding
to 1245 speakers from 21 dialects of North Ameri-
can and British English, were analyzed (Table 1).

3 Results

Figure 2 shows the vowel plot for each dialect
included in the study, with arrows reflecting the
vowel trajectories for each of the five vowels. Even
from the empirical data, two findings are immedi-
ately clear: dialects are variable in their phonetic
implementation of a given vowel, but there are
also consistent patterns for the same vowel across
dialects, including the anticipated monophthong-
diphthong spectrum: from least movement for
FLEECE to visible trajectories for CHOICE, PRICE,
and MOUTH, with FACE showing dialect-specific
variation consistent with monophthongal realiza-
tion in Scottish dialects (Central Scotland, Edin-
burgh, Glasgow, N. Scotland & I) to diphthongs in
other regions (East England, Midwest US). Again,
the Scottish dialects show a distinct fronting pattern
for MOUTH (shown as a reduction in normalized
F2) compared with other dialects where MOUTH

typically shows a backing pattern as it raises.

3.1 Exploratory analysis

To capture the formant position, the speaker-
normalized F1 and F2 values were taken from the
20% and 80% points, corresponding to the vowel
Onset and Offset respectively. Figure 3 (top) illus-
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Continent Dialect Corpus Speakers Tokens
North America Canada (rural) Canadian-Prairies 44 20042

Canada (rural) ICE-Canada 8 2764
Canada (urban) Canadian-Prairies 67 38021
Canada (urban) ICE-Canada 8 877
Midwest US Buckeye 40 17669
New England Switchboard 18 2868
North Midland US Switchboard 44 7126
Northern US Switchboard 53 7494
NYC Switchboard 19 3183
Raleigh US Raleigh 100 64659
South Midland US Switchboard 106 20327
Southern US Switchboard 37 5595
Western US Switchboard 45 6376

United Kingdom Central Scotland SCOTS 23 5237
East Central England Audio BNC 30 3877
East England Audio BNC 100 13429
East England Hastings 49 25477
East England IViE 12 972
East England IViE 11 992
East England ModernRP 48 2811
Edinburgh SCOTS 18 2361
Glasgow SCOTS 26 4432
Glasgow SOTC 155 45487
Lower North England Audio BNC 41 5445
Lower North England IViE 11 891
Lower North England IViE 10 760
North East England Audio BNC 10 917
North East England IViE 12 1018
Northern Scotland & Islands SCOTS 31 3998
South West England Audio BNC 37 3458
West Central England Audio BNC 32 4497

Total 21 11 1245 323060

Table 1: Speaker and token count for each dialect used in this study, separated by the corpus from which the data
was originally sourced.

trates the position of the onset and offset of each
dialect, for each of the five vowels. This figure
again captures overall consistency in the broad real-
ization of a given vowel across dialects, but also the
substantial differences between dialects in occupy-
ing the formant space for each vowel. The degree
of this difference, however, varies by vowel. For ex-
ample, dialects are somewhat diffused for CHOICE

(outer left) FACE, (inner left), and PRICE (outer
right), whilst maintaining some similarity in the
difference between the onset and offset (reflected
in the direction of the arrow) across dialects.

Three measures were calculated to capture prop-
erties of a vowel’s formant trajectory independent

of its position in formant space. The first, Vector
Length (calculated from VSL, Equation 2), was
calculated between the onset and offset value, re-
flecting the overall degree of linear spectral change
over the vowel’s timecourse. One measurement
commonly used in studies of trajectory shape, tra-
jectory length (Fox and Jacewicz, 2009; Mayr and
Davies, 2011; Farrington et al., 2018) is calculated
as the summation of two VSLs: one measuring the
distance from the vowel onset to midpoint, and an-
other measuring the distance from the midpoint to
the vowel offset. As trajectory length is highly cor-
related with Vector Length (r = 0.99, p < 0.001
for this data), we derived our second measure, Vec-
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Figure 2: normalized by-dialect vowel trajectories for the central 60% of the five vowels analyzed, averaged over
all tokens for that dialect. Duration corresponds to the within-speaker z-score normalization.

tor Offset, as trajectory length subtracted from
Vector Length, reflecting the residual difference
between the two measures. Finally, Vector Angle,
the measure of a vowel’s direction of change, was
derived from the onset and offset position, on a
180/−180◦ scale (e.g., ↑ = 0 ◦,← = 90 ◦). Figure
3 (bottom) illustrates the dialectal variation in both
Vector Length (a dialect’s distance from the centre
of the compass) and Vector Angle (the orientation
around the compass). This figure demonstrates that,
as with formant position (Fig. 3 top), the degree
of dialectal variation for these dimensions differs
between vowels, while showing some consistency
within-vowel. FACE and PRICE show little dialectal
variation in Vector Angle; instead, dialects differ in
Vector Length. CHOICE and MOUTH show dialectal
variation in both Vector Angle and Vector Length,
within a clear range. (For example, CHOICE al-
ways points between−90◦ and 0◦.) FLEECE shows
very little overall spectral change, reflected in all
dialects clustered around the centre of the compass.

Vowel Duration was calculated by z-score nor-
malizing the vowel’s force-aligned duration against
all of the speaker’s vowels (including vowels not
analyzed in this study). As with previous mea-
sures, duration exhibits a wide range of variabil-
ity across dialects, but this variability is some-
what structured within-vowel, roughly along the
anticipated monophthong–diphthong axis: FLEECE

shows the lowest average duration across di-
alects, with the least variability, followed by FACE

(higher average, more variability), followed by
PRICE/MOUTH/CHOICE.

Overall, the exploratory analysis shows that di-
alects tend to vary in how they produce the ‘same’
vowel, in fairly constrained ways, across both for-
mant position and dynamics, consistent with the
intuitive axis of degree of ‘movement’: FLEECE <
FACE < PRICE, MOUTH, CHOICE in terms of how
much dialectal variation there is in both spectral
change and duration.

3.2 Dialect classification experiment

We now turn to quantitative characterization of the
extent to which dynamics (trajectory shape, dura-
tion) provide additional information about dialectal
variability on top of static measures (F1/F2 posi-
tion). In this experiment, different combinations
of measures are used to train a supervised learning
model to predict the dialect label associated with
data from a single vowel/speaker pair. Support vec-
tor machines (SVMs) were trained on each vowel
using the e1071 package (Meyer et al., 2019) in
R (R Core Team, 2019). SVMs are a class of super-
vised learning model, which can be trained to as-
sign (‘classify’) a label (such as dialect, e.g., South-
ern US, Glasgow) to a datapoint based on predictor
values such as formant, trajectory, and duration
measurements. The radial basis function kernel
was used for SVMs in this study, which allows for
fitting non-linear decision boundaries, since we do
not a priori expect boundaries between dialects to
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be linear. We use a multiclass version of SVMs, to
predict one ofN -many possible dialect labels given
prototypical formant position, trajectory shape, and
duration values.

The data was prepared for SVM training by av-
eraging formant, trajectory shape, and duration val-
ues for each speaker across each vowel, and sepa-
rate SVMs were trained for each of the 5 vowels
analyzed in this study. The choice to use one ob-
servation per speaker (compared to one value for
each observation in the dataset) was motivated by
the desire to abstract away from variability due to
phonological environment, and instead achieve an
‘average’ value for a vowel for a speaker by aver-
aging over all observations of that vowel by that
speaker. To examine how different combinations of
measures best contribute to accurately predicting
the dialect, 7 SVMs were trained for each vowel
on a different set of measurements (for a total of
35 SVMs):

1. Formant values (F1/F2 onset + offset)

2. Trajectory shape (Vec. Length, Offset, Angle)

3. Duration

4. Formants + duration

5. Trajectory + duration

6. Formants + trajectory

7. Formants + trajectory + duration

Each SVM was trained on a 80% subset of
the data, and tuned to derive the best parameters
(margin parameter C, kernel parameter γ) via 10-
fold cross validation. A ‘dummy classifier’ model
which returns the most common dialect label from
the test set was also included as a baseline model.
The performance on the 20% test set is evaluated
using a metric that appropriately accounts for class
imbalance. This measure, balanced accuracy, is
the average of a model’s sensitivity and specificity,
and accounts for class imbalance by normalizing
the true positive and negative rates by the rela-
tive number of samples (Kelleher et al., 2015).
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(Note that balanced accuracy is 0.5 for the base-
line.) Balanced accuracy was calculated using the
yardstick package (Kuhn and Vaughan, 2020).
To directly compare how different combinations
of metrics aid in the classification of dialects, the
differences in balanced accuracy for each vowel
was calculated, and significance of the difference
was evaluated through a one-sided permutation test,
comparing the likelihood of whether the difference
was greater than the average difference observed
for 1000 permutations (Table 3), and were subject
to within-vowel Benjamini-Hochberg False Discov-
ery Rate (FDR) adjustment for multiple compar-
isons.

Table 2 shows the classification performance
for each SVM, which demonstrates that using
all SVMs improve over the naive baseline model
(row 1), and the best-performing SVM includes
dynamic information (trajectory or duration), for
every vowel. Table 3 shows the performance differ-
ences between SVMs trained with different combi-
nations of measurements, specifically comparing
how dynamic measurements aid in distinguishing
dialects relative to formant-only models (rows 1-2),
as well as how utilizing all measurements compare
with removing either trajectory measurements (row
3) or duration (row 4).

Comparing how dynamic (trajectory and dura-
tion) information provides additional resolution for
distingiushing between dialects, the use of duration
as a cue alongside formant information provides a
large and significant increase in accuracy across all
vowels (Table 3 row 1); alongside the observation
that duration in isolation largely returns the lowest
accuracy of all model sets (Table 2 row 4), this sug-
gests English dialects do not sufficiently vary in du-
ration for duration to uniquely distinguish dialects,
but instead is a meaningful cue alongside a vowel’s
formant position. The additional effect of duration
is mitigated when all measurements are included
(Table 3 row 4), though including duration still re-
sults in significantly better classification accuracy
for FLEECE, MOUTH, and PRICE. The additional
role of trajectory information relative to formant
position, in contrast, is much more variable across
vowels (Table 3 row 2). Trajectory information
plays the largest role for distinguishing MOUTH

vowels across dialects, reflecting the fact that both
Vector Length and Vector Angle vary substantially
across dialects (Figure 3), with MOUTH in Scottish
dialects fronting over its timecourse.

4 Discussion

This study has examined variability in English
vowel realization across 21 dialects, to address the
broad question of how to characterize variability
in the ‘same’ vowel, across multiple acoustic di-
mensions, considering both static formant position
and time-dependent dynamic information (trajec-
tory shape, duration). What low-dimensional space
does vowel variability lie in, does it line up with tra-
ditional notions of ‘monophthong’ vs. ‘diphthong’,
and what role do static versus dynamic information
play?

Our exploratory analysis (Section 3.1) found that
while dialects vary in the static and dynamic real-
ization of vowels, this cross-dialectal variation is
clearly structured: the ‘same’ vowel patterns sim-
ilarly with respect to dynamic realization, across
dialects. As a first approximation, the patterns of
dynamic variation within vowels seems to broadly
correspond to the general monophthong/diphthong
characterization, related to varying degrees of for-
mant ‘movement’ during the vowel timecourse:
FLEECE exhibits the least change, followed by
FACE, with PRICE, MOUTH, CHOICE showing the
most change; duration patterns similarly. Future
work should incorporate more vowels into the anal-
ysis, to fully map out the structure of variability
within and between dialects, and assess its possible
sources.

The dialect classification experiment (Section
3.2) showed that whilst both formant position and
trajectory shape can separately inform the predic-
tion of a given dialect, accuracy is improved with
both types of measures are used together. While
previous work has shown that trajectory informa-
tion is informative within a given dialect, these
results demonstrate that characterizations of the
formant trajectory also provide additional resolu-
tion as to the ways vowels can systematically differ
across individual dialects. This study utilized one
particular representation of trajectory shape: Vector
Length/Offset/Angle. Testing other representations
of trajectory shape, such as DCTs (Watson and
Harrington, 1999; Williams and Escudero, 2014;
Williams et al., 2019), would be a useful avenue
for future research, especially if these improve on
dialect classification accuracy, which is fairly low
when using Vector Length/Offset/Angle.

Our understanding of cross-dialectal variation
in vowel duration has been largely limited to stud-
ies of North American dialects, especially in the
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Measures FLEECE FACE PRICE MOUTH CHOICE
Baseline (most common dialect label) 50 50 50 50 50

Formants (F1, F2 onset + offset) 58 61.3 62.2 61.4 56.7
Trajectory (Vector Length, Offset, Angle) 54.5 62.1 56 63.6 56
Duration 55 52.9 57.4 52.7 51.9

{Formants, duration} 62.5 65.3 66.2 66.4 60.3
{Trajectory, duration} 56.7 65.1 60.6 65.4 55.9
{Formants, trajectory} 60.8 62.7 65 67.4 57.6
{Formants, trajectory, duration} 63.4 64.2 69.4 70 59.2

Table 2: Balanced accuracy (%) for each SVM, trained with different configurations of formant position, trajectory
shape, and duration measures.

FLEECE FACE PRICE MOUTH CHOICE
Comparisons ∆Ba. p ∆Ba. p ∆Ba. p ∆Ba. p ∆Ba. p

{F, D} vs F 4.5 0.004 4 0.004 4 0.006 5 0 3.6 0.046
{F, T} vs F 2.8 0.034 1.4 0.122 2.8 0.018 6 0 0.9 0.231
{F, T, D} vs {F, D} 0.9 0.148 −1.1 0.39 3.2 0.009 3.6 0.008 −1.1 0.364
{F, T, D} vs {F, T} 2.6 0.034 1.5 0.122 4.4 0.002 2.6 0.021 1.6 0.181

Table 3: Differences in balanced accuracy (∆Ba., %) between different combinations of measurements, with
within-vowel FDR-adjusted p-values calculated using a one-sided permutation test with 1000 permutations (bold
indicates p < 0.05). F = Formants, T = Trajectory, D = Duration.

US South (e.g. Jacewicz et al., 2007; Tauberer and
Evanini, 2009; Fridland et al., 2014), leaving open
the question of how duration varies across English
dialects more generally. Results of the dialect clas-
sification experiment suggest that duration does
contribute unique information over formant posi-
tion and trajectory shape, but it is the least infor-
mative feature. However, this study only included
vowels which are ‘tense’ in most dialects, which
tend to be longer (than ‘lax’ vowels). Future work
incorporating more vowels into the analysis would
allow for better assessment of the role of duration,
and would provide additional information about
about dialectal differences in duration across En-
glish vowels in general.

To our knowledge, this is the largest study to
date of formant dynamics (in terms of number of
dialects, and tokens), for any language. Analyz-
ing data at this scale was made possible due to
access to a large number of corpora and tools for
automated acoustic measurement. Previous large
cross-dialectal analyses (e.g. Wells, 1982; Thomas,
2001; Labov et al., 2006) were multi-year enter-
prises requiring substantial time and labor-intensive
manual annotation, making only simple characteri-
zations of vowel dynamics (e.g. onset + offset) pos-
sible. Access to force-aligned speech corpora and
the automatic measurement of formants allows the

analysis to be ‘scaled-up’ easily relative to many
other dialectal studies of vowel quality, but also
requires recognition of a number of limitations for
studies of this kind. Whilst this method has been
shown to generate accurate formant values and pro-
cedures are taken to avoid tracking ‘false formants’
(Mielke et al., 2019), it is simply not possible with
data at this scale to be manually validated. Sim-
ilarly forced aligned segments have a minimum
time duration (often 30ms) and a minimum time
resolution (often 10ms), particularly for vowels
which may have undergone substantial reduction.
We attempted to account for this by applying lower
and upper-limits for vowel durations to be included
in the study; it remains possible that biases or inac-
curacies in vowel duration exist within the dataset.
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Abstract

In recent years large transformer model archi-
tectures have become available which provide a
novel means of generating high-quality vector
representations of speech audio. These trans-
formers make use of an attention mechanism
to generate representations enhanced with con-
textual and positional information from the in-
put sequence. Previous works have explored
the capabilities of these models with regard to
performance in tasks such as speech recogni-
tion and speaker verification, but there has not
been a significant inquiry as to the manner in
which the contextual information provided by
the transformer architecture impacts the repre-
sentation of phonetic information within these
models. In this paper, we report the results of a
number of probing experiments on the represen-
tations generated by the wav2vec 2.0 model’s
transformer component, with regard to the en-
coding of phonetic categorization information
within the generated embeddings. We find that
the contextual information generated by the
transformer’s operation results in enhanced cap-
ture of phonetic detail by the model, and allows
for distinctions to emerge in acoustic data that
are otherwise difficult to separate.

1 Introduction

In recent years large transformer models have be-
come available which provide a novel means of
generating high-quality vector representations of
input speech audio sequences. These transformers
aim to exploit feature learning on large unlabelled
datasets to perform sequence-to-sequence transfor-
mations on audio that capture and preserve salient
features from the input sequence in a quantised
and contextual output representation. While most
work on transformer models in automatic speech
recognition focus on performance improvements
and applications in down-stream tasks, this paper

focuses on whether the internal layers of a trans-
former model provide any information as to the
emergence of phonetic and phonological properties
of speech. Specifically we interrogate the wav2vec
2.0 model (Baevski et al., 2020) by probing the
internal layers of the transformer using domain-
informed features. The structure of this paper is as
follows. Firstly, in section 2 we present some exist-
ing research related to our approach followed by a
discussion of transformer-based models in section
3. Section 4 presents the resources used, and the
experimental methodology is described in section
5. In section 6 we present our results, followed by
conclusions and future work in section 7.

2 Related Work

There has been considerable work in recent years
as to the extent and nature of phonetic information
captured in the embeddings used by deep learn-
ing models. The word2vec model (Mikolov et al.,
2013) has been applied below the level of the word
to investigate phonological analogies and similar-
ities. Silfverberg et al. (2018) have explored the
sound analogies generated by phoneme embed-
dings. Kolachina and Magyar (2019) detailed the
ability of embeddings to capture phonemic and
allophonic relationships within an artificial lan-
guage, noting that contrastive elements within the
embedding space correlated with articulatory fea-
tures. O’Neill and Carson-Berndsen (2019) demon-
strate that embeddings derived purely from text us-
ing a grapheme-to-phoneme mapping and applying
a word2vec approach exhibit similarity between
phoneme classes. These phoneme embeddings
were subsequently integrated with the data-driven
acoustic similarities of Kane and Carson-Berndsen
(2016) to generate a similarity matrix for use in
phonemically driven spell checking (O’Neill et al.,
2021).
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Specifically with respect to the capture of pho-
netic information in the embeddings of automatic
speech recognition, Belinkov and Glass (2017)
have investigated the internal layers of end-to-end
recognition systems using a connectionist temporal
classification (CTC) approach with DeepSpeech2
(Amodei et al., 2016). They found significant dif-
ferences across layers in their architecture with
respect to predictive performance of phoneme cate-
gories. Their work also demonstrated that certain
categories became represented in the embedding
space of their chosen model such that intra-category
separation was significantly more difficult than for
other categories. They noted that these categories
saw better performance in later layers, at the ex-
pense of degraded performance in more easily sepa-
rable categories. Scharenborg et al. (2019) have in-
vestigated the representation of speech in deep neu-
ral networks using a 3-layer model trained to dis-
tinguish consonants and vowels. They performed
a wide-ranging comparison of PCA-transformed
embedding spaces, and their work saw strong clus-
tering on the basis of the vowel/consonant categori-
sation and manner of articulation. Most recently,
Ma et al. (2021) investigated the extent to which
phonetic properties emerge from the acoustic rep-
resentations of transformer-based speech recogni-
tion architectures. Using four pre-trained acous-
tic representations from transformer-based speech
recognition architectures, they designed probing
tasks using linear regression, a support vector ma-
chine and a feedforward neural network consist-
ing of two fully-connected layers. Their embed-
dings are associated with high-level categorisations
derived from the TIMIT dataset (Garofolo et al.,
1992), perform at a high level and see significant
improvements across layers when considering less-
separable classes such as fricatives.

Conneau et al. (2018) proposed a methodology
known as probing as a way to examine what infor-
mation is present in an embedding. In Conneau
et al.’s framing a probing task involves training
a classification model to predict properties (e.g.,
length, tense, parse tree depth, and so on) of a
sentence based on the embedding of the sentence.
Probing assumes that the accuracy of the classifi-
cation model (i.e., a probe) on the task indicates
whether the embeddings encode information rele-
vant to task target. There is a growing body of work
using probing to examine what types of information
are encoded in the embeddings created by Trans-

former models (Hewitt and Manning, 2019; Liu
et al., 2019; Tenney et al., 2019; Nedumpozhimana
and Kelleher, 2021), and also exploring what layer
in the Transformer architecture different types of
information are encoded in (Jawahar et al., 2019).
In this work, we adapt the probing methodology to
speech embeddings, and use it to understand and
compare the phonetic information encoded in dif-
ferent layers of a Transformer model. Through this
comparision of probing performance across lay-
ers on phonetic tasks we hope to better understand
whether the information encoded in these speech
embeddings, and the sequencing of this encoding
across layers, accords with domain-knowledge ex-
pectations regarding phonetics.

The work presented in this paper focuses specifi-
cally on the transformer module of the wav2vec2.0
model (Baevski et al., 2020) and the representations
generated at each layer of the transformer. It will
not probe the attention mechanism itself, which is
outside the scope of this paper. The primary goal
of this investigation is not to deliver an explanation
of the operations undertaken by the transformer ar-
chitecture in generating these representations, but
instead to probe the representations generated at
different layers across the architecture in order to
examine the development of the architecture’s abil-
ity to delineate between phonetic categories.

3 Transformer-Based Models

In recent years transformer-based models have re-
ported state-of-the-art results on a range of speech
processing tasks, and today pre-trained models are
available for a variety of high-demand tasks such as
automatic speech recognition (ASR). These mod-
els leverage the availability of large unlabelled
acoustic datasets, in parallel with enhanced archi-
tectural features such as attention mechanisms, to
produce information-dense distributed vector repre-
sentations (embeddings) of input audio signals. In
the architecture examined herein, embeddings are
of a N*T dimensionality, with width N dependent
upon input length, and each instance of T represent-
ing the dimensionality of the encoded information
within a specific time-frame, and specific variance
within that dimensionality relating to differences
in the acoustic feature space for that frame.

The excellent performance of transformer based
models on speech processing tasks suggests that
these models have the ability to encode within the
embeddings they generate aspects of the input sig-
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nal relating to speech phenomena, while discarding
low-information aspects of the input signal such
as background noise and variation deemed to be
unimportant during the training cycle. Furthermore,
some architectures such as wav2vec 2.0 have been
designed to exploit the high-quality of embeddings
generated from unlabelled data by allowing for very
small quantities of labelled data to be provided as
fine-tuning information during a separate training
stage while still achieving high levels of transcrip-
tion performance.

However, while there has been significant in-
quiry as to the final-level performance of these
models, relatively little is known as to the specific
information captured within the embedding space,
and whether that encoded information accords with
domain-knowledge expectations. Previous works
have explored the use of these embeddings as the
basis for higher-order operations, such as accent-
resilient ASR (Li et al., 2021), identification of
speaker emotional state (Pepino et al., 2021), and
modelling of prosody in speaker input (Gan et al.,
2022).

For the probing task detailed in section 5, the
phoneme embeddings (calculated by averaging the
embeddings for the frames within the phoneme in-
terval) for each layer in the multi-layer wav2vec2.0
transformer stack are used as inputs for the train-
ing of a multi-layer perceptron (MLP) on the task
of identifying an associated TIMIT phonetic label.
The performance of this model is taken as indica-
tive of the relative richness of specific phonetic data
within the output embeddings from wav2vec 2.0.

4 Resources

4.1 TIMIT

The TIMIT read-speech corpus (Garofolo et al.,
1992) was used due to the high-quality metadata
present in the dataset. The dataset is comprised
of 5.4 hours of spoken English audio sampled at
16kHz in wav format. The audio is American-
accented, with 8 major US English dialects rep-
resented, with each speaker recorded uttering ten
high acoustic-information sentences. Each utter-
ance is a single sentence of spoken audio, with man-
ual character, phonetic, and orthographic transcrip-
tions, in time-aligned format, provided for each
recording.

4.2 wav2vec 2.0

This work uses wav2vec 2.0 (Baevski et al.,
2020). This section outlines the pre-training task,
training task, and architecture of the pre-trained
wav2vec 2.0 model “base_960” 1 used at the pre-
experimental stage. It then proceeds to the appli-
cation of the model to the production of the ASR
data used in the primary task.

4.2.1 Architecture
wav2vec 2.0 makes use of a transformer architec-
ture for the purposes of transforming raw audio
input W into a vector context representation C. A
1D ConvNet feature encoder first parses the wave-
form into a latent speech representation which is
passed to the transformer. The transformer com-
ponent is composed of a stack of 12 transformer
layers each with an internal dimension of 768, a
feed-forward dimension of 3072, and 8 attention
heads. The component takes the output of the fea-
ture encoder, applies relative positional encoding
and a GELU activation to the inputs, before a layer
normalisation. This outputs context representation
C.

The "base_960" model used can be loaded in a
headless or LM-head configuration, the latter of
which includes a language modelling head applied
on top of the transformer architecture which divides
output into a vocabulary of 32 characters including
alphabetical characters and separators. This out-
puts character representations of C, which is the
ASR transcription of W.

4.2.2 Training Task and Dataset
The wav2vec 2.0 model was pre-trained on the unla-
belled Librispeech corpus containing 960 hours of
audio. The wav2vec 2.0 model features both a pre-
training and fine-tuning objective. The fine-tuning
task is not relevant for this work, as it pertains to
the language-modelling head which was not used
in our experiments. The pre-training task requires
the transformer module to correctly identify the
“true” latent quantised speech representation, pro-
vided by the pre-transformer quantisation CNN
module, for a masked time-step. A certain propor-
tion of the inputs (representing quantisations of a
particular time-step) to the transformer module are
masked, and the transformer must identify them
from a set of distractors sampled from the overall
set of masked time-steps.

1https://huggingface.co/facebook/wav2vec2-base-960h
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Figure 1: Overview of Experimental Methodology

5 Methodology

This section sets out the experimental methodology
employed in this paper, outlining specifically how
the relevant data was generated and the description
of the probing task. Figure 1 provides an overview
of the steps involved.

5.1 Data Generation

Firstly, utterance embeddings are generated us-
ing wav2vec 2.0. For each utterance in the full
TIMIT training dataset (4620 separate 16kHz wav-
formatted files), 12 sets of embeddings were gen-
erated, one per transformer layer. This was per-
formed by operating the model without its lan-
guage modelling head, and specifying the return
of hidden-layer representations, where each trans-
former block is a single hidden-layer. Each audio
file input generates an output of format [N*768]
(N being the number of 25ms frames, proportional
to the duration of the input audio); this results in
the Individual Layer Data in figure 1. In contrast
to the representations explored by Belinkov and
Glass (2017), the representations here retain a con-
stant dimensionality throughout each layer of the
transformer, in distinction to the variety of layer
architectures employed in DeepSpeech2.

The next step is to generate a frame-based
dataset for the probing tasks. Since the TIMIT
dataset provides frame-aligned annotations, mark-
ing the beginning and end of a given phoneme

in the associated audio file, this data can be used
to calculate phoneme-averaged durations. Taking
the proportion between the maximum number of
TIMIT frames in a given audio sequence and the
number of wav2vec 2.0 frames N generated for
that sequence, a relative positional mapping is gen-
erated for each [N*768] embedding, whereby a
given frame of shape [1*768] is labelled with the
phoneme2 occurring at that position in the audio
sequence, as according to the TIMIT labels. In this
way a vector of shape [1*767] is generated, contain-
ing the vector representation of a given wav2vec
2.0 frame and the TIMIT-derived phoneme anno-
tation. This process is depicted in figure 1 under
Derived Datasets. 12 of these frame datasets were
generated from the TIMIT dataset, to be used in the
next section as the basis for deriving the phoneme-
averaged representations used in the probing task.

Employing a variant of the method used in (Shah
et al., 2021), the vector values of individual frames
occurring during a specific phoneme interval are av-
eraged, to create a representation in the embedding
space of a given instantiation of a phoneme. This
generated a dataset of 175,232 individual phoneme
representations in the format [1*767], where the
first field contains the phoneme label and the re-
maining 768 fields contain the column-wise aver-
age of all frames generated during a given phoneme

2We use the term phoneme here for labels that align with
the English phoneme set. TIMIT also separates out the stop
closures e.g. with the label "bcl". We retain these labels.
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occurrence in the input audio. Figure 1 depicts this
process for a simplified two-frame phoneme exam-
ple. Twelve such datasets were derived, one per
chosen layer. These datasets are then used as inputs
to the probing task.

5.2 Probing Task

For the probing task, 12 multi-layer perceptron
models were trained to predict TIMIT phoneme
labels from the phoneme-averaged wav2vec 2.0
embeddings. A scikit-learn (Pedregosa et al.,
2011) implementation of the multi-layer percep-
tron (MLP) was used, comprised of a single hidden
layer of 200 neurons with ReLu activation, and
an output layer of a single neuron with a logistic
activation function. The models used the default
hyper-parameters implemented in scikit-learn, with
the exception of the hidden layer size which was
expanded to 200 neurons.

To train the model, each multi-layer perceptron
was provided with the phoneme-averaged dataset
for a given layer as training material, with 43,808
samples reserved for testing. During training, the
averaged vector representations of shape [1*768]
were the input data with the [1*1] TIMIT phoneme
label as the target category. The division of each
layer’s embeddings was static, with each model
provided with its respective layer’s wav2vec 2.0
outputs for the same audio files.

To generate the outputs described in section 6,
the model was provided with the reserved rows,
containing only the [1*768] vector information.
The [1*1] phoneme label was removed and stored
separately as the ground truth for each vector rep-
resentation. The model then generated a predicted
phoneme label per vector representation, which
was stored with the ground truth in a collection of
[1*2] ground-truth/predicted-label pairs.

Following best practice (Belinkov, 2021), we
created a separate sub-experiment to assess the
potential effects of chance correlation on our re-
sults. The primary probing task was re-conducted
with an artificial dataset of the same dimensions as
the phoneme-averaged dataset. This new dataset
was comprised of values randomly sampled from
the range of each feature column in the phoneme-
averaged dataset, with the labels left unchanged.
The performance of the probe on this task was
very low (<2% accuracy per phone across layers).
This result is substantially lower than the perfor-

mance observed with the real embedding data, and
we took this difference to indicate that the perfor-
mance of our primary probing results reflect actual
information relevant to the task, rather than chance
correlation. Future work will seek to investigate the
dataset in more detail, and incorporate any findings
into a more robust probing task.

From the primary probing task, the follow-
ing outputs were generated for each layer of the
wav2vec 2.0 base model:

• Ground-truth/predicted-label pairs
• Average accuracy scores for each phoneme

label, manner and place of articulation for
each layer

• Phone label confusion matrices for each layer
• Dendrograms depicting sections of the confu-

sion matrices for domain-informed categories

6 Results

This section presents a discussion of the results
of the probing task. Firstly, categorisation accu-
racies for each predicted category per layer were
considered. Then, heatmap representations of all
phoneme confusions for layers of interest were
considered in order to focus on the emergence of
specific domain-informed categories, in this case
a grouping of the consonants categorised with re-
spect to manner of articulation based on hierarchi-
cal clustering.

6.1 Categorisation Accuracies

The accuracy scores for phoneme labels, manner
of articulation (MOA) and place of articulation
(POA) are presented in figures 2, 3 and 4 respec-
tively. The accuracy scores here were derived by
first obtaining a list of phoneme label predictions
from the model, and then evaluating the number
of correct labels with regard to the total number
of predictions. Average accuracies for MOA and
POA were derived by applying a category mapping
to the original phoneme label predictions.

Of interest in figures 3 and 4 is that robust results
are achieved around layer 7 which provides an in-
dicator as to where to focus further investigation.
This tallies with results from other work which have
demonstrated a similar drop-off in performance in
later layers (Belinkov and Glass, 2017).
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Figure 2: Average phoneme label accuracies per layer

Figure 3: Accuracy per layer for MOA categorisation

Figure 4: Accuracy per layer for POA categorisation

6.2 Confusion Heatmaps

To better understand the specific intra-categorical
relationships captured in the MLP predictions, a
confusion matrix was generated for each layer
that detailed the confusions between ground-truth
phoneme labels and the predicted label. This was
done for each layer, with the labels arranged such
that phonemes in the same manner-of-articulation
category were adjacent. From this, a heatmap visu-
alisation was generated for each matrix such that
intra-MOA confusions occupy a contiguous subsec-
tion of the overall figure. Figure 5 depicts the over-
all confusions across all phoneme labels at layers 0,

7, and 12, whereby the bottom right represents vow-
els and the top left stops, closures, fricatives and
affricates. Although the resolution in this figure is
low, changes in patterns can be seen in the top left
of the heatmap for each layer. For this reason, we
have focused on those classes occupying that area
in the next section.

6.3 Hierarchical Clustering

To allow assessment of changes in the MLP
model’s predictive certainty, dendrogram visual-
isations were created using hierarchical clustering
with Ward linkage (Ward, 1963) for sounds with
the manner of articulation stop, closure, fricative
and affricate. This was done by first applying
a transformation to the confusion matrix for all
phonemes detailed above such that each cell now
represented the probability of confusion at a given
ground-truth/prediction intersection in the matrix.
As this was a probability distribution, each row, rep-
resenting the confusions for a given ground-truth
label, sums to 1. The relevant rows and columns
were then extracted as input to the clustering in
no particular order. Figures 6, 7 and 8 show the
dendrograms for these classes at layers 0, 7 and 12
respectively.

The hierarchical view in this context represents
the clusters found by Ward’s method in the prob-
abilistic confusion matrices, and proximity in the
hierarchy can be understood as representing “simi-
larity”, as the clustering method used seeks to min-
imise the loss of information incurred by merging
nodes. Nodes adjacent to each other are minimally
variant, with each sub-tree representing a grouping
of less-variant nodes. As the data being clustered
is the probability outputs from the model’s con-
fusion matrix, we can interpret proximity in the
dendrogram images as indicating items that the
model frequently confuses and hence with prox-
imity within the model’s representation of a given
phoneme.

There are several patterns of interest captured in
the hierarchical view, particularly with respect to
the model’s apparent enhanced understanding of
phonetic structures and positional context. Viewing
figures 7 and 8, it can be seen that the model has
developed a representation of the various phoneme
relationships within the category that better aligns
with domain-informed expectations, with e.g. the
closure/stop pairs for various stops having con-

88



Figure 5: Heatmaps of confusions across all phoneme labels at layers 0, 7, and 12 with vowels in the bottom left
quadrant and consonants in the top right quadrant. The leftmost grid describes layout of features within the matrix.

Figure 6: Obstruents at layer 0

verged. The labels /k/ and "kcl"3, which were sig-
nificantly detached in layer 0 have repositioned to
be adjacent. Similarly, within the fricative region
on the right hand side of the figure, the labio-dental
fricatives (/f/, /v/) have become separated from the
dental fricatives (/th/, /dh/).

Similarly certain acoustically-similar adjacent
phonemes in layer 0, such as /d/ and /t/, see sig-
nificant transformation within the clustering tree.
The /d/ and /t/ labels occupy a separated sub-tree
within the dendrogram produced for layer 0, but
by layer 12 they have transitioned to become prox-
imate to both their closures ("dcl" and "tcl") and
their variants, such as /d-/dx/ and /t/-/q/. We can
observe further development in this transition in
the layer 7 representation (see figure 7) where cer-
tain proximate relationships have been established
(as between the variants of /t/, /q/, and the closure
"tcl") while other positionings remain (as with the
inclusion of /t/ in the /d/-/dx/-"dcl" sub-tree).

The positioning of closures ("gcl", "kcl" etc.) is
also of interest with regard to the apparent transi-
tion from acoustic to positional relations. Initially,

3We do not describe these labels as phonemes.

given their strong acoustic similarity (represent-
ing a lack of sound production) it is intuitive that
they should form a distinctive sub-group within
the dendrogram, as they do in figure 6. At layer
7 this cluster has already separated significantly
into several sub-trees of closure/stop pairs, such as
/k/-"kcl". By layer 12, all closures have become
proximate to their respective stop label.

7 Conclusions and Future Work

While the specific nature of the phonetic informa-
tion captured by modern large transformer models
will require significant further work to adduce, this
paper has demonstrated that there is significant evi-
dence to suggest that transformer architectures are
capable of capturing significant levels of phonetic
detail that accords with domain-informed under-
standings of phoneme relationships, and that permit
distinction between less separable phonemes. Fu-
ture work will look to establish more concretely the
nature and effective mechanism of the layer-wise
changes to these characteristics and the emergence
of phonological generalisations, as well as looking
to explore other aspects of the mechanisms asso-
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Figure 7: Obstruents at layer 7

Figure 8: Obstruents at layer 12

ciated with these networks, such as the operation
of their feature extractor modules and the atten-
tion matrices associated with each layer. While a
chance-correlation experiment was conducted for
this work, label imbalance in the TIMIT dataset
was not specifically accounted for in the probing
task; this will be assessed as a next step. Another
focus of future work will be the investigation of the
relationship of the emerging phonetic categories to
infant language acquisition.
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Abstract

Arabic is a morphologically rich and com-
plex language, with numerous dialectal vari-
ants. Previous efforts on Arabic morphology
modeling focused on specific variants and spe-
cific domains using a range of techniques with
different degrees of linguistic modeling trans-
parency. In this paper we propose a new ap-
proach to modeling Arabic morphology with an
eye towards multi-dialectness, resource open-
ness, and easy extensibility and use. We demon-
strate our approach by modeling verbs from
Standard Arabic and Egyptian Arabic, within a
common framework, and with high coverage.

1 Introduction

There has been a lot of work on Arabic com-
putational morphology in the last three decades
(Beesley et al., 1989; Kiraz, 1994; Al-Sughaiyer
and Al-Kharashi, 2004; Graff et al., 2009; Boud-
chiche et al., 2017; Taji et al., 2018). These ef-
forts were motivated by Arabic’s many challenges,
namely, its morphological richness and complex-
ity, its orthographic ambiguity and noise, and its
numerous dialectal variants. The work on Ara-
bic computational morphology has led to the de-
velopment of many resources that directly model
morphology (e.g., analyzers, generators) and also
resources and tools that use them (Maamouri et al.,
2004; Pasha et al., 2014). Morphological analyzers
have consistently shown that they are still valuable
components in the NLP toolbox, even as the lat-
ter increasingly shifts toward the neural modeling
space, and especially in low-resource and dialectal
settings (Zalmout and Habash, 2017; Baly et al.,
2017; Inoue et al., 2022).

The range of techniques explored for morpho-
logical modeling has been quite large, from finite-
state machines to procedural and functional pro-
gramming languages, covering different degrees
of depth in different linguistic representations, dif-
ferent variants, and different domains and genres.

However, a common challenge among these ap-
proaches is the inconsistent coverage of different
linguistic features. For example, the Standard Ara-
bic Morphological Analyzer (SAMA, v3.1) (Graff
et al., 2009), which was developed in conjunc-
tion with work on Modern Standard Arabic (MSA)
newswire text in the Penn Arabic Treebank (PATB)
(Maamouri et al., 2004), has only 65 imperative
verb forms, while it has over 13 thousand perfec-
tive verb forms. SAMA also has only 15 instances
of the interrogative proclitic


@ Âa1 which in prin-

ciple can attach to any word. Another example
is the Calima-ARZ system for Egyptian Arabic
(EGY) (Habash et al., 2012), which used automati-
cally generated stem classes making it very hard to
linguistically generalize and extend. Many of the
Arabic morphology resources are not freely avail-
able, easy to augment, or ready to plug-and-play in
open-source public libraries.

The work presented in this paper is part of
a larger effort on the CAMELMORPH Project.2

CAMELMORPH’s goal is to build large open-source
morphological models for Arabic and its dialects
across many genres and domains. The focus in this
paper is on the core components that define lexi-
cal and morphological information and the tools
to convert them into models that are readily us-
able within an existing Python open-source suite
for Arabic NLP, Camel Tools (Obeid et al., 2020).
We demonstrate the effectiveness of our approach
by modeling MSA and EGY verbs using a shared
representation, and showing improved coverage
compared to publicly available analyzers. Our data
and code are publicly available.2

Next we present some related work (§2), a dis-
cussion of Arabic linguistic background (§3), and
our approach (§4). We then present the MSA and
EGY verbal models (§5) and evaluate them (§6).

1HSB Arabic transliteration (Habash et al., 2007).
2http://morph.camel-lab.com
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2 Related Work

There has been a considerable amount of work on
Arabic morphological analysis (Al-Sughaiyer and
Al-Kharashi, 2004; Habash, 2010). Altantawy et al.
(2011) organized the various Arabic morphology
processing efforts along a continuum of approaches
that is characterized by two poles: on one end, very
abstract and linguistically rich representations and
rules are used to derive surface forms; while on
the other end, simple and shallow techniques fo-
cus on efficient search in a space of pre-compiled
(tabulated) solutions. The first type is typically but
not strictly implemented using finite-state technol-
ogy, and was one of the earliest efforts undertaken
(Beesley et al., 1989; Kiraz, 1994; Beesley, 1996;
Habash and Rambow, 2006; Smrž, 2007). These
models can be rather complex and have many in-
ternal dependencies among the rules used for mod-
eling sub-word structure and morphotactic and or-
thographic forms. The second type is typically not
implemented in finite-state technology. Examples
include the Buckwalter Arabic Morphological Ana-
lyzer (BAMA) (Buckwalter, 2004) and extensions
of it (Graff et al., 2009; Taji et al., 2018). These
systems do not represent the morphemic, phono-
logical and orthographic rules directly, and instead
compile their effect into the lexicon itself. Hulden
and Samih (2012) demonstrated a method of map-
ping from the pre-compiled tabulated approaches
to finite-state representation; and Altantawy et al.
(2011) demonstrated the reverse process of going
from finite-state to the tabulated representation.

In this paper we present an approach that is a
middle ground between these two poles. In lieu
of generative solutions employing rewrite rules to
map from underlying forms (morphemes) to sur-
face forms (allomorphs), we enumerate, in a lim-
ited pre-compiled manner, the various allomorphic
forms, and indicate the different context conditions
that select for their realization. Our morphologi-
cal specifications also include information about
how to order these different morphemes. Then, in
an offline process, we convert our morphological
specifications into a full pre-compiled tabulated for-
mat in the style of BAMA (Buckwalter, 2004) and
CALIMAStar (Taji et al., 2018) databases (DBs)
used in the open-source Python toolkit Camel Tools
(Obeid et al., 2020). Camel Tools’s morphological
engines enable the use of the same morphological
DB for analysis, generation, and reinflection.

Our approach is closest to Hockett (1954)’s Item-

and-Arrangement approach, linguistically speak-
ing; however, we do make use of post-processing
transformations (a la Item-and-Process) in a limited
way for phonological and orthographic phenomena
that do not change the basic letter spelling of the
Arabic word, but can change its diacritics. Also, to
maximize the utility of our models, we use lemmas
and features that allow us to relate our output to
Word and Paradigm approaches (Bram, 2012).

Finally, while we do not explicitly rely on roots
and patterns to derive our forms, as was done by
Beesley (1996), and Habash and Rambow (2006),
we plan, in future efforts, to abstract from existing
entries templatic patterns that allow us to back off
intelligently to unseen words if needed.

3 Arabic Linguistic Background

3.1 General Challenges
Arabic orthography, morphology, and dialectal vari-
ation pose a number of challenges for NLP.

Orthographic Ambiguity Arabic is typically
written without the optional diacritical marks that
are used for short vowels and consonantal gemina-
tion, leading to a high degree of ambiguity. MSA
has upwards of 12 analyses per word (Pasha et al.,
2014). A subtask of morphological analysis is pro-
ducing the correct diacritization for each analysis.

Morphological Richness Arabic inflects for gen-
der, number, person, aspect, mood, case, state and
voice. In addition, Arabic orthography cliticizes
a number of pronouns (direct object, possessive)
and particles (conjunctions, prepositions, definite
article, etc.). This results in thousands of forms for
each verbal lemma. Because of orthographic am-
biguity, words with analyses that differ in the pres-
ence of clitics are not uncommon, e.g., Ygð wHd
can be analyzed as wa+Had∼a ‘and he limited’ or
waH∼ada ‘he united’, among other readings.

Morphological Complexity Arabic uses a com-
bination of templatic morphemes (roots and pat-
terns) and concatenative affixes and clitics. There
are also many complex morphotactic rewriting op-
erations that cause these morphemes to surface in
different ways (allomorphs) in different contexts.
We present a more detailed set of examples in Sec-
tion 3.2 to motivate the approach in this paper.

Dialectal Variation In addition to MSA, the de
facto official language in the Arab World, there is
a number of different local dialects (e.g., Egyptian,
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(a) (b) (c) (d) (e) (f) (g) (h) (i)
Modern Standard Arabic (MSA)

(1) Root + Pattern Lemma Suff.P3MS Suff.P3FS Suff.P3MP Suff.P2MS Suff.P2FS Suff.P2MP Pron.3MS
(2) +a +at +uwA +ta +ti +tum +hu
(3) k.t.b + 1a2a3 katab katab+a katab+at katab+uwA katab+ta katab+ti katab+tum
(4) write katab+a+hu katab+at+hu katab+uw+hu katab+ta+hu katab+ti+hi katab+tumuw+hu ✓

(5) n.H.t + 1a2a3 naHat naHat+a naHat+at naHat+uwA naHat+~a naHat+~i naHat+~um
(6) sculpt naHat+a+hu naHat+at+hu naHat+uw+hu naHat+~a+hu naHat+~i+hi naHat+~umuw+hu ✓

(7) r.n.n + 1a2a3 ran~ ran~+a ran~+at ran~+uwA ranan+ta ranan+ti ranan+tum
(8) ring ran~+a+hu ran~+at+hu ran~+uw+hu ranan+ta+hu ranan+ti+hi ranan+tumuw+hu ✓

(9) r.m.y + 1a2a3 ramaY ramaY ram+at ram+awA ramay+ta ramay+ti ramay+tum
(10) throw ramA+hu ram+at+hu ram+aw+hu ramay+ta+hu ramay+ti+hi ramay+tumuw+hu ✓

(11) k.t.b + 1A2a3 kAtab kAtab+a kAtab+at kAtab+uwA kAtab+ta kAtab+ti kAtab+tum
(12) correspond with kAtab+a+hu kAtab+at+hu kAtab+uw+hu kAtab+ta+hu kAtab+ti+hi kAtab+tumuw+hu ✓

Egyptian Arabic (EGY)
(13) Root + Pattern Lemma Suff.P3MS Suff.P3FS Suff.P3MP Suff.P2MS Suff.P2FS Suff.P2MP Pron.3MS
(14) + +it +uwA +t +tiy +tuwA +uh
(15) k.t.b + 1a2a3 katab katab katab+it katab+uwA katab+t katab+tiy katab+tuwA
(16) write katab+uh katab+it+uh katab+uw+h katab+t+uh katab+tiy+h katab+tuw+h ✓

(17) n.H.t + 1a2a3 naHat naHat naHat+it naHat+uwA naHat+~ naHat+~iy naHat+~uwA
(18) sculpt naHat+uh naHat+it+uh naHat+uw+h naHat+~+uh naHat+~iy+h naHat+~uw+h ✓

(19) r.n.n + 1a2a3 ran~ ran~ ran~+it ran~+uwA ran~ay+t ran~ay+tiy ran~ay+tuwA
(20) ring ran~+uh ran~+it+uh ran~+uw+h ran~ay+t+uh ran~ay+tiy+h ran~ay+tuw+h ✓

(21) r.m.y + 1a2a3 ramaY ramaY ram+it ram+uwA ramay+t ramay+tiy ramay+tuwA
(22) throw ramA+h ram+it+uh ram+uw+h ramay+t+uh ramay+tiy+h ramay+tuw+h ✓

(23) k.t.b + 1A2i3 kAtib kAtib kAtb+it kAtb+uwA kAtib+t kAtib+tiy kAtib+tuwA
(24) correspond with kAtb+uh kAtb+it+uh kAtb+uw+h kAtib+t+uh kAtib+tiy+h kAtib+tuw+h ✓

EXACT MATCH FALSE FALSE TRUE FALSE FALSE FALSE
FALSE 56 FALSE FALSE FALSE FALSE FALSE FALSE
TRUE 4 FALSE FALSE TRUE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE TRUE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE FALSE
TRUE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE FALSE

UNDIAC MATCH TRUE TRUE TRUE TRUE FALSE FALSE
FALSE 22 TRUE TRUE TRUE TRUE FALSE FALSE
TRUE 38 TRUE TRUE TRUE TRUE FALSE FALSE

TRUE TRUE TRUE TRUE FALSE FALSE
TRUE TRUE TRUE FALSE FALSE FALSE
TRUE TRUE TRUE FALSE FALSE FALSE
TRUE TRUE TRUE TRUE FALSE FALSE
TRUE TRUE TRUE TRUE FALSE FALSE
TRUE TRUE TRUE TRUE FALSE FALSE
TRUE TRUE TRUE TRUE FALSE FALSE

Table 1: Segments of the verbal paradigms of four verbs illustrating complex morphotactics in MSA and EGY.

Levantine, and Gulf) that are commonly used on a
daily basis. These dialects differ significantly from
each other and from MSA in terms of phonology,
morphology and lexicon although they share many
similar aspects that support joint modeling. In Sec-
tion 3.2, we present a more detailed example for
MSA and EGY and compare them with each other.

Orthographic Inconsistency There is a high de-
gree of orthographic inconsistency and variety in
both MSA and dialectal Arabic (Zaghouani et al.,
2014; Habash et al., 2018). For MSA there are stan-
dard guidelines with some minor regional differ-
ences; but dialectal Arabic has no official spelling
rules. Habash et al. (2018) put forth a system
for conventional orthography for dialectal Arabic
(CODA), which has been used in some Arabic NLP
resources. We consider CODA for EGY as our ‘ref-
erence spelling,’ but recognize its limitations.3 We
do not target modeling spelling variations in this
work; and follow the philosophy that spelling er-
rors need to be handled in components outside of
the morphological analyzer. This is an important
future research direction we plan to pursue.

3To allow comparing with previous work on Egyptian
Arabic, we include a limited number of non-CODA-compliant
phenomena, namely the negation and indirect object clitics,
which CODA separates. This is simply a modeling decision
that is independent of the framework.

3.2 Motivating Linguistic Phenomena

We describe in this section the linguistic facts rele-
vant to this paper and approach. Arabic morphol-
ogy includes a combination of templatic and con-
catenative morphemes, both with many allomo-
prhic variants.4 Table 1 (MSA) contrasts parts of
the verbal paradigm for five verbs, all of which
have triliteral roots, but four are in Form I (1a2a3);
and one is in Form III (1A2a3 in MSA, 1A2i3
in EGY). We consider a few subject suffixes and
one pronominal clitic; and we indicate the verbal
citation form (or Lemma).5 The table marks all
default morpheme realizations in gray, and indi-
cates in underlined black font allomorph changes.
For example the word �é�J��.

��J
�
» katab+at+hu (cell Ta-

ble 1.(4d)) simply composes the morphemic forms
of the templatic root k.t.b. and pattern 1a2a3 with
the suffix +at (P3FS, perfective 3rd person femi-
nine singular) and the enclitic pronoun +hu (direct
object 3rd person masculine singular). However,
only in 29 out of 60 cells in the MSA examples, and
38 out of 60 in the EGY examples, is an allomorph

4We limit our discussion in this paper to the fully dia-
critized orthographic forms of the allomorphs in Arabic. We
do not model phonological representations and only discuss
them where necessary.

5Arabic Lemmas are based on the perfective 3rd person
masculine singular form without the final diacritic vowel.
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Figure 1: A high-level diagram of the CAMELMORPH approach.

of the root, pattern, suffix, or enclitic realized. It
should be noted that although the five verbs hap-
pen to exist in both MSA and EGY, only 4 out
of 60 forms in this example table match exactly.
That said, the differences are regular and consis-
tent, involving different suffix forms and different
morphotactics. If we ignore the diacritics, 38 out
of 60 forms match, an order of magnitude increase.

The following set of linguistic morphotactics can
be observed in the examples in Table 1.

Geminate Verbs Verbs with geminate roots
(equal second and third radicals) have an allomorph
stem with an elided vowel in the context of vowel-
initial suffixes (v-suff) in MSA, e.g. Table 1.(7c-
8h) shows two variants: ranan (morpheme) and
ran . The same phenomenon happens in EGY,
but stems before consonant-initial suffixes (c-suff)
also have a form different from the default inter-
digitation of root and pattern: a stem buffer vowel
is inserted before the suffix, see Table 1.(19c-20h).

Defective Verbs Verbs with defective roots (third
radical is w or y) have three allomorph stems that
depend on the nature of the suffix in both MSA and
EGY: vowel-initial, orthographically represented
with a diacritic only (zero-letter suffix or z-suff),
or being followed by an enclitic, e.g. Table 1.(9c-
10h;21c-22h) shows four variants: ramay (mor-
pheme), ramaY, ramA, and ram.

t-ending Verbs Suffixes starting with the letter
t in both MSA and EGY have orthographic allo-
morphs that replace the initial t with a letter gemi-
nation diacritic, Shadda ∼, when following verbs
ending with the letter t (#t), e.g. Table 1.(5f-6h).

Masculine Plural Suffixes The masculine plural
suffixes (+uwA, +tum and +tuwA in Table 1.(e;h)
also have multiple forms that depend on the pres-
ence of enclitics and the verbal stem ending.

hu Enclitic The MSA clitic +hu has an allomor-
phic variant +hi that harmonizes with suffixes end-
ing with the high front vowel i, e.g. Table 1.(g4).

Short Vowel Elision The short vowel in EGY
verb stem kAt[i]b (in brackets) is elided when the
stem is followed by a vowel, whether from a suffix
or an enclitic, e.g. Table 1.(23;24). Similarly, the
vowel of the EGY enclitic +[u]h is elided after
vowel-ending base words (stem+suffix), e.g. Ta-
ble 1.(22c;22e;22g-h). Such transformations which
only change word diacritics are ideally modeled as
orthographic rewrites (reflecting phonological and
morpho-phonological adjustments).

It should be noted that words can be composed
completely of allomorphs of the underlying mor-
phemes, e.g. EGY word ran∼ay+tuw+h in Ta-
ble 1.(20h). These phenomena are only part of the
complete list of phenomena we model, but are typi-
cal in terms of complexity. In the next section we
will refer specifically to all of these phenomena and
how we model them and their interactions.

4 The CAMELMORPH Approach

Figure 1 presents the overall approach we take
in the CAMELMORPH project. The leftmost
three boxes (CAMELMORPH Specs, DB Maker
and DB) represent the offline process to create a
Camel Tools-compatible morphological database
(CAMELMORPH DB) from CAMELMORPH Speci-
fications (Specs). The rightmost part of the figure
represents the online process of using the DB in
the Camel Tools morphological analysis and gen-
eration engines, where an input word results in a
number of possible analyses, and an analysis can
result in one or more words.

While we focus in this paper on the process of
creating Camel Tools-compatible DBs, the over-
all approach can be used to generate other repre-
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MO Morph 
Order

DBPrefix DBStem DBSuffix katab+ti+hi
[CONJ] [PVStem] [PVBuff] [PVSuff] [Pron] naHat+~umuw+hu

ran~+uw+hu

Class Lemma/ 
Morpheme Form Gloss Set 

Conds
Required

Conds
ranan+ta

ram+A+hu

L
ex

ic
on

L1 [PVStem] katab katab write trans ✓

L2 [PVStem] naHat naHat sculpt #t trans ✓

L3a [PVStem] ran~ ran~ ring trans v-suff ✓

L3b [PVStem] ran~ ranan ring trans c-suff ✓

L4 [PVStem] ramaY ram throw #-ay trans ✓

B
uf

fe
rs

B1 [PVBuff] else ✓ ✓

B2a [PVBuff] aY #-ay z-suff else
B2b [PVBuff] A #-ay z-suff obj ✓

B2c [PVBuff] ay #-ay c-suff
B2d [PVBuff] #-ay v-suff

A
ff

ix
es

A1a [PVSuff] Suff.P3MS a he v-suff else
A1b [PVSuff] Suff.P3MS he z-suff #-ay ✓

A2 [PVSuff] Suff.P3FS at she v-suff
A3a [PVSuff] Suff.P3MP uwA they [mp] v-suff else else
A3b [PVSuff] Suff.P3MP uw they [mp] v-suff else obj ✓

A3c [PVSuff] Suff.P3MP awA they [mp] v-suff #-ay else
A3d [PVSuff] Suff.P3MP aw they [mp] v-suff #-ay obj
A4a [PVSuff] Suff.P2MS ta you [ms] c-suff else ✓

A4b [PVSuff] Suff.P2MS ~a you [ms] c-suff #t
A5a [PVSuff] Suff.P2FS ti you [fs] c-suff suff-i else ✓

A5b [PVSuff] Suff.P2FS ~i you [fs] c-suff suff-i #t
A6a [PVSuff] Suff.P2MP tum you [mp] c-suff else else
A6b [PVSuff] Suff.P2MP tumuw you [mp] c-suff else obj
A6c [PVSuff] Suff.P2MP ~um you [mp] c-suff #t else
A6d [PVSuff] Suff.P2MP ~umuw you [mp] c-suff #t obj ✓

C
lit

ic
s C1 [Pron] ✓

C2a [Pron] Pron.3MS hu him obj trans else ✓ ✓ ✓

C2b [Pron] Pron.3MS hi him obj trans suff-i ✓

Figure 2: Sample Morphological Specifications for MSA perfective verbs, with examples.

sentations, e.g., finite-state machinery (directly or
indirectly as Hulden and Samih (2012) has pre-
viously demonstrated). We chose to work with
Camel Tools because it is a Python toolkit with
growing popularity, and its morphological engine
is relatively efficient.

Next, we describe the various components of the
CAMELMORPH DB making process.

4.1 The CAMELMORPH Specifications

The morphological specifications (Specs) are the
core of the CAMELMORPH project. There are
four types of Specs: Order, Lexicon, various
morphological units (Morph) – Affixes, Clitics,
and Buffers, and Regular Expression Substitutions
(Regex). An example of the set of Order, Lexicon
and Morph Specs needed to model the MSA verbs
in Table 1 is presented in Figure 2. We also present
a Regex example to handle EGY verbs in Figure 2.

Morph Order The Morph Order specifies the
arrangement of all the morphemes that can appear
in a word. It only indicates the order of the mor-
phemes, but not their morphotactic interactions. In
Figure 2.(MO) (at the top of the figure), a minimal
order is specified to form a perfective verb stem
with a stem buffer, suffix, and pronominal clitic.
The Prefix conjunction is allowed, but is not in-
cluded in this example. Inside the Morph Order,
the morphemes are specified by their class, e.g.,
[PVStem] refers to all the perfective verb stems.

The Morph Order also specifies which mor-
pheme classes fall together to make the CAMEL-
MORPH DB stem, and DB complex prefix and
complex suffix sequences (sets of prefixes or suf-
fixes that precede or follow the stem, respectively).
In this example, a complex suffix sequence would
include the resulting concatenation and rewriting
of the perfective verb suffix and enclitic. The DB
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stem is created by concatenating the perfective verb
stem and its buffer.

Different Morph Order lines are needed for the
specifications of imperfect and command verb as-
pects. The number of specific Morph Order lines
can vary depending on the choices of the linguist
designing it.

Finally, since Arabic dialects and MSA all share
the same morpheme order (with minor exceptions),
we can use a common Morph Order for them all.
This paves the way toward models of intra-word
code-switching, which we leave for future work.

Lexicon, Buffers, Affixes, and Clitics All the
morphemes used in the model are specified in a
common style regardless of their type as lexical
stem, inflectional affix, or attached clitic (syntacti-
cally independent, by phonological or orthographi-
cally dependent morpheme). The specification of
any morphemes includes six elements.

(1) Class specifies the set of morphemes that
the morpheme in question belongs to. The Class
is the link between the Morph Order and the spe-
cific morphemes. It determines the position of the
morpheme in the word.

(2) Lemma (in Lexicon) or Morpheme (in Af-
fixes and Clitics) specifies the morpheme. For the
Lexicon, the lemma is an abstraction over all the
inflectional forms of a word’s morphological inflec-
tion family. For the affixes and clitics, we use a
functional specification. For example, Suff.P3MP
refers to the perfective 3rd person masculine plural
suffix. Stem Buffers, as in the class [PVBuffer],
are not morphemes per se, but rather fragments of
stems that vary highly in different contexts. As
such Stem Buffers have no proper morpheme form
defined; but their class specifies their position in
the word. This concept is an innovation that allows
us to refer to specific parts of the word form where
complex morphotactic interactions happen and iso-
late it from the rest of the verbal patterns. There are
two advantages to this approach. First, it reduces
the total number of stems needed to be specified.
So, for the defective verb in Table 1.(9-10;21-22),
instead of listing four stems, ramaY, ramA, ram,
and ramay, we only specify ram with a condition
term (see below) marking its class as #-ay, i.e. de-
fective. A second advantage of the buffer concept
is that it allows us to relate dialect and MSA stems
to each other, e.g. by treating the stems of gem-
inate EGY verbs ran∼ and ran∼ay as the same
(ran∼) with different conditioned buffer values.

Obviously, more complex non-suffixing or prefix-
ing stem changes cannot be handled meaningfully
using the buffer concept. Nevertheless, the current
method is able to handle all Arabic-related concate-
native phenomena perfectly.

(3) Form specifies the actual realized form of
the morpheme. Each of the allomorphs of a mor-
pheme gets a different Form line. For example,
the two forms of the clitic Pron.3MS (hu and hi)
share the same Morpheme and Class but have
different forms. When multiple forms appear for
the same morpheme, they need to be distinguished
through different Required Conditions (Conds),
which specify their complementary distribution.

(4) Gloss specifies the English meaning of the
morpheme. It is not an essential feature of the
model, but still useful to distinguish and explain
any semantic differences.

(5) Set Conds and (6) Required Conds are a
collection of terms that allow us to specify which
allomorphs are compatible. Each form (allomorph)
both sets and requires zero or more conditions to be
true to be validated for use. Effectively, these con-
ditions define the various contexts of co-occurrence
and control the complementary distribution of the
allomoprhs. In the example in Figure 2, there are
nine condition terms:

(1-2) trans (transitive) and obj (object pronoun)
license the use of pronominal clitics with tran-
sitive verbs. The obj condition also interacts
with some suffix and verb buffer forms, e.g., Fig-
ure 2.(B2b;A6b;A6d).

(3-5) v-suff, c-suff, and z-suff specify the form
of the suffixes: vowel-initial, consonant-initial or
zero letter suffixes. They interact with verb stems
and buffer forms.

(6-7) #-ay and #t specify the type of the verb as
defective or t-ending, respectively.

(8) suff-i specifies the context of a suffixes end-
ing with a i, e.g. Figure 2.(A5a;A5b).

(9) Finally, the term else is not a condition in
itself, but it allows specifying the negation of a con-
dition or set of conditions to model complementary
distributions. The scope of an else is the column it
appears in the Required Conds field. For example,
in Figure 2.(C2a), the else indicates the negation of
the suff-i in Figure 2.(C2b).

The right-hand side of Figure 2 presents five
word examples from Table 1 and highlights the spe-
cific allomorphs which are selected to form them.
Here, the order of the allomorphs is determined by
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(Input) (R1) (R2) (Clean up)
V! → ∅ / V C _ C V V! → ∅ / V:  _ ! → ∅ 

kAti!b kAti!b kAti!b kAtib
kAti!b+it kAtb+it kAtb+it kAtb+it
kAti!b+uwA kAtb+uwA kAtb+uwA kAtb+uwA
kAti!b+t kAti!b+t kAti!b+t kAtib+t
kAti!b+tiy kAti!b+tiy kAti!b+tiy kAtib+tiy
kAti!b+tuwA kAti!b+tuwA kAti!b+tuwA kAtib+tuwA
kAti!b+u!h kAtb+u!h kAtb+u!h kAtb+uh
kAti!b+it+u!h kAtb+it+u!h kAtb+it+u!h kAtb+it+uh
kAti!b+uw+u!h kAtb+uw+u!h kAtb+uw+h kAtb+uw+h
kAti!b+t+u!h kAti!b+t+u!h kAti!b+t+u!h kAtib+t+uh
kAti!b+tiy+u!h kAti!b+tiy+u!h kAti!b+tiy+h kAtib+tiy+h
kAti!b+tuw+u!h kAti!b+tuw+u!h kAti!b+tuw+h kAtib+tuw+h

Table 2: Example of the application of rewrite rules to
model the EGY verbs in Table 1.(23;24).

the Morph Order, and their compatibility through
the set and required condition terms. For instance,
in the second example, naHat+∼umuw+hu, the
selected stem sets the conditions #t and trans. The
Suff.P2MP has four allomorphs, and the Pron.3MS
enclitic has two. Two of the Suff.P2MP allomophs
are compatible with the stem’s #t; and only one of
these two (requiring #t and obj) is compatible with
one of the Pron.3MS allomorphs (setting obj and
requiring trans and not suff-i).

Regex Substitution Rules The last component
of the CAMELMORPH Specs is the regex substitu-
tion rules. These rules can be used to model ortho-
graphic and phonological rewrite phenomena that
involve morpheme diacritics. Table 2 illustrates
how three rules can be used to model the vowel eli-
sion phenomena in EGY verbs in Table 1.(23;24).
While the rules are implemented in the system with
regex substitutions over orthographic forms, we
represent them in the headers of Table 2 in SPE-
type rule form (Chomsky and Halle, 1968) for read-
ability.6 To control the scope of the rules, we also
extend the EGY verb stem and enclitic entries by
marking elision candidates in the morphemes di-
rectly using a ! character. Only marked vowel
diacritics in elision contexts are deleted. In Ta-
ble 2, we use two rules (R1) and (R2), applied in
sequence, followed by a final cleanup step to re-
move the ! marker for vowels that were not deleted.
The morpheme boundary (+) is maintained for il-
lustrative purposes. The grayed out cells indicate
where a rule is applied, and the bolding indicates
the affected morpheme.

6V represents any vowel, which corresponds to short vow-
els (diacritical marks [aiu]) and long vowels represented as
(aA|iy|uw). The symbol V: represents long vowels only.

To allow us to use regex substitution rules within
Camel Tools, we needed to make some extensions,
which we plan on releasing in future Camel Tools
releases.

4.2 The CAMELMORPH DB
We describe next the format of the CAMELMORPH

DB, which we want to generate from the CAMEL-
MORPH Specs. The CAMELMORPH DB has the
same basic structure as the Buckwalter Arabic
Morphological Analyzer (BAMA) (Buckwalter,
2004): it consists of (a) three lexical tables for
complex prefixes (sequences of all possible co-
occurring proclitics and prefixes), complex suffixes
(sequences of all possible co-occurring suffixes and
enclitics), and stems, and (b) three compatibility
tables that specify allowed co-occurrences of com-
plex prefixes with stems, stems with complex suf-
fixes, and complex prefixes with complex suffixes
(see Figure 1). During the analysis of a word, all
combinations of allowable prefixes, stems, and suf-
fixes matching the input in undiacritized space are
considered and checked for existence in the lex-
ical tables, and if so, their lexical categories are
checked for compatibility in compatibility tables.
Only valid and compatible combinations are output.
This representation, which was pioneered by Buck-
walter (2002) has been used by many other systems
since then (Habash, 2004; Taji et al., 2018; Obeid
et al., 2020) with numerous extensions. Habash
(2004) demonstrated how to extend the algorithm
with the same DB to perform generation. And Taji
et al. (2018) demonstrated its use for reinflection
and more complex gender/number modeling.

In our work, we extend Obeid et al. (2020)’s ver-
sion by factoring out some hard-coded components
to handle regex-based post-processing, and include
them in the DB files. Our extensions will be inte-
grated in Camel Tools once the full morphological
models are finalized for all parts-of-speech.

4.3 The CAMELMORPH DB Maker
The CAMELMORPH DB Maker takes the CAMEL-
MORPH Morph Specs as input and generates a
BAMA-like CAMELMORPH DB. The basic algo-
rithm behind this conversion is to identify all the
unique condition terms set and required from all
the instances of the classes ordered in the Morph
Order. Each such combination is checked for com-
patibility (i.e., morphotactic validation) and incom-
patible combinations are discarded. Surface strings
and features associated with compatible combina-
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MSA EGY
CAMELMORPH 

Specs
CAMELMORPH 

DB
Calima 

MSA
CAMELMORPH 

Specs
CAMELMORPH 

DB
Calima 

EGY

(a) Lemmas 9,331 9,331 9,112 8,404 8,404 10,661

(b) Prefix & Proclitic Morphemes (Allomorphs) 34 (35) 23 (24)
Suffix & Enclitic Morphemes (Allomorphs) 119 (231) 39 (56)
Stem Buffers (Pre-stem/Post-stem) 6 / 71 4 / 47
Unique Condition Terms 35 30
Morph Order 69 11

(c) Compatibility Tables 48,798 2,733 13,734 6,649
Complex Prefix Sequence 2,440 1,127 896 5,499
Complex Suffix Sequence 12,902 574 2,619 1,237

(d) PV-Active Stems 10,514 13,329 13,299 8,718 11,421 10,487
PV-Passive Stems 10,509 11,483 303 n/a n/a 3,558
IV-Active Stems 10,486 14,305 13,382 8,406 18,052 4,264
IV-Passive Stems 10,486 14,246 2,825 n/a n/a 707
CV Stems 10,486 12,785 66 8,406 9,402 6,054

(e) All Unique Diacritized Forms 93,212,172 37,017,732 192,427,668 9,795,021
All Unique Full Analyses 254,312,696 87,968,972 515,194,392 95,795,018
All Unique Full Analyses without Clitics 1,602,403 321,323 159,697 52,190

Table 3: Statistics of the MSA and EGY verbal morphology models in CAMELMORPH.

tions are split into complex prefix, complex suffix
and stem sequences and added into the lexical ta-
bles. Also, compatibility categories are created for
the complex morpheme sequences, and are added
to the compatibility tables. Memoization is used
to speed up this process and make it efficient. As
for the Regex substitution rules, they are simply
copied into the DB with minimal processing.

5 Modeling Arabic Verbs

We developed two morphological models for MSA
and EGY verbs. This effort made use of publicly
available resources and tools, together with exten-
sive reformulation, quality assessment, and refer-
ence cross-checking by a team of linguists and
computer scientists.

For MSA in particular, we filled many known
gaps in previous models, namely, adding passive
and imperative forms, and the interrogative pro-
clitic. We also added some admittedly archaic
forms from Classical Arabic: energetic and extra
energetic moods and indirect object pronominal cli-
tics used with ditransitive verbs. For EGY, we paid
special attention to completing verbal paradigms
and modeling phono-orthographic phenomena.

Table 3 presents some of the statistics about
these two models. For each variant (MSA and
EGY), we present three sets of contrasting numbers:
The CAMELMORPH Specs, the CAMELMORPH

DB, and two pre-existing Camel Tools MSA and
EGY databases for reference: Calima MSA and

Calima EGY, respectively.7

The total number of lemmas in CAMELMORPH,
and in Calima MSA and Calima EGY is gener-
ally comparable, although Calima EGY has more
lemmas, presumably because automatic methods
of lexicographic population were used in that effort.
However, the number of lemmas does not indicate
the modeling of their full paradigm.

The total number of morphological specifica-
tions outside the lexicon (Table 3.(b)) is two orders
of magnitude smaller than the forms compiled into
CAMELMORPH DB (Table 3.(c)). MSA Specs are
2.6 times the number of those in EGY (Table 3.(b)),
which is expected given MSA’s richer inflectional
features space.

Looking at the stem counts in both MSA and
EGY (Table 3.(d)), we notice that the number of
forms in CAMELMORPH DB is higher than those
in Specs by 26% and 52% for MSA and EGY, re-
spectively. This increase is because of the pre- and
post-buffer merging with the stems. Additionally,
MSA Passive and CV (Command) forms were en-
riched to match the size of other verb forms. This
is a major coverage increase resulting in more com-
plete verbal paradigms. EGY on the other hand has
no passive stems in CAMELMORPH, as by design,
we consider them to be unaccusative derivational
forms and not inflectional passives. This is a de-

7For MSA, we compared with the
calima-msa-s31_0.4.2.utf8.db version (Taji et al.,
2018) based on SAMA (Graff et al., 2009). For EGY we only
compared to the calima-egy-c044_0.2.0.utf8.db
entries (no MSA extensions) based on Habash et al. (2012).
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sign choice of our Specs and not a limitation of the
framework. We also note the large increase in EGY
IV stems which is due to pre-stem buffers that in-
teract with some of the person and number prefixes.
One advantage of the CAMELMORPH framework
is the ease of configuring the specifications of the
DB being generated while considering tradeoffs in
efficiency.

In terms of the total number of analyses (Ta-
ble 3.(e)), CAMELMORPH has 2.9 times and 5.4
times the number of analyses in Calima MSA and
Calima EGY, respectively. The total number of
unique CAMELMORPH EGY full analyses is re-
markably twice that of MSA, while the respective
number of analyses without clitics is one-tenth.
This is consistent with MSA having a richer inflec-
tion space; while EGY has a richer enclitic space,
which includes negation clitics and indirect and
benefactive object pronouns.

6 Evaluation

We present two recall-based evaluations to measure
the quality of the new verb morphological models
we developed.

MSA Recall Evaluation and Error Analysis To
evaluate the quality of our CAMELMORPH MSA
verb model in terms of recall of correct morpholog-
ical analyses, we used manually annotated verbal
entries in the training portion of the PATB (latest
versions of parts 1,2,3) (Maamouri et al., 2004) as
defined by Diab et al. (2013). There are 47,691 verb
tokens (14,786 unique analyses). Out of all verb
tokens, 98.4% of their full analyses were recalled
successfully, and 0.3% were out-of-vocabulary. Of
the remainder 1.4% with no perfect matches, we
randomly selected 100 unique verb analysis exam-
ples and manually analyzed the results. In 93% of
the cases, the PATB annotation was suboptimal or
incorrect: 64% (absolute) of the cases come from
the use of a li/PREP clitic with verbs instead of
li/CONJ_SUB, which seems like a consistent an-
notation choice, albeit odd for verbs. In 29% of
the cases, the PATB annotation did not specify a
lemma or diacritization (13%), or had an incorrect
lemma or diacritization (16%). In 6% (absolute) of
the latter, the lemma was incorrectly specified in
the passive voice. Our CAMELMORPH MSA sys-
tem failed to produce matches in 7% of the sample.
Most of the cases were missing lexical entries or
alternative spellings of some clitic combinations,
e.g., fa+li as fa+l.

EGY Recall Evaluation and Error Analysis
Similar to our MSA recall evaluation, we con-
ducted a recall evaluation for EGY using the ver-
bal entries in the training portion of the LDC’s
ARZATB (Maamouri et al., 2012) as defined by
Diab et al. (2013). Given the inconsistencies in
some of the ARZATB entries, we used a version
of ARZATB that was automatically synchronized
with a combination of EGY and MSA analyzers
as our reference. This version was reported on in
previous publications (Pasha et al., 2014; Zalmout
and Habash, 2019; Inoue et al., 2022). For recall
evaluation, we also use CAMELMORPH EGY and
MSA together in a similar manner, with preference
towards EGY if an imperfect (i.e., not all analy-
sis features match) tie is reached. To deal with
the common spelling variations in the input words,
we use the a dediacritized version of the correct
answer, which is intended to mimic a more CODA-
compliant spelling. Of the original token count
of 20,339 verbs, 69.9% of the full analyses are
recalled successfully. In 1.4%, no analysis is gener-
ated, and in 24.2%, no single analysis matches the
reference analysis perfectly. 4.5% of the reference
analyses were not usable due to synchronization
issues. We took a sample of 100 unique verb anal-
yses from the set with no matches, and analyzed
them manually. Almost half of the sample (47%)
was due to reference errors. Another third (37%)
involved valid alternative diacritizations reflecting
different pronunciations (e.g. ½�Ó misik vs masak
‘to hold’). 10% were due to missing entries; and
6% were due to diacritization errors that can be
fixed with regular expressions.

The difference in recall between MSA and EGY
is striking but completely understandable given the
differences in standardization traditions and the
maturity of existing resources.

7 Conclusion and Future Work

We presented a new approach to modeling Ara-
bic morphotactics and demonstrated its usefulness
by creating a large-scale verbal analyzer for MSA
and EGY using a common framework. All of
our models and code will be publicly available.
In the future, we plan to extend our work to all
other POS classes in MSA and EGY, as well as
target other dialects of Arabic. Some of the in-
teresting challenges we want to address are noisy
spelling, dialect-MSA intra-word code switching,
and template-based backoff modeling.
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Abstract

The SIGMORPHON 2022 shared task on mor-
pheme segmentation challenged systems to de-
compose a word into a sequence of morphemes
and covered most types of morphology: com-
pounds, derivations, and inflections. Subtask 1,
word-level morpheme segmentation, covered 5
million words in 9 languages (Czech, English,
Spanish, Hungarian, French, Italian, Russian,
Latin, Mongolian) and received 13 system sub-
missions from 7 teams and the best system av-
eraged 97.29% F1 score across all languages,
ranging English (93.84%) to Latin (99.38%).
Subtask 2, sentence-level morpheme segmenta-
tion, covered 18,735 sentences in 3 languages
(Czech, English, Mongolian), received 10 sys-
tem submissions from 3 teams, and the best sys-
tems outperformed all three state-of-the-art sub-
word tokenization methods (BPE, ULM, Mor-
fessor2) by 30.71% absolute. To facilitate error
analysis and support any type of future studies,
we released all system predictions, the evalua-
tion script, and all gold standard datasets.1

1 Introduction

Many NLP applications, such as machine trans-
lation or question answering, require subword to-
kenization, i.e. splitting words into a sequence
of substrings (Mielke et al., 2021). Such tokeniz-
ers are trained by an unsupervised algorithm, usu-
ally either Byte-Pair Encoding (BPE; Gage 1994;
Sennrich et al. 2016) or Unigram Language Mod-
eling (ULM; Kudo 2018). To give a few exam-
ples, contemporary language models RoBERTa
(Liu et al., 2019) and GPT-3 (Brown et al., 2020)
use a byte-level BPE (Radford et al., 2019) while
XLNet (Yang et al., 2019) relies on ULM. These
subword tokenization algorithms are not linguisti-
cally motivated but are rather based on statistical
co-occurrences. Therefore, unsupervised and semi-
supervised methods for morphological segmenta-

1https://github.com/sigmorphon/
2022SegmentationST

System type motivation segmentation
BPE surface sta. in | val | uable
Morfessor2 surface sta. & lin. in | valuable
DeepSPIN-3 canonical sta. & lin. in | value | able

Table 1: Structural differences of subword tokeniza-
tion (BPE), morphological segmentation (Morfessor2),
and morpheme segmentation (DeepSPIN-3 – subtask 1
winning system); acronyms: sta. - statistics and lin. -
linguistic

tion (Creutz and Lagus, 2005) have emerged in
parallel, state-of-the-art methods of this kind being
Morfessor variants (Grönroos et al., 2014, 2020).
Ataman et al. (2017) and Schwartz et al. (2020)
find that Morfessor-based language models can out-
perform BPE-based ones. Matthews et al. (2018);
Nzeyimana and Rubungo (2022) show that enrich-
ing BPE with morphological analyzers can be ben-
eficial for translation, while many others (Domingo
et al., 2018; Macháček et al., 2018; Schwartz et al.,
2020; Saleva and Lignos, 2021) find no conclusive
improvements over BPE for machine translation.

One of the core problems is that the state-of-the-
art morphological segmentation and subword tok-
enization algorithms provide “surface-level” seg-
mentation, which has several theoretical drawbacks
with respect to “canonical” segmentation (e.g., seg-
mented substrings are not considered as meaning-
ful as morphemes). Cotterell et al. (2016) provided
formal definitions for both: given a word w, its
“surface” segmentation is a sequence of surface
substrings the concatenation of which is w, e.g.,
funniest → funn-i-est. The purpose of canonical
segmentation (Kann et al., 2016; Girrbach, 2022),
on the other hand, is not only computing surface
segmentation but also restoring standardized forms
of morphemes, e.g., funniest → fun-y-est. More
detailed structural distinctions between these seg-
mentation types are shown in Table 1.

However, state-of-the-art studies in canonical
segmentations have been limited to very low num-
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Lang word segmentation category

eng sheepiness sheep @@y @@ness 010
pokers poke @@er @@s 110

hun időpontod idő @@pont @@od 101
szőttetek sző @@tt @@etek 100

mon харах харах 000
гэмтлийг гэмтэх @@л @@ийг 110

Table 2: Training samples for Subtask 1. Each sample
consists of a word, its canonical segmentation, and a
category encoding word formation processes.

bers of languages with sufficiently rich morpho-
logical resources (Kurimo et al., 2010a,b; Cotterell
et al., 2016; Kann et al., 2018). With the goal of
advancing research in this direction, we present a
morpheme segmentation shared task and provide
large-scale datasets over nine languages, evalu-
ation metrics, and morphological annotations of
five million word formations. In this, we rely on
the latest release of UniMorph (Batsuren et al.,
2022) which has introduced morpheme segmenta-
tions and derivational data from MorphyNet (Bat-
suren et al., 2021b). The resulting shared task is
a follow-up to past morphological segmentation
shared tasks such as “MorphoChallenge” (Kurimo
et al., 2007, 2008, 2009) or “Multilingual parsing”
(Zeman et al., 2017, where lemmatization as seg-
mentation is a subtask).

2 Task and Evaluation Details

2.1 Subtask 1: Word-level Morpheme
Segmentation

In subtask 1, participating systems were asked to
segment a given word into a sequence of mor-
phemes. The participants were initially provided
with examples of segmentation to train and fine-
tune their systems, as shown in Table 2. Each
instance in the training set is a triplet consisting
of a word, a sequence of morphemes, and a mor-
phological category specifying the types of word
formation (see Table 3). The morphological cate-
gory is an optional feature that can only be used
to oversample or undersample the training dataset
(the word frequencies are imbalanced across the
morphological categories, e.g., Italian has 431 com-
pound words and 253K inflections). The test data
only contained the initial word itself.

Key points of this subtask are:

• The task is focusing on canonical segmenta-
tion, i.e. given an input word, participants had
to predict a sequence of morphemes. In canon-

ical segmentation, the participating systems
need to reconstruct internal morphophonologi-
cal processes involved in word formation. For
example, the word “intensive” will be decom-
posed into the base form “intense” and the
adjectival siffix ‘@@ive” (note that the end-
ing ‘e’ of the base word is inferred here);

• As shown in Table 4, the task is multilingual,
with seven high-resource languages (English,
Spanish, Hungarian, French, Italian, Russian,
Latin) and two low-resource languages (Czech
and Mongolian);

• The annotated corpus data represents a vari-
ety of morphological phenomena, including
inflection, derivation, compounding (Table 4);

• A large-scale coverage as segmentations of
five million words.

2.2 Subtask 2: Sentence-level Morpheme
Segmentation

The second subtask is a context-dependent mor-
pheme segmentation and focuses on resolving am-
biguity in segmentations. Consider the following
example containing a Mongolian homonym:

(1) Гэрт
Гэр @@т
Home.DAT

эмээ
эмээ
grandma

хоол
хоол
meal

хийв
хийх @@в
cook.PRS.PRF

‘Grandma just cooked a meal at home.’

(2) Би
Би
I

өдөр
өдөр
afternoon

эмээ
эм @@ээ
medicine.PSSD

уусан
уух @@сан
take.PST

‘Afternoon I took my medicine.’

where “эмээ” is a homonym of two different words;
in the first sentence, it is “grandmother”, and in the
second sentence — an inflected form of “medicine”.
Thus, the form in the second case can be segmented.
However, the modern subword segmentation tools
consider no contextual differences in word forms.

Key points of this subtask are:

• Morpheme segmentation is context-
dependent;

• We organize it for three languages: English,
Czech, and Mongolian;

• For Czech and Mongolian we asked native
speakers to manually annotate the data. The
details of data collection are provided in Sec-
tion 3.
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Category Infl. Deri. Comp. Description English example (input ==> output)
000 - - - Root words (free morphemes) progress ==> progress
100 - - Inflection only prepared ==> prepare @@ed
010 - - Derivation only intensive ==> intense @@ive
001 - - Compound only hotpot ==> hot @@pot
101 - Inflection and Compound wheelbands ==> wheel @@band @@s
011 - Derivation and Compound tankbuster ==> tank @@bust @@er
110 - Inflection and Derivation urbanizes ==> urban @@ize @@s
111 Inflection, Derivation, Compound trackworkers ==> track @@work @@er @@s

Table 3: Morphological categories and descriptions of segmented words in subtask 1

Category English Spanish Hungarian French Italian Russian Czech Latin Mongolian
000 101938 15843 6952 13619 21037 2921 - 50338 1604
100 126544 502229 410662 105192 253455 221760 - 831991 7266
010 203102 18449 24923 67983 41092 72970 - 0 2201
001 16990 248 3320 1684 431 259 - 0 5
101 13790 458 101189 478 317 1909 - 0 35
011 5381 82 1654 506 140 328 - 0 0
110 106570 346862 323119 126196 237104 481409 - 0 7855
111 3059 343 54279 186 158 2658 - 0 0

total words 577374 884514 926098 382797 553734 784214 38682 882329 18966

Table 4: Word statistics across morphological categories on subtask 1

Language train dev test
Czech 1,000 500 500
English 11,007 1,783 1,845
Mongolian 1,000 500 600

Table 5: The number of samples in each language in
Subtask 2.

2.3 Evaluation
In order to evaluate and compare the systems, we
used four metrics: (i) precision, the ratio of cor-
rectly predicted morphemes over all predicted mor-
phemes; (ii) recall, the ratio of correctly predicted
morphemes over all gold-label morphemes; (iii)
f-measure, the harmonic mean of the precision and
recall; (iv) edit distance - average Levenshtein dis-
tance between the predicted output and the gold
instance. For convenience, we provided the python
tool2 to evaluate these metrics on both subtasks. In
addition, for subtask 1 this tool also provided de-
tailed results across the morphological categories.

3 Data

We collected our morphological data from various
sources to account for all types of morphology:
derivational, inflectional, compounding. We also
collected base forms. For derivational and inflec-
tional morphology, we have used the segmentation
data from UniMorph 4.0 (Batsuren et al., 2022) and

2https://github.com/sigmorphon/
2022SegmentationST/tree/main/evaluation

MorphyNet (Batsuren et al., 2021b). UniMorph
contains inflectional paradigms collected from lin-
guistic sources as well as Wiktionary, while Mor-
phyNet represents derivations scraped from vari-
ous editions of Wiktionary. Compounds and base
forms were also extracted from Wiktionary (see
Section 3.2 for more details on the data extraction).
We then used the data to produce morpheme seg-
mentations for seven high-resource languages. For
Czech and Mongolian, as low-resource languages,
we asked native speakers and linguists to develop
the resources (Section 3.3 provides more details).
For English sentence data, we have used the univer-
sal dependency treebank of English (Silveira et al.,
2014).

3.1 Data Statistics

The data for the shared task was moderately mul-
tilingual, containing nine unique languages of five
genera including Germanic, Italic, Slavic, Mon-
golic, and Uralic. In subtask 1, we have over 5
million samples of morpheme segmentations that
cover nine languages over nine morphological cat-
egories, as shown in Table 4. In subtask 2, Table 5
displays the data statistics of three languages.

3.2 Extraction from Wiktionary

Language-specific editions of Wiktionary contain a
considerably large amount of derivations and com-
pounds.

Compound extraction rules were applied to the

105

https://github.com/sigmorphon/2022SegmentationST/tree/main/evaluation
https://github.com/sigmorphon/2022SegmentationST/tree/main/evaluation


etymology sections of Wiktionary entries to collect
the Morphology template usages, such as for the
English newspaper:

Equivalent to news + paper.

where we have a morphology entry from the Wik-
tionary XML dump as follows:

{{compound | en | news | paper}}

Most of compound entries use “compound” ety-
mology template while some cases use “affix“ tem-
plates, e.g., basketball and volleyball.

Root (and base) word extraction is a two-step
procedure. In the first step we collected words,
inherited from earlier phases of corresponding lan-
guages. For example, English ‘book’ is traced
back to the Middle English ‘bok’, according to
the etymology section of Wiktionary. We extracted
279,173 words from 6 languages from CogNet, a
cognate database containing 8.1 million cognate
pairs of 335 languages from Wiktionary (Batsuren
et al., 2019a, 2021a). In the second step, we filtered
out 116,863 words from the earlier extracted deriva-
tional and compound data, resulting in 162,310 root
words in 6 languages. Similar Wiktionary data ex-
traction procedures have been applied to a wide
range of linguistic data, e.g., etymology (Fourrier
and Sagot, 2020), multilingual lexicons - DBnary
(Sérasset, 2015) and Yawipa (Wu and Yarowsky,
2020).

3.3 Collecting data for Czech and Mongolian
We had two languages with limited amount of data,
Czech and Mongolian. For each language, we used
a different development methodology than for the
other seven languages (with larger amount of avail-
able data).

Mongolian: we asked two linguists (who are
also native speakers of Mongolian) to annotate mor-
pheme segmentations of 3,810 words from Mon-
golian WordNet (Batsuren et al., 2019b). After
manual annotation, we received 1,604 base forms,
2201 derived forms, and 5 compounds. To account
for inflectional morphology, we have used the Mon-
golian transducer tool (Munkhjargal et al., 2016)
to generate inflected forms of the 3,810 annotated
words. In total, we collected morpheme segmen-
tations of 18,966 Mongolian words for subtask 1.
For subtask 2, the same two linguists annotated
2,100 Mongolian sentences.

Czech: we merged hand-segmented word forms
from four sources for the purpose of subtask 1: (a)
segmentations previously created within DeriNet

(Vidra et al., 2019), a project aimed at capturing
derivational relations in Czech (9,508 word forms),
(b) segmentations of Czech verb lemmas imported
from a partially digitized version of a printed dic-
tionary (Slavíčková et al. 2017; 13,162 word forms
in addition, i.e. not counting overlaps), (c) segmen-
tations available in the MorfCzech dataset (Pele-
grinová et al., 2021), mostly extracted from dic-
tionaries and grammar books existing for Czech
(additional 11,137 word forms), and (d) word forms
that we annotated newly in order to reach complete
coverage of Czech subtask 2 sentences (see below;
additional 4,887 word forms). In total, the sub-
task 1 dataset contains 38,694 unique Czech word
forms segmented to morphs.

All annotations were performed by native speak-
ers with linguistic education, and underwent care-
ful harmonization if the input resources disagreed,
as well as numerous consistency checks. However,
because of rich allomorphy in Czech, we have not
been able to merge allomorph sets under more ab-
stract umbrella morphemes so far, and thus words
are represented as sequences of morphs (whose
concatenation perfectly matches the original word
forms), not of morphemes.

The Czech subtask 2 dataset contains in total
2,000 sentences from the Czech subset of Univer-
sal Dependencies (de Marneffe et al. 2021; more
specifically, 1000, 500, and 500 first sentences from
the train, dev, and test sections, respectively, of the
Prague Dependency Treebank subset of UD 2.9).
Given that homonymy resulting in different morph
boundaries is extremely rare in Czech, words are
segmented basically regardless of their contexts.

3.4 Data Splits

From each language’s collection of morpheme seg-
mentations in subtask 1, we sampled 80% for the
training, 10% for development, and 10% for test
sets.3 All splits of subtask 1 are balanced w.r.t.
the nine morphological categories, described in
Table 3. While sampling the training and devel-
opment sets for the subtask 1, we excluded words
that were present in the test sentences of subtask
2. This was done in order to avoid situations when
the subtask 1 data could directly influence the re-
sults of subtask 2 (since we allowed the multi-task
learnings between both subtasks).

3All the data splits can be obtained from
https://github.com/sigmorphon/
2022SegmentationST/tree/main/data
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System features
Team Description System Neural Ensemble Data+ Multilingual Multi-task

Baseline
(Schuster and Nakajima, 2012) WordPiece* - - - - -
(Kudo, 2018) ULM* - - - - -
(Virpioja et al., 2013) Morfessor2* - - - - -

AUUH (Rouhe et al., 2022)

AUUH_A* -
AUUH_B* - -
AUUH_C - -
AUUH_D - - -
AUUH_E* - - -
AUUH_F* - - - -

CLUZH (Wehrli et al., 2022)

CLUZH - - -
CLUZH-1 - - -
CLUZH-2 - - -
CLUZH-3 - - -

DeepSPIN (Peters and Martins, 2022)
DeepSPIN-1 - - - -
DeepSPIN-2 - - - -
DeepSPIN-3 - - - -

GU (Levine, 2022) GU-1 - - -
GU-2 - - -

NUM DI (Zundui and Avaajargal, 2022) NUM DI - - - -
JB132 (Bodnár, 2022) JB132 - - - - -

Tü Seg (Girrbach, 2022) Tü_Seg-1 - - - -
Tü_Seg-2 - - -

Table 6: The list of participating systems submitted to the shared task and baseline systems; Systems marked with *
are submitted to both subtasks

4 Baseline Systems

The shared task provided predictions and results
of baseline systems to participants that covered
all languages and both subtasks. We chose three
baseline systems: First is WordPiece, one of the
state-of-the-art subword tokenization algorithms
used in BERT (Devlin et al., 2019), which is based
on Schuster and Nakajima (2012) and somewhat
resembles BPE (Sennrich et al., 2016). Second is
ULM (Unigram Language Model Kudo (2018)), an-
other popular subword tokenization, used in XLNet
(Yang et al., 2019). Third is Morfessor2, one
of the state-of-the-art unsupervised morphological
segmentations (Virpioja et al., 2013).

In future shared tasks, we aim to include more
state-of-the-art tokenization tools including other
Morfessor variants (Grönroos et al., 2014; Ataman
et al., 2017; Grönroos et al., 2020), BPE-dropout
(Provilkov et al., 2019), dynamic programming
encoding (DPE) (He et al., 2020) or its variant (Hi-
raoka et al., 2021; Song et al., 2022), multi-view
subword regularization (Wang et al., 2021), Char-
former (Tay et al., 2021), space-treatment variants
of BPE and ULM (Gow-Smith et al., 2022).

5 System Descriptions

The SIGMORPHON 2022 Shared Task on Mor-
pheme Segmentation received submissions from 7
teams with members from 10 universities and insti-
tutes. Many teams submitted more than one system
while some focused on a specific set of languages
like Romance. In total, we had 24 unique systems
over two subtasks, including the baseline system.
More system details can be seen in Table 6.

AUUH Researchers at the Aalto University and
the University of Helsinki produced six submis-
sion systems: two were transformer models and
four were bidirectional GRU models created with
several innovations of Morfessor feature enrich-
ment, multi-task learning, and multilingual learn-
ing. Morfessor (Creutz and Lagus, 2002, 2007)
is the famous language-independent unsupervised
and semi-supervised segmentation tool and has a
big family of Morfessor variants (Virpioja et al.,
2013; Grönroos et al., 2014; Ataman et al., 2017;
Grönroos et al., 2020). They have used the first
variant of Morfessor (Creutz and Lagus, 2005) for
enriching input words along with their Morfes-
sor subword segmentations. AUUH_A, AUUH_C,
AAUH_E systems used this Morfessor-based fea-
ture enrichment. The key innovation of AUUH
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macro
System ces eng fra ita lat rus mon hun spa avg.
WordPiece 20.42 23.06 12.66 9.08 8.84 13.81 14.58 24.00 16.57 15.89
ULM 23.71 32.32 16.08 10.65 10.42 15.67 25.82 31.27 19.58 20.61
Morfessor2 29.43 37.65 22.38 9.02 14.53 17.71 37.80 40.96 20.64 25.57
AUUH_A* 93.65 92.32 - - - - 98.19 - - 94.72
AUUH_B* 93.85 93.20 - - - - 98.31 - - 95.12
AUUH_E* 90.71 87.10 90.78 92.39 98.71 94.33 96.06 - - 92.87
AUUH_F 90.28 86.40 90.81 92.56 98.85 93.68 95.32 98.34 97.25 93.72
CLUZH 93.81 92.70 94.80 96.93 99.37 98.62 98.12 98.54 98.74 96.85
DeepSPIN-1 93.42 92.29 91.66 96.01 99.37 98.75 98.03 98.56 98.79 96.32
DeepSPIN-2 93.88 93.39 95.29 97.47 99.36 99.30 98.00 98.68 99.02 97.15
DeepSPIN-3 93.84 93.63 95.73 97.43 99.38 99.35 98.51 98.72 99.04 97.29
GU-1* - - 83.44 88.69 - - - - - 86.07
GU-2* - - 83.38 87.49 - - - - 95.95 88.94
JB132 64.65 65.43 46.20 33.44 91.39 50.55 57.82 72.64 43.39 58.39
NUM DI* - 83.56 - 89.55 - - 85.59 95.91 - 88.65
Tü_Seg-1 93.38 90.51 93.76 95.73 99.37 98.21 97.02 98.59 97.93 96.06

Table 7: Subtask 1 word-level results by system: The f-measure performance of systems by language; and macro
average f-measure of all languages in the last column. Systems marked with * are partial submissions of a specific
language set. The performances in bold are best performance of corresponding languages.

systems was multilingual and multi-task traning.
They used a similar preprocessing technique (John-
son et al., 2017) to distinguish tasks and lan-
guages from one another, and then trained mul-
tilingual neural models which work on both sub-
tasks. Their transformer-based multilingual and
multi-task model, AUUH_B was the subtask 2 win-
ning system (by its macro average f-measure) and
also quite competitive with the subtask 1 winning
systems on its partial three-language submissions.

CLUZH Researchers at the University of Zurich
ensembled four submissions (Wehrli et al., 2022)
by extending their previous neural hard-attention
transducer models (Makarov and Clematide,
2018b,a, 2020). For subtask 1, they submit the
following strong ensemble CLUZH composed of
3 models without encoder dropout and 2 models
with encoder dropout of 0.15. In the sentence-level
subtask 2, they submitted three ensembles, and
treated this problem as the word-level problem by
tokenizing sentences into words. They have also
used POS tags as additional features to provide a
light for the context of words. All individual mod-
els have an encoder dropout probability of 0.25 and
vary only in their use of features: CLUZH-1 with
3 models without POS features, CLUZH-2 with
3 models with POS tag features, and CLUZH-3
with combined all the models from CLUZH-1 and
CLUZH-2. In overall, the CLUZH-3 system was
the subtask 2 winning system (by winning two out
of three languages) and in subtask 1 CLUZH was

the only system, outranked one (DeepSPIN-1) of
three DeepSPIN systems.

DeepSPIN Researchers submitted three neural
seq2seq models: (1) DeepSPIN-1, a character-
level LSTM with soft attention (Bahdanau et al.,
2014) with softmax trained with cross-entropy loss;
(2) DeepSPIN-2, a character-level LSTM with soft
attention in which softwax is replaced with its
sparser version, 1.5-entmax (Peters and Martins,
2019); (3) DeepSPIN-3, a subword-level trans-
former (Vaswani et al., 2017) with the proposed 1.5-
entmax, in which subword segments are modelled
using ULM (Kudo, 2018). This design was one
of most innovative architectures among all submit-
ted systems. The authors previously experimented
with the 1.5-entmax function on other tasks, demon-
strating its utility, especially in the tasks with less
uncertainty in the search space (e.g., compared to
language modelling or machine translation) such as
morphological and phonological modelling (Peters
and Martins, 2020). The final results of this year’s
shared task confirm these observations: DeepSPIN-
2 and DeepSPIN-3 achieve superior results and are
the winner of the shared task.

GU One team from Georgetown University pro-
duced two submissions for three Romance lan-
guages of the word-level subtask, based on the
GRU-based encoder-decoder model (Levine, 2022).
In initial attempts, they tried to use additional fea-
tures from the Wiktionary lists of prefixes and suf-
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inf. drv. cmp. eng fra ita rus mon hun spa macro avg.

- - - 83.80 84.08 82.69* 82.56* 93.37 85.52 83.58 83.6
CLUZH DeepSPIN-3 DeepSPIN-3 DeepSPIN-1 JB132 DeepSPIN-3 DeepSPIN-2 DeepSPIN-3

- - 93.23 81.80 58.10* 77.67 100.00 85.89 57.89* 78.60
AUUH_A CLUZH CLUZH DeepSPIN-2 all systems DeepSPIN-3 DeepSPIN-3 DeepSPIN-3

- - 94.12 87.36* 94.62 91.4 92.41 94.96 92.47 92.48
DeepSPIN-3 DeepSPIN-3 DeepSPIN-3 DeepSPIN-3 DeepSPIN-3 DeepSPIN-3 DeepSPIN-3 DeepSPIN-3

- - 91.29* 96.37 96.27 99.75 99.66 98.31 98.81 96.97
CLUZH CLUZH CLUZH DeepSPIN-3 DeepSPIN-3 DeepSPIN-3 DeepSPIN-2 DeepSPIN-3

- 95.74 80.61 70.59* 92.13 - 89.82 97.3 87.65
DeepSPIN-2 DeepSPIN-3 DeepSPIN-3 DeepSPIN-3 - DeepSPIN-3 DeepSPIN-3 DeepSPIN-3

- 96.89 96.60 94.97 100 100 98.71 96.15 97.45
DeepSPIN-3 DeepSPIN-2 DeepSPIN-3 DeepSPIN-3 all systems DeepSPIN-3 DeepSPIN-1 DeepSPIN-3

- 97.54 99.03 99.23 99.97 99.74 99.41 99.75 99.24
DeepSPIN-3 DeepSPIN-3 DeepSPIN-3 DeepSPIN-3 DeepSPIN-3 DeepSPIN-2 DeepSPIN-3 DeepSPIN-3

97.13 100 100 99.88 - 99.28 97.04 98.23
DeepSPIN-3 DeepSPIN-3 DeepSPIN-2 DeepSPIN-2 - DeepSPIN-2 DeepSPIN-2 DeepSPIN-2

Table 8: Subtask 1 word-level results by morphological category: f-measure performance of best performing
system on a corresponding language and a category; Numbers in bold are worst performance of their corresponding
language. Performances marked with * are worst performances of their morphological category.

fixes to train the model. However, such additional
features decreased the main performances across
morphological categories, so they excluded these
features from the final submissions. Later on, they
focus on data sharing between Romance languages.
In French, the training data were augmented with
four morphological category data from Italian and
Spanish training and development datasets. These
categories include non-inflection categories of 000,
001, 010, 011. With these experiments, they
made minor improvements to these three languages.
For these results, more research is needed to under-
stand that transfer learning is useful.

NUM DI A single submission from the National
University of Mongolia (Zundui and Avaajargal,
2022) is a transformer-based neural model. Their
model architecture is simple as single-layered
encoder-decoder classic architecture. All the hyper-
parameter settings are same as fairseq’s standard
tutorial tool. Their submission is also limited by
four languages of subtask 1 due to human error.

JB132 The Charles University team (Bodnár, 2022)
designed the Hidden Markov model, trained with
the expectation-maximization algorithm. This
model architecture has two sub-models. The first
sub-model takes words as input and converts them
into candidate morphemes. The second sub-model
takes candidate morphemes and generates morphs
as output. The first sub-model has three generators
for accounting prefixes, root words, and suffixes. It
is the only system not using neural methods among
all submitted systems and the system’s prediction
is interpretable and can be useful for error analysis.

Tü Seg The University of Tübingen (Girrbach,
2022) team submitted two systems for each of sub-
tasks. Both systems extend the sequence-labeling
method proposed by (Hellwig and Nehrdich, 2018;
Li and Girrbach, 2022). Their systems are very in-
novative and unique among all other neural models
for considering the main segmentation task as a
sequence-labeling task. All other neural systems
used seq2seq architecture. Their neural model used
a plain two-layer BiLSTM architecture. By its de-
sign, Tü Seg systems have at least two advantages
over the main seq2seq alternative: (a) the number
of parameters is much fewer, so the model can be
trained fast and process quickly; (b) the system pre-
dictions are more interpretable compared to other
neural systems and can help with the error analyses
of high-resource datasets.

6 The System Results

All system results can be found and downloaded
from the shared task GitHub page.4

6.1 Subtask 1 word-level results

Relative system performance of subtask 1 is pro-
vided in Table 7 which shows each system’s f-
measure by languages. The best performance of
each language from submitted systems is in bold.

Two teams exploited external resources in some
form: AUUH and GU. In general, any relative per-
formance gained was minimal. AUUH submitted
two systems that used additional resources, they
received extra 1% compared to the team’s other

4https://github.com/sigmorphon/
2022SegmentationST/tree/main/results
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Figure 1: Impact of training sizes over languages and morphological categories: Results from top5-ranked systems
of word-level subtask 1

systems. Similarly, GU and their submitted sys-
tems saw some minimal improvements over the
performances. This details can be seen from their
system description paper (Levine, 2022).

Only two of all the systems submitted to subtask
1 were multilingual and multi-task learning at same
time. These two systems were proposed by AUUH
team, but partial-language submissions were for
English, Czech, and Mongolian. The important in-
sight from this experiment is that the multi-task and
multilingual learning approaches are quite benefi-
cial for the task because their partial performances
are quite competitive with the winning systems,
DeepSPIN-3, DeepSPIN-2, and CLUZH.

Impact of training size: In subtask 1, the train-
ing datasets’ sizes vary across languages and mor-
phological categories. It might have impacted the
top-ranked systems. Therefore, we plotted the top5-
ranked systems over training size and f-measure

performance across morphological categories, as
shown in Figure 1. Here, in high-resource set-
ting (as greater than 105) in all morphological cat-
egories, any of the top5-ranked systems always
achieves 80% f-measure greater than 80%.

The root words are present in all types of re-
sources settings from high to low. All the systems
in this category of root words achieved no more
than 85.5% f-measure except for Mongolian.

The two inflectional categories 100 and 110 are
always in high-resource setting, having more than
106 training instances (except for two low-resource
languages Czech and Mongolian). All systems
achieved their best system performance over these
two categories, compared to other categories.

Impact of word length: In many NLP tasks,
the length of the input sequence is strongly cor-
related with the difficulty of their tasks (Yin et al.,
2017; Wu et al., 2018). So, we present how the
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Figure 2: Impact of word length over languages and morphological categories: Results from DeepSPIN-3, the
winning system of subtask 1, word-level morpheme segmentation

DeepSPIN-3’s (subtask 1 winning system) perfor-
mance relates to the word length across languages
and morphological categories. Figure 2 shows var-
ious related facts: (i) for root words 000, overall
performance decreases across languages with in-
creasing word length; (ii) inflectional morphology
is systematically far more productive than other
morphological categories, so this fact is reproduced
here: the main inflectional category 100 has con-
sistently high performance across languages and
word lengths.

Difficulty of morphological categories: Even
though the top-ranking systems perform very well
on their own, other systems may have some com-
plementary information across morphological cat-

egories. Therefore, we listed the best-performing
systems for combinations of each language and
each morphological category in Table 8. In
the table, the lowest scores in corresponding lan-
guages are provided in bold. For instance, En-
glish root words (83.80 f-measure) are much harder
to predict than other morphological categories in
English. The hardest morphological categories
are roots 000, compounds 001, and derivation
and compound words 011. The winning system,
DeepSPIN-3 (marked with + in Figure 1), is con-
sistently winning in these three categories across
languages. Another observation from Figure 2 is
that compound and root words are getting harder to
predict across languages with the increase of word
length. Also, identifying inflections from short
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System Czech English Mongolian Macro avg.
P R F1 Lev. P R F1 Lev. P R F1 Lev. F1 Lev.

WordPiece 38.47 31.45 34.61 17.88 62.02 65.13 63.53 5.54 19.82 29.20 23.62 29.19 40.59 17.54
ULM 41.98 30.39 35.26 16.39 62.32 69.24 65.60 5.68 38.79 35.58 37.12 20.76 45.99 14.28
Morfessor2 49.89 36.95 42.45 13.09 54.61 69.75 61.25 6.00 50.88 45.91 48.26 17.16 50.65 12.08
AUUH_A 89.70 87.53 88.60 4.97 96.66 95.78 96.22 1.86 83.49 80.94 82.19 5.42 89.00 4.08
AUUH_B 91.89 89.00 90.42 3.96 96.82 95.79 96.31 1.39 83.74 81.46 82.59 5.16 89.77 3.50
AUUH_C 50.60 69.19 58.45 71.37 84.77 71.67 77.67 19.13 79.07 73.45 76.15 17.33 70.76 35.94
AUUH_D 45.07 67.82 54.15 80.67 93.29 83.41 88.07 10.58 77.99 74.15 76.02 17.88 72.75 36.38
AUUH_E 57.39 67.22 61.92 55.92 95.23 76.82 85.04 12.36 73.34 72.01 72.67 24.88 73.21 31.05
AUUH_F 62.36 43.82 51.47 61.84 91.50 74.84 82.34 13.30 75.50 59.22 66.38 33.91 66.73 36.35
CLUZH-1 92.03 90.69 91.35 1.93 89.74 89.20 89.47 9.86 82.98 81.48 82.22 5.28 87.68 5.69
CLUZH-2 92.41 91.13 91.76 1.87 89.71 89.22 89.47 9.79 83.29 81.83 82.55 5.19 87.93 5.62
CLUZH-3 92.63 91.35 91.99 1.80 89.83 89.25 89.54 9.84 83.71 82.07 82.88 5.10 88.14 5.58
Tü_Seg-2 89.52 88.42 88.97 2.50 87.83 89.58 88.69 1.78 69.59 67.55 68.55 9.85 82.07 4.71

Table 9: Subtask 2 sentence-level results: F-measure across 3 languages

words (word length < 5) is one of the unsolved
challenges in all languages (except for English), as
shown in Figure 2.

6.2 Subtask 2 sentence-level results

Relative system performance is described in Ta-
ble 9, showing all four evaluation metrics by
each combination of system and language. In the
sentence-level subtask 2, we have two winners:
CLUZH-3 (won two out of three languages) and
AUUH_B (F1 89.77 as maximum macro- average
among submissions).

The performance of systems in the sentence-
level subtask significantly decreased by 15% in
Mongolian compared to the results of the word-
level subtask. One reason is that all submitted
systems treated this problem as a zero-shot solu-
tion of word-level subtask 1, and mostly ignored
its context by their design.

7 Future Directions

The submitted systems achieved unexpectedly high
accuracy across nine languages. This result sug-
gests that the neural systems may have more ca-
pabilities beyond segmenting morphemes. For
the next year, we plan to modify the task de-
sign and enrich the dataset with more fine-grained
analysis. For example, truckdrivers → truck
@@drive @@er @@s → truck $$drive @@er
##s where $$ is compound, @@ is derivation, and
## is inflection. In another direction, we will ex-
plore possibilities of adapting other morphologi-
cal resources including word-formation resources
(Zeller et al., 2013; Talamo et al., 2016; Vidra
et al., 2019; Vodolazsky, 2020) or segmentation
resources, UniSegments (Žabokrtský et al., 2022;

Žabokrtský et al., 2022). Our shared task team
welcomes continued contributions from the com-
munity.

8 Conclusion

The SIGMORPHON 2022 Shared Task on Mor-
pheme Segmentation significantly expanded the
problem of morphological segmentation, making
it more linguistically plausible. In this task, seven
teams submitted 23 systems for two subtasks in
total of nine languages, achieving at minimum F1
30.71 improvement over the three baselines of the
state-of-the-art subword tokenization and morpho-
logical segmentation tools, being used to train large
language models, e.g., XLNet (Yang et al., 2019).
The results suggest many directions for improving
morpheme segmentation shared task.
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Abstract

This paper presents a basic character level
sequence-to-sequence approach to morpheme
segmentation for the following Romance lan-
guages: French, Italian, and Spanish. We ex-
periment with adding a small set of additional
linguistic features, as well as with sharing train-
ing data between sister languages for morpho-
logical categories with low performance in sin-
gle language base models. We find that while
the additional linguistic features were generally
not helpful in this instance, data augmentation
between sister languages did help to raise the
scores of some individual morphological cat-
egories, but did not consistently result in an
overall improvement when considering the ag-
gregate of the categories.

1 Introduction

Morpheme segmentation is a task in which indi-
vidual words are divided into meaningful sub-units
called morphemes. It is a difficult task, particularly
in synthetic languages which have more complex
morphological systems, but morphological analysis
is an important sub-component of various down-
stream NLP related tasks, such as lexicography,
terminology management, and semantic parsing.
Previous approaches to morpheme segmentation
include unsupervised methods (Creutz and Lagus,
2007), and more recently there have been neural
approaches (Wang et al., 2016).

This paper is a submission to the SIGMOR-
PHON 2022 shared task on morpheme segmen-
tation, which aims to benefit the NLP community
with improvements for subword-based tokenization
through morpheme segmentation (Batsuren et al.,
2022). The shared task includes word-level and
sentence-level morpheme segmentation subtasks
for various development languages. We focus on
the subtask for word-level morpheme segmenta-
tion, specifically for the three Romance languages
among the development languages: French, Italian,

and Spanish. In this paper, we experiment with
adding character based features to a sequence to se-
quence neural model, and we also experiment with
sharing training data between sister languages.

The structure of the of the paper is as follows: In
Section 2 we give an overview of the base system
architecture of our approach. Section 3 describes
the character based features we experimented with
during development, and Section 4 describes our
methods for data sharing between sister languages.
Section 5 presents the results from our various
models, and Section 6 provides the accompany-
ing discussion. Finally, Section 7 offers a brief
conclusion.

2 System Architecture1

We take a character-level sequence-to-sequence ap-
proach as the base architecture for our morpheme
segmentation models. We base our approach on a
simple recurrent model in the Keras2 framework
and adapted the base model to fit the needs of the
word-level morpheme segmentation task. The en-
coder and decoder for the model each contain a
single GRU layer. The batch size was 64 and the
latent dimension of the encoding space was 256.
All models were trained with early stopping with
a max of 30 epochs. Base models for each of our
focus languages (French, Italian, Spanish) were
trained on this architecture using only the language
specific training data provided by the shared task
for the word-level subtask. The performance of
these models is described in Section 5.2.

3 Additional Features

While sequence-to-sequence neural models have
a tremendous ability to learn patterns that are la-

1https://github.com/
lauren-lizzy-levine/2022SegmentationST.
git

2https://keras.io/examples/nlp/lstm_
seq2seq/
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tent in the raw text data on which the models are
trained, there is still value in leveraging additional
knowledge sources to provide features that may
be linguistically important to morpheme segmen-
tation that cannot be gleaned from the raw text of
the training data alone. This is particularly true for
languages where training data is limited and for
morphological categories that are represented with
low frequency in the data.

In order to train extra features in sequence to se-
quence modeling, we can combine our features into
a single input vector with the individual input char-
acter representations (Sundaramoorthy, 2017). We
do this by concatenating vectorized character input
with a vectorized representation of our character
based features. For simplicity’s sake, we exper-
imented with a series presence/absence features,
which could be represented with a binary 1 or 0
encoding and easily concatenated to the one-hot
representation of the text of the input character.

We experimented with adding a series of bi-
nary features to indicate whether the substrings that
would be created by making a morpheme boundary
at a given character would contain a known prefix
or suffix. We created character based features for
the following rules (Yes-1, No-0):

If the given character were the start of a new
morpheme:

1. Is the string to the left of the boundary a pre-
fix?

2. Is the string to the right of the boundary a
suffix?

3. Does a substring to the left (ending at the mor-
pheme boundary) contain a prefix?

4. Does a substring to the left (ending at the mor-
pheme boundary) contain a suffix?

5. Does a substring to the right (starting from the
morpheme boundary) contain a prefix?

6. Does a substring to the right (starting from the
morpheme boundary) contain a suffix?

For instance, the word enthrallments would have
the feature vector 000001 for the character m, as
visualized in Figure 1. This is because ment is a
known suffix that starts a character m where we
are imagining a morpheme boundary to be, which
means that "Yes" is the answer for question six.
The answer for the rest of the questions is "No", so
the rest of the digits in the vector are 0.

Figure 1: Visualization for the feature vector and corre-
sponding potential morpheme boundary for the charac-
ter m in the word enthrallments.

Such short feature vectors were generated for
every character in every word of the provided data
sets for our focus languages by referencing against
previously complied language specific prefix3 and
suffix4 lists compiled from Wiktionary.

We created various models with subsets of the
training data and tested on subsets the development
data for validation in order to gauge the merit of
these features. In this instance, the inclusion of var-
ious combinations of the above features frequently
led to degradation in performance compared to our
base models when evaluated on the development
data. As such, the features described above were
not included in our final models trained on the full
data set for most of our focus languages. For the
sake of comparison, in Section 5.3 we include the
results of a model trained on the full French train-
ing data which also incorporates a subset of the fea-
tures outlined above. This model shows marginal
improvement over the base French model on the
test data.

4 Sister Language Data Sharing

Data augmentation for low-resource languages has
been well researched area for various NLP tasks,
such as machine translation (Fadaee et al., 2017)
and speech recognition (Ragni et al., 2014). While
data is provided by the shared task for all of the
development languages, the number of training in-
stances varies considerably, both in total amount
and in the proportion of different morphological
categories attested. Sharing data between lan-
guages is one means of evening out the representa-
tion of these underrepresented morphological cate-

3https://en.wiktionary.org/wiki/
Category:Prefixes_by_language

4https://en.wiktionary.org/wiki/
Category:Suffixes_by_language
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Word Class Description
000 Root words
001 Compound only
010 Derivation only
011 Derivation and Compound
100 Inflection only
101 Inflection and Compound
110 Inflection and Derivation
111 Inflection, Derivation, Compound

Table 1: Word class codes for morphological categories
in training and development data.

gories. This type of data sharing is an instance of
transductive transfer learning, where the domains
are initially distinct (different languages), but the
task in question remains the same (morpheme seg-
mentation), and the knowledge in one domain is
used to increase the task performance in the other
domain (Pan and Yang, 2010).

Sister languages descend from a common ances-
tral language and are as such part of the same lan-
guage family. Languages from the same language
family are more likely to bear a strong resemblance
to one another with regard to various linguistic as-
pects, including morphological structure, than sets
of unrelated languages.

Our focus languages in this paper (French, Ital-
ian, and Spanish) are all a part of the Romance
language family, and as such, we may posit that
they share enough similarity in their morphological
structure for there to be some benefit in sharing
data between the languages during training.

In order to test this conjecture, we make a com-
parison between base models for each of our focus
languages, which only contain training data from
one language, and augmented models, which are
trained on the full training data for one language
and supplemented with training data from the other
two Romance languages for select morphological
categories.

For several of the development languages, in-
cluding all three Romance languages, training and
development data for the word-level subtask in-
cluded additional annotation which indicated the
morphological category of the word, and the evalu-
ation scripts provided by that shared task also of-
fered a breakdown by morphological category. The
morphological categories provided in the shared
task data are shown in Table 1.

In order to decide which morphological cate-

gories should be augmented with data from sister
languages for each of the Romance languages, we
evaluate our base models, which were each only
trained with data from one language. For each
language, we examine the base model’s perfor-
mance on the development data for the task, and we
identify the four morphological categories with the
lowest performance. For these categories, we add
supplemental data from the other two Romance
languages to train our augmented models. The
identification of these categories for each of our
augmented models and the results of their perfor-
mance is detailed in Section 5.4.

5 Results

The shared task for word-level morpheme seg-
mentation uses precision, recall, and F-measure
as evaluation metrics for correctly predicted mor-
phemes, as well as the average Levenshtein edit
distance between the predicted instance and the
reference instance. Overall scores are reported, as
well as scores for individual morphological cate-
gories. The following subsections go through the
baseline results provided by the shared task for
our focus languages, as well as the results for our
models. All scores are on the test data sets for in-
dividual languages. Overall, we find that all of our
models make a significant improvement over the
baseline.

5.1 Baseline

The baseline results given by the shared task for
the Romance languages in the word-level subtask
are all the results of Multilingual BERT Tokenizer
(cased). Below are the overall baselines for French,
Italian, and Spanish scored on the test data:

Lang. P R F Dist.
French 11.35 14.30 12.66 4.28
Italian 8.04 10.43 9.08 5.35

Spanish 15.59 17.68 16.57 5.21

5.2 Base Models

Base models for French, Italian, Spanish were
trained on the architecture described in Section
2. Each model was trained on the entire training
data for a single language. The results on the test
data for each language broken down by morpho-
logical category are shown below. We note that
these base models greatly outperform the baseline
models from the previous sub-section.
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French
Cat. P R F Dist.
000 37.51 54.99 44.60 1.45
001 33.24 36.98 35.01 3.70
010 63.59 63.99 63.79 2.03
011 35.11 26.14 29.97 6.35
100 83.49 88.05 85.71 0.59
101 80.00 75.68 77.78 1.35
110 92.96 90.24 91.58 0.62
111 77.92 67.42 72.29 3.32
all 83.06 83.70 83.38 0.98

Italian
Cat. P R F Dist.
000 39.94 57.44 47.12 1.53
001 23.40 22.92 23.16 4.27
010 71.93 71.99 71.96 1.68
011 32.43 26.67 29.27 6.43
100 84.04 88.18 86.06 0.64
101 47.56 42.86 45.09 4.80
110 93.86 91.28 92.55 0.60
111 48.39 31.91 38.46 6.27
all 87.21 87.77 87.49 0.78

Spanish
Cat. P R F Dist.
000 44.16 61.50 51.41 1.23
001 13.11 13.79 13.45 4.72
010 68.93 65.43 67.13 1.59
011 36.36 21.05 26.67 7.67
100 95.27 96.25 95.76 0.23
101 86.24 77.25 81.50 1.31
110 98.35 97.32 97.83 0.18
111 93.67 86.05 89.70 2.00
all 96.00 95.90 95.95 0.27

Looking at the results above, we see that the rel-
ative performance on the different morphological
categories amongst the three languages is relatively
stable. All three of the languages have the highest
scores on the Inflection and Derivation (110) cate-
gory, followed by the Inflection only (100) category.
For all three languages, the two lowest performing
morphological categories are Compound only (001)
and Derivation and Compound (011).

We also note that the overall scores for each lan-
guage relative to one another correlates to the size
of the training data available: French has the least
training data available, while Spanish has the most,
and correspondingly, the overall scores for Spanish
are the highest and the overall scores for French
are the lowest. A table of the word category dis-

tributions within the shared task data for the three
languages can be viewed in Appendix A. Predic-
tions for all three of these models on the test data
for their respective languages were submitted to
the shared task (System GU-2).

5.3 Feature Model

As noted in Section 3, smaller trials during develop-
ment indicated that the inclusion of the additional
features we experimented with led to a degradation
in performance. As such, we did not train a full
set of feature models for all of our focus languages.
For the sake of comparison, we trained a model
on the full French training data with the first two
features in our feature set:

If the given character were the start of a new
morpheme:

1. Is the string to the left of the boundary a pre-
fix?

2. Is the string to the right of the boundary a
suffix?

The results for this model on the French devel-
opment data are shown below. We note that in this
instance there is marginal improvement when com-
pared to the results of the French base model in the
previous sub-section (gains/losses from the base
model are listed in parentheses). Predictions from
this model were not submitted to the shared task.

French with Features
Cat. P R F Dist.
000 37.47 56.09 44.93 1.51

(-0.04) (+1.10) (+0.33) (+0.06)
001 28.95 32.54 30.64 3.90

(-4.29) (-4.44) (-4.37) (+0.40)
010 63.87 64.95 64.40 2.00

(+0.28) (+0.96) (+0.43) (-0.03)
011 35.10 30.11 32.42 6.35

(-0.01) (+4.97) (+2.45) (+0.00)
100 84.97 89.12 86.99 0.56

(+1.48) (+1.07) (+1.28) (-0.03)
101 76.54 68.24 79.14 1.83

(-3.46) (-7.44) (+1.36) (+0.48)
110 93.04 90.16 91.58 0.60

(+0.08) (-0.08) (+0.00) (-0.02)
111 83.53 79.78 81.61 2.21

(+5.61) (+12.36) (+9.32) (-1.11)
all 83.45 84.13 83.79 0.96

(+0.39) (+0.43) (+0.41) (-0.02)
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5.4 Augmented Models
The augmented models for each language were
trained with additional data from the other two Ro-
mance languages. The morphological categories
that were chosen to be augmented for each lan-
guage were selected by identifying the lower per-
forming morphological categories (bottom 4 cat-
egories) in the results of the base models on the
development data for each language (listed in full
in Appendix B). For selected categories, all of
the training data from the other two Romance lan-
guages in those same categories was added to the
training data of the original language to train the
augmented model. For each language below, we
identify the morphological categories that were
augmented and list the results of the augmented
model’s performance on the test data of the orig-
inal language (gains/losses from each language’s
respective base model are listed in parentheses).
Predictions for the French and Italian models on
the test data for their respective languages were
submitted to the shared task (System GU-1).

French:
According to the results of the base model on the

development data, the following categories had the
lowest performance: root words (000), compound
only (001), derivation only (010), and inflection
only (011). The categories were augmented with
Italian and Spanish training data from the same
categories.

Cat. P R F Dist.
000 49.76 67.40 57.25 1.03

(+12.25) (+12.41) (+12.65) (-0.42)
001 26.97 28.40 27.67 3.99

(-6.27) (-8.58) (-7.34) (+0.29)
010 63.09 61.71 62.39 1.98

(-0.50) (-2.28) (-1.40) (-0.05)
011 42.14 33.52 37.34 5.45

(+7.03) (+7.38) (+7.37) (-0.90)
100 85.31 88.90 87.07 0.53

(+1.82) (+0.85) (+1.36) (-0.06)
101 72.99 67.57 70.18 1.83

(-7.01) (-8.11) (-7.60) (+0.48)
110 92.50 89.39 90.92 0.62

(-0.46) (-0.85) (-0.66) (+0.00)
111 80.52 69.66 74.70 3.00

(+2.60) (+2.24) (+2.41) (-0.32)
all 83.66 83.21 83.44 0.93

(+0.60) (-0.49) (+0.06) (-0.05)
Comparing the above table to the base model

results for French, we see that the augmented cat-
egory root words (000) increases by the largest
amount: +12.25 (P), +12.41 (R), +12.65 (F), -0.42
(Dist.). All of the scores for the other morphologi-
cal categories either raise or fall by smaller margins.
The sizable jump for root words (000) is likely do
to the fact that it is a larger morphological class in
the training data sets of our languages.

Italian:
According to the results of the base model on the

development data, the following categories had the
lowest performance: compound only (001), deriva-
tion and compound (011), inflection and compound
(101), and inflection, derivation, compound (111).
The categories were augmented with French and
Spanish training data from the same categories.

Cat. P R F Dist.
000 42.75 60.93 50.25 1.42

(+2.81) (+3.49) (+3.13) (-0.11)
001 18.00 18.75 18.37 4.48

(-5.40) (-4.17) (-4.79) (+0.21)
010 73.48 74.32 73.90 1.56

(+1.55) (+2.33) (+1.94) (-0.12)
011 34.21 28.89 31.33 6.07

(+1.78) (+2.22) (+2.06) (-0.36)
100 85.67 89.48 87.54 0.57

(+1.63) (+1.30) (+1.48) (-0.07)
101 54.02 51.65 52.81 3.37

(+6.46) (+8.79) (+7.72) (-1.43)
110 94.68 92.14 93.39 0.53

(+0.82) (+0.86) (+0.84) (-0.07)
111 63.64 44.68 52.50 5.64

(+15.25) (+12.77) (+14.04) (-0.63)
all 88.41 88.97 88.69 0.70

(+1.20) (+1.20) (+1.20) (-0.08)
Comparing the above table to the base model

results for Italian, we see that the overall results
increase by a small margin: +1.20 (P), +1.20 (R),
+1.20 (F), -0.08 (Dist.). All of the morphological
categories had slight increases from the base model,
except for the compound only (001) category.

Spanish:

According to the results of the base model on the
development data, the following categories had the
lowest performance: root words (000), compound
only (001), derivation only (010), and inflection
only (011). The categories were augmented with
French and Italian training data from the same cat-
egories.
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Cat. P R F Dist.
000 59.24 75.03 66.21 0.82

(+15.08) (+13.53) (+14.80) (-0.41)
001 9.09 8.62 8.85 3.97

(-4.02) (-5.17) (-4.60) (-0.75)
010 65.12 59.96 62.43 1.72

(-3.81) (-5.47) (-4.70) (+0.13)
011 35.71 26.32 30.30 7.33

(-0.65) (+5.27) (+3.63) (-0.34)
100 94.79 95.69 95.24 0.24

(-0.48) (-0.56) (-0.52) (+0.01)
101 81.38 72.51 76.69 1.68

(-4.87) (-4.74) (-4.81) (+0.37)
110 98.06 96.86 97.46 0.20

(-0.29) (-0.46) (-0.37) (+0.02)
111 92.31 83.72 87.80 2.22

(-1.36) (-2.33) (-1.90) (+0.22)
all 95.72 95.35 95.53 0.29

(-0.28) (-0.55) (-0.42) (+0.02)

Comparing the above table to the base model
results for Spanish, we see that the augmented
category root words (000) increases by a notable
amount: +15.08 (P), +13.53 (R), +14.80 (F), -0.41
(Dist.). All of the scores for the other morphologi-
cal categories fall by a notable margin. The sizable
jump for root words (000) is likely do to the fact
that it is a larger morphological class in the training
data sets of our languages. The gains from the root
words category do not balance out the losses from
the other morphological classes, and we see a loss
in the overall scores.

6 Discussion

While all of base models made significant improve-
ments from the baseline scores provided for the
word-level subtask, we note that our additional
experimentation resulted in only modest improve-
ments. We also note that our experimenting with
additional features frequently led to score degrada-
tion on the development data.

We did not expect to see the general degrada-
tion in our scores with the inclusion of the known
affix presence/absence based features that we saw
in our experiments predicting on the development
data. However, we did see the marginal improve-
ment we expected in the results of the fully trained
French model predicting on the test data, as de-
scribed in Section 5.3. On possible explanation
for these inconsistent results is that the inclusion
of single character or two character affixes created

feature vectors with too many false positives to be
of use in the model’s learning for our small scales
experiments predicting on the development data.
Further error analysis is needed to conclude the
reason for such inconsistency. The fact that the
improvements seen in fully trained French model
were marginal suggest that the base architecture of
our models may be independently capable of learn-
ing information encoded in our linguistic features.

The sharing of language data between sister lan-
guages gave modest gains in our experiments, indi-
cating that there is some potential to leverage avail-
able data from morphologically similar languages
for morpheme segmentation. In future experiments
we want to experiment with different methods of
deciding what/how much data should be shared
in order to maximize this potential. Additionally,
rather than just assuming that being in the same
language family indicates enough morphological
similarity between languages for data sharing to
be of use, we believe that is would be beneficial to
make a closer study of the morphological similari-
ties and differences between sets of languages that
will be used for data sharing.

7 Conclusion

In this paper we presented a basic approach to mor-
pheme segmentation at the word-level for the SIG-
MORPHON 2022 shared task for French, Italian,
and Spanish. All of our presented models consid-
erably improved upon the baselines for the shared
task. While the extra character based features we
experimented with generally did not prove useful
in this instance, we did find some evidence that
sharing data between morphologically similar lan-
guages could result in minor improvements in the
segmentation of words in morphological categories
which were augmented with additional data.
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A Language Data Statistics (word counts)

Word Class French Italian Spanish
000 13619 21037 15843
001 1684 431 248
010 67983 41092 18449
011 506 140 82
100 105192 253455 502229
101 478 317 458
110 126196 237104 346862
111 186 158 343

Total Words 382797 553734 884514

B Performance of Base Models on the
Development Data

French
Cat. P R F Dist.
000 36.56 54.63 43.80 1.45
001 32.61 36.01 34.23 3.46
010 63.28 63.48 63.38 2.07
011 29.58 24.56 26.84 6.67
100 84.21 88.54 86.32 0.57
101 85.14 82.89 84.00 0.79
110 92.99 90.25 91.60 0.61
111 83.13 78.41 80.70 2.11
all 83.18 83.75 83.47 0.97

Italian
Cat. P R F Dist.
000 43.08 60.93 50.47 1.40
001 25.26 25.53 25.40 4.06
010 70.97 71.73 71.35 1.73
011 26.67 27.91 27.27 6.07
100 84.15 88.18 86.12 0.64
101 56.96 49.45 52.94 3.07
110 93.84 91.16 92.48 0.60
111 66.67 55.32 60.47 4.64
all 87.21 87.75 87.48 0.78

Spanish
Cat. P R F Dist.
000 43.87 60.82 50.97 1.24
001 15.79 15.52 15.65 3.34
010 67.63 64.62 66.09 1.67
011 18.18 10.53 13.33 5.17
100 95.32 96.27 95.79 0.23
101 87.23 80.79 83.89 1.10
110 98.36 97.30 97.83 0.18
111 86.67 77.38 81.76 2.44
all 95.99 95.87 95.93 0.27
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Abstract

We propose a sequence labelling approach to
word-level morpheme segmentation. Segmen-
tation labels are edit operations derived from
a modified minimum edit distance alignment.
We show that sequence labelling performs well
for “shallow segmentation” and “canonical seg-
mentation”, achieving 96.06 f1 score (macro-
averaged over all languages in the shared task)
and ranking 3rd among all participating teams.
Therefore, we conclude that sequence labelling
is a promising approach to morpheme segmen-
tation.

1 Introduction

This paper describes our participation in the SIG-
MORPHON 2022 Shared Task on Morpheme Seg-
mentation (Batsuren et al., 2022a). Building on
previous work on word segmentation and transliter-
ation by Hellwig and Nehrdich (2018), we propose
a sequence labelling approach to morpheme seg-
mentation.

The shared task consists of 2 tracks: Word-level
morpheme segmentation and sentence-level mor-
pheme segmentation. Data for this shared task was
taken from (Batsuren et al., 2021) and (Batsuren
et al., 2022b). Although our approach is applicable
to both word-level and sentence-level morpheme
segmentation, we focus on word-level segmenta-
tion. We only evaluate the zero-shot performance
of our word-only segmentation models on sentence-
level morpheme segmentation.

Sequence labelling approaches can claim sev-
eral advantages over the main alternative, namely
(neural) encoder-decoder approaches: Sequence
labelling does not require beam search for infer-
ence, may allow for smaller models, and defines a
direct alignment between the input and predictions.
The latter property may make models more inter-
pretable and help with error analysis. However,
sequence labelling is less flexible than encoder-
decoder approaches and requires special handling

of cases where the input and target sequences are
of different length. However, due to the local struc-
ture of morphology, sequence labelling may be
sufficient to model morpheme segmentation de-
spite being less expressive than encoder-decoder
approaches.

2 Related Work

Morpheme segmentation is a well-established task
in computational linguistics (cf. Mager et al.
(2020)). Recently, two definitions of morpheme
segmentations have emerged: “Shallow segmenta-
tion” and “canonical segmentation” (Kann et al.,
2016). “Shallow” segmentation means segment-
ing the input word surface string into morphemic
substrings. This kind of segmentation is called
“shallow”, because no orthographic restoration of
morphemes to their “canonical” form is performed
(Cotterell et al., 2016). “Canonical segmentation”,
instead, attempts to restore a standardised form of
morphemes. As noted by Kann et al. (2016), this is
necessary for synthetic languages where multiple
morphemes may be merged. Another source of
morpheme merging may arise from phonological
or orthographic constraints of the language. The
present shared task features both shallow segmen-
tation data (e.g. Czech, Latin), and canonical seg-
mentation (e.g. Italian, English). Since canonical
segmentation is a strict generalisation of shallow
segmentation, methods that work for all languages
in this shared task have to be able to perform canon-
ical segmentation.

However, shallow segmentation allows for a
conceptually easier approach, namely sequence la-
belling (Ruokolainen et al., 2013; Sorokin, 2019).
Canonical segmentation has hitherto been defined
as a sequence-to-sequence task (Kann et al., 2016;
Mager et al., 2020). Of course, various improve-
ments for the sequence-to-sequence setup have
been proposed, for example reranking of output
hypotheses (Kann et al., 2016), multi task learn-
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ing (Kann et al., 2018), pointer-generator net-
works (Sharma et al., 2018), and imitation learning
(Makarov and Clematide, 2018).

In fact, Sorokin (2019) explicitly doubts that
canonical segmentation can be approached as a se-
quence labelling task. However, other approaches
have already worked towards approaching canoni-
cal segmentation as a sequence labelling task: Cot-
terell et al. (2016) take a middle ground by allowing
only for a maximum number of insertions. Ribeiro
et al. (2018) train a model to first predict insertion
positions in the input sequence. Then, they use
a sequence labelling model on the augmented in-
put string to predict the labels. While similar to
our approach, we augment the labels instead of the
input string. Therefore, our method remains end-
to-end trainable. Finally, Hellwig and Nehrdich
(2018) propose a sequence labelling approach to
Sanskrit word segmentation, which includes restor-
ing original forms that have been merged due to a
phonological process called Sandhi.

Therefore, our work extends the method pro-
posed by Hellwig and Nehrdich and thereby shows
that canonical morpheme segmentation can be ap-
proached effectively as a sequence labelling task.

3 Method

3.1 Data preprocessing

We propose an adaption of the Sanskrit word seg-
mentation method by Hellwig and Nehrdich (2018)
for word-level morpheme segmentation. The main
idea is to redefine morpheme segmentation as a
sequence labelling task. In particular, for each
character in the input word, we predict an edit op-
eration. Edit operations can be copying, deletion,
or substitution. Here, insertion is a special case of
substitution. An example is in Table 1.

In order to redefine morpheme segmentation as
a sequence labelling task, we need alignments of
input words and the segmented morphemes. We
propose to align words and morphemes by the
Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970) with the following parameters:
Only equal characters can be matched, and we set
the gap cost to 0. Here, we treat all morphemes as
one sequence of characters. From all alignments
with maximum score according to the Needleman-
Wunsch algorithm (i.e. minimum edit distance), we
choose the alignment with the maximum sum of
squared lengths of contiguous aligned segments.
The idea is to copy longer morphemes directly

from the input word and insert shorter morphemes.
Furthermore, we want to avoid splitting predicted
morphemes. Instead, we want to copy as many
complete morphemes from the input word as possi-
ble. An example is in Table 2.

After having aligned words to their respective
morphemes, we obtain data for sequence labelling
in the following way: Word characters that are
aligned to corresponding characters in the mor-
pheme string are copied. Word characters that are
aligned to gaps in the morpheme string are deleted.
Morpheme separation characters and possible fol-
lowing characters to complete a morpheme are
aligned to gaps in the input word. We prepend these
to the label of the input word character following
the gap. Remaining morpheme string characters
(which do not appear behind a morpheme separa-
tion character) that are aligned to gaps in the input
word are appended to the label of the next input
word character before the gap. In Table 3, we show
the resulting labels for the English word “entab-
ulates”. Note that our eventual labelling makes
more use of copying than the simple edit operation
example given in Table 1.

3.2 Models
For sequence labelling, we use a plain 2-layer
BiLSTM model. For each position of the input
sequence, the model predicts exactly one edit oper-
ation. Ground-truth labels for supervised training
are derived as explained in Section 3.1.

Our submission is produced by single models
(i.e. no ensembling) trained in a supervised fashion.
Models have 2 layers with 256 hidden units each.
We apply dropout with probability 0.1 after the
first BiLSTM layer. We use the AdamW optimizer
(Loshchilov and Hutter, 2019) with initial learning
rate 0.001 and weight decay 0.001. We divide the
learning rate by 2 after 3 epochs without improve-
ment of word error rate (WER) on the development
set. Note that WER is a stricter metric than f1 score
and edit distance, which are the shared task’s offi-
cial evaluation metric. Each model is trained for
50 epochs with batch size 32, but we only keep the
checkpoint with lowest WER on the development
set.

3.3 Zero-shot sentence-level segmentation
For sentence-level segmentation, we proceed in the
following way: Since all sentence-level languages
(Czech, English, Mongolian) are also part of the
word-level track, we can use our models from the
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e n t a b u l a t e s
e n @@t a b le @@a t e @@ s
C C S C C D S S C C S

Table 1: Edit operation to transduce “entabulates” to its morphemic segment string “en @@table @@ate @@s”.
“ @@” is the morpheme separation symbol in the given data, “S” means substitution, “C” means copy, and “D”
means deletion.

m a m m a @ @ a r e @ @ e r a n n o

m a m m e r a n n o
m a m m e r a n n o

Table 2: Example for different alignments of the Italian word “mammare” to its morpheme segmentation string
“mamma @@are @@eranno”. The upper alignment is preferred, because it contains longer contiguous aligned
subsequences.

word-level track for sentence-level segmentation.
We retrieve all space-separated tokens from the
sentence-level test data and segment each token
individually, thus creating a dictionary mapping
tokens to their word-level segmentation. Then, we
replace each token in the sentence by the segmenta-
tion according to the word-only dictionary. Tokens
that only consist of punctuation are copied directly
from the input sentence without any segmentation.

This method obviously ignores all sentence-level
information that could help with disambiguating
multiple possible segmentations. However, we still
find it interesting to see how well a word-level-only
segmentation model performs on the sentence level
for the different languages.

4 Results

Word-level segmentation Official test set re-
sults1 for word-level segmentation are in Table 4.
f1 score is greater than 0.9 for all languages. In
terms of macro-averaged f1 score, our submission
ranks 3rd out of 5 participating teams (excluding
baseline) who submit predictions for all languages.

In our results, we do not see any trends regarding
a relationship between number of generated labels
and performance. The language with weakest per-
formance, English, has the 2nd highest number
of generated labels, but the language with highest
number of generated labels, Russian, is the lan-
guage with second best performance. Czech, the
number with the lowest number of generated la-
bels, is the language with 3rd worst performance,
but Latin, the language with 2nd lowest number of

1Taken from https://github.com/sigmorphon/
2022SegmentationST/tree/main/results

generated labels, is the language with best perfor-
mance. This suggests that our data preprocessing
method does not obscure the segmentation diffi-
culty inherent in a language.

Remember that differences in the amounts of
labels is due to different annotation approaches in
the data: For Czech and Latin, only “shallow” mor-
pheme boundaries are annotated, i.e. where mor-
pheme boundaries are in the input string. For other
languages, restored morphemes are annotated that
are contracted when forming the word. For exam-
ple, the English word “entabulates” is segmented
as “en @@table @@ate @@s” where “u” is in-
serted to form the word, but the “e” in “table” is
deleted.

Sentence-level segmentation Official test set re-
sults for sentence-level segmentation are in Table 5.
Sentence-level performance is worse than word-
level performance for all languages. While the
decrease in performance is still moderate for En-
glish and Czech, we see a very high decrease in
performance for Mongolian. This suggests that the
number of ambiguous tokens in English and Czech
is relatively not very high, while a lot of ambiguous
words exist in Mongolian.

5 Error Analysis

Frequent Errors As claimed in Section 1, our
proposed sequence labelling method allows for di-
rect comparison of the predicted labels to labels
created by our preprocessing. Here, we provide a
short analysis of the most frequent errors made by
our English word segmentation model. To this end,
we apply the preprocessing method described in
Section 3.1 to the test set released by the shared
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e n t a b u l a t e s
C C @@ + C C C D C + e @@ + C C C @@ + C

Table 3: Labels generated by our data preprocessing method for English word “entabulates” with morpheme segment
string “en @@table @@ate @@s”. Our labels allow for special symbols (C = copy, D = delete) and arbitrary
string insertions. Labels do not have to contain special symbols. “+” here means concatenation and is not to be read
as part of the label.

Lang. Dis. P R F1 # Lbls

ces 0.18 93.95 92.81 93.38 2
eng 0.25 90.51 90.52 90.51 1740
fra 0.28 93.56 93.96 93.76 1275
hun 0.11 98.21 98.97 98.59 442
spa 0.11 97.88 97.98 97.93 1311
ita 0.20 95.50 95.97 95.73 850
lat 0.01 99.35 99.39 99.37 4
rus 0.15 98.16 98.26 98.21 1809
mon 0.10 96.91 97.13 97.02 442

Avg. 0.15 96.00 96.11 96.06

Table 4: Official word-level results for our system (all
languages). Dis is edit distance, P is precision, R is
recall, and F1 is f1 score. # Lbls is the number of
labels generated by our data preprocessing method (see
Section 3.1).

Lang. Dis. P R F1

ces 2.50 89.52 88.42 88.97
eng 1.78 87.83 89.58 88.69
mon 9.85 69.59 67.55 68.55

Table 5: Official sentence-level results for our system
(all languages). Dis is edit distance, P is precision, R is
recall, and F1 is f1 score.

b i o m e
C C C @@o + C C
C C + o @@ + C C C

Table 6: An example where different labels result
in the same (correct) segmentation: “biome” −→
“bio @@ome”.

task organisers after the submission deadline. Then,
we calculate a confusion matrix of the labels pre-
dicted by our model and the labels created by the
preprocessing method.

First, however, we want to note that in few cases
even incorrect predictions may lead to correct seg-
mentations. This is due to ambiguity in the align-
ments. For example, consider the test item “biome”
with ground truth segmentation “bio @@ome”. In
Table 6 we show that our model’s prediction dif-
fers from the generated alignment, but the resulting
segmentations are identical. In the English test set,
this is the case for 118 words, so we do not think
this is a problem for our subsequent error analysis.
In total, there are 8615 words (≈ 15% of all test
words) with incorrect segmentation.

The most common errors are predicting mor-
pheme boundaries where actually no morpheme
boundaries are, i.e. predicting “ @@ + C” instead
of “C”, which happens 3820 times, and missing to
predict morpheme boundaries, i.e. predicting “C”
instead of “ @@ + C”, which happens 3786 times.
An example is “lemming”: Our models predicts
“lem @@ing” instead of “lemming”. A morpheme
boundary was overlooked in “sanity”: Our model
predicts “sanity” instead of “sane @@ity”.

The next most frequent errors are missing
to insert an “e”, i.e. predicting “C” instead of
“C+e”, which happens 499 times, and inserting
a superfluous “e”, i.e. predicting “C + e” in-
stead of “C”, which happens 414 times. For
example, our model predicts “wok @@ism” in-
stead of “woke @@ism” for “wokism” and “omi-
nouse @@ity” instead of “ominous @@ity” for
“ominosity”.
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The last error type in the top 5 most frequent
errors is not deleting an input character, i.e. predict-
ing “C” instead of “D”, which happens 448 times.
For example, our model predicts “charr @@y”
instead of “char @@y” for “charry”.

Please note that there can be multiple errors in
the predictions for a single input word. However,
in most cases (5873), there is only one incorrectly
predicted label. In 2008 cases, there are 2 incor-
rectly predicted labels. The extreme case is “al-
sakharovite”, for which 9 of the predicted labels are
incorrect: Our model simply predicts to copy each
character, but the ground truth is given as “Alek-
sey @@ite”. This shows that our model struggles
with proper names, which is not surprising.

In conclusion, this analysis shows that the largest
gains in performance can be expected from improv-
ing the shallow part of segmentation, while there
are fewer individual morpheme reconstruction er-
rors. Therefore, a possible future extension of our
proposed model is switching to a multi task setting,
where one task is to predict morpheme boundaries
and the other task is to reconstruct partial or miss-
ing morphemes. In the setting evaluated here, these
tasks are approached jointly.

Label Embeddings Additionally, we inspect the
learned (English) label embeddings and try to see
whether any patterns emerge. To this end, we re-
trieve the 50 most frequent labels (accounting for
98% of all labels in the dataset excluding the simple
copy label) and their label embeddings (columns
in the final linear prediction layer). We cluster the
label embeddings by affinity propagation. The ad-
vantage of affinity propagation is that we do not
have to specify the number of clusters. We use the
scikit-learn implementation of affinity propagation
(Pedregosa et al., 2011) with default parameters.
The discovered clusters are in Table 7.

In total, the clustering generates 7 clusters, of
which 4 clusters contain multiple labels and 3 clus-
ters contain only 1 label. No cluster is completely
pure, but we can observe the following trends:
Cluster 0 mostly represents morpheme boundary
labels followed by a copy operation, i.e. “insert
morpheme boundary before this character”. Clus-
ter 2 mostly represents substitutions and Clusters 1
and 3 mostly represent insertions. We cannot say
anything definite about the 1 element clusters.

From these observations we conclude that the
model learns to distinguish different edit operations
(insertion, substitution) and also learns to distin-

guish inserting morpheme boundaries from other
edit operations. This provides further evidence that
changing our approach to a multi task setting may
be worth exploring.

Generalisation to Unseen Substitutions Finally,
we want to address the problem that the finite num-
ber of labels generated by our data preprocess-
ing method (see Section 3.1) may not allow the
model to generalise to substitutions not seen in
the training data.2 To collect evidence concern-
ing this problem, again for the English test set,
we find all words that cannot be generated by our
model because generating them would require la-
bels that were not generated from the training data.
In total, we find 35 such words (of 57755 test
words in total). Furthermore, upon manual inspec-
tion, we find many of these cases either caused
by proper names with irregular or non-English
segmentation, for example “Staffie” is segmented
as “Stafford @@shire @@ie” or “Lebos” is seg-
mented as “Lebanon @@ese @@o @@s”, or
annotation errors, for example “unlid” is segmented
(in the gold data) as “un#Etymology_2 @@lid”
or “perfosfamide” is segmented as “hydroper-
oxy @@fosfamide”. However, we also discover a
genuine problem of our model, namely that it does
not have any labels to generate hyphens (“-”). This
proves that the problem can be substantial, if there
had been more hyphenated words in the test data.

On the other hand, hyphens do not appear as
character in any train set segmentation, so it is
generally hard to anticipate peculiarities of the test
set. The case of proper names could perhaps be
handled by external resources, but this does not
scale well.

Summing up, we acknowledge that this is an
issue not solved entirely by our approach. However,
it does not cause many problems for this shared
task. This being said, this shared task provides a lot
of data for the featured languages, so the missing
label problem may become more serious for low
resource languages or settings.

One step towards approaching this issue could
be not only generating labels from one alignment of
the word to its morpheme segmentation string (see
Section 3.1), but from multiple alignments. This
could potentially also regularise the model or allow
for different training strategies than the standard
supervised training. Another possibility could be
to equip the model with the ability to generate new

2We thank the reviewers for pointing out this problem.

128



Cluster ID Labels

0 “C”, “ @@ + C”, “ @@e + C”, “ @@a + C”, “ @@i + C”, “ @@o +
C”, “C + t”, “ @@l + C”, “D + n”, “ @@ + C + e”, “C + @@s”, “C +
te”, “C + ic”, “ @@is + C”, “ @@i + C + e”, “C + m”, “ @@en + C”,
“ @@a + C + e”, “C + l”, “ @@t + C”

1 “D + y”, “D + @@y”, “C + um”, “D + e”, “C + s”, “D + e @@y”, “D +
o”, “D + a”, “D + d”

2 “C + e”, “C + y”, “C + a”, “C + o”, “C + us”, “C + on”, “D + sis”, “C +
ion”, “C + ous”, “D + p”

3 “D”, “D + i”, “C + @@y”, “D + is”, “D + x”, “C + n”, “D + s”

4 “C + ne”

5 “D + ce”

6 “D + de”

Table 7: Clusters of labels discovered by affinity propagation clustering of the label embeddings of the 50 most
frequent English labels.

labels, for example by predicting a fixed number of
label subsymbols from each input character. Sym-
bols could be blanks, unigrams, or ngrams. This
would relax the constraint that labels have to be
entirely known beforehand, while maintaining a
sequence labelling setup.

6 Conclusion

We presented a sequence labelling approach for
word-level morpheme segmentation. Models
trained with this approach yield strong performance
on all languages (word-level) despite of not using
ensembling and using a simple BiLSTM encoder.
Error analysis for English reveals that the model
is often only wrong in 1 single place, struggles
with proper names, and most frequently errors are
caused by incorrect prediction of morpheme bound-
aries.
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Abstract

This paper presents DeepSPIN’s submissions
to the SIGMORPHON 2022 Shared Task on
Morpheme Segmentation. We make three sub-
missions, all to the word-level subtask. First,
we show that entmax-based sparse sequence-to-
sequence models deliver large improvements
over conventional softmax-based models, echo-
ing results from other tasks. Then, we chal-
lenge the assumption that models for morpho-
logical tasks should be trained at the character
level by building a transformer that generates
morphemes as sequences of unigram language
model-induced subwords. This subword trans-
former outperforms all of our character-level
models and wins the word-level subtask. Al-
though we do not submit an official submis-
sion to the sentence-level subtask, we show that
this subword-based approach is highly effective
there as well.

1 Introduction

Nearly all neural models for morphological and
phonological NLP tasks operate at the character
level. This is a natural design choice because
there is usually a monotonic alignment between
source and target characters. Although often suc-
cessful, character-level models do not leverage the
fact that words contain longer substrings, such as
roots and affixes, that can often be copied all at
once. They also go against the grain of modern
NLP, in which most systems for other tasks are
trained on sequences of subword units induced by
an unsupervised algorithm, usually either byte-pair
encoding (BPE; Sennrich et al., 2016) or unigram
language modeling (ULM; Kudo, 2018). Although
subword units should not be adopted just because
they are widespread, they should not be ignored
either, especially given the great amount of effort
that has gone into integrating morphological induc-
tive biases into subword tokenization (Park et al.,
2020; Tan et al., 2020; Huck et al., 2017; Weller-

Di Marco and Fraser, 2020; Banerjee and Bhat-
tacharyya, 2018).

We demonstrate that subword-level modeling
does work for morpheme segmentation through our
submissions to the SIGMORPHON 2022 Shared
Task on Morpheme Segmentation (Batsuren et al.,
2022). Our subword-level model, an entmax trans-
former with sampled ULM tokenizations, outper-
forms our character-level submissions and wins
the word-level subtask. Because it generates mor-
phemes as subword sequences, it also offers a way
to combine the advantages of subword tokenization
(a fixed-size vocabulary, compression) with the ad-
vantages of conventional morpheme segmentation
(segments do not cross morpheme boundaries).

In all, we submit three models to the task:

• DeepSPIN-1 is a character-level RNN-based
sequence-to-sequence model trained to min-
imize cross entropy. Although intended as a
strong baseline, this model still finishes fourth
overall with an average F-measure of 96.32.

• DeepSPIN-2 is a character-level sparse
sequence-to-sequence model with entmax. It
records the best F-measure on 2 of 9 lan-
guages, which finishing second overall with
an average F-measure of 97.15.

• DeepSPIN-3 is a subword-level entmax trans-
former trained with subword regularization.
It records the best F-measure on 7 of 9 lan-
guages, and wins the word-level subtask with
an average F-measure of 97.29.

We then retrain DeepSPIN-3 on the combined
word- and sentence-level data. Although this model
is unofficial, it outperforms the winners of the
sentence-level subtask for all three languages.

2 Model

In our experiments, we use both attentional LSTM
(Bahdanau et al., 2015) and transformer (Vaswani
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et al., 2017) sequence-to-sequence models. Re-
gardless of those internal details, at time step i
the model predicts a next-target-token distribution
pθ(· | x, y<i) conditioned on a source sequence
x and a target history y<i. In most sequence-to-
sequence systems, pθ(· | x, y<i) is computed with
softmax (Bridle, 1990), and x and y consist of se-
quences of characters. In this work, we depart
from these defaults by replacing softmax with 1.5-
entmax (Peters et al., 2019), and by tokenizing into
subwords instead of characters.

Entmax and its loss. Language models, includ-
ing sequence-to-sequence models, produce a nor-
malized probability distribution at teach time step.
To do this, they need a function Rn → △n: that
is, a function that maps an arbitrary vector of real
numbers to a vector in the n-dimensional probabil-
ity simplex △n := {p ∈ Rn : p ≥ 0,1⊤p = 1}.
The standard choice of function is softmax, which
is dense: it assigns strictly positive probabilities to
all outcomes. However, there is another option, the
α-entmax transformation (Peters et al., 2019). Ent-
max, parameterized by a scalar α ≥ 1, computes

α-entmax(z) := argmax
p∈△n

p⊤z + Hα(p), (1)

where Hα(p) is the Tsallis α-entropy (Tsallis,
1988), defined in Appendix A. When α = 1, this
recovers softmax; for α > 1, it can return sparse
vectors, enabling models that can completely rule
out some outcomes by assigning them zero prob-
ability. Exact algorithms exist for α ∈ {1.5, 2},
while approximations exist in the general case. Be-
cause sparse probabilities are incompatible with
the standard cross entropy loss, it is necessary to
train with the entmax loss, defined

Lα(y, z) := (p⋆ − ey)
⊤z + Hα(p

⋆), (2)

where p⋆ = α-entmax(z) and ey is a one-hot
vector whose nonzero index is y. When α = 1,
this recovers cross entropy. Entmax-based sparse
sequence-to-sequence models have been shown to
work well on machine translation (Peters et al.,
2019; Peters and Martins, 2021) as well morpholog-
ical (Peters and Martins, 2019) and phonological
(Peters and Martins, 2020) tasks. Beyond the top-
line results, they have also been shown to be better
calibrated than models trained with cross entropy
loss (Peters and Martins, 2021).

sausagemakers sausage|make|er|s
_sa us age makers _sa us age _| make _| er _| s

Figure 1: The English word “sausagemakers” seg-
mented with character-level tokenization (top) and the
ULM model used by DeepSPIN-3 (bottom).

Tokenization. In morpheme segmentation, x and
y are typically treated as character sequences.
Character-level modeling is attractive because of
the mostly monotonic alignments between source
and target characters, and because it keeps vocab-
ularies and embedding matrices small. However,
multi-character sequences in words, such as “make”
or “er” in Figure 1, often function as single units.
Therefore, we use ULM (Kudo, 2018) to induce a
subword tokenization. ULM is a top-down tech-
nique: the tokenization model is initialized with a
large vocabulary of overlapping subwords. The pa-
rameters of a unigram model over this vocabulary
are then estimated using expectation maximization
and the lowest-scoring subword types are pruned.
This process is repeated until the desired vocabu-
lary size is reached. For any string, a ULM model
licenses a lattice of subword tokenizations. The
highest-scoring tokenization can be computed effi-
ciently with the Viterbi algorithm (Viterbi, 1967).
Tokenizations can also be sampled from the model,
enabling subword regularization. ULM has been
shown to produce tokens that more closely corre-
spond to meaningful linguistic units (Bostrom
and Durrett, 2020) than the more widespread BPE
(Sennrich et al., 2016; Gage, 1994). An example
ULM tokenization is shown in Figure 1: while com-
pletely merging the frequent morpheme “make” on
the target side, it is also able to decompose the less
frequent “sausage” into smaller units.

2.1 Implementation details

Training and decoding procedure. We trained
with early stopping in all experiments, validating
after each epoch. Our validation metric was the
mean Levenshtein distance1 between the gold seg-
mentation and the model’s prediction when decod-
ing with a beam size of 5. Training was ended if
the model failed to improve for five consecutive

1A more conventional choice would be to validate with
force-decoded loss. However, this is problematic in our case
for two reasons: first, we experiment with two different loss
functions, and the values they return are not comparable; sec-
ond, in a subword-level model there are several subword se-
quences that represent the same morpheme sequence, but force
decoding would return the loss of only one of them.
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epochs. We used only the official task data to train
our models. We report the configuration with the
highest validation set F-measure. We decoded with
a beam size of 5 unless otherwise noted.

Software packages. We implemented all neural
models with Fairseq (Ott et al., 2019), which we
augmented with the pytorch implementation of ent-
max.2 We used the BPE and ULM implementation
from sentencepiece (Kudo and Richardson, 2018).

3 Word-level Subtask

Our three submissions to the word-level subtask
can be divided into two parts. First, we present
character-level LSTM-based models trained with
cross entropy loss (DeepSPIN-1) and 1.5-entmax
loss (DeepSPIN-2). These models are similar to
models that performed well at past shared tasks and
serve as strong supervised baselines for morpheme
segmentation. Second, we implement subword-
level transformer3 models (DeepSPIN-3).

Additional baselines. Although the BERT tok-
enizer is the official task baseline, we find that
its performance is (perhaps unsurprisingly) ex-
tremely weak. Therefore, we include three ad-
ditional unsupervised/semi-supervised baselines.
The first two are based on BPE and ULM, with
models trained on the concatenation of source and
target data. The vocabulary size was selected
by development set F-measure from the values
{2000, 4000, . . . , 32000}. The third extra baseline
is Morfessor 2.0 (Smit et al., 2014), for which we
treated the task data as supervised annotations and
used no additional unlabeled data. Our DeepSPIN-
1 submission can also be thought of as a strong
supervised baseline: its architecture is similar to
Kann et al. (2016)’s system, which to our knowl-
edge was the first to apply encoder-decoder models
to canonical morpheme segmentation.

3.1 Character-level LSTM
Hyperparameters. We trained RNN-based mod-
els with a plateau-based learning rate schedule, us-
ing the hyperparameter ranges shown in Table 1.
Due to the much smaller training sets for Czech
and Mongolian than the other languages, we differ-
ent batch sizes for them than the other languages.

2https://github.com/deep-spin/entmax
3We also tried character-level transformers with the same

hyperparameters, but these performed much worse. Future
work should investigate why it remains challenging to train
character-level transformers.

Hyperparameters Values

Embedding size 512
Hidden size {512, 1024}
Layers {1, 2}
Dropout 0.3
Batch size (Low) {16, 32, 64}
Batch size (High) {256, 512}
Learning rate {.001, .0005, .0001}

Table 1: Hyperparameters for DeepSPIN-1 and
DeepSPIN-2. Brackets indicate values that were deter-
mined by grid search. The ‘Low’ languages are Czech
and Mongolian, while all others are ‘High’.

The learning rate was reduced by a factor of 10 if
the model failed to improve for two consecutive
epochs. RNN models were trained for a maximum
of 150,000 parameter updates.

3.2 Subword-level Transformer
Hyperparameters. We trained transformers with
the inverse square root learning schedule and the
hyperparameters in Table 3. The size of feedfor-
ward layers was always 4 times the embedding size.
All models used 6 layers in the encoder and de-
coder, with 8 attention heads per layer, and were
trained for up to 400,000 parameter updates.

Subword vocabulary. For each language, we
trained a ULM model on the concatenation of the
source and target training corpora. The vocabulary
size was set at 2000 for Czech and Mongolian, and
8000 for the other languages.4 We performed sub-
word regularization at training time by sampling
source and target subword sequences. Ideally, we
would have generated new subword samples on the
fly, as described in (Kudo, 2018). However, Fairseq
expects data to be preprocessed in advance, so in-
stead we concatenated several copies of the training
data (100 for Czech and Mongolian, 10 for other
languages) with different sampled tokenizations.

3.3 Results and discussion
We report results in terms of F-measure (Table 2).
Regardless of metric, DeepSPIN-3 and DeepSPIN-
2 finish first and second among all submitted sys-
tems. On a per-language basis, DeepSPIN-3 has
the best F-measure for 7 of 9 languages, while
DeepSPIN-2 has the best for the remaining two.

4This is not a principled choice. We found that 8000
seemed to work well for most languages. Due to the limited
size of the Czech and Mongolian corpora, we used a smaller
vocabulary for them. Future research should exhaustively ex-
plore subword vocabulary sizes for morpheme segmentation.
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Model ces eng fra hun ita lat mon rus spa avg.

BERT 20.42 23.06 12.66 24.00 9.08 8.84 14.58 13.81 16.57 15.89
BPE 27.76 20.86 20.08 37.95 10.15 9.46 35.84 9.53 20.33 21.33
ULM 50.51 52.55 38.90 67.77 24.68 73.36 44.39 31.65 34.94 46.53
Morfessor 65.18 64.38 45.56 75.34 36.38 90.23 56.97 40.15 42.60 57.42

DeepSPIN-1 93.42 92.29 91.66 98.56 96.01 99.37 98.03 98.75 98.79 96.32
DeepSPIN-2 93.88 93.39 95.29 98.68 97.47 99.36 98.00 99.30 99.02 97.15
DeepSPIN-3 93.84 93.63 95.73 98.72 97.43 99.38 98.51 99.35 99.04 97.29

Best Other 93.85 93.20 94.80 98.59 96.93 99.37 98.31 98.62 98.74 96.85

Table 2: Test set F-measure results for baselines and our submissions. Numbers in boldface are the best among any
submission to the task, not only ours. Per-language Best Other results are the best of any system, while the Best
Other system averaged over languages is CLUZH (Wehrli et al., 2022).

Hyperparameters Values

Embedding size {256, 512}
Dropout {0.1, 0.3}
Batch tokens (mon) 1024
Batch tokens (others) 8192
Warmup steps {4000, 8000}

Table 3: Hyperparameters for subword models.

In terms of baselines, our results also support the
claim that ULM is more morphologically faithful
than BPE (Bostrom and Durrett, 2020), while nei-
ther matches Morfessor 2.0.

4 Unofficial Sentence-level Subtask Model

Although we did not submit to the sentence-level
subtask due to time and computation restraints, we
were able to train subword-level models similar to
DeepSPIN-3 after the conclusion of the task. This
system, which we dub DeepSPIN-Sent, uses the
same hyperparameter grid as DeepSPIN-3. It is
trained on the concatenation of data from the word-
level and sentence-level subtasks. Our model does
not make use of sentence context: each word in a
sentence is presented as a separate example.

Our results are shown in Table 4 alongside the
task winners and baselines trained on the same data
as DeepSPIN-Sent. Our model outperforms the
official task winner for all three languages.

5 Analysis

5.1 Does subword regularization matter?

DeepSPIN-3 uses subword regularization for both
its source and target sequences. But is this an im-
portant part of its design? While source side reg-

Model ces eng mon avg.

BERT 34.61 63.53 23.62 40.59
BPE 43.31 64.74 40.95 49.67
ULM 58.03 71.20 48.69 59.31
Morfessor 72.79 78.74 51.21 67.58

DeepSPIN-sent 93.23 98.24 83.59 91.69

Task winner 91.99 96.31 82.88 89.77

Table 4: Results for DeepSPIN’s unofficial sentence-
level system and the per-language task winners. The
overall task winner is AUUH_B (Rouhe et al., 2022).

ularization is generally considered beneficial, the
situation on the target side is more controversial:
Provilkov et al. (2020) suggest that target-side BPE-
dropout only helps in lower-data settings, and alter-
nate strategies have been developed to replace it on
the target side (He et al., 2020). However, these ex-
periments only compared BPE-based methods, not
ULM, and only evaluated on machine translation.
In order to evaluate the importance of subword
regularization in our case, we trained English seg-
mentation models that vary in their use of subword
regularization, while keeping the same hyperpa-
rameter grid as DeepSPIN-3. Table 5 shows that
subword regularization appears to be beneficial for
both the source and target.

5.2 How difficult is search?

For a sequence-to-sequence model, the difficulty of
the inference time search problem depends strongly
on the task. In high-uncertainty tasks like machine
translation, the highest-scoring hypothesis is often
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Figure 2: The average probability mass in the beam (left) and rate at which search returns an argmax certificate
(right) as a function of beam size for character (DeepSPIN-2) and subword (DeepSPIN-3) models on the English
word-level development set.

Subword Reg. F-measure

neither 92.69
target 93.09
source 93.30
both 93.83

Table 5: English development set F-measure with vary-
ing subword regularization configurations. The “both”
configuration is our official DeepSPIN-3 submission.

inadequate (Stahlberg and Byrne, 2019); strong
performance is due to the helpful biases of beam
search (Meister et al., 2020). In contrast, less uncer-
tain tasks like morphological inflection often con-
centrate probability into a few hypotheses, making
it easy for beam search to find the argmax (Peters
and Martins, 2019; Forster et al., 2021).

Character-based segmentation is a low-
uncertainty task: usually, a sequence has only one
reasonable segmentation, or a handful at most.
Indeed, as we show for the English word-level
development set in Figure 2, DeepSPIN-2 con-
centrates more than 96% of probability mass into
the greedy hypothesis on average, an amount that
increases to nearly 99.9% at a beam size of 5.
The story is different for subword-based models:
DeepSPIN-3 concentrates an average of 58.5% of
the probability mass in the greedy hypothesis and
87.6% in the hypotheses found with a beam width
of 5. By increasing the beam size further, nearly
all of the probability mass can be recovered.

Besides the raw amount of probability in the

beam hypotheses, it is also possible to obtain a
certificate that the argmax has found if the single-
best beam hypothesis probability is greater than
the combined probability mass of every hypothesis
outside the beam. The rate at which an argmax cer-
tificate is found for DeepSPIN-2 and DeepSPIN-3
is shown in Figure 2. As expected, DeepSPIN-3
returns an argmax certificate less frequently than
DeepSPIN-2 with a narrow beam, but the gap
closes as the beam size increases.

6 Related Work

Given the widely-observed shortcomings of unsu-
pervised subword units for handling morphology
(Amrhein and Sennrich, 2021; Bostrom and Dur-
rett, 2020; Ács, 2019; Mielke et al., 2021), several
works have attempted to replace these units with
a more morphologically-principled representation
for downstream tasks. Although this sometimes
means completely replacing the unsupervised sub-
words (Ataman et al., 2017; Schwartz et al., 2020),
other works have adopted a pipeline approach in
which unsupervised subwords are applied to a mor-
phological analysis (Park et al., 2020; Tan et al.,
2020; Huck et al., 2017; Weller-Di Marco and
Fraser, 2020; Banerjee and Bhattacharyya, 2018).
These techniques are attractive because unsuper-
vised subword techniques are empirically very ef-
fective, and removing them entirely risks losing
benefits such as their compressive capacity (Gallé,
2019). Although DeepSPIN-3 is similar to these
combined approaches, it is not a pipeline: a single
neural model predicts both the subword sequence
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and the location of the morpheme boundaries.

7 Conclusion

We implemented several sequence-to-sequence
models for morpheme segmentation, showing that
sparse entmax losses outperform cross entropy.
Our strongest model, which won the word-level
subtask, is a transformer that generates morphemes
as sequences of subword units, unlike traditional
character-level segmentation models.
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Abstract
This paper presents the submission of team
NUM DI to the SIGMORPHON 2022 Task
on Morpheme Segmentation Part 1, word-level
morpheme segmentation. We explore the trans-
former neural network approach to the shared
task. We develop monolingual models for
world-level morpheme segmentation and fo-
cus on improving the model by using various
training strategies to improve accuracy and gen-
eralization across languages.

1 Introduction

Morphological analysis is the heart of nearly all
natural language processing tasks, such as senti-
ment analysis, machine translation, information
retrieval, etc. Such natural language processing
tasks become infeasible without any morphologi-
cal analysis. One reason is the sparsity resulting
from a high number of word forms that introduce
out-of-vocabulary (OOV). Morphological segmen-
tation is a way to deal with language sparsity by
introducing the standard segments within the words
rather than dealing with word forms (having multi-
ple morphemes).

Morpheme segmentation is a type of morphologi-
cal analysis in which words are divided into surface
forms of morphemes, for example, successfulness
= success @@ful @@ness. Automated morpheme
segmentation was studied in the early years of nat-
ural language development (NLP). However, sig-
nificant progress has been made in recent years in
using various machine learning techniques.

Since morphemes are the smallest meaningful
language units, information about the morphemic
structure of words is already used in various NLP
applications and additional tasks, including ma-
chine translation and recognition of semantically
related words (cognates).

In this paper, we proposes a supervised method
for word-level morphological segmentation using

a transformer neural network. The task of machine
translation has seen significant progress in recent
times with the advent of Transformer-based mod-
els (Vaswani et al., 2017) for this year’s SIGMOR-
PHON 2022 shared task on morpheme segemn-
tation (Batsuren et al., 2022a) which at the word
level, participants will be asked to segment a given
word into a sequence of morphemes. Input words
contains all types of word forms: root words, de-
rived words, inflected words, and compound words.
However, to the best of our knowledge, there has
not been work that applies such morpheme segmen-
tation transformer-based models.

The paper is organized as follows: Section 2 ad-
dresses the related work on supervised morpheme
segmentation, Section 3 describes the data used in
training, Section 5 describes the model architecture,
and section 6 presents the experiment results.

2 Related work

Z. Harris in (Harris, 1970) proposed the earliest
method of morpheme segmentation. It detects mor-
pheme boundaries by letter variety statistics (LVS)
(Çöltekin, 2010). Morfessor system (Creutz and
Lagus, 2007), (Smit et al., 2014) exploits unsu-
pervised machine learning methods to be trained
on a large unlabelled text. Another kind of semi-
supervised machine learning for morpheme seg-
mentation (Ruokolainen et al., 2014) was based on
conditional random fields; the task was considered
as sequential classifying and labeling letters of a
given the word. A pure supervised method with
significantly better quality for the twofold task of
morpheme segmentation with classification was
proposed in (Sorokin and Kravtsova, 2018); it was
effective due to applying a convolutional neural
network and training on the representative labeled
data. The model outperforms all previous mor-
pheme segmentation models, giving F-measure up
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to 98% on morpheme boundaries. Recent works
developed two more supervised machine learning
models for morpheme segmentation with classifi-
cation for Russian words (Bolshakova and Sapin,
2019a), (Bolshakova and Sapin, 2019b). The first
is based on decision trees with gradient boosting,
while the second applies Bi-LSTM neural network.
However, they were developed for morpheme seg-
mentation applied CNN, Bi-LSTM, not applied
transformer neural network. Therefore, to study
possible ways to build a more broad supervised
model with a transformer neural network.

3 Data

A dataset for this task, the organizer integrated
all basic types of morphological databases (in-
cluding UniMorph (Kirov et al., 2018; McCarthy
et al., 2020; Batsuren et al., 2022b) – inflectional
morphology; MorphyNet (Batsuren et al., 2021)
– derivational morphology; Universal Dependen-
cies (Nivre et al., 2017) and ten editions of Wik-
tionary – compound morphology and root words)
cover 9 languages. 8 of these languages were avail-
able initially, while 1 surprise language, Mongo-
lia, was released one week before the submission
deadline. Each language had split a train and a
development sample. The amount of data for the
different languages vary in size, from 18966 (Mon-
golian) to 926098 (Hungarian). Each sample occu-
pies a single line and consists of input word, the
corresponding morpheme sequence, and the cor-
responding morphological category. Except for
Spanish, eight languages have morphological word
categories shown in table 1. All the data is available
on the Github1 page.

(1) Example Training Set

pentazole penta @@azo @@ole 010
nyala nyala 000
biots biot @@s 100

(2) Example Development Set

newspaper new @@s @@paper 011
players play @@er @@s 110
congruity congruent @@ity 010

(3) Example Test Set

hyperonym
distance

1https://github.com/sigmorphon/2022SegmentationST

To preprocess the dataset, we used the fairseq
command-line tool to binarize the training data,
making it easy for developers and researchers to
directly run operations from the terminal.

4 Model architecture

We use the character level Transformer implementa-
tion of fairseq (Ott et al., 2019). Our model is com-
posed of one encoder input word, and one decoder
output segmentation of the word. We train a mono-
lingual word segmentation model for each given
language with identical parameters, 50 epochs, 1
encoder layer, 1 decoder layer, 0.0001 learning
rate, using the Adam optimizer (Kingma and Ba,
2014) and the cross-entropy loss. Various hyper-
parameters of our Transformer model were exper-
imentally tested in several experiments. The re-
sulted model has the encoder and decoder layer
with 128 hidden units, and the batch size is 32. En-
coder and decoder more layers slightly improve the
quality (less than 0.5%), but the model became too
heavy both for training and evaluation. We also use
created checkpoints to save the checkpoint the lat-
est and the best ones. It is also a safe guard in case
the training gets disrupted due to some unforeseen
issue.

4.1 Evaluation
For the word-level segmentation shared task, the
following evaluation metrics are provided.

• Precision: fraction of correctly predicted mor-
phemes on all predicted morphemes

• Recall: ratio of correctly predicted mor-
phemes on all gold morphemes

• F-measure: the harmonic mean of the preci-
sion and recall

• Edit distance: average Levenshtein distance
between the predicted output and the gold in-
stance.

We compare our results with the baseline model, in
which the multilingual Bert tokenizer is shown in
table 2.

5 Results

Results of the evaluation are shown in Table 2,
where the leftmost column stands for the ISO-639
language code, the next one for the number of train
data, the next one for the number of test data, rest
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Word class Description Example
000 Root words Vivian - Vivian
001 Compound only snowfight - snow @@fight
010 Derivation only unafraid - un @@afraid
011 Derivation and Compound peacekeeper - peace @@keep @@er
100 Inflection only descendents - descendent @@s
101 Inflection and Compound setbacks - set @@back @@s
110 Inflection and Derivation brandishing - brand @@ish @@ing
111 Inflection, Derivation, Compound faultfinders - fault @@find @@er @@s

Table 1: Word categories.

Lang. Train size Test size Models Precision Recall F-
measure

Distance

eng 458692 57755
Transformer 84.02 83.12 83.56 0.48
Baseline 20.99 28.79 24.28 2.69

ces 30694 4000
Transformer 88.49 87.52 88.00 0.35
Baseline 22.10 19.72 20.84 2.94

fra 252671 31588
Transformer 87.48 84.14 85.78 0.72
baseline 11.08 14.00 12.37 4.32

hun 742239 95278
Transformer 96.33 95.50 95.91 0.21
baseline 20.88 27.81 23.85 3.54

ita 369208 46153
Transformer 90.38 88.74 89.55 0.58
baseline 8.12 10.54 9.18 5.35

lat 705862 88234
Transformer 97.03 95.68 96.35 0.08
baseline 6.76 13.17 8.94 4.14

mon 15171 1900
Transformer 87.99 83.32 85.59 0.58
baseline 5.89 10.59 7.57 4.51

rus 627367 78425
Transformer 95.6 93.42 94.5 0.46
baseline 13.23 14.13 13.67 7.62

spa 688673 86088
Transformer 96.33 94.33 95.32 0.29
baseline 15.76 17.91 16.76 5.20

Table 2: Comparison of our model and baseline for morpheme segmentation

of the columns stand for the evaluation metrics
provided by shared task. It is clearly seen that
our model performs much better in all evaluation
metrics than the baseline model. We expected rich
morphological language models to get lower scores
than others. However, the results show that the
English word segmentation model has a lower re-
call, precision, and f-measure scores than other lan-
guage models; even Mongolian has fewest training
data. In all metrics, the Latin word segmentation
model had the highest score. All models trained on
more than 60,000 training data have more than 90
points in the recall, precision, and f-measure score.
In table 3, we compare the f-measure score of our
model with team DeepSPIN-3 (Peters and Martins,
2022). Although our model performed poorly in

all languages, it performed competitively.

6 Conclusion

We have presented the monolingual models for mor-
pheme segmentation in 9 languages. Our model run
outperforms the baseline. Even though our models
as implemented prior to submission failed to attain
reasonable evaluations scores on the word-level
morpheme segmentation task, our results indicate
that our model has the potential to have a better
performance after fine-tuning and the good perfor-
mance of our model under varying morphological
complexity languages.

In future work, we plan on exploring multilin-
gual word-level morpheme segmentation a model.
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Language Teams F-measure

eng
NUM DI 83.56
DeepSPIN-3 93.63

ces
NUM DI 88.0
DeepSPIN-3 93.84

fra
NUM DI 85.78
DeepSPIN-3 95.73

hun
NUM DI 95.91
DeepSPIN-3 98.72

ita
NUM DI 89.55
DeepSPIN-3 97.43

lat
NUM DI 96.35
DeepSPIN-3 99.38

mon
NUM DI 85.59
DeepSPIN-3 98.51

rus
NUM DI 94.5
DeepSPIN-3 99.35

spa
NUM DI 95.32
DeepSPIN-3 99.04

Table 3: Comparison of our model and model of the
best team for word-level morpheme segmentation
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Ben Peters and André F. T. Martins. 2022. Beyond
characters: Subword-level morpheme segmentation.
In 19th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2014. Painless semi-supervised
morphological segmentation using conditional ran-
dom fields. In Proceedings of the 14th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, volume 2: Short Papers, pages
84–89.

Peter Smit, Sami Virpioja, Stig-Arne Grönroos, Mikko
Kurimo, et al. 2014. Morfessor 2.0: Toolkit for statis-
tical morphological segmentation. In The 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL), Gothenburg,
Sweden, April 26-30, 2014. Aalto University.

Alexey Sorokin and Anastasia Kravtsova. 2018. Deep
convolutional networks for supervised morpheme
segmentation of russian language. In Conference on
Artificial Intelligence and Natural Language, pages
3–10. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

143



19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 144 - 151
July 14, 2022 ©2022 Association for Computational Linguistics

Morfessor-enriched features and multilingual training for canonical
morphological segmentation

Aku Rouhe♢ Stig-Arne Grönroos♡♠ Sami Virpioja♡

Mathias Creutz♡ Mikko Kurimo♢
♢ Department of Signal Processing and Acoustics, Aalto University, Finland

♡ Department of Digital Humanities, University of Helsinki, Finland
♠ Silo.AI, Finland

♡ name.surname@helsinki.fi
♢ name.surname@aalto.fi

Abstract

In our submission to the SIGMORPHON 2022
Shared Task on Morpheme Segmentation, we
study whether an unsupervised morphological
segmentation method, Morfessor, can help in
a supervised setting. Previous research has
shown the effectiveness of the approach in semi-
supervised settings with small amounts of la-
beled data. The current tasks vary in data size:
the amount of word-level annotated training
data is much larger, but the amount of sentence-
level annotated training data remains small.
Our approach is to pre-segment the input data
for a neural sequence-to-sequence model with
the unsupervised method. As the unsupervised
method can be trained with raw text data, we
use Wikipedia to increase the amount of train-
ing data. In addition, we train multilingual
models for the sentence-level task. The re-
sults for the Morfessor-enriched features are
mixed, showing benefit for all three sentence-
level tasks but only some of the word-level
tasks. The multilingual training yields con-
siderable improvements over the monolingual
sentence-level models, but it negates the effect
of the enriched features.

1 Introduction

Current use of subword segmentation in neural
natural language processing (NLP) with unsuper-
vised segmentation methods such as BPE (Sennrich
et al., 2015), SentencePiece (Kudo and Richardson,
2018), and Morfessor (Creutz and Lagus, 2002; Vir-
pioja et al., 2013) mainly focuses on finding short
and frequent subwords that give good performance
in the NLP application, while putting less weight
on linguistic correctness. The level of segmentation
varies by the frequency of the word: frequent words
retain their affixes, while rare words, such as rare
proper names, are heavily segmented into syllable-
like units or even characters. These methods typi-
cally perform surface segmentation, meaning that

the subwords can be concatenated back into the sur-
face form of the word without any transformation
to account for phonological processes

e.g. profibrotic 7→ pro ++ fibr ++ ot ++ ic.

However, when linguistic fidelity is of
importance—for example because the segments
are analyzed statistically as opposed to using a neu-
ral model—a supervised segmentation method may
be more suitable. The goal is to output morphemes,
the smallest meaning-bearing linguistic units. In
canonical morphological segmentation (Kann
et al., 2016), instead of segmenting into surface
forms of morphemes, the different allomorphs are
mapped into a single canonical form, reversing any
phonological changes.

e.g. profibrotic 7→ pro ++ fibre ++ osis ++ ic.

It is not always possible to give a single correct
analysis for any particular surface form. A sur-
face form may be homonymous, with inflections
or derivations from two or more lemmas. In order
to disambiguate the meanings to choose a single
analysis from several alternatives, it is necessary to
use the surrounding sentence context. In Task 2 of
this shared task, such sentence level segmentation
is performed.

e.g. she rose up 7→ she rise ++ ed up

a red rose 7→ a red rose.

Word-level morpheme segmentation is more
widely studied than sentence-level morpheme seg-
mentation. In part, the focus on word level segmen-
tation is due to the historically limited ability of
models to exploit all of the available context. With
neural sequence to sequence (seq2seq) models, this
limitation can easily be lifted. Limited availability
of labeled data for the sentence level task provides
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a second reason for the popularity of word-level
segmentation.

This work presents the AUUH (Aalto University
- University of Helsinki) team submission to the
SIGMORPHON 2022 Shared Task on Morpheme
Segmentation (Batsuren et al., 2022). In this shared
task, the imbalance of training data persists. For
the word-level Task 1, there is ample training data,
ranging from 15 000 labeled words for the low-
est resourced language, Mongolian, to hundreds of
thousands of words for the higher resourced lan-
guages. Task 1 has between 3 and 30 times as much
data as in sentence-level Task 2. In addition to the
labeled data, an order of magnitude more unlabeled
data can easily be sourced.

Considering that these types of data are available
in very different amounts, there is an opportunity to
improve especially the sentence-level performance
by exploiting the other types of data. In this work,
we use large amounts of unlabeled data to enrich
the input with features from an unsupervised seg-
mentation model. This feature set augmentation ap-
proach, which combines the strengths of generative
and discriminative models, has previously been ap-
plied for word-level surface segmentation (Ruoko-
lainen et al., 2014; Grönroos et al., 2019). Addi-
tionally, we use the word-level labeled data through
multi-task and multi-lingual training.

Our systems are fully data-driven and language-
independent, requiring no linguistic resources be-
yond the training data. All the software used in the
systems has open-source implementations.

2 Methods

Our approach for the shared tasks consists of a neu-
ral seq2seq model, enrichment of data with features
learned in an unsupervised manner, and multi-task
and multilingual training. We submitted six differ-
ent configurations, which we refer to as Systems
A–F in the following.

2.1 Seq2seq model

We apply a sequence-to-sequence (seq2seq) model
to map from character sequences to character se-
quences. In our baseline models, the input is the
character sequence of the surface form of the word.
In our enriched models, the surface form is aug-
mented with predicted segmentation boundary sym-
bols. In all cases, the output is the sequence of
canonical morphemes and segmentation boundary
symbols, decoded on character level. We treat the

boundary marker “@@” as a single symbol1. In
the original output format, the morphemes are sep-
arated by a space, which we simply ignore in the
seq2seq data and add back in the detokenization
step. Our seq2seq models are implemented using
the Marian NMT (Junczys-Dowmunt et al., 2018)
Neural Machine Translation framework.

Even though the amount of data is of a stan-
dard size for segmentation, it is small compared
to typical machine translation data sets. Therefore,
when designing the neural network architectures,
we experiment with neural architectures from the
literature on low-resource neural machine transla-
tion.

Following Sennrich and Zhang (2019), our mod-
els C–F use a bidirectional GRU bideep (Miceli
Barone et al., 2017) architecture. We modify the
architecture slightly by lowering the embedding
dimension from 512 to 128, as we have a character-
level model instead of a subword model.

Inspired by Araabi and Monz (2020), we try re-
ducing the capacity of Transformer-base (Vaswani
et al., 2017) to better suit the small data setting,
reducing the number of layers in both encoder
and decoder to 5, reducing the feed-forward di-
mension to 512, reducing the number of attention
heads to 2, increasing dropout to 0.3, adding 0.1 tar-
get dropout (and in our implementation 0.1 source
dropout as well), and increasing label smoothing
to 0.5. However, in preliminary experiments this
performed worse than Transformer-base. Instead,
a smaller Transformer-base modification, which
we title Transformer-basemod, where we reduce
the feed-forward dimension to 1024, and add 0.1
source and target dropout, yields our best Trans-
former results in preliminary experiments.

For the monolingual word-level tasks we use
the bideep GRU architecture, as that architecture
worked reliably even with limited data. For the
multi-task, multi-lingual models A–B, which are
trained with considerably more data overall, we use
the Transformer-basemod architecture.

The seq2seq models are trained for 50 epochs
with the cross-entropy loss, with early stopping
based on validation criterion improvement stalling.
As a validation criterion, we use the official eval-
uation F-measure. This choice yielded consistent
improvements over the cross-entropy criterion in
preliminary experiments.

1For clarity, represented later in the paper as a single sym-
bol @.
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Figure 1: Feature enrichment process.

2.2 Enrichment with unsupervised features
The feature enrichment process is shown in Fig-
ure 1. For training the unsupervised features,
the training data consists of a large word list ex-
tracted from an unlabeled corpus. Morfessor Base-
line (Creutz and Lagus, 2002; Virpioja et al., 2013),
an unsupervised generative model, is trained using
the unlabeled data only.

The words in the labeled training set are first pre-
segmented using the Morfessor Baseline model.
The predicted segmentation is turned into features
by adding a reserved unicode character at the pre-
dicted segmentation boundaries, and then concate-
nating to form the new input string.

For example, the input string “subneural” is
segmented by Morfessor as

subneural 7→ s u b ⊔ n e u r a l.

The seq2seq model then takes this feature represen-
tation as input, and outputs the canonical segmen-
tation:

s u b ⊔ n e u r a l 7→ s u b @ n e u r o n @ a l.

At decoding time a two-step procedure is used:
first the features for the desired words are produced
using the Morfessor Baseline model. The final
segmentation can then be decoded from the seq2seq
model.

The idea is that the features from the unsuper-
vised generative model allow the statistical patterns
found in the large unannotated data to be exploited.
Two tasks remain for the seq2seq model to learn:
determining when the predictions of Morfessor are
reliable in order to correct its mistakes, and finding
the mapping from predicted surface morphemes to

the canonical forms of morphemes. We hypoth-
esize that these two tasks are easier to learn as
part of a pipeline system, compared to learning
the mapping from the unsegmented surface form
into canonical morphemes directly as an end-to-end
task.

2.2.1 Morfessor
Morfessor is a family of language-independent un-
supervised and semi-supervised morpheme seg-
mentation models. The first variant, later called
Morfessor Baseline, was introduced by Creutz and
Lagus (2002). It is an unsupervised algorithm that
makes use of a context-insensitive maximization
criterion based on unigram probabilities. A Python
implementation and extensions were provided by
Virpioja et al. (2013) with further improvements
by Grönroos et al. (2020). Further unsupervised
variants introduce context-sensitive segmentation,
identifying possible prefixes, stems and suffixes as
a biproduct. The so-called Morfessor Categories-
MAP model (Creutz and Lagus, 2005, 2007) pro-
duces a hierarchical segmentation structure, which
later evolved into a flat structure in Morfessor Flat-
Cat (Grönroos et al., 2014). Kohonen et al. (2010)
extended to semi-supervised learning for situations
where small amounts of linguistic gold standard
analyses are available.

In this work, we focus on using Morfessor Base-
line, leaving comparison of different Morfessor
variants for future work.

2.2.2 Training data
For training the Morfessor models, we use the offi-
cial word-level training sets, sentence-level train-
ing sets for the languages that had them available,
and, in addition, Wikipedia dumps from 2022-04-
01. The word-level data is added as is. From the
sentence-level data, we include tokens that con-
tained only letters in a script suitable for the lan-
guage (Cyrillic for Mongolian, and Latin for En-
glish and Czech). Wikipedia dumps are processed
with wikiextractor (Attardi, 2015). Only
those tokens that have the correct script (Cyrillic
for Mongolian and Russian, Latin for the rest) are
included. In addition, to further reduce non-words
and foreign words, we restrict word length to 40,
word frequency to 3 for English and 2 for the rest,
and either include only lowercase words (English)
or lowercase the words (rest).

Finally, the words from the different sources are
combined together for training Morfessor. The
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Wikipedia Task 1 Task 2 total

labels unlabeled word-level sentence-level

ces 1097041 30694 4890 1107515
eng 466490 458692 15700 779878
fra 1502818 252671 0 1649688
hun 1356328 742239 0 1937213
ita 1171105 369208 0 1417499
lat 224277 705862 0 914135
mon 101136 15171 4961 108668
rus 2148379 627367 0 2483749
spa 1402977 688672 0 1942361

Table 1: Numbers of unique word forms in the training data sets.

frequencies of the words are ignored in training.
Table 1 shows the numbers of unique word forms
in the data sets.

We observe that with the exception of the Czech
language, all subtasks of this shared task consist
of canonical segmentation. For some words, the
label sequence concatenates directly into the sur-
face form, i.e. the canonicalization mapping of
each morpheme is the identity function. The pro-
portion of training words having this property vary
by language, from 7.6% for Italian to 99.7% for
Latin. However, for the Czech language, all the
words in the training data have this property of
concatenating directly into the surface form. As
the Czech language does exhibit allomorphy (see
e.g. Ševčı́ková, 2018), we conclude that the task
for Czech was surface segmentation rather than
canonical segmentation.

2.2.3 Hyper-parameter tuning
We use grid search to find the optimal corpus
weight hyper-parameter for the Morfessor mod-
els. We test values in the range from 0.001 to
2.0. The word-level development sets are used
for evaluation. However, the official evaluation
scripts expect canonical segmentation, while Mor-
fessor produces surface segmentation. Thus we
rely on the EMMA-2 evaluation method and maxi-
mize the F1-score between the model and reference
segmentations.2 EMMA-2, proposed by Virpioja
et al. (2011), is a variant of the EMMA (Evaluation
Metric for Morphological Analysis) introduced by
Spiegler and Monson (2010). Both methods solve
the problem of comparison of two different label

2Implementation available at https://github.com/
svirpioj/morphometrics.

sets by creating a mapping between the predicted
and reference labels. The original EMMA method
finds one-to-one assignment between the labels us-
ing the Hungarian algorithm, but the computational
complexity prevents using it for large test sets. In
contrast, EMMA-2 makes separate one-to-many
assignments when calculating the precision and
recall.

2.3 Multi-task and multilingual training

We train models that use two types of multi-task
objectives. In the first one, we combine the word-
level Task 1 with the sentence-level Task 2. In the
second one, we train a multilingual model with the
concatenation of all languages available in Task 2.

To distinguish tasks from each other, we use
task selector tokens prefixed to the input, similar
to Johnson et al. (2017). The language selector
token is first, if used, and then in word tasks a
special token is used. Sentence tasks do not have a
separate selector token: no selector token implies a
sentence task.

The multilingual model is then finetuned for an
additional 50 epochs on each individual language.
In a preliminary experiment, the additional train-
ing time did not by itself yield a better model. In
finetuning, the sentence-level and word-level multi-
task objective was kept. We finetuned models sep-
arately with word- and sentence-level validation
data.

2.4 Systems

Table 2 lists the differences between the systems.
In the official competition, some of our submit-

ted systems were trained on slightly different data
than we intended, due to human error, and some
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Morfessor features Architecture Multilingual Multitask

System A ✓ Transformer-basemod ✓ ✓
System B – Transformer-basemod ✓ ✓
System C ✓ Bideep GRU – ✓
System D – Bideep GRU – ✓
System E ✓ Bideep GRU – –
System F – Bideep GRU – –

Table 2: Differences between the six submitted systems.

systems were missing simply due to running out
of time. The results in this description paper have
been produced with corrected systems. The results
that changed, or were added after the competition
deadline, are marked with the symbol ⋆ in the ta-
bles.

3 Results

Tables 3 and 4 list the results of Tasks 1 and 2 re-
spectively. Systems A and B, C and D, and E and
F each form comparable pairs, where the former
(e.g. System A) uses Morfessor-enriched features,
and the latter (e.g. System B) is the same system
without enriched features. In the result tables, these
comparable pairs are separated with horizontal di-
vider lines.

Some of our systems have the highest score of
all shared task participants in specific subcategories
of the evaluation. Our system B has the highest F1-
score (96.31%) and lowest Levenshtein distance
(1.39) for the English sentence-level task. Our
system A has the highest F1-score (93.23%) for
the English word-level evaluation category 001,
i.e. compound words without inflectional or deriva-
tional affixes.

Tables 5 and 6 show Task 1 results by morpho-
logical category, for systems A–B and E–F respec-
tively. For English, Russian, and Hungarian, the
system using the Morfessor-enriched features per-
forms better for most categories involving com-
pounding, in particular the 001 category (only com-
pounding). Of the languages in this shared task,
only Hungarian and English vocabularies contain
a substantial portion of compound words (17.32%
and 6.79% respectively).

4 Discussion

The multilingual model without Morfessor-
enriched features (System B) gives the best results
in both tasks for the three languages (ces, eng, mon)

for which we trained such a system. When using
multilingual training, the Morfessor-enriched fea-
tures are not beneficial. The unsupervised features
may be less useful with the increased amount of
training data in the multilingual setup, and varying
granularities of the unsupervised segmentations for
the different languages could confuse the multilin-
gual model.

Without multilingual training, the results for en-
riched features are inconclusive for the word-level
task, but clearly beneficial for the sentence-level
task. The enriched features give better results for 5
languages (ces, eng, rus, mon, hun) in Task 1 and
all three languages (ces, eng, mon) in Task 2.

Consistent with previous work (Grönroos et al.,
2019), we find that Morfessor-features are use-
ful for modeling the boundary between compound
parts, which is challenging for supervised discrimi-
native models on their own.

Except for the corpus weight hyper-parameter of
the Morfessor model, we did not tune many param-
eters of the setup, such as thresholds for the words
in the Wikipedia dumps, different weightings for
the corpora, or use of the word frequencies in Mor-
fessor training. More extensive optimization could
lead to some improvements for the unsupervised
features. It would also be possible to use the part of
the data, for which the canonical morphemes cor-
respond to surface morphemes as annotations for
training semi-supervised Morfessor variants (Ko-
honen et al., 2010).

It is possible that using a different β for the Fβ-
score may result in better tuning. Finding the opti-
mal value for β is left for future work. While com-
putationally more burdensome, instead of search-
ing for the best Fβ-score of EMMA-2 for Morfes-
sor’s output, some parameters could also be opti-
mized on the results of the final seq2seq model.
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ces eng fra ita lat rus mon hun spa

System A† 93.65 92.32 - - - - 98.19 - -
System B ⋆93.68 ⋆93.24 - - - - ⋆98.29 - -

System E† 90.71 87.10 90.78 92.39 98.71 94.33 96.06 ⋆98.36 ⋆96.22
System F 90.28 86.40 90.81 92.56 98.85 93.68 95.32 98.34 97.25

Table 3: Word-level (Task 1) results (F1-measure [%]) on the official test sets. Results marked with ⋆ were not
submitted to the official competition. Systems marked with † use Morfessor features.

ces eng mon

System A† 88.60 96.22 82.19
System B 90.42 96.31 82.59

System C† ⋆59.77 ⋆93.44 ⋆74.08
System D ⋆59.08 88.07 ⋆71.82

System E† 61.92 85.04 72.67
System F 51.47 82.34 66.38

Table 4: Sentence-level (Task 2) results (F1-measure
[%]) on the official test sets. Results marked with ⋆
were not submitted to the official competition. Systems
marked with † use Morfessor features.

5 Conclusions

We find that Morfessor-enriched features are ben-
eficial for the sentence-level tasks, but see mixed
results for the word-level tasks. The multilingual
training yields considerable improvements for both
tasks, but it negates the effect of the enriched fea-
tures.
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Abstract

This paper describes the JB132 submission to
the SIGMORPHON 2022 Shared Task 3 on
Morpheme Segmentation. In this paper we
describe probabilistic model trained with the
Expectation-Maximization algorithm, we pro-
vide the results and analyze sources of errors
and general limitations of our approach. The
model was implemented within our own modu-
lar probabilistic framework.

1 Introduction

This paper describes JB132 submission to Shared
Task on Morphological segmentation, which is the
task of segmentation of words to the smallest units
carrying meaning - morphemes (e.g. prefixes, root,
suffixes).

Our general approach was to create our own mod-
ular framework for probabilistic models trained via
Expectation-Maximization, so that we can quickly
test large number of various model architectures.

We designed various probabilistic models, de-
scribed them within the framework and tested them
across languages. In this paper we provide the de-
scription of the best model architecture. Since the
algorithm achieves poor results, we further analyze
its outputs and describe causes of errors it makes.

2 Task

The Shared Task focused on both morphological
segmentation of solitary words (Task 1) and words
in sentences (Task 2), but we have only partici-
pated in Task 1. The training data spanned across
9 languages (Czech, English, French, Hungarian,
Spanish, Italian, Latin, Russian, Mongolian) and
contained tens of thousands to hundreds of thou-
sands training samples.

The structure and complexity of input data var-
ied. The Czech words were segmented to morphs
(absorbovat ab-sorb-ova-t), while e.g. Spanish

and Russian data contained segmentation to mor-
phemes, including change of root and presence of
morphemes that were used in the derivation of the
word but now only map to null morphs (encuestéis
encuesta-ar-éis; автоматизируемые автомат-
изм-ировать-уем-ый-ые).

3 Related Work

Probabilistic models are commonly used in mor-
phological segmentation, although often focused
on morphs instead of morphemes and trained in
unsupervised or weakly supervised settings. There
are three (sometimes overlapping) groups of prob-
abilistic models used for segmentation: the first
group are Bayesian models, which rely on complex
generative stories, including even prior distribu-
tions of numbers of morphemes of words or prior
distribution of morpheme frequencies. An inter-
esting example of this approach is (Snyder and
Barzilay, 2008), which experimented with a joint
multilingual model for several related languages
and showed that it can improve the resulting seg-
mentation in unsupervised setting.

The second group are Maximum a posteriori
probability (= Minimum description length) mod-
els. These models try to find the best compression
of words (including the size of the compression
model’s parameters) and are usually optimized via
some kind of local optimization. Models of this
type are e.g. (Creutz and Lagus, 2002) and (Gold-
smith, 2006), which also use morpheme lexicons,
but unlike our model consider size of the dictionary
part of the loss function.

The last group are Expectation-Maximization
models such as (Creutz and Lagus, 2004),(Grön-
roos et al., 2020), which tend to make use of sim-
pler loss functions that further simplify when EM
is applied and thus allow for faster computation.
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4 Solution

Our approach was to create a modular frame-
work for probabilistic models optimized via the
Expectation-Maximization algorithm. We then de-
scribed various architectures within this framework
and tried to find the one that works the best across
the languages.

Our final architecture consists of two main parts:
word−→morpheme generator (Fig. 1) which models
the structure of words as sequence of morphemes
and the morpheme−→morphs model (Fig. 2) which
models the morpheme realization.

Each of those parts is trained separately and they
are then merged together.

4.1 Word−→Morphemes model

The goal of this model is to learn the high level
structure of the word. The final version of this
model (Fig. 1) uses Hidden Markov Model with
hidden three states - prefix, root, suffix (only the
transitions to the same or later state are allowed).
Each of the states has an independent output model
- Prefix outputs either one of the prefix morphemes
in its morpheme dictionary or a string generated by
a letter unigram character model (to generate the
unknown morphemes). Root and suffix work on
the same principle.

The morpheme dictionaries were obtained from
the training dataset using a simple heuristic for
identification of the root morpheme (roots tend to
be long and infrequent compared to the affixes.
Morphemes in front of a root are prefixes, mor-
phemes behind it are suffixes).

After initialization, the model was trained on the
second column of the dataset - we simply concate-
nated the morphemes and trained the model to split
them back. This allowed the model to learn the
morphemic structure of words.

The model is trained via EM - we first let the
model find the most probable way of generating
the word in a recursive manner: If we ask some
module to generate subword beginning with i-th
letter, then it uses itself and its submodules to find
the most likely ways of generating the following 1,
2, 3, ... letters. Then it returns us the descriptions
of such ways of generation.

With this recursive principle the top-most mod-
ule will give us the likelihood of the best generation
of the whole word and the recursive description
(tree) describing how the modules generated it (e.g.
the tree describes that HMM module first visited its

prefix state, which used the Dictionary module and
Boundary module to generate its substring, where
the Dictionary module used prefix re-, etc).

In the maximization phase, we use these col-
lected description trees and we let them go through
the probabilistic model from top: The top most
module will analyze the trees and find out how of-
ten it e.g. transitioned from prefix state to itself or
to root. It then takes the remainders of the trees and
sends them to the lower layers, which again take
their own information to update their own parame-
ters and send the rest below, etc.

4.2 Morpheme−→Morph model

We then created the morpheme−→morph model. We
model the morpheme realization simply by assign-
ing each morpheme a list of morphs (strings) it
could generate, altogether with probabilities of gen-
eration (Fig. 2 top).

To train the model we first need to create a can-
didate set of potential morphs for each morpheme -
we take all substrings of original words. We then
remove the substrings that do not co-occur with the
morpheme sufficiently frequently to be reasonable
candidates. Then we run the training procedure
which finds the actual correct morphs: We train
the probabilities of morpheme generating a given
morph (Fig. 2 bottom). For each training sample
we take sequence of morphemes, replace the root
morpheme with a universal root generator and find
the best mapping of morphemes to morphs so that
the sequence of morphemes generates the origi-
nal word. When we do this on a large amount of
samples simultaneously, we can observe the prob-
abilities that a given morpheme generates a given
morph and we can use this information to update
the morpheme generators - this can be interpreted
as just another form of EM optimization and we ran
it for multiple epochs. Once the training finished,
we removed the morphs with low likelihood.

4.3 Final model

After joining the word−→morphemes and
morpheme−→morph models we simply let the
model find the most likely way of generating the
word and give us the tree describing the generation
(as discussed in the 4.1 chapter).

This generation tree is then analyzed and we
look for the positions of the Boundary modules
and for the Morpheme modules, which tells us the
resulting segmentation.
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Figure 1: The architecture of word−→morpheme model. Prefix-, Root-, and Suffix- generators are the same except
for the dictionary. The uni-gram models generate string as combination of randomly selected letters (each letter has
its probability). In the last phase of training, we will transform this model from generating morphemes to generating
morphs: at first, morpheme dictionary just outputs the morpheme string for morpheme i (e.g. -s) with likelihood
P[i]. After the transformation, it will output morpheme−→morph model of morpheme i instead. This model will be
then used to match the morphs (e.g. -s, -es, -en) in the input word. Boundary is a special sub-module that matches
boundaries in the training phase and marks predicted boundaries in the inference phase

Figure 2: The architecture of morpheme−→morph model (top) and the process of its training (bottom). The model
describes generation of a morph as random choice among fixed candidates on the basis of trained probabilities. The
training procedure works in such a way that it picks a word segmented to morphemes (red), uses it as a guideline for
choice of morpheme models and looks for the best way how to use these morpheme models to generate the not
segmented version of the word (green)
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5 Results

The systems were evaluated via morpheme preci-
sion and recall. Precision is defined as the number
of correctly predicted morphemes divided by total
number of predicted morphemes. Recall is defined
as the number of correctly predicted morphemes di-
vided by total number of morphemes in the golden
segmentation.

The following table summarizes our F-scores
on the languages, as they were measured by the
organizers of the Shared Task in (Batsuren et al.,
2022).

Lang. F1 Lang. F1
Ces 64.65 Lat 91.39
Eng 65.43 Mon 57.82
Fra 46.20 Rus 50.55
Hun 72.64 Spa 43.39
Ita 33.44

We can see that the model achieves relatively
good results only on Latin (which was segmented
to morphs) and not on other languages.

5.1 Error Analysis

This model was unable to achieve results compa-
rable with the other approaches. We think that the
main causes are following:

1. 1) Inability to capture the root changes, i.e. to
transform the original root into its morpheme.
(ENG: emulations = emulate-ion-s; SPA: tri-
cotemos = tricotar-emos; ITA: piastrellavamo
= piastrellare-avamo)

2. Missing context - the algorithm does not take
surrounding letters into account when insert-
ing a morph and it does not make use of joint
probabilities of morphemes. Among other
problems it also results in using a wrong mor-
pheme for the generation of a morph (FRA:
recréerions = re-créer-erions vs. présidions
= présider-ions)

3. Morphemes with empty morph - probabilis-
tic model of this type cannot generate mor-
pheme from nothing (FRA: agrémentant =
agrér-ment-er-ant). We would have to rely on
joint probabilities of morphemes to derive it.

4. Under-segmentation - when we look at the re-
sults of the model on the Czech data (which

are only segmented to morphs, not mor-
phemes), then we notice that we discovered
only 70% of boundaries between morphemes,
but we have 95% precision on the boundary
discovery. This was likely a consequence
of removal of single letter morphemes from
the model. Czech has tendency to use them
frequently, as e.g. in chyt-a-l-a, or bý-v-a-
l-ý, but they may cause problems with over-
segmentation, as in minim-al-iz-ova-t, so it
would be better to use a model that either
groups the short morphs or incorporates joint
probabilities of morphemes.

5. Root boundary detection - the model seems
to have trouble detecting beginning and
end of the root. When training the
word−→morphemes model we have observed
that adding root dictionary (with roots ex-
tracted from the set of training morphemes)
highly improves the segmentation accu-
racy. The problem is, that this dictio-
nary cannot be directly transferred to the
word−→morphemes−→morphs model, because
root morphs in words are different from root
morphemes in the dictionary, so some inter-
mediate layer would be required.

6 Conclusion & Future Work

Our submission to the shared task on morpho-
logical segmentation was a modular probabilistic
model trained via EM. The model has achieved
poor results and the error analysis shows that a big
amount of modifications will be needed in order
to improve the results. Especially, the addition of
more contextual information will be necessary. It
also remains unclear how to handle differences be-
tween root morphs and root morphemes with this
type of model.
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Abstract

This year’s iteration of the SIGMORPHON-
UniMorph shared task on “human-like” mor-
phological inflection generation focuses on gen-
eralization and errors in language acquisition.
Systems are trained on data sets extracted from
corpora of child-directed speech in order to sim-
ulate a natural learning setting, and their pre-
dictions are evaluated against what is known
about children’s developmental trajectories for
three well-studied patterns: English past tense,
German noun plurals, and Arabic noun plurals.
Three submitted neural systems were evaluated
together with two baselines. Performance was
generally good, and all systems were prone
to human-like over-regularization. However,
all systems were also prone to non-human-like
over-irregularization and nonsense productions
to varying degrees. We situate this behavior in
a discussion of the Past Tense Debate.1

1 Introduction

The overarching goal of this subtask of the 2022
SIGMORPHON-UniMorph shared task on mor-
phological inflection, in contrast with this year’s
and previous years’ typologically informed sub-
tasks, was to provide insight into how current state-
of-the-art morphological inflection models relate to
human language acquirers, to what extent they be-
have similarly or differently, and in what respects
they perform better or worse. As such, the task
was designed to be cognitively informative while
still approachable for the NLP morphology commu-
nity. This was achieved in two ways: First, nested
training sets of increasing size were extracted from
corpora of child-directed speech, following (Belth
et al., 2021), allow us to approximate learning tra-
jectories with batch learning models that are typi-
cal in the field today rather than incremental mod-
els which might better approximate the child lan-

1Data, evaluation scripts, and predictions are avail-
able at: https://github.com/sigmorphon/
2022InflectionST

guage acquisition setting. Second, supervision with
semantic features substitutes for semantic infor-
mation which children in real acquisition settings
would certainly glean from their linguistic and en-
vironmental experiences. While this simplified the
task considerably, it also permitted us to focus on
the act of generating correct forms in the absence
of other learning confounds.

1.1 Historical Background

The acquisition of morphological patterns has been
heavily investigated for decades from both exper-
imental and computational perspectives. The ac-
quisition of English past tense in particular was
the original locus of the so-called “Past Tense
Debate,” with implications not only for the na-
ture of cognitive morphological representations
(single-route or dual-route), but also for the na-
ture of cognitive representations and computations
more generally (symbolic or non-symbolic, dis-
tributed or not). The debate kicked off in earnest
following the publication of an early connection-
ist (psychologically-inspired feed-forward artifi-
cial neural network) model for past tense learning
(Rumelhart and McClelland, 1986). The model did
not explicitly handle regular and irregular patterns
differently (it was single-route), yet it performed
reasonably well given the computing power and
neural network know-how available at the time.

A response by Pinker and Prince (Pinker and
Prince, 1988), who instead advocated for a sym-
bolic model of past tense learning and representa-
tion in which regular and irregular forms were han-
dled separately (a dual-route model) was the first
in what turned into many years and dozens of pa-
pers worth of discussion. As the years passed, they
expanded to encompass morphological patterns in
other languages as well, particularly pluralization
of German nouns. See McClelland and Patterson
(2002) and Pinker and Ullman (2002) for surveys
of the debate.
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Modern deep neural systems are in many ways
the spiritual and technological successors to the
connectionists. Given the success of such mod-
els on a wide range of tasks in NLP, it is possible
that modern neural morphology models could over-
come many of the drawbacks of their predecessors.
A recent paper (Kirov and Cotterell, 2018) made
this argument to the computational linguistics com-
munity. Given the critical responses and responses
to the responses so far (Corkery et al., 2019; Mc-
Curdy et al., 2020; Belth et al., 2021; Beser, 2021;
Dankers et al., 2021), it is fair to say that the debate
has been reignited.

1.2 Contribution of the Shared Task

The SIGMORPHON inflection shared task
paradigm (Cotterell et al., 2016, 2017, 2018; Mc-
Carthy et al., 2019; Vylomova et al., 2020; Pi-
mentel et al., 2021) is well-suited for assessing
the behavior of morphological learning systems.
Developing a greater understanding of the ways in
which systems are or are not human-like can help
explain why their prediction accuracy is so good
and also direct us towards areas of improvement.
The Past Tense Debate and the developmental re-
search that came out of it provides a backdrop over
which we can evaluate the systems.

This is the second year that the SIGMORPHON
shared task on morphological inflection is running
a “human-like” generalization task. Last year’s
task2 investigated the extent to which computa-
tional systems matched adult acceptability ratings
on wug tests presented in English, German, Dutch
and Russian. Such a task is suited for testing sys-
tems’ ability to form human-like analogies between
phonologically related forms in a laboratory setting.
However, the task is not suitable for answering the
questions addressed this year.

Adults appear to approach wug tests differently
from children (Schütze, 2005), with many adults
treating it as a game that requires clever analogies
(Derwing and Baker, 1977). This difference is ob-
served in the original wug test study (Berko, 1958),
in which adults readily produced analogical past
forms glung and glang for gling on analogy with
verbs like sting-stung and sing-sung, while 83 of
86 young children either produced glinged or re-
fused to answer. It is not clear to what extent this
is a difference in child and adult linguistic repre-

22021 description and data available here: https://
github.com/sigmorphon/2021Task0

sentations or an artifact of experimental design. It
is also not entirely clear to what extent gradient
acceptability ratings are the result of the gradient
experimental prompts, since they may drive test
subjects to spread responses over a wider range
than they would otherwise (Parducci and Perrett,
1971).3 See Yang (2020) for additional discussion.

Since this task sought to compare computational
morphology learning systems to child learners, we
took a different approach. Teams were asked to
train inflection models as for previous SIGMOR-
PHON shared tasks but on data drawn from corpora
of child directed speech, the input that children re-
ceive during acquisition. Systems made predictions
on real words rather than nonce words, simulating
the experience of children who need to produce
never before heard forms for lemmas that they al-
ready know. These outputs were compared to what
is known about children’s learning trajectories and
errorful productions.

Three inflectional patterns, English past tense,
German noun plurals, and Arabic noun plurals,
were chosen because they have been heavily stud-
ied from a developmental perspective and have
been subject to computational cognitive modeling
research. The acquisition of English past tense and
German noun pluralization in particular have re-
ceived renewed interest in recent years, and while
less work has been conducted on this aspect of
Arabic, we believe that it will make for an elucidat-
ing challenge case going forward. The remainder
of this section briefly summarizes some relevant
findings for English, German, and Arabic.

1.3 English Past Tense

The general state of the English past tense sys-
tem is a familiar one. There is a clearly produc-
tive general default regular suffix -ed (subject to
phonologically-conditioned allomorphy) which ap-
plies to the vast majority of verbs and new coin-
ings, as well as several much less frequent patterns
usually described as irregular. Many of these ir-
regulars indicate past tense through a stem vowel
mutation (the so-called strong verbs paralleled in
other Germanic languages), for example, sing-sang,
sting-stung, bite-bit, and ride-rode. Others com-
bine a stem mutation with a coronal suffix (the
so-called semi-weak verbs, where regular -ed verbs

3Armstrong et al. (1983) presents a stark example of this,
finding that participants would gradiently rate integers for their
“evenness” given the opportunity, even though the even/odd
distinction is completely binary.
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are weak) including keep-kept, sleep-slept and tell-
told. There are also a few one-off suppletive forms,
most notably go-went.

There is a clear distinction to be made between
the single overwhelming majority default pattern,
and the rest. Nevertheless, the irregulars as a whole
tend to fall in the high end of the frequency range
and so are over-represented in the input. As a result,
children identify -ed as productive later than one
may expect given its high type frequency. They
acquire it around age three (Berko, 1958; Marcus
et al., 1992). It is hard to say exactly what verbal
vocabulary size this age corresponds to since there
is quite a lot of variation among individuals, but
Marcus et al. (1992, ch. 5) report that Sarah and
Adam from the Brown Corpus (Brown et al., 1973)
have produced 300-350 unique verbs by age three.

Children’s novel productions exhibit an asymme-
try between over-regularizations, which are over-
applications of the default pattern (e.g., *goed,
*feeled) and over-irregularizations, which apply
irregular patterns to regular verbs (e.g., fry-*frew
by analogy with fly-flew or peep-*pept by analogy
with keep-kept and sleep-slept).

The former error type is far more common than
the latter, both in English and in other languages.
Studies of past tense errors in English learners have
found over-irregularization rates of under 0.2% (Xu
and Pinker, 1995), but over-regularization rates
orders of magnitiude higher between 8 and 10%
(Maratsos, 2000; Yang, 2002; Maslen et al., 2004).
Similar findings have been observed in German
past participle production with under 1% over-
irregularization and about 10% over-regularization
(Clahsen and Rothweiler, 1993), and a similar ra-
tio in Spanish verbal production (Clahsen et al.,
1992; Mayol, 2007). See Marcus et al. (1992)
for more discussion. Nevertheless, for all their
strengths, over-irregularization has been a persis-
tent challenge for single-route models since the
early connectionist days. Early connectionist mod-
els were also prone to producing nonsense, for
example mail-membled (Xu and Pinker, 1995).

Despite its mundanity, the English past tense
system provides a valuable test case for models of
morphology acquisition. That said, it does have a
major drawback. Since there is only one apparently
productive global default pattern, and that pattern
applies to the overwhelming majority of types, a
naive model that performs simple frequency match-
ing is expected to perform quite well on English.

Corpus -e% -(e)n% -er% -∅% -s%
CELEX 27 48 4 17 4

UniMorph 34.4 37.3 2.9 19.2 4.0

Table 1: Type distribution of German noun plural types
in CELEX (Baayen et al., 1993) reported in Sonnen-
stuhl and Huth (2002), and in UniMorph as reported in
McCurdy et al. (2020). 2.1% of UniMorph nouns have
“other” plural forms.

While type frequency is certainly the most impor-
tant factor in the acquisition of productive gen-
eralizations (Aronoff, 1976; MacWhinney, 1978;
Bybee, 1985; Baayen, 1993; Elman, 1998; Pierre-
humbert, 2003; Yang, 2016), this obscures potential
differences between dramatically different learning
models. German noun pluralization was introduced
into the Past Tense Debate because it has a much
more even distribution of inflectional patterns.

1.4 German Noun Plurals

Unlike English past tense, the German noun plu-
ral system has several relatively frequent pluraliza-
tion patterns: -(e)n, -e, -er, -∅ and -s with distri-
butions summarized in Table 1. Pluralization may
be further indicated with Umlaut, or the fronting
of certain vowels. There are three Umlaut patterns
which are clearly indicated in German orthography:
(a→ä, o→ö, u→ü). Suffixing and Umlaut appear
to be largely orthogonal, so some recent compu-
tational modeling work has focused only on the
former (McCurdy et al., 2020; Belth et al., 2021).

It is clear that German noun plurals do not
have a high-frequency global default like English.
However, some plural forms appear to be defaults
for nouns that meet certain conditions. Feminine
nouns, for example, productively pluralize with -
(e)n, where the vowel is subject to phonologically
conditioned allomorphy (Wiese, 1996). Several
phonotactic properties are also shown to correlate
with pluralization type preferences (Zaretsky and
Lange, 2015).

While the -s plural is the least frequent of the lan-
guage’s pluralization types, it has attracted consid-
erable theoretical attention because it nevertheless
appears to be a case of a minority default pattern
(Clahsen, 1990; Marcus et al., 1995; Sonnenstuhl
and Huth, 2002). The -s plural is the plural of last
resort that speakers fall back on when the condi-
tions for other plurals are not met, however, unlike
English -ed, it is not particularly frequent. As a re-
sult, it serves as a means of differentiating learning
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models which rely naively on type frequency from
ones which leverage type frequency to learn more
underlyingly complex morphological systems.

Developmental studies show that children do
successfully learn this system around the same age
that English past tense is acquired. Children learn
-e -∅, and -(e)n by the time they know 100 words,
and while -er and -s are learned later, they are
acquired reliably around 500 words (Elsen, 2002).
Over-application of -(e)n is the most common error
type followed by over-application of -e, though
even -s and -er are overproduced (Elsen, 2002).

1.5 Arabic Noun Plurals

Finally, we introduce Arabic noun pluralization as
another challenge case. Arabic nouns may form
plurals in two ways: by suffixation (so-called sound
plurals) or by stem mutation (so-called broken plu-
rals). There are two sound plural suffixes, a femi-
nine -āt, and a masculine -ūn (-ı̄n, -ū, or -ı̄ depend-
ing on a nominal’s case and state). The relation-
ship between gender and sound plural ending is
reliable but not exceptionless. In particular, some
masculine nouns, generally non-human masculine
nouns, take the feminine sound plural, e.g., imtih. ān-
imtih. ān-āt ‘exam.’ Noun gender can be determined
with agreement – pronouns, adjectives, and verbs
all agree with nouns in gender, so masculine nouns
taking feminine plurals are a clear morphological
mismatch.

Broken plurals can be divided into many sub-
classes by which templatic pattern defines the out-
put of their stem mutations. In Modern Standard
Arabic (MSA), there are approximately 30 bro-
ken plural patterns (McCarthy and Prince, 1990),
though the exact count depends on the level of ab-
straction assumed for the templatic pattern. Some
classes of singular templates are known to take spe-
cific plural patterns, e.g., maktab (maCCaC) ‘desk,
office’→ makātib (maCāCiC). On the other hand,
different singular patterns can take the same plural
pattern, e.g., both kitāb (CiCāC) ‘book’ and sarı̄r
(CaCı̄C) ‘bed’ are pluralized as kutub and surur
(CuCuC), respectively. This results in a very com-
plex system. There are many theoretical accounts
which seek to explain and predict the mappings be-
twen singular and broken plural patterns. McCarthy
and Prince (1990), for example, group the broken
plural patterns according to prosodic shapes and
concluded that the iambic pattern is a productive
one. However, some of their findings have been

challenged (Gaskell and Marslen-Wilson, 2001;
Haddad, 2008).

The Arabic pluralization system is quite elabo-
rate, and it is not completely acquired by children
until primary school age, however, most proper-
ties of the system are acquired much earlier, in
line with the timelines observed for English and
German (Ravid and Farah, 1999). Using a wug
test paradigm, Ravid and Farah (1999) demonstrate
that children follow u-shaped learning trajectories
due to transient over-regularization in the direction
broken → sound, and over-regularization in the
direction MASC sound → FEM sound. The vast
majority of child production errors belong to one
of these two types, an asymmetry consistent with
strong tendency for over-regularization rather than
over-irregularization observed for other languages.

Dawdy-Hesterberg and Pierrehumbert (2014)
present a series of related exemplar learning mod-
els and apply them to Arabic data. Their systems
are generally successful at learning Arabic plural
patterns, but they show fewer MASC sound→ FEM

sound and far more sound→ broken errors than are
observed in children. Exemplar learners are a kind
of single-route learner, so this lack of asymmetry
in error types may be expected given what has been
observed for English.

2 Task Description

This task was organized very similarly to other
iterations of the inflection task from the partic-
ipants’ perspective in order to encourage cross-
submissions with this year’s large scale general-
ization inflection task (Kodner et al., 2022). Par-
ticipants were asked to design supervised learn-
ing systems which could predict an inflected form
given a lemma and a morphological feature set cor-
responding to an inflectional category or cell in a
morphological paradigm. They were provided with
several nested training sets as well as a develop-
ment set and test set for each language. The train
and dev sets consisted of (lemma, inflected,
feature set) triples, while the inflected forms
were held out from the test set.

Initially, only training and development sets
were available to participants. They were expected
to design, train, and tune their models on this data.
Shortly before the submission deadline, test sets
with held-out inflections were released. In contrast
with the large-scale subtask and previous iterations,
only three languages were investigated which could
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be evaluated in detail: American English, Standard
German, and Modern Standard Arabic. Several
nested training sets were released for each language
in increments of 100 items. Participants were asked
to return predictions from models trained on each
training size.

3 Data Preparation

Data sets for (American) English and (Standard)
German were extracted from the CHILDES col-
lection of child-directed speech (CDS) corpora
(MacWhinney, 2000). CHILDES contains several
types of corpora with various types of annotation.
English was sourced from the Brown (Brown et al.,
1973)4 and Brent (Brent and Siskind, 2001) corpora.
These contain free dialogue between caregivers and
their children alternating with lines of morpholog-
ical annotation. In (1), *MOT indicates that this
utterance was produced by the child’s mother and
%mor indicates that the following line contains
POS tags, lemmas, and morphological features.
However, “words” in morphological annotation
lines do not consistently line up one-to-one with to-
kens in dialogue lines, so it is not feasible to match
lemma-feature pairs to inflected forms. To accom-
plish this, features were converted into UniMorph
format, and (lemma, inflected, features)
triples were extracted from English UniMorph (Mc-
Carthy et al., 2020).

(1) Adam 021016.cha 571-572 (Brown, 1973)

*MOT: what are you writing ?
%mor: pro:int|what aux|be&PRES

pro:per|you part|write-PRESP ?

One advantage of CHILDES is that it presents
vocabulary that a typical child is likely exposed to
during the acquisition process, and since it contains
dialogue, it can also be used to make reasonable fre-
quency estimates of child-directed speech. In NLP
terms, it is a reasonable approximation of the train-
ing set over which children learn morphological
inflection. See Kodner (2022) for more informa-
tion. 2,054 nouns were sampled from CHILDES
weighted by their CHILDES frequencies, and their
plurals were extracted from UniMorph. 454 of
these items were sampled uniformly and reserved
as the development set. 600 of the remainder were
uniformly sampled from the remainder and set

4This is a classic CDS corpus built by Roger Brown. It
is not to be confused with the classic NLP Brown Corpus
developed at Brown University (Kučera and Francis, 1967).

aside as the test set. The remaining 1,000 was used
as the maximum training set. Smaller nested sub-
sets in increments of 100 were sampled from these,
weighted by noun lemma frequencies in CHILDES
such that each larger subset was a superset of the
smaller.

Training and test were sampled uniformly with
respect to one another to guarantee that the test set
would contain interesting test items. Another rea-
sonable approach would have been to sample the
1,000 training items by frequency from the entire
data set and then sample the test items from the
remainder in order to yield a training set containing
more frequent items and a test set containing less
frequent items. Since item token frequency cor-
relates with age of acquisition (Goodman et al.,
2008), this would correspond to a realistic sce-
nario where systems predict later-acquired forms
from their knowledge of earlier acquired forms.
However, English past tense irregulars (i.e., non-ed
pasts), are heavily skewed towards the high end of a
Zipfian frequency distribution, so such an approach
would not yield many interesting test items.

The German data set was created in much the
same way as the English with CDS frequency in-
formation sourced from the CHILDES Leo cor-
pus (Behrens, 2006) and nominative plural forms
matched from German UniMorph. Gender is
known to be a predictor for plural forms (Wiese,
1996), so the German UniMorph features were aug-
mented with MASC, FEM, or NEUT gender tags con-
verted from the CHILDES annotation lines. These
were split into 600 training items, 500 development
items, and 600 test items with the same frequency-
weighted algorithm that was applied to English.
The intersection of nouns extracted from Leo and
nouns present in UniMorph was relatively small,
so the largest training set that could be extracted
only contains 600 items.

Ideally, the Arabic data set would also be ex-
tracted from a CDS corpus in order to get a reason-
able estimation of a child’s vocabulary. Colloquial
Arabic varieties are unfortunately considered to be
low-resourced in terms of available linguistic re-
sources, so even though there are several dialectal
CDS corpora (Kern et al., 2009; Alqattan, 2015;
Salama and Alansary, 2017), they do not provide
morphological annotations useful to the task in
hand. Thus, we selected Modern Standard Arabic
(MSA) for the shared task. Even though it has vir-
tually no native speakers and no CDS corpora, it is
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well-resourced and exhibits the same kinds of mor-
phological patterns present across Arabic varieties.
A reasonable workaround for the lack of CDS is
to estimate a child size corpus from a given non-
CDS corpus through lemma frequencies. This will
most likely contain high frequency lexemes that
typically do not appear in CDS corpora but will
likely cover a similar distribution of morphological
phenomena (Kodner, 2019).

For this shared task, the Arabic data set was
sourced from the Penn Arabic Treebank (PATB)
(Maamouri et al., 2004), which is a morphologi-
cally and syntactically annotated news corpus of
MSA. The corpus is written using standard Arabic
orthography and it is fully diacritized. Diacritiza-
tion include short vowels, specific case and state
markings, and gemination. Arabic text without
diacritization does not mark these critical phono-
logical segments and thus would not be useful for
the task at hand. Despite including fine-grained
morphological annotations, PATB lacks the annota-
tions of functional (grammatical) gender and num-
ber in addition to rationality (animacy). Therefore,
a version that has been enriched with additional
features through the CALIMAMSA morphological
analyzer (Taji et al., 2018) was used. Plural inflec-
tions that reflect state and case were normalized
to a single inflection since only pluralization was
under investigation for this task.

The 2,000 most frequent plural nouns were ex-
tracted according to their lemma frequencies from
the TRAIN split of PATB (Diab et al., 2013). These
were then split into a training set of 1,000 items, a
development set of 343 items, and a test set of 600
items using the same algorithm that split English
and German. An animacy feature HUM or NON-
HUM was added was added to each noun, since
it is known to impact nominal inflection patterns
(McCarthy and Prince, 1990).

4 Systems

The same neural and non-neural baselines were
provided for this task and the 2022 typologically
diverse inflection shared task. The neural system
Neural, Wu et al. (2021), is a character-level
transformer. It is identical to the system CHR-TRM
which was used in the 2021 task with identical hy-
perparameters. The non-neural system, NonNeur,
is identical to the non-neural baseline made avail-

able in 2021 and 2020.5 Three systems were sub-
mitted, the first and last of which were also submit-
ted to the large scale generalization task:
CLUZH (Silvan Wehrli and Makarov, 2022): Uni-
versität Zürich’s system is identical to the one sub-
mitted to this year’s large scale generalization sub-
task (Kodner et al., 2022). Their submission is
a character-level transducer which operates over
edit actions: insertion, deletion, substitution, and
copy. They implement true mini-batch training for
a substantial speed up, rendering the system more
practical on larger training sets.
HeiMorph (Ramarao et al., 2022): The team
from Heinrich-Heine-Universität Düsseldorf devel-
oped a system with a self-attention Transformer
architecture with bigram hallucination. Submitted
models were trained on the enriched data setsthat
include either 1,000 or 10,000 bigram-aware hallu-
cinated word pairs, generated separately for each
training set size. The system was implemented
with Fairseq, a Pytorch-based tool.
OSU (Elsner and Court, 2022): OSU’s system is
identical to the one submitted to this year’s large
scale generalization subtask. This inflection sys-
tem is a transformer whose input is augmented
with an analogical exemplar showing how to in-
flect a different word into the target cell. In ad-
dition, alignment-based heuristic features indicate
how well the exemplar is likely to match the output.

5 Evaluation

Whole-form accuracy was employed as the pri-
mary quantitative evaluation, though several fur-
ther analyses were carried out by partitioning data
over grammatical gender and other factors. Perfor-
mance was good overall but showed some points
of divergence from human behavior. This section
provides an analysis for each of the shared task’s
three languages.

5.1 English Past Tense

As expected given its majority default pattern, per-
formance across all systems was higher on English
than the other languages. Table 2 summarizes the
results. CLUZH in particular achieved most of its
performance already on 100 training items, while
HeiMorph and the neural baseline show the most
substantial gains as the training size increases.

5Available here: https://github.com/
sigmorphon/2022InflectionST/tree/main/
baselines/nonneural
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#Train CLUZH HeiM OSU Neural NonN

Avg. 85.67 65.65 81.48 70.12 80.60
100 80.33 50.50 67.67 21.67 68.17
200 82.33 68.17 75.00 46.83 75.67
300 83.17 64.83 78.50 62.83 77.50
400 83.50 46.17 81.67 72.83 80.00
500 85.67 69.17 81.67 78.17 81.17
600 87.83 69.17 83.50 82.33 83.17
700 87.00 69.33 85.00 84.00 84.00
800 87.83 70.33 85.17 83.17 84.33
900 90.33 71.50 88.00 84.50 85.50
1000 88.67 77.33 88.67 84.83 86.50
Ortho 91.17 82.0 90.67

Table 2: English: Overall percent exact match training
size for submitted systems and baselines. Ortho are
accuracy at 1000 when stem-final spelling errors are not
penalized.

Since English orthography is notoriously com-
plex, evaluating this task on written English
presents an unnecessary additional burden on the
systems. And though few errors could be clearly
attributed to orthography in practice, some were
found. In particular, some systems occasionally
failed to follow orthographic rules regarding the
doubling of word-final consonants. For example,
systems produced *enthraled instead of expected
enthralled and *payed for paid. These are spelling
mistakes, though the latter is actually attested in
Early Modern English texts. The final line in Ta-
ble 2, Ortho, evaluates the submitted systems at
1,000 training when these particular errors are not
penalized.

The performance of each system rises 2-5 points
when these errors are ignored. There is, however,
one cause for concern. 557 of 600 test items form
regular -ed pasts, so a baseline system which al-
ways predicts -ed should achieve 92.83% accuracy
in the Ortho evaluation. No system outperformed
this baseline.

Table 3 investigates the role that over-
regularization played in driving errors at 100, 500,
and 1,000 training. Numbers for other training
sizes are available in Table 15 in the Appendix.
The Match column presents the percent of gold
irregulars which were correctly predicted. These
values are appropriately low given that these pat-
terns are generally unpredictable in English. The
Other column indicates the percent of gold irreg-
ulars which were subject to other plausible irreg-
ular patterns (e.g., OSU produced bring-?brang,
which is incorrect according to the gold standard
brought6). The sum of these two columns is the

6This particular error is interesting. Brang does exist di-

CLUZH Match Other Reg -ed ?
100 4.65 4.65 88.37 88.37 2.33
500 9.3 6.98 83.72 83.72 0.0

1000 9.3 6.98 83.72 83.72 0.0

HeiM Match Other Reg -ed ?
100 9.3 18.6 58.14 69.77 2.33
500 6.98 37.21 46.51 51.16 4.65

1000 2.33 9.3 76.74 81.4 6.98

OSU Match Other Reg -ed ?
100 9.3 27.91 53.49 55.81 6.98
500 11.63 9.3 67.44 74.42 4.65

1000 2.33 4.65 88.37 90.7 2.33

Table 3: Error type analysis for English irregular verbs.
Match = % correct. Other = % other plausible strong
and weak irregulars. Reg = % “correct” regularized. -ed
= % forms ending in -ed. ? = other nonsense output

proportion of gold irregulars that were predicted to
be irregular. HeiMorph and OSU produced sub-
stantially more irregular forms than CLUZH.

Columns Reg and -ed indicate the rate of over-
regularization. Reg is the proportion of gold ir-
regular items that were inflected as “correct” regu-
lar past forms (e.g., buy-*buyed, bleed-*bleeded).
This was the majority for each system at each
training size, though CLUZH performed more over-
regularization. The -ed adds predictions that in-
cluded -ed but were still incorrect (e.g., forgive-
*forgaved for expected forgave). ? counts outputs
that qualify as nonsense in some way (e.g., seek-
*sougk for expected sought.)

Overall, the systems all clearly show a tendency
towards over-regularization. The systems clearly
learn an -ed rule and apply it readily. In fact, all
the systems, especially CLUZH, are too good from
a developmental perspective. They begin applying
-ed the majority of the time after only 100 training
instances, well ahead of children.

Table 4 and the full version Table 16 in the Ap-
pendix quantify over-irregularization. Match indi-
cates percent of gold regular -ed verbs inflected
correctly. SorW is the proportion gold regular
verbs inflected according to some strong or semi-
weak irregular pattern, for example OSU ply-*plew,
CLUZH spike-*spake, and HeiMorph top-*topt.
SC+ed is the proportion of gold regular verbs that
received an -ed suffix but were also subjected to
some stem vowel change (e.g., OSU fine-*founed),
and Irreg is the sum total of irregularized gold reg-
ular verbs. ? again indicates nonsense outputs

alectally in American English.
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CLUZH Match SorW SC+ed Irreg ?
100 99.1 0.9 0.0 0.9 0.0
500 97.49 2.51 0.0 2.51 0.0
1000 97.49 2.51 0.0 2.51 0.0

HeiM Match SorW SC+ed Irreg ?
100 63.91 12.93 0.72 14.9 21.18
500 80.43 15.44 0.72 16.88 2.69
1000 88.15 5.39 0.18 6.46 5.39

OSU Match SorW SC+ed Irreg ?
100 79.17 8.98 3.77 15.44 5.39
500 90.66 3.05 0.9 4.85 4.49
1000 97.49 1.26 0.36 1.62 0.9

Table 4: Error type analysis for English regular verbs.
Match = % correct or orthographic. SorW = % well-
formed strong or semi-weak irregular. SC+ed = % -ed is
present but with a vowel change. Irreg = % all plausibly
irregular patterns. ? = nonsense output

-ed →a →u Other ?
Gold 2 2 3 1 –
CLUZH 4 1 3 0 0
HeiM 8 0 0 0 0
OSU 8 0 0 0 0

Table 5: Inflection type for English monosyllabic -ing
verbs at 1,000 training. -ed = regular. →a = sing-sang-
type. →u = sting-stung-type. Other = other inflection
(bring-brought in the gold standard). ? = nonsense
inflection.

including ski-*soa, crush-*crushi, and test-*tsot.7

CLUZH produced by far the least over-
irregularized forms at smaller training sizes, while
the other systems produced substantially more. A
qualitative error analysis revealed some interesting
patterns. Every system extended the semi-weak
shortening pattern of keep-kept to the lemmas such
as cheep or beep, producing *bept or *chept. OSU
and the neural baseline extended the think-thought
pattern to monosyllabic verbs beginning with con-
sonant-h, producing pairs such as whiz-*whought
and thin-*thought. These are clear examples of
unnatural over-irregularization behavior.

Finally, the monosyllabic -ing verbs were inves-
tigated as an illustrative study. Since it is not possi-
ble to predict the correct past forms of the -ing test
items in a principled way, systems were expected
to fail by raw accuracy. Thus, this makes for an
interesting case for a more detailed analysis. There

7The neural baseline produced several instances of
metathesis, especially at smaller training sizes. Examples
include flitter-*filtered, bark-*braked, sand-*snad, dodge-
*dogde, clink-*clikned, own-*won, sell-*sleled, spring-
*sprigned, and erase-*reased at 100 vs. erase-*earsed at
200.

were six such items in the training data and eight in
the test data. Lists of training and test items is pro-
vided in (2)-(3)8 along with the smallest training
sample in which the training items appeared.

(2) Training

300 swing-swung
300 sing-sang
700 thing-thinged
800 ding-dinged
800 sling-slung
900 cling-clung

(3) Test

sting-stung bring-brought
fling-flung king-kinged
ring-rang spring-sprang
ping-pinged string-strung

Even though the number of irregular -ing verbs
increases with training size, over-regularization to
-ed is the most common output at 1,000 training.
HeiMorph and OSU “correctly” over-regularize
all eight test items at 1,000 training. CLUZH over-
regularizes half the forms and prefers -ung forms
for three of the others (4). This ratio makes sense
if the system is matching the training data, which
has more -ung pasts than -ang pasts.

(4) CLUZH -ing predictions at 1000 training

sting-stung bring-bringed
fling-flinged king-kinged
ring-rang spring-sprung
ping-pinged string-strung

There was much more variety at smaller train-
ing sizes, including an aamusing incorrect produc-
tion generated by the OSU system: it produced
the present-past pair ping-*pong. Overall, systems
showed a preference for over-regularization rela-
tive to over-irregularization, especially apparent
for CLUZH. Nevertheless, they all produced orders
of magnitude more over-irregularization than ob-
served during child development as described in
the Introduction. In particular, systems picked up
on the semi-weak shortening pattern, over-applied
-ought, and applied stem changes of various sorts
even when simultaneously applying -ed. All sys-
tems showed super-human performance in their
acquisition of -ed, productively applying it after
only 100 training examples, when a human child
might produce -ed only after learning a few hun-
dred verbs (Brown, 1973).
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#Train CLUZH HeiM OSU Neural NonN

Avg. 76.72 67.03 72.11 58.33 74.81
100 72.67 59.00 66.50 18.67 63.67
200 74.67 63.50 69.17 51.00 71.50
300 76.17 66.33 72.00 62.00 76.00
400 78.17 69.00 74.00 68.83 78.00
500 78.50 71.00 76.00 74.17 79.50
600 80.17 73.33 75.00 75.33 80.17
Suff. 89.00 85.83 85.67
Uml. 90.67 88.83 90.17

Table 6: German: Overall percent exact match training
size for submitted systems and baselines. Suff. are
accuracy at 600 when only suffix type is evaluated. Uml.
are accuracy at 600 when only Umlaut is evaluated.

5.2 German Noun Pluralization
Performance on German, summarized in Table 6,
was generally good but lower than for English at
equivalent training sizes. This may be because
German noun pluralization does not have an over-
whelming majority pattern. CLUZH achieved the
highest accuracies of any of the submitted systems,
though it performed roughly on par with the non-
neural baseline at training sizes 300 and above. All
systems except for the neural baseline achieved
most of their performance after only 100 training
items – CLUZH in particular reached 90% of its
final performance.

Two additional accuracy measures are reported
in Table 6 for the submitted systems. Suff refers
to test accuracy in the 600 training condition when
only the suffix type is evaluated rather than ex-
act match. This measure is more lenient because
Umlaut and any other alternations do not need to
be generated correctly. As expected, each system
achieves a higher Suff score than exact match score
at 600. HeiMorph shows the largest increase of
12.5 points. Uml. refers to test accuracy in the
600 training condition when only the presence of
absence of Umlaut is evaluated. 522, or 87% of test
items do not form plurals with additional Umlaut,
so a baseline system that ignored the process alto-
gether would achieve 87%. Each system surpassed
this baseline by a small amount.

Table 7 presents Umlaut confusion matrices for
each submitted system. Each system shows a sim-
ilar pattern of under-application of Umlaut. Only
HeiMorph applies Umlaut in more than half of
the cases where it should apply, but only barely.
Each system also occasionally over-applies Um-
laut, with HeiMorph exhibiting the highest over-

8Some of these have alternative past forms in actual speech.
Only a single form was chosen for each in the data set.

CLUZH Gold NC Gold Umlaut
Pred NC 506 (96.93%) 40 (51.28%)

Pred Umlaut 16 (3.07%) 38 (48.72%)

HeiMorph Gold NC Gold Umlaut
Pred NC 492 (94.25%) 37 (47.44%)

Pred Umlaut 30 (5.75%) 41 (52.56%)

OSU Gold NC Gold Umlaut
Pred NC 503 (96.36%) 40 (51.28%)

Pred Umlaut 19 (3.64%) 38 (48.72%)

Table 7: German Umlaut/No Change confusion matrices
at 600 training

Set -e% -(e)n% -er% -∅% -s% #
Train200 29.5 46.5 2.0 20.0 2.0 200
Train600 27.8 38.0 3.0 26.7 4.6 600

TrainF 2.8 96.2 0.0 0.5 0.5 212
TrainM 45.4 7.3 1.5 41.2 4.5 262
TrainN 33.3 4.0 11.1 40.5 11.1 126

Test 30.5 36.7 2.8 24.8 5.2 600
TestF 3.5 95.0 0.0 0.0 1.5 201
TestM 48.9 9.2 0.3 35.9 5.6 284
TestN 32.2 2.6 13.9 40.9 10.4 115

Table 8: Distribution of German plural suffixes in the
200 training set, and by gender in the 600 training and
test sets.

application rate at 5.75%.
Table 8 presents the overall and by-gender dis-

tribution of each pluralization suffix in the train-
ing and test sets. Counts for -en and -n are col-
lapsed, since they are phonologically predictable
allomorphs. These can be compared to the CELEX
and UniMorph distributions presented in Table 1.

All systems are more accurate when the gold
pluralization suffix is one of the three more com-
mon (-e, -(e)n, -∅) than one of the two less common
(-er, -s). This is summarized in the confusion ma-
trices provided in Tables 9-10 for training sizes
200 and 600. OSU and HeiMorph produces some
forms containing miscellaneous stem-internal er-
rors, marked as ? in the confusion matrices, such as
a j > t mutation in *Kabeltaue as the plural of Ka-
beljau, but these were much rarer, and much more
limited, than what was observed in their English
predicitions. CLUZH did not produce any. -er and
-s plurals were under-produced by each system. In
both cases, each system usually applied -e instead.
For example, CLUZH produced *Grase instead of
expected Gräser as the plural of Gras.

Comparing this to findings about the time course
of children’s plural pattern acquisition (Elsen,
2002), each system appears to acquire productive
-e and -(e)n as early as expected, as evidenced by
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CLUZH G -e G -(e)n G -er G -∅ G -s Sum
P -e 166 17 17 2 27 229
P -(e)n 7 198 0 2 4 211
P -er 0 0 0 0 0 0
P -∅ 10 5 0 145 0 160
P -s 0 0 0 0 0 0
P ? 0 0 0 0 0 0
Sum 183 220 17 149 31 600

HeiM G -e G -(e)n G -er G -∅ G -s Sum
P -e 110 8 7 6 15 146
P -(e)n 22 192 0 5 6 225
P -er 3 0 1 1 2 7
P -∅ 42 14 7 133 7 203
P -s 3 4 2 1 1 11
P ? 3 2 0 3 0 8
Sum 183 220 17 149 31 600

OSU G -e G -(e)n G -er G -∅ G -s Sum
P -e 159 16 14 5 28 222
P -(e)n 10 183 0 0 2 195
P -er 0 2 3 0 0 5
P -∅ 10 10 0 139 0 159
P -s 1 0 0 0 0 1
P ? 3 9 0 5 1 18
Sum 183 220 17 149 31 600

Table 9: German inflection confusion matrices at 200
training for FEM nouns only, disregarding Umlaut. G =
Gold, P = Prediction.

over-application after 200 training. This is con-
trasted with -er, -s, which they rarely produce after
200 training but produce (still insufficiently fre-
quently) at 600 training. These results are broadly
consistent with what is observed developmentally,
with the caveat that -er, -s are proportionately less
frequent in the small training sets than the large
ones (Table 8).

Since analyzing suffix confusions as a whole ob-
scures some patterns, Tables 18-20 are provided
in the Appendix which present confusion matrices
partitioned by gender. Every system effectively
learns that -(e)n is the appropriate ending for fem-
inine nouns, and as observed in Table 18, most
errors among feminines can be attributed to over-
application of this ending.

Overall, systems show some consistency with
the developmental patterns evaluated here. What
the systems do learn, they learn on appropriate
amounts of training data. However, they continue
to greatly under-produce the infrequent but appar-
ently minority default -s pattern. Further work
needs to be done, along the lines of recent pa-
pers published on this topic (McCurdy et al., 2020;
Belth et al., 2021; Dankers et al., 2021) to deter-
mine whether or not the submitted systems are
behaving in a human-like manner.

CLUZH G -e G -(e)n G -er G -∅ G -s Sum
P -e 168 16 13 0 18 215
P -(e)n 6 198 0 1 2 207
P -er 0 0 3 0 0 3
P -∅ 8 5 0 148 0 161
P -s 1 1 1 0 11 14
P ? 0 0 0 0 0 0
Sum 183 220 17 149 31 600

HeiM G -e G -(e)n G -er G -∅ G -s Sum
P -e 154 13 12 4 16 199
P -(e)n 14 194 0 0 4 212
P -er 4 0 4 1 4 13
P -∅ 9 10 0 142 1 162
P -s 1 1 1 0 3 6
P ? 1 2 0 2 3 8
Sum 183 220 17 149 31 600

OSU G -e G -(e)n G -er G -∅ G -s Sum
P -e 155 19 13 1 18 206
P -(e)n 7 184 0 0 2 193
P -er 2 0 3 1 0 6
P -∅ 11 10 1 142 1 165
P -s 2 1 0 1 8 12
P ? 6 6 0 4 2 18
Sum 183 220 17 149 31 600

Table 10: German inflection confusion matrices for each
submitted system at 600 training disregarding Umlaut.
G = Gold, P = Prediction.

5.3 Arabic Noun Pluralization

Arabic proved to be the most challenging of the
three languages: summarized in Table 11, no sys-
tem achieved more than 67% accuracy on any train-
ing size. This result is to be expected, since Arabic
noun pluralization is more complex than the other
phenomena evaluated. As for English, some errors
were determined to be very minor and primarily
orthographic. Not penalizing these errors yields
the Minor line in the table, for which each sys-
tem shows a 4-5-point increase. The line SFSMB
additionally does not penalize broken-to-broken er-
rors as long as the applied broken pattern is itself
valid. This increases performance by another 6-9
points, indicating that predicting the correct broken
pattern for an item was challenging compared to
determining whether to apply a broken pattern at
all. Since there are so many broken patterns, this
is not surprising. Nevertheless, accuracies in this
most permissive evaluation are still lower than for
German or English.

Noun gender and rationality are known to corre-
late with plural formation in Arabic, so Table 12
presents the distribution of items by gender and
rationality in the training and test sets. Masculine
sound plurals are the least frequent, and masculine
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#Train CLUZH HeiM OSU Neural NonN

Avg. 59.63 55.37 57.53 52.70 33.70
100 45.67 41.83 34.00 14.83 28.33
200 54.83 45.67 49.17 41.67 28.33
300 54.17 48.67 53.33 51.00 29.00
400 58.33 49.83 54.17 52.83 31.67
500 62.00 59.67 61.00 57.17 34.83
600 63.17 62.83 64.00 61.50 35.50
700 64.67 60.33 63.83 62.50 36.33
800 63.33 62.17 63.83 61.33 37.33
900 64.33 63.33 66.67 60.83 37.33

1000 65.83 59.33 65.33 63.33 38.33
Minor 69.67 63.67 68.83

SFSMB 75.50 71.00 76.00

Table 11: Arabic: Overall percent exact match training
size for submitted systems and baselines. Minor are
accuracy at 1000 training when errors deemed to be mi-
nor or orthographic are ignored. SFSMB are accuracy at
1000 training when confusion between broken patterns
is not penalized.

Set SF SM B #
Train 424 140 434 998
Train F 222 0 85 307
Train M 202 140 349 691
Train HUM 24 129 84 237
Train NHUM 400 11 350 761
Test 257 62 281 600
Test F 156 0 73 229
Test M 101 62 208 371
Test HUM 15 50 43 108
Test NHUM 242 12 238 492

Table 12: Distribution of Arabic plural types suffixes by
gender and rationality in the 1000-training and test sets.
Two irregular forms in the training set, ðāt ‘self’ and
h. abb ‘seeds,’ are excluded from this table.

nouns (as determined through agreement) are more
diverse than feminines in their plural forms. About
two thirds of feminine nouns take the feminine
sound plural and all of the remainder take a broken
plural. A plurality of rational nouns take the mascu-
line sound plural, while non-rational nouns, which
account for nearly five sixths of the data, are split
about evenly between feminine sound and broken
plurals with very few masculine sound plurals.

Table 13 presents confusion matrices for each
plural type for each system. Breakdowns by gender
and rationality can be found in Tables 22-25 in the
Appendix. Each system over-produced feminine
sound plurals at the expense of masculine sound
and broken, but they varied in their production of
masculine sound and broken plurals. This extended
across gender and rationality.

Prior work evaluated children and a compu-
tational system according to their distributions
of sound-to-sound, sound-to-broken, broken-to-

CLUZH Gold SF Gold SM Gold B Sum
Pred SF 213 5 52 270
Pred SM 2 51 16 69
Pred B 38 4 206 248
Pred ? 4 2 7 13
Sum 257 62 281 600

HeiM Gold SF Gold SM Gold B Sum
Pred SF 227 7 72 306
Pred SM 3 43 15 61
Pred B 18 5 177 200
Pred ? 9 7 17 33
Sum 257 62 281 600

OSU Gold SF Gold SM Gold B Sum
Pred SF 218 8 49 275
Pred SM 5 50 15 70
Pred B 29 2 202 233
Pred ? 5 2 15 22
Sum 257 62 281 600

Table 13: Arabic inflection confusion matrices for each
submitted system at 1000 training.

sound, and broken-to-broken errors (Ravid and
Farah, 1999; Dawdy-Hesterberg and Pierrehum-
bert, 2014). Table 14 provides such a breakdown
for each system at 1,000 training, and Table 21
in the Appendix provides further breakdowns by
gender and rationality. Each system’s error types
follow the same frequency order: broken-to-sound
is the most frequent followed by broken-to-broken,
sound-to-broken, and sound-to-sound errors.

S→S S→B B→S B→B
CLUZH 7 42 68 52
HeiM 10 23 87 65
OSU 13 31 64 57

Table 14: Arabic error types at 1000 training.

This is quite unlike children, who overwhelm-
ingly produce broken-to-sound and sound-to-sound
errors (in both cases, mostly to feminine sound).
It is also different from the (Dawdy-Hesterberg
and Pierrehumbert, 2014) exemplar models in that
broken-to-broken were much more common. Nev-
ertheless, those exemplar models and the neural
models submitted here both greatly over-produce
sound-to-broken errors. The lack of to-broken er-
rors among children, similar to the lack of over-
irregularization in English, suggests that these are
memorized patterns rather than ones that are pro-
ductively applied. Thus, to-broken errors can be
seen as a kind of over-irregularization.
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6 Discussion

This year’s shared task investigated the perfor-
mance of neural systems on an inflection task de-
signed to mimic language acquisition. Training
data was mostly sourced from the CHILDES col-
lection of child-directed speech corpora and ex-
tracted by frequency to represent early linguistic
input, and systems produced past forms and plu-
rals for real words, simulating children producing
novel (to them) forms of lemmas that they know
from daily life.

This was a challenging task characterized by
small training data and complex patterns. Never-
theless, systems performed well in terms of raw ac-
curacy. American English past tense forms proved
the easiest, followed by Standard German noun
plurals, then Modern Standard Arabic noun plu-
rals. In some ways, the submitted systems actually
outperformed children – they all learned the pro-
ducive -ed pattern for English past tense after only
100 training items, far earlier than what is reported
for children. Systems also achieved most of their
performance on very small data. Superhuman per-
formance on very small data is a valuable property
for real-world NLP applications.

Compared to early connectionist systems, mod-
ern neural morphology learners produce far fewer
nonsense forms of the mail-membled type, though
this still remains a problem, even in the largest train-
ing conditions evaluated here. This is consistent
with the findings of Gorman et al. (2019), which
found that what they called “silly” errors were still
present in the productions of the 2017 task, but they
were majorly reduced compared to early work.

Systems “successfully” over-regularized the En-
glish -ed past, the most frequent German noun plu-
ral types, and the Arabic feminine sound plural.
This is is a human-like tendency, however it cannot
be said whether this indicates deep understanding
of the paradigms or a simple case of frequency
matching. Systems under-applied rarer German
noun plural types even at the largest training size,
which may imply the latter, but more work would
need to be done to confirm this.

The most significant weakness of all three sys-
tems uncovered by this analysis is persistent inhu-
man over-irregularization. Though rates of over-
irregularization varied significantly on English, all
systems produced far more instances of it than child
learners, and the problem was starker for Arabic.
All three systems dramatically overproduced sound-

to-broken and broken-to-broken errors which are
rare in child productions. Broken plural patterns
are apparently no more productive than English
strong verb mutations, so their over-application has
to be seen as over-irregularization.

Though Gorman et al. (2019) did not categorize
errors in these cognitively-minded terms, they did
find evidence for over-irregularization in their anal-
ysis. They noted, for example, that one system over-
applied Spanish diphthongization, a pattern that
applies to many verbs. The pattern is frequent but
unpredictable – many verbs that could be subject to
diphthongization are not. The pattern is apparently
lexicalized and unproductive, and children under-
apply it if anything (Mayol, 2007), thus the over-
application is an instance of over-irregularization.

All of the systems evaluated this year happen
to be neural single-route models that do not make
an explicit distinction between regular and irreg-
ular items. No dual-route models were submit-
ted for comparison. While all systems performed
well, they showed the clear hallmarks of such mod-
els, in particular a tendency to over-produce over-
irregularization. All of the technical improvements
over the decades have greatly improved overall pre-
diction accuracy, but single-route models are still
single-route models.

What do these results tell us about human cogni-
tion? Even if the systems had shown very human-
like performance, we could not therefore conclude
that they are good models of cognition. As sum-
marized recently in Guest and Martin (2021), that
line of reasoning is backward. Prediction is not ex-
planation. We would need to first justify the asser-
tion that these are theoretically plausible cognitive
models. Only then, if these systems were effective
representations of cognition, then we should expect
them behave in a human-like manner.

What studies like this do provide is insight
into state-of-the-art morphological learning models
with ever-improving prediction capabilities. Inas-
much as humans are the gold-standard in language
learning and language use, one possible reason for
current progress is that models are making predic-
tions for more human-like reasons. The results here
show that that intuition does not necessarily hold.
The systems evaluated in this shared task were on
the whole successful in their predictions but did
not behave in a especially human-like manner.
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hodja, Witold Kieraś, Andrew Krizhanovsky, Na-
talia Krizhanovsky, Igor Marchenko, Magdalena
Markowska, Polina Mashkovtseva, Maria Nepomni-
ashchaya, Daria Rodionova, Karina Sheifer, Alexan-
dra Serova, Anastasia Yemelina, Jeremiah Young,
and Ekaterina Vylomova. 2022. SIGMORPHON-
UniMorph 2022 Shared Task 0: Generalization and
Typologically Diverse Morphological Inflection. In
Proceedings of the SIGMORPHON 2022 Shared
Task: Morphological Inflection, Seattle. North Amer-
ican Chapter of the Association for Computational
Linguistics.
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A Additional Analysis

The tables in this appendix present additional anal-
yses referenced in the paper.

CLUZH Match SorW SC+ed Irreg ?
100 99.1 0.9 0.0 0.9 0.0
200 99.28 0.72 0.0 0.72 0.0
300 99.82 0.18 0.0 0.18 0.0
400 99.46 0.54 0.0 0.54 0.0
500 97.49 2.51 0.0 2.51 0.0
600 96.41 3.59 0.0 3.59 0.0
700 96.77 3.05 0.0 3.23 0.0
800 97.67 2.33 0.0 2.33 0.0
900 99.28 0.72 0.0 0.72 0.0

1000 97.49 2.51 0.0 2.51 0.0

HeiM Match SorW SC+ed Irreg ?
100 63.91 12.93 0.72 14.9 21.18
200 80.97 9.69 0.18 14.18 4.85
300 79.17 10.77 0.54 14.72 6.1
400 63.2 3.77 0.36 5.75 31.06
500 80.43 15.44 0.72 16.88 2.69
600 82.05 13.46 0.9 15.26 2.69
700 81.87 13.82 0.36 14.54 3.59
800 81.87 10.77 0.36 11.13 7.0
900 80.79 10.77 0.0 11.31 7.9

1000 88.15 5.39 0.18 6.46 5.39

OSU Match SorW SC+ed Irreg ?
100 79.17 8.98 3.77 15.44 5.39
200 87.97 4.13 1.8 7.18 4.85
300 91.74 3.41 0.9 5.21 3.05
400 92.82 2.33 0.18 3.23 3.95
500 90.66 3.05 0.9 4.85 4.49
600 92.82 3.77 0.36 4.31 2.87
700 93.36 3.05 0.36 3.77 2.87
800 94.61 3.59 0.0 3.59 1.8
900 97.49 1.8 0.0 1.8 0.72

1000 97.49 1.26 0.36 1.62 0.9

Table 15: Error type analysis for English regular verbs.
Match = % correct or orthographic. SorW = % well-
formed strong or weak irregular. SC+ed = % -ed is
present but with a vowel change. Irreg = % all plausibly
irregular patterns. ? = nonsense output
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CLUZH Match Other Reg -ed ?
100 4.65 4.65 88.37 88.37 2.33
200 2.33 4.65 93.02 93.02 0.0
300 2.33 4.65 93.02 93.02 0.0
400 2.33 2.33 95.35 95.35 0.0
500 9.3 6.98 83.72 83.72 0.0
600 13.95 4.65 81.4 81.4 0.0
700 6.98 4.65 83.72 86.05 2.33
800 9.3 4.65 86.05 86.05 0.0
900 4.65 2.33 93.02 93.02 0.0

1000 9.3 6.98 83.72 83.72 0.0

HeiM Match Other Reg -ed ?
100 9.3 18.6 58.14 69.77 2.33
200 11.63 9.3 69.77 74.42 4.65
300 13.95 18.6 55.81 62.79 4.65
400 9.3 9.3 60.47 81.4 0.0
500 6.98 37.21 46.51 51.16 4.65
600 11.63 39.53 32.56 41.86 6.98
700 9.3 30.23 51.16 58.14 2.33
800 4.65 20.93 60.47 72.09 2.33
900 6.98 16.28 60.47 74.42 2.33

1000 2.33 9.3 76.74 81.4 6.98

OSU Match Other Reg -ed ?
100 9.3 27.91 53.49 55.81 6.98
200 9.3 11.63 69.77 79.07 0.0
300 11.63 20.93 62.79 67.44 0.0
400 4.65 11.63 72.09 81.4 2.33
500 11.63 9.3 67.44 74.42 4.65
600 9.3 13.95 65.12 76.74 0.0
700 6.98 9.3 74.42 79.07 4.65
800 4.65 16.28 72.09 76.74 2.33
900 4.65 6.98 83.72 88.37 0.0

1000 2.33 4.65 88.37 90.7 2.33

Table 16: Error type analysis for English irregular verbs.
Match = % correct. Other = % other plausible strong
and weak irregulars. Reg = % “correct” regularized. -ed
= % forms ending in -ed. ? = other nonsense output

CLUZH # -ed →a →u NC Other ?
100 8 8 0 0 0 0 0
200 8 8 0 0 0 0 0
300 8 8 0 0 0 0 0
400 8 8 0 0 0 0 0
500 8 6 1 1 0 0 0
600 8 6 1 1 0 0 0
700 8 7 0 1 0 0 0
800 8 7 0 1 0 0 0
900 8 7 0 1 0 0 0
1000 8 4 1 3 0 0 0

HeiM # -ed →a →u NC Other ?
100 8 8 0 0 0 0 0
200 8 8 0 0 0 0 0
300 8 6 0 0 1 0 1
400 8 7 0 0 0 0 1
500 8 4 0 0 4 0 0
600 8 5 0 0 3 0 0
700 8 4 0 0 4 0 0
800 8 8 0 0 0 0 0
900 8 8 0 0 0 0 0
1000 8 8 0 0 0 0 0

OSU # -ed →a →u NC Other ?
100 8 8 0 0 0 0 0
200 8 8 0 0 0 0 0
300 8 4 2 2 0 0 0
400 8 3 1 2 0 2 0
500 8 7 0 1 0 0 0
600 8 5 1 1 0 1 0
700 8 7 0 1 0 0 0
800 8 7 0 1 0 0 0
900 8 7 0 1 0 0 0
1000 8 8 0 0 0 0 0

Table 17: Inflection type for English monosyllabic -
ing verbs. -ed = regular. →a = sing-sang-type. →u =
sting-stung-type. NC = no change. Other = other strong
inflection. ? = nonsense inflection.
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CLUZH G -e G -(e)n G -er G -∅ G -s Sum
P -e 1 0 0 0 0 1
P -(e)n 6 191 0 0 2 199
P -er 0 0 0 0 0 0
P -∅ 0 0 0 0 0 0
P -s 0 0 0 0 1 1
P ? 0 0 0 0 0 0
Sum 7 191 0 0 3 201

HeiM G -e G -(e)n G -er G -∅ G -s Sum
P -e 0 0 0 0 0 0
P -(e)n 7 190 0 0 3 200
P -er 0 0 0 0 0 0
P -∅ 0 0 0 0 0 0
P -s 0 0 0 0 0 0
P ? 0 1 0 0 0 1
Sum 7 191 0 0 3 201

OSU G -e G -(e)n G -er G -∅ G -s Sum
P -e 2 5 0 0 1 8
P -(e)n 3 181 0 0 2 186
P -er 1 0 0 0 0 1
P -∅ 0 0 0 0 0 0
P -s 0 0 0 0 0 0
P ? 1 5 0 0 0 6
Sum 7 191 0 0 3 201

Table 18: German inflection confusion matrices at 600
training for FEM nouns only, disregarding Umlaut. G =
Gold, P = Prediction.

CLUZH G -e G -(e)n G -er G -∅ G -s Sum
P -e 134 14 1 0 9 158
P -(e)n 0 7 0 0 0 7
P -er 0 0 0 0 0 0
P -∅ 4 5 0 102 0 111
P -s 1 0 0 0 7 8
P ? 0 0 0 0 0 0
Sum 139 26 1 102 16 284

HeiM G -e G -(e)n G -er G -∅ G -s Sum
P -e 126 12 1 1 11 151
P -(e)n 7 4 0 0 1 12
P -er 1 0 0 0 0 1
P -∅ 4 10 0 99 1 114
P -s 1 0 0 0 2 3
P ? 0 0 0 2 1 3
Sum 139 26 1 102 16 284

OSU G -e G -(e)n G -er G -∅ G -s Sum
P -e 125 13 1 0 9 148
P -(e)n 4 3 0 0 0 7
P -er 0 0 0 0 0 0
P -∅ 5 10 0 99 0 114
P -s 1 0 0 0 6 7
P ? 4 0 0 3 1 8
Sum 139 26 1 102 16 284

Table 19: German inflection confusion matrices at 600
training for MASC nouns only, disregarding Umlaut. G
= Gold, P = Prediction.

CLUZH G -e G -(e)n G -er G -∅ G -s Sum
P -e 33 2 12 0 9 56
P -(e)n 0 0 0 1 0 1
P -er 0 0 3 0 0 3
P -∅ 4 0 0 46 0 50
P -s 0 1 1 0 3 5
P ? 0 0 0 0 0 0
Sum 37 3 16 47 12 115

HeiM G -e G -(e)n G -er G -∅ G -s Sum
P -e 28 1 11 3 5 48
P -(e)n 0 0 0 0 0 0
P -er 3 0 4 1 4 12
P -∅ 5 0 0 43 0 48
P -s 0 1 1 0 1 3
P ? 1 1 0 0 2 4
Sum 37 3 16 47 12 115

OSU G -e G -(e)n G -er G -∅ G -s Sum
P -e 28 1 12 1 8 50
P -(e)n 0 0 0 0 0 0
P -er 1 0 3 1 0 5
P -∅ 6 0 1 43 1 51
P -s 1 1 0 1 2 5
P ? 1 1 0 1 1 4
Sum 37 3 16 47 12 115

Table 20: German inflection confusion matrices at 600
training for NEUT nouns only, disregarding Umlaut. G
= Gold, P = Prediction.

S→S S→B B→S B→B
CLUZH F 7 29 45 48
HeiM F 1 9 21 3
OSU F 2 13 23 0
CLUZH M 0 13 23 4
HeiM M 9 14 66 62
OSU M 11 18 41 57
CLUZH HUM 0 3 16 14
HeiM HUM 0 4 15 15
OSU HUM 2 1 15 16
CLUZH NHUM 7 39 52 38
HeiM NHUM 10 19 72 50
OSU NHUM 11 30 49 41

Table 21: Arabic error types at 1000 training by gender
and rationality.
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CLUZH Gold SF Gold SM Gold B Sum
Pred SF 139 0 23 162
Pred SM 0 0 0 0
Pred B 13 0 49 62
Pred ? 4 0 1 5
Sum 156 0 73 229

HeiM Gold SF Gold SM Gold B Sum
Pred SF 140 0 21 161
Pred SM 1 0 0 1
Pred B 9 0 51 60
Pred ? 6 0 1 7
Sum 156 0 73 229

OSU Gold SF Gold SM Gold B Sum
Pred SF 138 0 23 161
Pred SM 2 0 0 2
Pred B 13 0 45 58
Pred ? 3 0 5 8
Sum 156 0 73 229

Table 22: Arabic inflection confusion matrices for each
submitted system at 1000 training. FEM nouns only.

CLUZH Gold SF Gold SM Gold B Sum
Pred SF 74 5 29 108
Pred SM 2 51 16 69
Pred B 25 4 157 186
Pred ? 0 2 6 8
Sum 101 62 208 371

HeiM Gold SF Gold SM Gold B Sum
Pred SF 87 7 51 145
Pred SM 2 43 15 60
Pred B 9 5 126 140
Pred ? 3 7 16 26
Sum 101 62 208 371

OSU Gold SF Gold SM Gold B Sum
Pred SF 80 8 26 114
Pred SM 3 50 15 68
Pred B 16 2 157 175
Pred ? 2 2 10 14
Sum 101 62 208 371

Table 23: Arabic inflection confusion matrices for each
submitted system at 1000 training. MASC nouns only.

CLUZH Gold SF Gold SM Gold B Sum
Pred SF 14 0 1 15
Pred SM 0 48 15 63
Pred B 1 2 24 27
Pred ? 0 0 3 3
Sum 15 50 43 108

HeiM Gold SF Gold SM Gold B Sum
Pred SF 12 0 0 12
Pred SM 0 43 15 58
Pred B 2 2 16 20
Pred ? 1 5 12 18
Sum 15 50 43 108

OSU Gold SF Gold SM Gold B Sum
Pred SF 13 2 0 15
Pred SM 0 47 15 62
Pred B 1 0 24 25
Pred ? 1 1 4 6
Sum 15 50 43 108

Table 24: Arabic inflection confusion matrices for each
submitted system at 1000 training. HUM nouns only.

CLUZH Gold SF Gold SM Gold B Sum
Pred SF 199 5 51 255
Pred SM 2 3 1 6
Pred B 37 2 182 221
Pred ? 4 2 4 10
Sum 242 12 238 492

HeiM Gold SF Gold SM Gold B Sum
Pred SF 215 7 72 294
Pred SM 3 0 0 3
Pred B 16 3 161 180
Pred ? 8 2 5 15
Sum 242 12 238 492

OSU Gold SF Gold SM Gold B Sum
Pred SF 205 6 49 260
Pred SM 5 3 0 8
Pred B 28 2 178 208
Pred ? 4 1 11 16
Sum 242 12 238 492

Table 25: Arabic inflection confusion matrices for each
submitted system at 1000 training. NHUM nouns only.
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Abstract

The 2022 SIGMORPHON–UniMorph shared
task on large scale morphological inflection
generation included a wide range of typolog-
ically diverse languages: 33 languages from
11 top-level language families: Arabic (Mod-
ern Standard), Assamese, Braj, Chukchi, East-
ern Armenian, Evenki, Georgian, Gothic, Gu-
jarati, Hebrew, Hungarian, Itelmen, Karelian,
Kazakh, Ket, Khalkha Mongolian, Kholosi, Ko-
rean, Lamahalot, Low German, Ludic, Mag-
ahi, Middle Low German, Old English, Old
High German, Old Norse, Polish, Pomak, Slo-
vak, Turkish, Upper Sorbian, Veps, and Xibe.
We emphasize generalization along different
dimensions this year by evaluating test items
with unseen lemmas and unseen features sepa-
rately under small and large training conditions.
Across the six submitted systems and two base-
lines, the prediction of inflections with unseen
features proved challenging, with average per-
formance decreased substantially from last year.
This was true even for languages for which the
forms were in principle predictable, which sug-
gests that further work is needed in designing
systems that capture the various types of gener-
alization required for the world’s languages.1

1Data, evaluation scripts, and predictions are available at:
https://github.com/sigmorphon/2022InflectionST

1 Introduction

Generalization, the ability to extend patterns from
known to unknown items, is a critical part of mor-
phological competence. Morphological systems,
both human and machine, must be able to recog-
nize and produce novel items as new words are
encountered. Every learner, every speaker, and any
system intended for general use constantly encoun-
ters new words, both new coinings and existing
words that are new to them.

The centrality of generalization is emphasized
by the morphological sparsity that pervades lan-
guage use. Inflected forms, lemmas, and inflec-
tional categories are all sparsely distributed and
highly skewed in any input sample, following long-
tailed, often Zipfian, frequency distributions (Chan,
2008). This has serious implications for learning,
since the overwhelming majority of lemmas, if
present at all in the input, will only be attested
in a fraction of their possible forms. This is true
even for a language like English, with only five
inflected forms per verb and two per noun, and
the problem only grows as a language’s paradigms
increase in size and complexity.

The test paradigm that the SIGMORPHON in-
flection shared tasks have employed since 2016
(Cotterell et al., 2016, 2017, 2018; McCarthy et al.,
2019; Vylomova et al., 2020; Pimentel et al., 2021)
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provides one test bed for generalization in morpho-
logical learning systems. The shared tasks leverage
the UniMorph Database (Kirov et al., 2018; Mc-
Carthy et al., 2020; Batsuren et al., 2022), which
provides data sets for an ever-growing range of
typologically diverse morphologies.

In principle, there are at least two kinds of gener-
alization which can be evaluated in our UniMorph-
based test paradigm: generalization to unseen lem-
mas, and generalization to unseen inflectional cate-
gories (i.e., unseen feature sets). Contrasting seen
and unseen lemmas and categories yields four dif-
ferent test conditions: 1) prediction of the form of
a novel combination of a seen lemma and seen fea-
ture set, 2) prediction given a seen lemma but novel
feature set, 3) prediction given a seen feature set
but novel lemma, and 4) the prediction of a form
when both the lemma and feature set are novel.

This year’s shared task include 33 languages
from 11 top-level language families with a partic-
ular focus on Eastern Europe, Central Asia, and
Siberia: Arabic (Modern Standard), Assamese,
Braj, Chukchi, Eastern Armenian, Evenki, Geor-
gian, Gothic, Gujarati, Hebrew, Hungarian, Itel-
men, Karelian, Kazakh, Ket, Khalkha Mongolian,
Kholosi, Korean, Lamahalot, Low German, Ludic,
Magahi, Middle Low German, Old English, Old
High German, Old Norse, Polish, Pomak, Slovak,
Turkish, Upper Sorbian, Veps, and Xibe. Many of
these were included last year, but we hoped that
running them again would provide further insights
into generalization.

1.1 Motivation for Generalization Task

Generalization to the unseen is a challenging task,
the feasibility of which should be sensitive to the or-
ganization of a given language’s morphology. For
a language with rampant unpredictable stem muta-
tions or suppletion, it may not always be possible
to generalize patterns accurately to unseen lemmas,
but one would hope that a system could generalize
well for a language with invariant stems or highly
irregular stem changes. Similarly, it may not be
possible for a system to generalize to unseen cate-
gories for a highly fusional language where forms
cannot be predicted from their component features,
but it should be possible for highly agglutinative
languages where roughly each feature corresponds
to its own morphological operation or for a lan-
guage with a high degree of syncretism in which
the expression of an unseen inflectional category is

Feature Set guakamole
N;ACC;SG ?
N;ACC;PL guakamoleleri
N;DAT;SG guakamoleye
N;DAT;PL ?

N;ACC;PL;PSS3S guakamolelerini
N;DAT;PL;PSS3S guakamolelerine

. . . . . .

Table 1: A partial paradigm for Turkish guakamole
‘guacamole,’ illustrating inference for novel feature sets
in an agglutinative language.

likely the same as one that has already been learned.
This was shown to be feasible in practice for Nen, a
Papuan language with a large degree of syncretism
(Muradoglu et al., 2020).

Previous iterations of this shared task have
looked at some aspects of this problem, but none
made this a focus. Last year’s task (Pimentel et al.,
2021) reported separate performance numbers for
seen and unseen lemmas, but did not control for
seen/unseen feature overlap. The 2018 task (Cot-
terell et al., 2018), sampled train and test sets with
frequency weighting from Wikipedia, which made
for a more naturalistic sparse sampling setting, but
did not control for either kind overlap. In prepa-
ration for this year’s iteration, we found that the
proportion of test items with seen feature sets var-
ied greatly across languages in the 2018 task and
may have been a major driver of performance.

For example, the best performing system on
Turkish, consistently scored just under the propor-
tion of test items with seen feature sets at each train-
ing size (Table 2), even though Turkish is a aggluti-
native language for which generalization to unseen
categories should be possible. Table 1 provides
a partial noun paradigm from Turkish UniMorph
which illustrates why this type of generalization
should be possible. Say the feature sets N;ACC;SG

and N;DAT;PL were never attested in training, but
the lemma guakamole was. It should be possible to
deduce their forms anyway – this would be a fair
homework problem for an undergraduate course.

Looking at the table, -ler- corresponds to PL

here, ∅ to SG, and -in- to PSS3S. Both forms with
ACC end in -i, while DAT seems to correspond to
-ye in the singular and -e in the plural. From this
alone, one can correctly infer that N;DAT;PL should
be guakamole-ler-e, while N;ACC;SG should be
guakamole-yi or maybe guakamole-i. The for-
mer is indeed correct: y-insertion is well attested
elsewhere in the language and would certainly be

177



present with other lemmas and with other feature
sets containing ACC. While unseen Turkish inflec-
tional categories are not completely predictable,
since they also contain some morphological eccen-
tricities which obscure predictability, “could an
undergraduate solve it?” is a good rule of thumb
for whether generalization to unseen feature sets is
a feasible task.

Performance was divergent on closely related
languages whose test sets’ feature set overlaps dif-
fered. Turkish and Azeri are closely related Oghuz
Turkic languages with some mutual intelligibility
(Salehi and Neysani, 2017) and very similar mor-
phological paradigms, nevertheless, scores for Az-
eri during the 2018 task were much higher than
for Turkish. Table 3 shows feature overlap and
performance for Azeri. It is tempting to propose
that Azeri scores were higher than Turkish scores
because overlap proportions were higher.

Taken together, this suggests two things. First,
the proportion of test items with feature sets at-
tested in training is an uncontrolled factor in the
data that could be driving performance in a way that
obscures language-internal factors. Second, this
could suggest that the systems of the day were not
able to generalize across inflectional categories,2

but a more focused evaluation would be needed to
investigate these hypotheses. We perform such an
investigation this year.

Turkish Overlap% Best Acc% ∆
Low 39.600 39.500 -0.1

Medium 94.100 90.700 -3.4
High 100 98.500 -1.5

Table 2: Comparison of best 2018 system accuracy on
Turkish low-, medium-, and high-train conditions and
percent of test items with feature sets attested during
training.

Azeri Overlap% Best Acc% ∆
Low 71.000 65.000 -6.0

Medium 99.000 96.000 -3.0
High 100 100 0

Table 3: Comparison of best 2018 system accuracy on
Azeri low-, medium-, and high-train conditions and
percent of test items with feature sets attested during
training.

2Recent work has shown that lemma overlap is also an
important predictor of performance (Goldman et al., 2022),
but an analysis of 2018 results suggests that feature set overlap
is an even better predictor (see Appendix A).

2 Task Description

From the participants’ perspective, this task was
organized very similarly to previous iterations. Par-
ticipants were asked to design supervised learn-
ing systems which could predict an inflected form
given a lemma and a morphological feature set cor-
responding to an inflectional category or cell in
a morphological paradigm. They were provided
with a small, and data permitting, large training
set, as well as a development set and test set for
each language. The train and dev sets consisted of
(lemma, inflected, feature set) triples, while
the inflected forms were held out from the test set.

Data was made available to participants in two
phases. In the first phase, train and dev sets were
provided, with the expectation that model develop-
ment and tuning be carried out primarily on these
languages. In the second phase, test sets were re-
leased for all languages during the evaluation phase.
Teams produced predicted inflected forms for each
test set. They were given the opportunity to submit
two sets of predictions from two separate mod-
els, one trained on the small training sets and one
trained on the large training sets, with the latter
being a super set of the former.

3 Description of Languages

This section provides brief descriptions of each lan-
guage that was newly included or newly updated for
this year’s task. Further information about return-
ing languages can be found in previous years’ pa-
pers (Vylomova et al., 2020; Pimentel et al., 2021).
Table 4 summarizes the list of languages and pro-
vides citation and attribution information.

3.1 Armenian (Indo-European)

Armenian is an independent branch of the Indo-
European family. Its oldest attested form is Old
Armenian or Classical Armenian (∼5th century).
It has two modern standardized varieties: Western
Armenian and Eastern Armenian. Western Arme-
nian is a diasporic language that developed in the
Ottoman Empire, while Eastern Armenian is the
official language of the Republic of Armenia (Dum-
Tragut, 2009). Inflection is largely agglutinative,
with some residues of Indo-European fusional mor-
phology. For verb morphology, verbs fall into dif-
ferent conjugation classes. Most tenses are formed
via periphrasis via a non-finite converb and a finite
auxiliary, though some tenses are synthetic. Nouns
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Family Subfamily ISO
639-2

Language Source of Data Annotators

Afro-
Asiatic

Semitic ara Modern Standard Arabic Taji et al. (2018)
Salam Khalifa
Nizar Habash

heb Hebrew Wiktionary Omer Goldman
Austronesian Malayo-

Polynesian
slp Lamahalot Nagaya (2012) Yustinus Ghanggo Ate

Chukotko-
Kamchatkan

Northern ckt Chukchi Chuklang; Tyers and
Mishchenkova (2020)

Karina Sheifer
Maria Ryskina

Southern itl Itelmen

Karina Sheifer
Sofya Ganieva
Matvey Plugaryov

Indo-
European

Armenian hye Eastern Armenian Wiktionary Hossep Dolatian

Germanic got Gothic Wiktionary Khuyagbaatar Batsuren
nds Low German Wiktionary Jeremiah Young
gml Middle Low German Wiktionary "
ang Old English Wiktionary Khuyagbaatar Batsuren
goh Old High German Wiktionary Jeremiah Young
non Old Norse Wiktionary "

Indic asm Assamese Wiktionary
Khuyagbaatar Batsuren
Aryaman Arora

bra Braj Kumar et al. (2018)
Shyam Ratan
Ritesh Kumar

guj Gujarati Wiktionary
Aryaman Arora
Khuyaagbaatar Batsuren

hsi Kholosi Arora and Etebari (2021) Aryaman Arora
mag Magahi Kumar et al. (2014) Mohit Raj, Ritesh Kumar

Slavic pol Polish Woliński et al. (2020);
Woliński and Kieraś (2016)

Witold Kieraś
Marcin Woliński

poma Pomak Jusúf Karahóǧa et al. (2022)
Ritvan Karahodja
Antonios Anastasopoulos

slo Slovak Hajič and Hric (2017) Witold Kieraś

hsb Upper Sorbian Fraser (2020)
Taras Andrushko
Igor Marchenko

Kartvelian kat Georgian Guriel et al. (2022)

David Guriel
Simon Guriel
Silvia Guriel-Agiashvili
Nona Atanelov

Koreanic kor Korean Wiktionary

Maria Nepomniashchaya
Daria Rodionova
Anastasia Yemelina

Mongolic Central khk Khalkha Mongolian Munkhjargal et al. (2016);
Batsuren et al. (2019)

Khuyagbaatar Batsuren

Tungusic Northern evn Evenki Kazakevich and Klyachko
(2013)

Elena Klyachko

Southern hsb Xibe Zhou et al. (2020) "

Turkic Kipchak kaz Kazakh (Nabiyev, 2015; Turkicum,
2019), Polish Wiktionary

Eleanor Chodroff
Khuyagbaatar Batsuren

Oghuz tur Turkish Wiktionary
Omer Goldman
Duygu Ataman

Uralic Ugric hun Hungarian Wiktionary

Judit Ács
Khuyagbaatar Batsuren
Gábor Bella, Ryan Cotterell
Christo Kirov

Finnic krl Karelian Boyko et al. (2021, VepKar)

Andrew Krizhanovsky
Natalia Krizhanovsky
Elizabeth Salesky

lud Ludic Boyko et al. (2021, VepKar) " " "
vep Veps Boyko et al. (2021, VepKar) " " "

Yeniseian Northern ket Ket Ket corpus

Elena Budianskaya
Polina Mashkovtseva
Alexandra Serova

Table 4: Languages presented in this year’s shared task

fall into different declension classes, based on the
choice of plural and case suffixes.
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3.2 Finno-Ugric (Uralic)

Finno-Ugric is a branch of Uralic, a language
family with around 25 million native speakers
spread between Northern Russia, Scandinavia, and
Hungary. The majority of them are agglutinat-
ing and extensively use suffixes. They are also
known for a relatively rich grammatical case sys-
tem. Verbs are inflected for number, person, tense,
and mood. Phonologically, these languages often
present vowel harmony and palatalization.

Hungarian, with its 13 million native speak-
ers, is the most widely spoken Uralic language.
Hungarian is an agglutinative language with a rich
set of affixes expressing derivation or inflection,
such as in the verb. Another feature of Hungar-
ian morphology, adding to its complexity from a
computational perspective, is vowel harmony: the
vowels of certain affixes adapt to those of the stem
(Rounds, 2009). Compounding in Hungarian is fre-
quent and productive, leading to further complexity
in its morphological analysis (Kiefer and Nemeth,
2019).

Karelian and Ludic are two closely related
Finnic varieties spoken in Russian and Finnish
Karelia and the regions around Lakes Onega and
Ladoga. The data for both languages, along with
Veps returning from last year, has been collected
as part of the VepKar project (Boyko et al., 2021)
and includes multiple dialects. Typical of Finnic,
these languages are highly agglutinative, present
vowel harmony processes, and overtly express well
over ten cases on nominals and adjectives. Ludic is
often described as a dialect of Karelian, although
it has certain unique features such as the presence
of a reflexive conjugation (Novak et al., 2019) and
the use of the full temporal paradigm of the condi-
tional. It is seriously endangered, with about 150
remaining speakers.3

3.3 Georgian (Kartvelian)

Kartvelian, or South Caucasian, languages are
primarily spoken in the South Caucasus with no
demonstrable genetic relation to other languages
in the region. Georgian, an official language of
Georgia, has about four million speakers world-
wide. Georgian morphology is mostly agglutina-
tive. Nouns have number (singular/plural), but no
grammatical gender. Its grammatical case system
is relatively rich, having seven cases. Nouns are de-
clined for number and case. Verbs exhibit polyper-

3https://lyydi.net/

sonal agreement (incorporating the number and
the person of both subject and objects). In addi-
tion, verbs are divided into 4 classes: transitive,
intransitive, indirect, and medial, and present many
irregularities.

3.4 Germanic (Indo-European)

The Germanic family constitutes one of the pri-
mary branches of Indo-European. It in turn con-
tains three sub-branches. The West Germanic
sub-branch includes English, Dutch, and German,
among others. The North Germanic sub-branch
contains the Germanic languages of Scandinavia.
The East Germanic sub-branch is extinct and con-
tained Gothic. At a high level, Germanic mor-
phology is similar to that of other Indo-European
branches, but it does diverge in some key ways
(Ringe, 2017). Germanic languages, particularly
in the past, had an inherited three-way gender dis-
tinction, an inherited three-way number system,
and overt inflectional case systems, all reduced
to some degree from Indo-European. Nominals
fall into several inflectional classes with different
case/number expressions.4 The 2020 shared task
revealed some major inconsistencies in the data
(Vylomova et al., 2020). In this iteration, the data
has been re-extracted and checked.

Gothic is an extinct East Germanic language.
Nearly the entire extant Gothic corpus comes from
a partial translation of the Christian Bible by bishop
Wulfila. Gothic is in many ways more conservative
than other Germanic languages. It lacks Umlaut,
which is a type of vowel alternation on nouns and
verbs present in the rest of the family, but it retains
reduplicated perfects, and it sometimes uses the
accusative as a vocative case. Data for Gothic was
sourced from Wiktionary and contains both Gothic
script and Latin transcriptions.

Old English, Old High German, and Old
Norse were three closely related West and North
Germanic languages and early attested ancestors
of modern English, High German varieties, and liv-

4Five of the six Germanic languages presented this year
are historical. They no longer have living speakers, and their
corpora are of a fixed size. Paradigms were initially extracted
from Wiktionary. Given the highly skewed long-tailed distri-
butions of inflected forms, lemmas, and inflected categories
(Chan, 2008), which do not differ in historical corpora (Kod-
ner, 2019), the large majority of potential inflected forms, even
for known lemmas, are not attested in the historical record.
As such, most of the forms in the full paradigms available on
Wiktionary are generated and not actually attested. This is
likely not a major concern for the purpose of this task, but the
caveat must be expressed.
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ing North Germanic languages today. Inflectional
classes in these languages are often less transparent
than in Gothic due to successive sound changes
obscuring their basis.

Middle Low German was a collection of West
Germanic dialects spoken along the southern North
Sea coast. It was a major trade language, the lingua
franca of the Hanseatic League during the Euro-
pean Medieval period. The language retains overt
case distinctions on nominals, but it shows a greater
degree of syncretism than earlier Germanic lan-
guages. This trend of increased syncretism extends
to the verbal system as well (Lasch, 1914).

Low German is a collection of West Germanic
varieties descended from Middle Low German oc-
cupying an intermediate space in a dialect contin-
uum between Dutch and High German. Varieties
exist in a state of diglossia, mostly with Standard
German, a High German variety. Several million
native speakers remain in the 21st century, though
numbers are declining. Outside of Europe, Low
German is spoken in some diaspora communities
including Mennonite groups in the Americas.

3.5 Hebrew (Semitic)
The Semitic languages, a branch of the larger Afro-
Asiatic family, are spoken by over 300 million peo-
ple across North Africa and Southwest Asia. He-
brew is a Northwest Semitic language with around
5 million native speakers, spoken mainly in Israel.
Typically of Semitic, Hebrew makes heavy use of
templatic non-concatenative morphology (Coffin
and Bolozky, 2005). Verbs are expressed through
triliteral consonant roots which occupy slots in
a template of vowels. Verbs occupy inflectional
classes called binyanim in Hebrew. Person, num-
ber, and tense marking is indicated primarily with
affixation. Both prefixation and suffixation are ap-
plied depending on the tense. Nouns and adjectives
indicate gender and number through suffixation,
sometimes with stem mutations. Verbs, nouns, and
propositions may take possessive or pronominal
object clitics. In the current shared task we intro-
duce a vocalized version of Hebrew that has been
recently added to the UniMorph.

3.6 Indic, or Indo-Aryan (Indo-European)
Indic is a branch of Indo-Iranian, itself a primary
branch of Indo-European. The family has a long
history, with a large attested corpus of Vedic and
Classical Sanskrit. It currently has over 800 million
speakers extending through all countries in South

Asia. Morphologically conservative languages ex-
press a three-way gender distinction and case on
nouns, tense, aspect, mood, number, and person
on verbs. Inflectional morphology is primarily suf-
fixing. Some languages possess overt formality
distinctions on verbs.

Assamese is mainly spoken in the northeast
Indian state of Assam, with over 20 million na-
tive speakers. While gender is not grammatically
marked, Assamese presents a rich system of noun
classifiers. The Assamese data has been extracted
from the English edition of Wiktionary. Gujarati
(Baxi et al., 2021) is spoken predominantly in the
Indian state of Gujarat, with over 50 million native
speakers. Kholosi is an under-documented Indo-
Aryan language spoken in two villages (Kholus
and Gotav) in Hormozgan Province, Iran. The data
has been collected during field work (Arora and
Etebari, 2021).

3.7 Ket (Yeniseian)
Yeniseian languages were historically spoken along
the Yenisei River region of central Siberia. Ket,
the only living member, is critically endangered,
with only about 60 remaining speakers at any level
of linguistic competence. The language presents
mainly agglutinative morphology, with extensive
use of suffixes, prefixes, and infixes. Although
verbal conjugation and noun declension systems
are well-developed, the boundaries between word
classes are fuzzy (Verner, 1997). Noun classes
differentiate between masculine and non-masculine
in the singular, animate and inanimate in the plural.
The grammatical case system contains between 8
and 10 cases depending on the analysis. Ket verbs
express polypersonal agreement, with the case and
number of all arguments reflected on the verb.

The data for Ket was sourced from a text collec-
tion compiled during the field work of the Lab-
oratory for Computational Lexicography of the
Moscow State University, that took place between
2004 and 2009. It contains word forms from twelve
categories, seven of which (ADJ, NUM, ADV, INTJ,
ADP, PART, CONJ) are invariable.

3.8 Khalkha Mongolian (Mongolic)
The Mongolic language family has 5.200 million
active speakers of 14 language varieties, which
are actively spoken in Mongolia, Russia, China,
and Afghanistan. The Khalkha Mongolian is de
facto the official national language of Mongolia
and both the most widely spoken and most-known
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member of the Mongolic language family. Khalkha
Mongolian is an agglutinative language with a rich
set of suffixes, but no prefixes. It also expresses
complex vowel harmony patterns (Jaimai et al.,
2005).

3.9 Korean (Koreanic)
Korean, spoken by about 80 million people, is of-
ten described as a language isolate. However, the
Jeju dialect, spoken on the southern island of Jeju
is highly divergent and often considered its own
language. The language expresses limited inflec-
tional morphology on nominals. Verbs express
valency, tense, aspect, mood, and various dimen-
sions of formality through suffixation. The current
dataset consists of mostly predicates, so the result-
ing lemmas are mainly verbs and a smaller number
of adjectives.

3.10 Lamahalot (Austronesian)
Lamahalot, or Solor, is one of the Central-Malayo-
Polynesian languages, a proposed branch in the
Malayo-Polynesian within Austronesian. As of
2010, it had about 200,000 native speakers, primar-
ily on the eastern part of Flores Island, and neigh-
boring islands of Flores (Solor, Adonara, Lembata,
and Alor). Nearby Papuan languages have had a
significant influence on this language phonologi-
cally and syntactically (Nagaya, 2011; Arka, 2007;
Klamer, 2002, 2009). The language has several
dialects. We use data mainly from the Lewotobi di-
alect (Nagaya, 2011) spoken by about 6,000 people
in Kecamatan Ile Bura, East Flores. Morpholog-
ically, Lamaholot is a nearly isolating language
(each word typically has one morpheme) with a
small inventory of affixes (mostly prefixes and a
handful of suffixes) and clitics (mainly enclitics).
This language has two salient morphological fea-
tures, namely agreement and nominalization.

3.11 Slavic (Indo-European)
Slavic, another primary branch of Indo-European,
contains approximately 20 languages, with half
of them having over 1 million speakers. The lan-
guages are spoken in Central and Eastern Europe,
the Balkans, and Russia. They are traditionally di-
vided into three branches: East Slavic (incl. Belaru-
sian, Russian, Rusyn, and Ukrainian), West Slavic
(incl. Czech, Kashubian, Polish, Silesian, Slovak,
and Upper and Lower Sorbian, among others), and
South Slavic (incl. varieties of Bosnian-Croatian-
Montenegrin-Serbian, varieties of Macedonian and

Bulgarian including Pomak, and Slovenian).
Slavic morphology is generally typical of Indo-

European, with several inflectional classes for both
verbs and nouns, nominal inflection by case, num-
ber, and three genders. It elaborates Indo-European
verbal inflectional paradigms marking aspect, tense,
number, person, and sometimes gender.

Slovak (Mistrík, 1988), and Upper Sorbian are
two closely related West Slavic languages. Mascu-
line nouns additionally mark animacy, which is of-
ten described as a part of the gender system of these
languages. The case systems of both languages
are fairly similar, however in Slovak, vocative is
usually syncretic with nominative. Upper Sorbian
retains a dual number and has a greater variety of
verbal past forms than other West Slavic languages.
The Slovak data was obtained by automatic conver-
sion of extensive inflectional dictionaries used for
morphological analysis to the UniMorph scheme.5

The data for Upper Sorbian was combined from
WMT and online grammars.6

Pomak is a South Slavic language, a dialect
of Southeastern Bulgarian spoken in Greece and
European Turkey. It has around 30,000 speak-
ers as of 2021 but lacks standardized orthography
(Jusúf Karahóǧa et al., 2022). Bulgarian and Mace-
donian varieties are unusual among Slavic for hav-
ing mostly lost case marking on nouns and for
marking voice synthetically on verbs.

4 Data Preparation

All data for this task is provided in standard
UniMorph format, with training items consisting
of (lemma, inflected form, morphosyntactic
features) triples. Since the goal of the task is to
predict inflected forms, the test set was presented as
(lemma, features) pairs. Data was canonicalized
as in previous years using https://github.com/
unimorph/um-canonicalize, which ensures con-
sistent ordering of the features in the feature sets.

4.1 Training-Test Overlap

As always, we ensured that there are no lemma-
feature set pairs that occur in both the training and
test sets. However, since test items contain both
lemmas and features, other overlaps between train-
ing and test are possible. This year’s data splitting
algorithm aimed to control for the four logically

5https://github.com/unimorph/slk
6https://www.statmt.org/wmt20/unsup_and_very_

low_res/, https://baltoslav.eu/hsb/
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possible licit types of lemma and feature overlap,
which define four kinds of test items:

Both Overlap: Both the lemma and feature set of
a training pair are attested in the training set
(but not together in the same triple)

Lemma Overlap: A test pair’s lemma is attested
in training, but its feature set is novel

Feature Overlap: A test pair’s feature set is at-
tested in training, but its lemma is novel

Neither Overlap: A test pair is entirely unattested
in training. Both its lemma and features are
novel.

For illustration, consider the sample training and
test sets provided in (1)-(2). In this example, each
test pair exhibits a different kind of overlap.

(1) Example Training Set

eat eating V;V.PTCP;PRS
run ran V;PST

(2) Example Test Set

eat V;PST <-- both
run V;NFIN <-- lemma
see V;PST <-- feature
go V;PRS;3;SG <-- neither

4.2 Data Splits

The data set for each language was split into train-
ing, development, and test sets. For languages with
sufficiently large corpora, both large and small
training sets were produced with the small set
being a subset of the large one. We aimed for
7,000/1,000/2,000-item large train/dev/test splits
and a 700-item small train split when possible, but
splits for most languages were somewhat smaller in
practice. Chukchi, Kholosi, Lamahalot, and Xibe
in particular were too small to extract even full
small training sets, while Braj, Gujarati, Itelmen,
Ket, Low German, Magahi, Middle Low German,
Old High German, Upper Sorbian were too small
to extract large training sets. Split sizes are summa-
rized in Table 5.7

7Triples which shared their lemma and feature set with
another item in the data were removed after splitting, which is
why some languages fall short of 7,000/1,000/2,000 splits.

4.3 Motivation for Data Splitting

The sampling script attempts to control the size of
each overlap category in the test set. The challenge
here is controlling for both lemma overlap and fea-
ture overlap simultaneously. Since no frequency
information is provided in the UniMorph annota-
tion scheme, any uniform sampling over triples,
controlling for lemma overlap or otherwise, will
tend to drive feature overlap to near 100%. This is
unnatural. Since both lemmas and inflectional cate-
gories tend to follow long-tailed sparse frequency
distributions in real language (Chan, 2008, ch. 3),
a naturalistic split weighted by token frequencies
of individual items will tend to oversample high
frequency lemmas and inflectional categories (i.e.,
feature sets), and undersample most others. This
skewed sampling should yield a mix of overlap
types in the test set. This is what was achieved
in 2018, though the ratios of overlap types were
uncontrolled. In contrast, this year’s data splitting
achieves a controlled mixture of overlap types even
in the absence of frequency information.

4.4 Splitting Process

The algorithm began by randomly partitioning a
language’s feature sets into OVERLAPPABLE and
NON-OVERLAPPABLE sets and uniformly sampling
the large training set from only those triples that
contain feature sets in OVERLAPPABLE. If there
were not enough triples with with feature sets in
OVERLAPPABLE for a given language, then the
OVERLAPPABLE partition was increased incremen-
tally until enough training triples could be sampled.
If there was insufficient data to create the large
training set, then the small training set was sam-
pled this way instead. If there was enough data,
then the small training set was down-sampled uni-
formly from the large training set.

The test set was sampled from the remaining
items, with half drawn from triples with feature
sets in OVERLAPPABLE and half from triples with
feature sets in NON-OVERLAPPABLE features. The
development set was drawn from the remainder in
the same fashion.

As summarized in Table 5, this approach resulted
in a much more even mixtures of overlapping pairs
at both training sizes than is achieved by sampling
that does not take feature overlap into account,
though the actual ratios varied by language due to
corpus-specific and language-specific factors. In
controlling for feature overlap, a good mixture of
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lemma overlap items is achieved simultaneously.
Since most languages provide ample attestation of
each overlap type, we could evaluate on each over-
lap type individually to gauge models’ generaliza-
tion abilities across both the lemma and inflectional
category dimensions. Additionally, in aiming for
a more uniform ratio of overlap types across lan-
guages, overall performance on each language is
more directly comparable.

5 Baseline Systems

The organizers provided one neural and one non-
neural baseline system. The neural system, Neural,
is a character-level transformer (Wu et al., 2021). It
is identical to the system CHR-TRM which was used
in the 2021 task. The non-neural system, NonNeur,
is identical to the non-neural baseline made avail-
able in 2020 and 2021.8

6 Submitted Systems

CLUZH (Silvan Wehrli and Makarov, 2022):
The CLUZH team adapted their earlier model,
character-level neural transducer, to work on large
datasets (Makarov and Clematide, 2020). The
model has previously shown superior performance,
especially in low-resource scenarios. This year, the
team optimized the training procedure using mini-
batches. They only relied on the teacher-forcing ap-
proach, i.e., using gold labels rather than what was
predicted during the training phase. Morphosyn-
tactic features were treated individually, and their
embeddings were summed. The team explored per-
formance of the model across various task settings
and demonstrated its ability to capture feature be-
haviour better than other team’s models, especially
in the small training condition. The system is iden-
tical to the one submitted to this year’s acquisition-
inspired subtask (Kodner and Khalifa, 2022).
OSU (Elsner and Court, 2022): OSU’s system
is identical to the one submitted to this year’s
acquisition-inspired subtask. This inflection sys-
tem is a transformer whose input is augmented
with an analogical exemplar model showing how
to inflect a different word into the target cell. In
addition, alignment-based heuristic features indi-
cate how well the exemplar is likely to match the
output. The system works only when examples of
the target cell are present in the training set and
can serve as exemplars; otherwise, it outputs the

8Available here: https://github.com/sigmorphon/
2022InflectionST/tree/main/baselines/nonneural

lemma as a placeholder. Thus, the system’s scores
are expected to be higher for the feature overlap
and both overlap evaluation categories and very
low when the target cell is unknown.

TüMorph-Main (Merzhevich et al., 2022): Tü-
Morph’s neural system is a modification of the
character-level adaptation of transformer to mor-
phology from Wu et al. (2021). In particular, the
team trained the transformer to predict a distribu-
tion over states of FST (whose states are characters)
rather than character sequences themselves. The
model is scored third on both the small and large
training settings.

TüMorph-FST (Merzhevich et al., 2022): As their
second submission, the team manually developed
FSTs using grammars and corresponding UnMorph
repositories. Since that requires more human
labour and linguistic competence, the team focused
only on three languages: Chukchi, Kholosi, and
Upper Sorbian. The resulting FST models outper-
formed all other submitted systems on two of three
languages. The authors confirm earlier observa-
tions from Beemer et al. (2020) that such systems
are able to reach superior results compared to neu-
ral ones, especially in low-resource scenarios and
high morphological complexity, but require sub-
stantially more human working hours.

UBC (Yang et al., 2022): The UBC team proposed
enriching the character-level transformer of Wu
et al. (2021) with reverse positional embeddings
to better account for suffixing, one of the most
common word formation processes. In addition,
the team explored a synthetic data augmentation
technique proposed by Anastasopoulos and Neubig
(2019) and student-forcing (Nicolai and Silfver-
berg, 2020), a training strategy where the model
outputs are replaced with gold labels for some per-
centage of samples to alleviate exposure bias. Data
augmentation leads to significant improvements, es-
pecially in the small training condition, confirming
its utility. The student forcing training also pro-
vides a certain accuracy gain but presents mixed
results when used together with data hallucination.

Flexica (Scherbakov and Vylomova, 2022) is
a modified version of the non-neural system sub-
mitted to the SIGMORPHON 2020 Shared Task
on morphological reinflection (Scherbakov, 2020).
The system is based on refined alignment pat-
terns between lemmas and inflected forms. In this
year’s submission, grammatical tag interchange-
ability learning was added to address smaller fea-
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Train/Dev/Test Split Sizes Test/Small Train Overlaps Test/Large Train Overlaps
Language #Small #Large #Dev #Test #Both #Lemma #Feats #Neither #Both #Feat #Lemma #Neither

ang 700 7000 866 1969 158 217 815 779 697 821 278 173
ara 700 7000 988 1995 84 93 843 975 549 529 447 470
asm 700 7000 996 1990 416 498 558 518 979 990 12 9
bra 700 – 365 734 64 161 146 363 – – – –
ckt 167 – 22 46 0 16 1 29 – – – –
evn 700 7000 959 1743 1 519 2 1221 3 1065 0 675
gml 700 – 229 358 42 316 0 0 – – – –
goh 700 – 986 1877 713 800 199 165 – – – –
got 700 7000 994 1994 146 174 836 838 825 795 169 205
guj 700 – 994 1941 764 823 204 150 – – – –
heb 700 7000 1000 2000 419 454 581 546 1000 1000 0 0
hsb 240 – 40 80 0 13 3 64 – – – –
hsi 70 – 15 30 1 18 0 11 – – – –
hun 700 7000 1000 2000 40 40 949 971 308 315 692 685
hye 700 7000 1000 2000 145 158 838 859 678 715 322 285
itl 700 – 572 1083 85 191 449 358 – – – –
kat 630 7000 1000 2000 162 406 721 711 816 832 184 168
kaz 700 7000 998 1994 375 510 609 500 966 992 28 8
ket 700 – 85 137 13 48 14 62 – – – –
khk 700 7000 996 1980 205 284 788 703 976 985 17 2
kor 700 7000 987 1964 221 245 748 750 886 925 83 70
krl 700 7000 998 1996 148 174 844 830 804 816 192 184
lud 700 7000 991 1976 87 105 880 904 775 297 212 692
mag 700 – 215 430 45 107 105 173 – – – –
nds 700 – 963 1900 813 936 106 45 – – – –
non 700 7000 992 1991 362 442 609 578 931 964 61 35
pol 700 7000 1000 2000 8 11 847 1134 61 70 939 930
poma 700 7000 921 1999 17 14 980 988 169 172 830 828
sjo 700 – 350 1857 184 286 754 633 – – – –
slk 700 7000 1000 2000 4 5 869 1122 56 47 944 953
slp 240 – 40 79 2 56 3 18 – – – –
tur 700 7000 1000 2000 333 575 469 623 874 869 126 131
vep 700 7000 995 1993 42 58 936 957 412 428 583 570

Table 5: Training, development, and test data sizes along with overlap sizes between small training and test and
between large training and test. Items were exlcuded post-hoc from dev and test if there were multiple triples with
the same lemma and features.

ture overlap. The system learns transformation
patterns based on maximal continuous matches be-
tween lemma and inflected forms. The extraction
of a pattern from an inflection sample starts with
finding the longest common substring and then re-
currently continues to the remaining parts until no
more common characters can be found. Then, each
of such extracted patterns is augmented with a set
of more concrete patterns. Concrete patterns are
produced from abstract ones by replacing some
‘wildcard’ characters back with concrete characters
observed in a training sample. At prediction time,
an inflected form is inferred by choosing a pattern
that matches the respective lemma and yields a
maximum score.

7 Results and Evaluation

Performance was evaluated by exact match accu-
racy. Macro-averages across languages on the en-
tire test set and partitioned over the four overlap
types are provided in Table 6. Results by language
for both small and large training conditions are
provided in Tables 14-18 in Appendix B.

A few points stand out immediately. First, over-
all performance is much lower this year compared
to last year’s similar task. During the 2021 iteration,

all systems achieved over 90% accuracy on most
of languages, while this year, no system achieves
over 72% average in either training condition. This
task was designed to be particularly challenging
because the test set required systems to make pre-
dictions with only partial information. The results
bore out this expectation.
Flexica, the only general non-neural submit-

ted system, surpasses the non-neural baseline, but
does not surpass 40% overall accuracy in either
training condition. Being a hand-built system,
TüMorph-FST outperformed all other systems on
two of three languages that it was developed for.

As expected, all systems that submitted full or
nearly full predictions for both the small and large
training conditions performed substantially better
with more training data. CLUZH, TüMorph-Main,
UBC, and the neural baseline each improved by over
ten points, while Flexica and the non-neural base-
line showed smaller gains of around four points.
UBC achieved the highest performance of any

system in either training condition. To understand
why this is, it is necessary to look at a breakdown
of performance by overlap type. The system is
more resilient to novel feature sets than any other
except for the hand-built FSTs.
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Small Training Condition Large Training Condition
System Overall Both Lemma Feature Neither Overall Both Lemma Feature Neither
CLUZH 56.871 77.308 31.269 77.966 43.255 67.853 90.991 41.425 87.171 60.300
Flexica 34.406 59.503 6.390 61.616 14.562 38.243 66.846 4.985 73.007 21.337
OSU 47.688 79.310 8.565 82.308 44.133 46.734 89.565 4.843 85.308 16.768

TüM-FST 67.308 100.00 55.319 75.000 72.115 – – – – –
TüM-Main 41.591 58.907 18.597 62.469 27.613 57.627 77.995 34.916 76.009 48.720

UBC 57.234 75.963 35.519 74.201 46.060 71.259 89.503 50.583 85.063 66.224
Neural 47.626 65.027 24.929 66.539 35.601 62.391 80.462 42.166 77.627 55.563
NonNeur 33.321 58.475 5.566 59.969 14.431 37.583 67.434 4.843 72.283 16.768

Table 6: Macro-average accuracy for each system. Three systems (OSU, TüMorph-Main, and TüMorph-FST) only
submitted predictions for a subset of languages in the small training condition, so their numbers (italicized) are not
directly comparable to the others. Flexica and NonNeur are non-neural.

7.1 Analysis by Overlap Partition

A breakdown by overlap partition reveals some con-
sistent trends. As expected, neither overlap items
proved challenging, since systems had to infer the
forms for simultaneously novel lemmas and novel
feature sets. Surprisingly, all systems performed
better on neither overlap items than lemma overlap
items. It is not clear why this would be, since it
is observed on average for many but not all of the
tested systems. It may be an artifact of the data
splitting algorithm favoring balancing feature over-
lap over lemma overlap. However, the results are
consistent with the observation over the 2018 data
that systems struggle generalizing across feature
sets more so than generalizing over lemmas.

They perform better on generalizations across
lemmas to such an extent that the proportion of
items with feature overlap in the test set washes
out the effect of seen and unseen lemmas. Tables
7-8 illustrate this point quantitatively. Table 7 com-
pares average performance on test items with fea-
ture sets attested in training (both overlap ∪ feature
overlap items) with test items with novel feature
sets (neither overlap ∪ lemma overlap items). All
systems perform better on items with attested fea-
ture sets, but the gap in performance varies greatly
from UBC’s 32 points in the small training condition
to OSU’s 79 points in the large training condition.
OSU’s drop in performance is expected because it
outputs the lemma when the feature set is unknown.
In these cases it makes correct predictions exactly
when the inflected form is identical to the lemma,
pointing to a degree of syncretism in the data.

Table 8 shows the same, but for test items with
lemmas attested during training both overlap ∪
lemma overlap items) and test items with novel fea-
ture sets (neither overlap ∪ feature overlap items).
Every system actually performs worse on the at-
tested lemma items than the novel lemma items.

The penalty of novel feature sets overpowers gains
incurred by attested lemmas.

Features Small Train Large Train
System Seen Novel Seen Novel
CLUZH 77.790 39.417 89.753 47.874
OSU 80.573 21.174 88.186 8.918

TüM-FST 80.000 66.887 – –
TüM-Main 61.521 24.797 77.351 39.633

UBC 74.672 42.684 88.064 55.928
Flexica 60.916 12.894 68.757 10.614

Table 7: Macro-Average performance for submitted sys-
tems on test items with attested feature sets (both over-
lap and feature overlap) and items with novel feature
sets (lemma overlap and neither overlap types). Itali-
cized small training results were calculated over partial
submissions.

Lemma Small Train Large Train
System Seen Novel Seen Novel
CLUZH 50.175 59.690 65.399 72.764
OSU 38.248 62.811 45.821 48.560

TüM-FST 56.250 72.222 – –
TüM-Main 35.442 44.116 55.752 61.378

UBC 52.128 59.384 69.407 74.962
Flexica 28.629 37.309 35.378 44.300

Table 8: Macro-Average performance for submitted sys-
tems on test items with attested lemmas (both overlap
and lemma overlap) and items with novel lemmas (fea-
ture overlap and neither overlap types). Italicized small
training results were calculated over partial submissions.

Tables 6-7 together elucidate a clear difference
between CLUZH and UBC. While the former outper-
forms the latter on items with seen feature sets, the
latter outperforms the former on itsems with novel
feature sets. This means that UBC outperformed
CLUZH on this data set because it is better suited
for generalization to unseen features, something
that would likely been hidden if tested on previous
years’ data.

However, there is a sense in which testing on
items with novel feature sets is not entirely fair for
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all languages. In highly fusional languages in par-
ticular, it may not actually be possible to predict
the mapping from a set of semantic features to a
particular inflection given what is known about the
member features. On the other hand, it should be
solvable for a canonically agglutinative language
where each member feature contributes one piece
of the inflected form like “beads on a string.” Thus,
it could be possible that the lower aggregate perfor-
mance observed on novel feature test items is not
due to a failure of generalization in the systems but
rather the impossible nature of the task.

Table 9 tests this hypothesis. It shows average
performance only on languages considered to be
primarily agglutinative: Chukchi, Evenki, Geor-
gian, Hungarian, Itelmen, Karelian, Kazakh, Ket,
Korean, Ludic, Mongolian, Turkish, Veps, and
Xibe. Further information can be gleaned from
performance on each language individually as re-
ported in Tables 14-18 in Appendix B.

In principle, a system should be able to infer the
appropriate morphological operations for unseen
feature sets in these languages, as was illustrated
for Turkish in Table 1. While this is not a perfect
test, since real agglutinative languages also contain
some morphological eccentricities which obscure
predictability, “could an undergraduate solve it?”
does apply. It provides a clear result: the gap be-
tween performance on test items attested and novel
features does not generally improve even for these
languages where it should, if the unfairness of the
task were driving decreased performance on fu-
sional languages. This shows that generalization
to novel feature sets, that is, to previously unat-
tested inflectional categories, remains a legitimate
concern for nearly all the systems.

7.2 Results by Part-of-Speech

As in previous years, the data employed for this
task contains items from several parts-of-speech.
Languages vary considerably in how much inflec-
tion they apply to different POS categories. As
such, collapsing over POS categories can obscure
interesting patterns. Tables 19-26 provide results
for test items tagged with the four most common
part-of-speech features in this year’s data: verb (V),
noun (N), adjective (ADJ), and participle (V.PTCP).
Given the overall challenging nature of this year’s
task, performance across POS categories is gener-
ally weaker than what was reported for last year.

Features Small Train Large Train
System Seen Novel Seen Novel
CLUZH 78.837 34.118 90.198 40.657
OSU 77.800 30.376 88.497 13.456

TüM-FST 100.00 17.778 – –
TüM-Main 61.730 14.816 74.667 29.433

UBC 75.994 39.232 89.213 49.799
Flexica 60.885 11.386 69.173 10.094

Lemma Small Train Large Train
System Seen Novel Seen Novel
CLUZH 44.850 56.649 62.082 66.201
OSU 30.012 61.435 45.315 53.753

TüM-FST 6.250 26.667 – –
TüM-Main 28.956 37.569 48.871 53.093

UBC 50.439 57.022 67.471 68.427
Flexica 22.361 36.604 35.123 41.965

Table 9: Macro-Average performance for submitted
systems on seen and unseen feature and lemma items
for agglutinative languages only. Compare to Tables
7-8. Italicized small training accuracies were calculated
over partial submissions.

8 Error Analysis by Language

This section contains qualitative error analysis for
six languages from five different top-level families.

8.1 Arabic
As shown in Table 17, none of the systems out-
performed either of the baselines in the overall
partition in the large training setting.

15% of the lemmas in the test set were not in-
flected correctly by all the systems. Nouns (N)
made up the majority of those errors (47.8%). Fo-
cusing on the noun majority, errors included in-
accurate plurals, minor orthographic errors, and
“reasonable” confusion of different state and pos-
session features. The plural inflection errors follow
a similar pattern to those in this year’s acquisition-
inspired subtask. See Kodner and Khalifa (2022)
for more in-depth analysis. Orthographic errors in-
clude minor common mistakes resulting from miss-
ing orthotactic operations or an alternative spelling
in the gold form. Lastly, there seems to be some
confusion between SPEC, DEF, PSSD tags9 in the
dual and masculine plural forms since both those
suffixes inflect for case and state. This confusion
is mainly due to the existence of possible different
forms of the same lemma sharing the same feature
set or vice versa in the training data.

On the other hand, all systems correctly inflected
29% of the lemmas. In this case, 55% of those

9For more details about the state, case, and possession tags,
please see the mapping description here: https://github.
com/unimorph/ara#ara_atb
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cases are adjectives (ADJ). This is not very surpris-
ing since adjectives in Arabic are more regular than
nouns in pluralization in particular. Most of the
plurals in this set are those ending with the femi-
nine plural suffix, which does not inflect for case
and state the same way the masculine plural suffix
does. On the other hand, most of the masculine
adjectives are singular and therefore the case and
state inflections are easier.

In the small training setting, systems follow a
similar trend, shown in Table 14. However, there
is a higher percentage of verbs (V) among the lem-
mas that all systems inflected incorrectly. This is
expected since verbal paradigms in Modern Stan-
dard Arabic tend to be very large in size, therefore,
more sparsity in smaller training sets.

8.2 Armenian

Armenian orthography is quite close to the pro-
nunciation of words. But all four models had is-
sues when the triggers for inflectional allomorphy
were from phonology, semantics, or morphological
classes.10

The different learning models had problems in
respecting the rather close correspondence between
the orthography and phonology. For example,
given a word with a final orthographic <a> like
<anjnya> ‘personable’, adding a vowel-initial suf-
fix sequence like -i-s (-GEN-POSS2SG) triggers a
glide in both the orthography and pronunciation:
<anjnyayis>. All four models incorrectly generated
a glideless form for this word <*anjnyais>.

There were also cases of transparent
phonological-conditioned allomorphy that
caused errors. The definite suffix is <-n> after
vowels, but <-@> after consonants. Given a
vowel-final word like <moṙeni> ‘raspberry,’ the
definite form should thus be <moṙenin>, yet
all four models made some type of error. The
Flexica model used an entirely different ablative
suffix -ic’, while the other three models used the
wrong definite allomorph -@. This allomorphy rule
is exceptionless and is fully transparent from the
reformed Armenian orthography. These errors
suggest that the models didn’t fully exploit the
phonological properties that are reflected in the
orthography. It is possible that such errors would
reduce if the models incorporated some level of

10Transliteration is the Hübschmann-Meillet-Benveniste
(HMB) system: https://en.wiktionary.org/wiki/
Wiktionary:Armenian_transliteration. Forms in
<angled brackets> are transliterations.

phonological information, such as by making
the input forms be transcribed forms, and by
having the models have a priori knowledge of
cross-linguistic phonological feature systems.

Some errors were unavoidable and are due to
phonology-semantics interactions. The plural suf-
fix is <-er> after monosyllabic words, but <-ner>
after polysyllabic words. For example, the mono-
syllabic word <nyut’> ‘material’ takes the plural
<nyut’-er>. But if a word is an endocentric com-
pound, then the plural suffix must count the num-
ber of syllables in the second stem of the word
(the head). For example, the word <šparanyut’>
‘makeup’ is an endocentric compound of <špar>
‘makeup’ and <nyut’>. Its plural unambiguously
takes -er because of the transparent semantic con-
nections between the compound and the monosyl-
labic second stem. But all four models incorrectly
generated the polysyllabic-selecting suffix -ner. It
is not surprising that all four models made errors of
this type. To avoid such errors, the models would
need access to semantic information of the com-
pound, and to also access the semantics of other
words in the lexicon (the stems).

Some errors were due to purely morphologi-
cal under-learning. Armenian has many differ-
ent declension and conjugation classes. The dif-
ferent models made over-regularization mistakes,
whereby they used regular inflectional suffixes over
irregular ones. Sometimes the use of a suffix trig-
gers morphological alternations in the stem. The
models however preferred to keep the shape of the
stem constant. Such ‘mistakes’ are common in
colloquial speech, but they are absent in the pre-
scriptive declension patterns that the Wiktionary
data uses.

8.3 Hungarian

The richness of the Hungarian inflection system
made prediction hard for all systems. While most
errors show failures of generalization, many are
attributable to genuinely hard, i.e., irregular or
weakly systematic, forms of inflection. Mistakes
due to vowel harmony are very frequent, as the vow-
els to be used in inflections are often unpredictable
and can only be judged in terms of frequency in
everyday use. Thus, *megtilt+enélek is clearly
ungrammatical (it should be megtilt+análak), but
forms such as szellős+ök or objektív+től, not
present in the gold standard, are actually used.
Another recurrent mistake is the presence or ab-
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sence of the -j- in possessives where, again, sys-
tematicity is weak: in siketfajd+(j)a, the form with-
out the -j- is not acceptable, but in other cases
(hangár+(j)aitok, tranzisztor+(j)a) native speakers
may accept either form. Unsurprisingly, all sys-
tems tended to fail over irregular inflections, such
as hard-to-predict (but frequently used) inflectional
classes, such as low vowel nouns (singular út but
plural utak) or v-stems (singular ló but plural lo-
vak). Finally, homonymy can also explain apparent
mistakes, such as szél that means both wind and
edge: in the first case its plural is szelek while in
the second case it is szélek.

8.4 Khalkha Mongolian

Mongolian inflectional suffixes are highly unam-
biguous given a lemma’s POS feature. Every inflec-
tional suffix often belongs to only one morpholog-
ical feature (Denwood, 2011; Munkhjargal et al.,
2016). For example, Mongolian -iin belongs only
to the genitive case while German -s suffix has two
meanings by making the inflectional forms of ei-
ther the genitive case or plural nouns. In this sense
of low ambiguity, it is not surprising to see that the
all participating systems have zero accuracy over
the lemma overlap settings in Tables 15 and 18.

8.5 Polish

Performance on Polish was decent overall. In
the small training condition, CLUZH managed to
achieve nearly 91% on the lemma overlap items.
While number decreased to 84% in the large train-
ing condition, which likely suggests that the lemma
overlap test partitions contained coincidentally
easy items, it does demonstrate generalization. Not
all systems succeeded on the lemma overlap items.
OSU, Flexica, and the non-neural baseline showed
the usual performance drop.

Masculine genitive singular inflection proved
challenging. There are two possible endings, -u
and -a, but their distribution is unpredictable. As a
classic example of paradigmatic gaps, native speak-
ers themselves frequently disagree on which ending
to apply (Dąbrowska, 2001). Then it is unsurpris-
ingly that systems sometimes predict the wrong
ending. For example CLUZH produced *przystępa
for przystępu as the genitive singular of przystęp.
It also produced filungu instead of filunga as the
genitive singular of filung, which is a known vari-
ant form in the language, but not the one presented
in the gold standard data.

Systems also confuse masculine and feminine
forms or inflect the wrong case. They also misapply
yers, or palatalization, a pervasive process in Polish
and in Slavic more generally. These types of errors
were also identified in an error analysis of the 2017
task in Gorman et al. (2019). See that paper for
more information.

8.6 Turkish

Turkish exhibits both front/back and rounding har-
mony. Harmony mismatches are a major source
of errors on the language. For example, Flexica
produces *dokumalisin, a front/back violation for
expected dokumalısın, and CLUZH produces a round-
ing violation *yoldurtmışım for yoldurtmuşum.
Flexica, the only non-neural submitted system
particularly strugged in this area.

Voicing assimilation, which can occur intervo-
calically and at some morpheme boundaries, also
proved to be challenging. For example, Flexica
and CLUZH, the stem çıldırt- ends in voiceless stop,
therefore the consonant of the following past tense
suffix should be devoiced and realized as [t], how-
ever, in these three systems it remains [d], thus
resulting in forms like *çıldırtdım mı for expected
çıldırttım mı. CLUZH and Flexica do not perform
intervocalic voicing for akrebinizi from akrep and
instead produce *akrepinizi. Similarly no system
except for TüMorph-Main correctly produces asidi
from asit. They instead produce *asiti. Related
to this, systems sometimes fail to insert epenthetic
glides between vowels in hiatus.

Sometimes systems produce commission errors,
substituting a morpheme with one absent in the
feature set. For example, for CLUZH in the small
training condition, the case marking is wrong for
the lemma balta: instead of producing the genitive
-ın, it adds the ablative -dan even though the GEN

feature is present. The same issue holds in quite a
few lines as well. For example, for Flexica, the
features contain GEN, but the system generates it
with dative case (along with a vowel harmony error
as in Hungarian), thus producing *havai fişeklara
instead of the expected form havai fişeklerin. All
systems struggle significantly on items with unseen
feature sets. This is interesting, because Turkish
should have been one of the languages most con-
ducive to generalization over unseen feature sets.
The systems may not be associating the features in
a set with their corresponding agglutinative realiza-
tions.
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9 Discussion

This year’s shared task investigated two dimensions
of generalization in morphological inflection: gen-
eralization over lemmas and generalization over
inflectional categories. Test items with lemmas or
feature sets that were attested in training were eval-
uated separately from those with novel lemmas or
feature sets to gain a better understanding of gener-
alization. This proved to be a challenging version
of the task, as performance is substantially lower
across systems compared to previous years.

We carried on the tradition of including a range
of typologically diverse languages in the task.
From the perspective of the two dimensions of
generalization, different morphological paradigms
could prove more or less challenging. In partic-
ular, it is more reasonable to expect a system to
generalize to an unseen feature set if the form of
the corresponding inflectional category is in some
way derived from forms associated with each of the
member features. Similarly, a language with rela-
tively invariant stem forms and little unpredictable
stem-conditioned realization of inflectional cate-
gories should be conducive to generalization across
lemmas, while a language with more stem changes
or lexically arbitrary inflectional classes should
prove more challenging.

Two major patterns emerged which held across
systems. First, overall averages were lower than
previous years in which overlaps between lemmas
and features in training and test were left uncon-
trolled. The task was challenging. Second, perfor-
mance test items with novel feature sets was almost
uniformly weaker than performance on test items
with novel lemmas. This was true for all systems
and still held true for agglutinative languages which
stood the best chance of generalization across fea-
ture sets.

9.1 Implications for Future Work

The results of this year’s shared tasks have some
implications for future systems and future shared
tasks. First, since overlap type has a major ef-
fect on performance, cross-linguistic differences
in performance in morphological inflection tasks
may sometimes be driven by these distributions
rather language-internal. Since these overlaps
were hardly evaluated in previous years, a reanal-
ysis of prior years’ shared tasks along these lines
may uncover interesting results. Related to this,
train/test/dev splits created by uniform sampling

of UniMorph will not only lead to uncontrolled
overlap ratios, but will tend to drive feature overlap
unrealistically high when training sets are large.
This year’s shared task provided an algorithm to
make splits more uniformly with respect to overlap
types, and it is recommended that future tasks also
control for and separately analyze overlap types.

Second, both lemmas and inflectional categories
are sparsely distributed in natural language use.
As a result, systems in use in the real world will
likely be asked to produce inflections for which
lemmas or feature sets were not previously attested
in their training. As focus grows on low-resource
languages and language revitalization, a wide range
of morphological typologies, including polysyn-
thetic systems, will have to be reckoned with. The
ability to generalize to unseen feature sets will be-
come increasingly critical. Yet, there is a general
weakness in generalization across inflectional cat-
egories in today’s systems. Every system showed
serious performance degradation. This was even
true for agglutinative languages. Nevertheless, sys-
tems do appear to have generalized to unseen fea-
ture sets to a significant degree, and CLUZH and
UBC, which showed similar overall performance,
differed in their ability to handle unseen feature
sets in particular. Thus, we believe there is reason
for optimism and that there are real-world perfor-
mance gains to be had by further developing this
type of generalization.
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Kieraś, Marcin Woliński, Totok Suhardijanto, Niklas
Stoehr, Zahroh Nuriah, Shyam Ratan, Francis M.
Tyers, Edoardo M. Ponti, Grant Aiton, Richard J.
Hatcher, Emily Prud’hommeaux, Ritesh Kumar,
Mans Hulden, Botond Barta, Dorina Lakatos, Gá-
bor Szolnok, Judit Ács, Mohit Raj, David Yarowsky,
Ryan Cotterell, Ben Ambridge, and Ekaterina Vy-
lomova. 2021. SIGMORPHON 2021 shared task
on morphological reinflection: Generalization across
languages. In Proceedings of the 18th SIGMOR-
PHON Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, pages 229–259,
Online. Association for Computational Linguistics.

Donald A Ringe. 2017. From Proto-Indo-European to
Proto-Germanic, volume 1. Oxford University Press.

Carol Rounds. 2009. Hungarian: An essential grammar.
Routledge.

Mohammad Salehi and Aydin Neysani. 2017. Recep-
tive intelligibility of Turkish to Iranian-Azerbaijani
speakers. Cogent Education, 4(1):1326653.

Andreas Scherbakov. 2020. The UniMelb submission
to the SIGMORPHON 2020 shared task 0: Typo-
logically diverse morphological inflection. In Pro-
ceedings of the 17th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 177–183.

Andrey Scherbakov and Ekaterina Vylomova. 2022.
Morphology is not just a Naïve Bayes! In Pro-
ceedings of the SIGMORPHON 2022 Shared Task:
Morphological Inflection, Seattle. North American
Chapter of the Association for Computational Lin-
guistics.

Simon Clematide Silvan Wehrli and Peter Makarov.
2022. CLUZH at SIGMORPHON 2022 Shared

193

https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://doi.org/10.18653/v1/W18-5816
https://doi.org/10.18653/v1/W18-5816
https://www.amazon.com/Kazakh-Verbs-Review-Guide-ebook/dp/B081XF612J/
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://aclanthology.org/L16-1412
https://aclanthology.org/L16-1412
http://sgjp.pl
https://doi.org/10.18653/v1/2021.eacl-main.163
https://doi.org/10.18653/v1/2021.eacl-main.163


Tasks on Morpheme Segmentation and Inflection
Generation. In Proceedings of the SIGMORPHON
2022 Shared Task: Morphological Inflection, Seat-
tle. North American Chapter of the Association for
Computational Linguistics.

Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl Eryani,
and Nizar Habash. 2018. An Arabic morphological
analyzer and generator with copious features. In Pro-
ceedings of the Fifteenth Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 140–150, Brussels, Belgium. Association for
Computational Linguistics.

Turkicum. 2019. The Kazakh Verbs: Review Guide.
Preceptor Language Guides, Online.

Francis Tyers and Karina Mishchenkova. 2020. Depen-
dency annotation of noun incorporation in polysyn-
thetic languages. In Proceedings of the Fourth Work-
shop on Universal Dependencies (UDW 2020), pages
195–204.

G.K. Verner. 1997. Jeniseiskije jazyki. Jazyki mira.
Paleoasiatskije jazyki., pages 169–177.

Ekaterina Vylomova, Jennifer White, Elizabeth Salesky,
Sabrina J. Mielke, Shijie Wu, Edoardo Maria
Ponti, Rowan Hall Maudslay, Ran Zmigrod, Josef
Valvoda, Svetlana Toldova, Francis Tyers, Elena
Klyachko, Ilya Yegorov, Natalia Krizhanovsky,
Paula Czarnowska, Irene Nikkarinen, Andrew
Krizhanovsky, Tiago Pimentel, Lucas Torroba Henni-
gen, Christo Kirov, Garrett Nicolai, Adina Williams,
Antonios Anastasopoulos, Hilaria Cruz, Eleanor
Chodroff, Ryan Cotterell, Miikka Silfverberg, and
Mans Hulden. 2020. SIGMORPHON 2020 shared
task 0: Typologically diverse morphological inflec-
tion. In Proceedings of the 17th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 1–39, Online.
Association for Computational Linguistics.
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A Lemma and Feature Overlap in 2018

Under the hypothesis that systems struggle at gen-
eralization to novel lemmas or feature sets, the
proportion of test items which are novel should
serve as a performance ceiling. Tables 2-3 show
an apparent ceiling effect for two closely related
highly agglutinative languages, Turkish and Azeri.
This appendix provides performance and ceiling
numbers for both lemma and feature overlap for the
best performing system on each language on the
low training size condition in the 2018 inflection
task (Cotterell et al., 2018). This condition was
chosen for illustration because it showed the most
language-to-language variation in overlaps.

Tables 10-11 show a ceiling effect for feature
overlap in the low training condition in 2018 task.
The best systems manage to surpass the hypothe-
sized ceiling for only 17 of 104 languages, most of
which are agglutinative. In contrast, lemma overlap,
shown in Tables 12-13, does not seem to produce
a ceiling effect. The best systems surpass it for 74
of 104 languages, which can only possible if the
systems possess a significant ability to generalize
to unseen lemmas.
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Language F Overlap% Acc% ∆

Adyghe 98.3 90.6 -7.7
Albanian 54.8 36.4 -18.4
Arabic 54.2 45.2 -9.0

Armenian 55.3 64.9 9.6
Asturian 65.2 74.6 9.4

Azeri 71.0 65.0 -6.0
Bashkir 98.0 77.8 -20.2
Basque 5.6 13.3 7.7

Belarusian 86.3 33.4 -52.9
Bengali 83.0 72.0 -11.0
Breton 74.0 72.0 -2.0

Bulgarian 66.1 62.9 -3.2
Catalan 86.9 72.5 -14.4

Classical Syriac 95.0 96.0 1.0
Cornish 68.0 40.0 -28.0

Crimean Tatar 98.0 91.0 -7.0
Czech 56.7 46.5 -10.2
Danish 96.2 87.7 -8.5
Dutch 95.2 69.3 -25.9

English 100. 91.8 -8.2
Estonian 70.3 35.2 -35.1
Faroese 85.7 49.8 -35.9
Finnish 58.1 25.7 -32.4
French 85.5 66.6 -18.9
Friulian 89.0 79.0 -10.0
Galician 73.0 61.1 -11.9
Georgian 93.8 88.2 -5.6
German 79.6 67.1 -12.5
Greek 57.7 32.3 -25.4

Greenlandic 100. 80.0 -20.0
Haida 45.0 63.0 18.0

Hebrew 82.4 56.7 -25.7
Hindi 38.8 78.0 39.2

Hungarian 78.9 48.2 -30.7
Icelandic 92.2 56.2 -36.0
Ingrian 100. 46.0 -54.0

Irish 82.7 37.7 -45.0
Italian 82.8 57.4 -25.4

Kabardian 99.0 92.0 -7.0
Kannada 74.0 61.0 -13.0
Karelian 88.0 94.0 6.0

Kashubian 100. 68.0 -32.0
Kazakh 100. 86.0 -14.0
Khakas 100. 86.0 -14.0
Khaling 22.0 33.8 11.8
Kurmanji 90.2 87.4 -2.8

Ladin 77.0 72.0 -5.0
Latin 52.3 33.1 -19.2

Latvian 80.1 57.3 -22.8
Lithuanian 65.4 32.6 -32.8
Livonian 73.0 35.0 -38.0

Lower Sorbian 75.9 54.3 -21.6

Table 10: Difference between proportion of 2018 test
set items with feature overlap and best performance
in the low training condition (Adyghe-Lower Sorbian).
Bolded rows indicate better percent correct than overlap.

B Full Results by Language

This section provides performance breakdowns by
overlap type for each individual language for both
small training (Tables 14-16) and large training (17-
18) conditions. Data partition sizes can be found in
Table 5.

Language F Overlap% Acc% ∆

Macedonian 79.2 68.8 -10.4
Maltese 99.0 49.0 -50.0

Mapudungun 88.0 86.0 -2.0
Middle French 86.7 84.5 -2.2

Middle High German 94.0 84.0 -10.0
Middle Low German 92.0 54.0 -38.0

Murrinhpatha 98.0 38.0 -60.0
Navajo 88.9 20.8 -68.1

Neapolitan 90.0 89.0 -1.0
Norman 88.0 66.0 -22.0

Northern Sami 69.1 35.8 -33.3
North Frisian 85.0 45.0 -40.0

Norwegian Bokmaal 99.3 90.1 -9.2
Norwegian Nynorsk 98.3 83.6 -14.7

Occitan 91.0 77.0 -14.0
Old Armenian 47.4 42.0 -5.4

Old Church Slavonic 97.0 53.0 -44.0
Old English 81.0 46.5 -34.5
Old French 65.8 46.2 -19.6
Old Irish 46.0 8.0 -38.0

Old Saxon 68.3 46.6 -21.7
Pashto 59.0 48.0 -11.0

Persian 54.7 67.6 12.9
Polish 75.9 49.4 -26.5

Portuguese 73.7 75.8 2.1
Quechua 21.4 70.2 48.8
Romanian 79.4 46.2 -33.2
Russian 80.2 53.5 -26.7
Sanskrit 68.9 58.0 -10.9

Scottish Gaelic 100. 74.0 -26.0
Serbo Croatian 34.5 44.8 10.3

Slovak 90.0 51.8 -38.2
Slovene 70.8 58.0 -12.8
Sorani 38.2 40.1 1.9
Spanish 82.7 73.2 -9.5
Swahili 39.0 72.0 33.0
Swedish 95.0 79.0 -16.0

Tatar 98.0 90.0 -8.0
Telugu 86.0 96.0 10.0
Tibetan 100. 58.0 -42.0
Turkish 39.6 39.5 -0.1

Turkmen 100. 90.0 -10.0
Ukrainian 85.4 57.1 -28.3

Urdu 41.3 72.5 31.2
Uzbek 75.0 92.0 17.0

Venetian 88.5 78.8 -9.7
Votic 94.0 34.0 -60.0
Welsh 88.0 55.0 -33.0

West Frisian 100. 56.0 -44.0
Yiddish 100. 87.0 -13.0

Zulu 43.5 33.0 -10.5

Table 11: Difference between proportion of 2018 test
set items with feature overlap and best performance in
the low training condition (Macedonian-Zulu). Bolded
rows indicate better percent correct than percent overlap.

C Performance by Part-of-Speech

This section provides performance breakdowns by
part-of-speech for both small training (Tables 19-
22) and large training (Tables 23-26) conditions.
Information on the four most common parts-of-
speech in the data overall: verbs V, nouns N, ad-
jectives ADJ, and participles V.PTCP is provided.
Results for TüMorph-FST are provided separately
in Table 27.
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Language L Overlap% Acc% ∆

Adyghe 4.6 90.6 86.0
Albanian 26.3 36.4 10.1

Arabic 3.4 45.2 41.8
Armenian 2.2 64.9 62.7
Asturian 22.0 74.6 52.6

Azeri 36.0 65.0 29.0
Bashkir 8.7 77.8 69.1
Basque 87.8 13.3 -74.5

Belarusian 10.2 33.4 23.2
Bengali 53.0 72.0 19.0
Breton 86.0 72.0 -14.0

Bulgarian 5.4 62.9 57.5
Catalan 5.5 72.5 67.0

Classical Syriac 47.0 96.0 49.0
Cornish 100. 40.0 -60.0

Crimean Tatar 4.0 91.0 87.0
Czech 3.4 46.5 43.1
Danish 3.2 87.7 84.5
Dutch 1.4 69.3 67.9

English 0.5 91.8 91.3
Estonian 12.8 35.2 22.4
Faroese 3.0 49.8 46.8
Finnish 0.2 25.7 25.5
French 1.6 66.6 65.0
Friulian 42.0 79.0 37.0
Galician 17.8 61.1 43.3
Georgian 3.0 88.2 85.2
German 0.8 67.1 66.3
Greek 2.1 32.3 30.2

Greenlandic 100. 80.0 -20.0
Haida 100. 63.0 -37.0

Hebrew 17.4 56.7 39.3
Hindi 33.1 78.0 44.9

Hungarian 0.6 48.2 47.6
Icelandic 2.2 56.2 54.0

Ingrian 94.0 46.0 -48.0
Irish 2.7 37.7 35.0

Italian 1.5 57.4 55.9
Kabardian 33.0 92.0 59.0
Kannada 51.0 61.0 10.0
Karelian 100. 94.0 -6.0

Kashubian 88.0 68.0 -20.0
Kazakh 100. 86.0 -14.0
Khakas 76.0 86.0 10.0
Khaling 18.1 33.8 15.7

Kurmanji 1.1 87.4 86.3
Ladin 47.0 72.0 25.0
Latin 0.9 33.1 32.2

Latvian 1.4 57.3 55.9
Lithuanian 9.3 32.6 23.3

Livonian 40.0 35.0 -5.0
Lower Sorbian 10.3 54.3 44.0

Table 12: Difference between proportion of 2018 test
set items with lemma overlap and best performance
in the low training condition (Adyghe-Lower Sorbian).
Bolded rows indicate better percent correct than overlap.

Language L Overlap% Acc% ∆

Macedonian 0.8 68.8 68.0
Maltese 54.0 49.0 -5.0

Mapudungun 100. 86.0 -14.0
Middle French 17.5 84.5 67.0

Middle High German 98.0 84.0 -14.0
Middle Low German 78.0 54.0 -24.0

Murrinhpatha 98.0 38.0 -60.0
Navajo 17.9 20.8 2.9

Neapolitan 96.0 89.0 -7.0
Norman 100. 66.0 -34.0

North Frisian 88.0 45.0 -43.0
Northern Sami 6.3 35.8 29.5

Norwegian Bokmaal 2.1 90.1 88.0
Norwegian Nynorsk 1.5 83.6 82.1

Occitan 43.0 77.0 34.0
Old Armenian 3.7 42.0 38.3

Old Church Slavonic 53.0 53.0 0.0
Old English 10.3 46.5 36.2
Old French 5.9 46.2 40.3

Old Irish 90.0 8.0 -82.0
Old Saxon 18.4 46.6 28.2

Pashto 35.0 48.0 13.0
Persian 30.3 67.6 37.3
Polish 1.6 49.4 47.8

Portuguese 2.2 75.8 73.6
Quechua 17.0 70.2 53.2

Romanian 4.0 46.2 42.2
Russian 0.4 53.5 53.1
Sanskrit 13.3 58.0 44.7

Scottish Gaelic 80.0 74.0 -6.0
Serbo Croatian 0.9 44.8 43.9

Slovak 10.4 51.8 41.4
Slovene 5.3 58.0 52.7
Sorani 52.5 40.1 -12.4

Spanish 2.5 73.2 70.7
Swahili 78.0 72.0 -6.0
Swedish 1.0 79.0 78.0

Tatar 5.0 90.0 85.0
Telugu 100. 96.0 -4.0
Tibetan 80.0 58.0 -22.0
Turkish 2.6 39.5 36.9

Turkmen 84.0 90.0 6.0
Ukrainian 5.9 57.1 51.2

Urdu 76.9 72.5 -4.4
Uzbek 100. 92.0 -8.0

Venetian 24.3 78.8 54.5
Votic 92.0 34.0 -58.0

Welsh 39.0 55.0 16.0
West Frisian 61.0 56.0 -5.0

Yiddish 7.0 87.0 80.0
Zulu 18.9 33.0 14.1

Table 13: Difference between proportion of 2018 test
set items with lemma overlap and best performance in
the low training condition (Macedonian-Zulu). Bolded
rows indicate better percent correct than percent overlap.
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Lang Partition CLUZH Flexica OSU TüM FST TüM Main UBC Neural NonNeur

ang overall 54.241 37.075 – – 45.962 51.346 49.822 33.215
both 70.253 58.861 – – 66.456 72.785 68.354 43.671

lemma 38.710 17.512 – – 34.562 38.710 42.396 8.756
features 70.307 61.350 – – 58.282 66.503 61.350 58.037
neither 38.511 12.709 – – 32.092 34.660 36.072 11.938

ara overall 66.566 32.581 – – 62.857 47.870 65.965 22.757
both 71.429 50.000 – – 67.857 60.714 75.000 39.286

lemma 63.441 9.677 – – 61.290 54.839 65.591 0
features 74.614 58.719 – – 71.530 52.313 70.700 47.568
neither 59.487 10.667 – – 55.077 42.256 61.128 2.051

asm overall 57.286 30.452 – – 38.995 55.025 54.673 26.231
both 74.760 57.692 – – 63.702 68.029 70.192 47.115

lemma 40.562 0 – – 23.494 44.177 47.189 1.807
features 72.043 65.591 – – 56.093 65.771 61.649 56.452
neither 43.436 0 – – 15.637 43.436 41.892 0.386

bra overall 60.354 58.856 57.902 – 53.134 56.131 55.041 57.902
both 26.562 26.562 25.000 – 21.875 25.000 28.125 21.875

lemma 21.739 17.391 18.012 – 16.770 22.360 20.497 18.012
features 74.658 76.027 71.233 – 67.808 68.493 66.438 72.603
neither 77.686 76.033 76.033 – 68.871 71.625 70.523 76.033

ckt overall 13.043 10.870 10.870 19.565 8.696 21.739 6.522 13.043
both 0 0 0 0 0 0 0 0

lemma 0 0 0 6.250 12.500 18.750 12.500 0
features 100.00 100.00 0 100.00 0 100.00 0 100.00
neither 17.241 13.793 17.241 24.138 6.897 20.690 3.448 17.241

evn overall 28.514 3.328 – – 23.867 34.481 29.260 25.014
both 100.00 100.00 – – 100.00 100.00 100.00 100.00

lemma 14.258 2.312 – – 15.992 22.736 21.580 9.441
features 50.000 50.000 – – 0 50.000 50.000 0
neither 34.480 3.604 – – 27.191 39.394 32.432 31.613

gml overall 56.704 26.257 20.950 – – 44.693 42.737 22.067
both 88.095 71.429 33.333 – – 88.095 97.619 40.476

lemma 52.532 20.253 19.304 – – 38.924 35.443 19.620
features – – – – – – – –
neither – – – – – – – –

goh overall 60.629 40.224 52.637 – 52.158 59.03 56.420 42.568
both 84.853 66.620 87.237 – 76.578 81.487 84.151 63.114

lemma 32.500 8.875 15.125 – 26.500 31.875 30.125 15.125
features 93.970 90.955 95.980 – 69.849 91.457 75.377 87.437
neither 52.121 16.970 32.727 – 49.697 54.545 41.212 32.727

got overall 51.204 18.154 – – 47.693 61.384 60.582 38.816
both 78.082 36.301 – – 81.507 89.041 86.986 72.603

lemma 26.437 5.747 – – 34.483 52.299 50.575 4.023
features 76.196 32.057 – – 68.660 78.349 76.675 71.292
neither 26.730 3.699 – – 23.628 41.527 42.005 7.757

guj overall 66.924 47.141 49.253 – 40.855 63.112 39.979 48.429
both 96.728 86.518 96.073 – 64.136 94.895 63.743 93.717

lemma 34.143 5.468 1.580 – 17.861 30.741 12.272 1.580
features 94.118 90.686 91.667 – 59.804 91.667 69.118 92.647
neither 58.000 16.000 14.667 – 22.667 40.000 31.333 14.667

heb overall 40.850 19.250 – – 31.150 35.150 39.650 14.750
both 77.804 44.630 – – 66.826 71.838 81.862 28.640

lemma 5.066 0.220 – – 0.881 0.441 1.322 6.167
features 74.182 33.907 – – 57.487 68.675 75.904 20.482
neither 6.777 0 – – 0.916 0.183 0.549 5.128

hsb overall 15.000 13.750 8.750 83.750 7.500 3.750 5.000 10.000
both – – – – – – – –

lemma 7.692 0 0 61.538 0 0 0 0
features 100.00 66.667 66.667 66.667 66.667 0 33.333 100.00
neither 12.500 14.062 7.812 89.062 6.250 4.688 4.688 7.812

Table 14: Partitioned test performance in the small training condition (ang-hsb). No feature overlap or neither
overlap items for gml and no both overlap items for hsb were included in the test set.
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Lang Partition CLUZH Flexica OSU TüM FST TüM Main UBC Neural NonNeur

hsi overall 16.667 13.333 20.000 96.667 0 13.333 0 20.000
both 0 0 0 100.00 0 0 0 0

lemma 11.111 5.556 16.667 94.444 0 16.667 0 16.667
features – – – – – – – –
neither 27.273 27.273 27.273 100.00 0 9.091 0 27.273

hun overall 60.000 25.900 – – 51.850 61.750 65.000 23.900
both 85.000 60.000 – – 85.000 85.000 90.000 52.500

lemma 40.000 0 – – 27.500 45.000 65.000 0
features 80.295 51.423 – – 71.338 80.400 78.925 47.313
neither 39.959 0.618 – – 32.441 43.254 50.360 0.824

hye overall 82.350 39.250 – – 61.450 86.250 64.750 38.750
both 95.862 80.690 – – 52.414 95.172 51.724 82.759

lemma 67.722 0 – – 43.038 74.684 45.570 3.165
features 91.050 79.714 – – 68.377 89.737 69.093 76.611
neither 74.272 0 – – 59.604 83.469 66.240 0.931

itl overall 33.333 31.210 31.487 – 33.056 34.441 34.257 28.163
both 42.353 41.176 43.529 – 47.059 43.529 48.235 28.235

lemma 3.141 0 0 – 3.665 6.283 6.283 0
features 65.702 65.702 66.370 – 60.802 62.138 59.465 61.247
neither 6.704 2.235 1.676 – 10.615 12.570 14.246 1.676

kat overall 59.200 34.350 – – 47.800 51.800 60.200 43.600
both 51.852 43.210 – – 51.852 48.148 57.407 53.704

lemma 16.995 3.695 – – 7.389 14.532 23.399 6.404
features 95.284 73.925 – – 92.372 90.430 93.620 94.730
neither 48.383 9.705 – – 24.754 34.740 47.961 10.689

kaz overall 61.735 34.203 – – 55.165 65.747 55.667 42.879
both 96.800 64.800 – – 83.467 96.800 83.467 85.611

lemma 36.471 1.569 – – 30.392 45.098 31.373 0
features 98.686 70.115 – – 94.745 97.701 95.567 100.00
neither 16.200 0.800 – – 11.000 24.600 11.000 0

ket overall 33.577 18.978 35.036 – 13.139 26.277 10.949 32.847
both 23.077 30.769 30.769 – 38.462 30.769 30.769 23.077

lemma 12.500 0 12.500 – 2.083 2.083 0 12.500
features 50.000 50.000 57.143 – 57.143 57.143 35.714 42.857
neither 48.387 24.194 48.387 – 6.452 37.097 9.677 48.387

khk overall 41.768 22.374 – – 39.495 29.899 41.616 28.182
both 83.902 48.293 – – 89.268 61.951 92.195 56.098

lemma 0 0 – – 0 0.352 0 0.352
features 83.122 43.655 – – 76.015 58.629 80.584 55.584
neither 0 0 – – 0 0.284 0 0.569

kor overall 50.509 30.957 – – 17.821 44.348 23.523 28.870
both 70.588 59.276 – – 41.176 57.466 54.299 55.656

lemma 33.061 0.408 – – 18.776 33.061 28.163 0
features 71.658 62.433 – – 20.989 62.968 25.134 59.358
neither 29.200 1.200 – – 7.467 25.600 11.333 0

krl overall 41.333 23.497 – – 10.421 45.842 16.182 5.411
both 68.919 37.838 – – 16.216 68.919 22.297 1.351

lemma 19.540 1.149 – – 2.299 27.011 9.195 0.575
features 63.389 45.735 – – 16.588 63.744 22.986 8.886
neither 18.554 3.012 – – 4.819 27.470 9.639 3.614

lud overall 87.702 88.006 – – 46.559 84.565 46.609 88.715
both 91.954 95.402 – – 93.103 93.103 91.954 96.552

lemma 18.095 16.190 – – 2.857 17.143 3.810 18.095
features 94.091 95.227 – – 93.977 95.114 93.409 95.909
neither 89.159 88.606 – – 0.996 81.305 1.659 89.159

mag overall 64.419 58.140 57.209 – 51.163 56.744 51.163 55.349
both 53.333 44.444 37.778 – 31.111 51.111 40.000 31.111

lemma 15.888 4.673 4.673 – 5.607 7.477 3.738 4.673
features 86.667 83.810 83.810 – 76.190 80.952 79.048 79.048
neither 83.815 79.191 78.613 – 69.364 73.988 66.474 78.613

Table 15: Partitioned test performance in the small training condition (hsi-mag). No feature overlap items were
included in the hsi test set.
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Lang Partition CLUZH Flexica OSU TüM FST TüM Main UBC Neural NonNeur

nds overall 47.789 31.316 34.947 – 21.947 50.421 25.789 16.053
both 65.560 46.863 72.079 – 38.376 67.897 43.665 32.226

lemma 32.799 16.239 1.603 – 7.906 36.859 10.256 1.603
features 57.547 48.113 59.434 – 29.245 52.830 34.906 26.415
neither 15.556 24.444 0 – 0 11.111 4.444 0

non overall 48.820 39.126 – – 47.313 52.436 55.902 30.638
both 61.602 50.276 – – 56.630 62.431 69.613 47.238

lemma 37.330 22.851 – – 47.738 49.548 58.824 5.430
features 63.054 61.248 – – 49.918 61.741 56.322 60.755
neither 34.602 21.280 – – 38.408 38.581 44.637 7.785

pol overall 71.800 43.300 – – 53.850 78.350 59.250 30.100
both 75.000 87.500 – – 100.00 100.00 100.00 87.500

lemma 90.909 9.091 – – 72.727 90.909 72.727 0
features 85.596 70.130 – – 61.393 86.423 65.289 68.123
neither 61.287 23.280 – – 47.707 72.046 54.321 1.587

poma overall 50.975 29.315 – – 45.873 46.023 51.426 22.311
both 70.588 64.706 – – 58.824 47.059 70.588 52.941

lemma 42.857 21.429 – – 42.857 35.714 50.000 0
features 61.020 44.694 – – 55.816 54.388 57.041 42.245
neither 40.789 13.563 – – 35.830 37.854 45.547 2.328

sjo overall 71.998 65.751 68.174 – 54.496 76.737 58.643 67.905
both 71.739 73.370 70.652 – 70.652 75.543 76.087 68.478

lemma 36.014 20.280 24.476 – 27.273 50.699 36.713 24.476
features 93.103 91.512 91.512 – 89.257 92.971 89.125 91.379
neither 63.191 53.397 59.400 – 20.695 69.510 27.172 59.400

slk overall 74.500 51.600 – – 56.05 84.100 61.000 38.450
both 75.000 75.000 – – 50.000 75.000 50.000 75.000

lemma 80.000 60.000 – – 80.000 80.000 80.000 20.000
features 87.457 83.774 – – 65.823 89.413 67.664 82.739
neither 64.439 26.560 – – 48.396 80.036 55.793 4.100

slp overall 29.114 8.861 6.329 – 12.658 30.380 15.190 5.063
both 100.00 100.00 100.00 – 100.00 100.00 100.00 100.00

lemma 25.000 3.571 0 – 10.714 28.571 16.071 0
features 66.667 33.333 66.667 – 33.333 33.333 33.333 33.333
neither 27.778 11.111 5.556 – 5.556 27.778 0 5.556

tur overall 61.250 18.350 – – 19.250 85.800 34.600 16.600
both 80.18 54.655 – – 17.718 95.796 28.228 51.952

lemma 58.957 0 – – 10.087 89.391 24.000 0
features 72.068 39.446 – – 37.740 85.501 51.173 31.983
neither 45.104 0 – – 14.607 77.368 35.313 1.445

vep overall 40.291 20.622 – – 27.446 42.097 35.575 21.325
both 54.762 47.619 – – 42.857 52.381 45.238 40.476

lemma 25.862 1.724 – – 15.517 32.759 24.138 1.724
features 56.624 40.598 – – 39.850 53.632 46.154 40.385
neither 24.556 1.045 – – 15.361 30.930 25.496 3.03

Table 16: Partitioned test performance in the small training condition (nds-vep).
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Lang Partition CLUZH Flexica OSU TüM Main UBC Neural NonNeur

ang overall 64.855 41.138 44.540 60.945 59.980 61.097 43.118
both 82.496 73.171 80.488 82.066 80.918 83.070 78.479

lemma 48.356 11.693 10.840 42.509 41.778 41.048 10.840
features 76.619 64.388 73.741 71.942 74.101 73.381 68.705
neither 53.179 14.451 12.717 45.665 39.306 47.977 12.717

ara overall 75.890 37.544 40.902 75.338 67.218 78.546 26.917
both 79.964 66.302 80.874 81.603 74.317 81.239 52.823

lemma 73.913 10.397 1.323 71.834 71.078 77.316 1.323
features 81.655 65.548 78.747 78.523 65.548 81.879 50.783
neither 67.872 7.872 2.766 68.936 56.170 73.617 2.766

asm overall 70.653 34.271 43.467 63.065 75.628 76.784 31.859
both 90.807 68.744 86.313 77.222 85.393 83.861 62.615

lemma 50.909 0 1.111 49.091 65.758 69.697 1.111
features 83.333 75.000 75.000 91.667 83.333 83.333 83.333
neither 33.333 0 0 22.222 88.889 77.778 0

evn overall 48.939 3.844 24.957 52.037 57.487 57.717 25.072
both 66.667 66.667 0 66.667 66.667 66.667 66.667

lemma 40.376 1.878 12.582 45.634 52.394 53.427 12.582
features – – – – – – –
neither 62.370 6.667 44.593 62.074 65.481 64.444 44.593

got overall 65.747 21.264 51.254 65.346 73.370 72.166 46.038
both 95.515 38.182 95.879 93.333 95.758 95.758 84.606

lemma 35.723 3.522 4.654 38.239 52.201 49.560 4.654
features 92.899 41.420 94.083 91.716 91.716 93.491 87.574
neither 40.000 5.366 17.073 36.098 50.244 47.317 17.073

heb overall 51.750 28.000 50.000 47.900 43.950 48.450 20.350
both 94.100 55.900 94.400 94.400 86.500 96.600 35.100

lemma 9.400 0.100 5.600 1.400 1.400 0.300 5.600
features – – – – – – –
neither – – – – – – –

hun overall 72.350 32.950 47.100 68.150 74.900 77.200 37.250
both 94.805 64.286 94.156 94.481 93.831 94.805 75.000

lemma 54.603 2.540 1.270 45.397 60.000 61.905 1.270
features 93.497 62.861 93.064 92.775 91.474 94.364 73.121
neither 49.051 2.628 0.584 41.898 56.496 58.978 0.584

hye overall 86.05 42.750 48.900 66.700 93.400 69.800 44.850
both 97.935 85.841 97.640 61.357 98.083 61.947 90.708

lemma 72.448 0 1.818 55.105 88.671 60.280 1.818
features 94.410 84.783 94.099 91.304 94.720 90.062 83.540
neither 82.456 0 0 80.702 92.632 89.474 0

kat overall 74.350 45.100 52.400 78.850 83.200 87.250 45.500
both 95.098 79.289 94.608 95.956 98.284 97.426 77.696

lemma 53.005 7.572 9.255 61.779 68.990 77.163 9.255
features 96.739 95.652 96.739 96.739 96.739 97.283 96.739
neither 54.762 9.524 12.500 60.714 65.476 76.786 12.500

kaz overall 58.375 34.203 49.198 53.611 65.747 55.667 42.879
both 96.170 67.702 98.758 89.959 97.516 90.683 85.611

lemma 20.867 0.806 0 17.44 34.375 20.867 0
features 100.00 71.429 96.429 96.429 92.857 96.429 100.00
neither 0 0 0 0 25.000 0 0

Table 17: Partitioned results on large training (ang-kaz). No feature overlap evn items and no feature overlap or
both overlap heb items were included in the test set.
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Lang Partition CLUZH Flexica OSU TüM Main UBC Neural NonNeur

khk overall 47.879 23.384 49.242 47.727 46.263 49.141 38.03
both 95.492 46.619 97.746 95.184 92.316 98.053 75.102

lemma 0 0 0.508 0 0 0 0.508
features 94.118 47.059 94.118 94.118 88.235 94.118 88.235
neither 0 0 0 0 0 0 0

kor overall 51.833 33.198 29.990 47.556 54.684 56.161 32.332
both 79.007 67.494 61.738 69.300 76.185 78.668 66.140

lemma 25.946 0.865 0 28.000 35.351 36.865 0
features 71.084 55.422 50.602 56.627 60.241 62.651 59.036
neither 27.143 0 0 20.000 31.429 18.571 0

krl overall 58.367 37.876 45.190 24.098 64.429 27.104 5.361
both 88.557 72.264 87.811 29.975 88.06 31.468 4.478

lemma 27.328 2.083 0.858 8.578 39.828 13.725 0.858
features 87.500 69.792 85.938 57.812 85.417 57.812 20.833
neither 33.696 13.043 13.043 32.065 48.370 35.326 13.043

lud overall 73.077 89.221 89.676 50.506 72.419 52.986 89.372
both 94.839 95.871 96.774 96.000 94.710 96.516 95.871

lemma 21.212 51.515 51.515 11.111 39.057 20.202 51.515
features 87.264 91.981 92.925 93.396 88.208 94.340 93.396
neither 66.618 97.110 97.110 3.324 56.936 5.636 97.110

non overall 76.896 47.162 48.016 79.759 87.243 84.982 37.318
both 90.763 68.743 90.548 89.796 93.340 92.374 67.991

lemma 63.900 25.207 5.705 70.851 82.054 78.838 5.705
features 85.246 77.049 85.246 80.328 90.164 88.525 80.328
neither 51.429 25.714 17.143 57.143 62.857 51.429 17.143

pol overall 86.500 52.850 47.800 67.700 90.950 69.450 43.600
both 91.803 78.689 90.164 77.049 95.082 78.689 85.246

lemma 84.286 15.714 0 71.429 87.143 68.571 0
features 96.060 85.942 94.888 74.015 95.740 74.441 86.262
neither 76.667 20.538 1.075 60.430 86.129 63.871 1.075

poma overall 60.430 33.867 36.568 58.829 61.481 63.882 24.462
both 73.373 48.521 74.556 69.231 69.822 75.148 40.828

lemma 46.512 12.791 1.744 47.674 50.581 59.884 1.744
features 76.145 54.458 70.120 69.398 73.253 74.096 47.831
neither 44.928 14.614 2.415 48.430 50.242 52.174 2.415

slk overall 85.550 58.250 47.400 65.750 93.950 70.100 47.450
both 87.500 87.500 89.286 57.143 89.286 57.143 87.500

lemma 89.362 44.681 2.128 51.064 95.745 57.447 2.128
features 93.538 90.042 92.161 70.445 95.657 71.081 92.373
neither 77.335 25.708 2.833 62.329 92.445 70.514 2.833

tur overall 87.200 35.600 48.500 33.600 94.150 39.650 36.400
both 97.941 72.654 96.224 36.041 98.398 37.414 72.654

lemma 80.667 0.345 0.230 23.360 93.326 31.415 0.230
features 93.651 57.937 95.238 80.159 92.857 79.365 66.667
neither 52.672 0.763 5.344 40.458 72.519 70.992 5.344

vep overall 57.451 30.457 36.929 44.104 62.268 48.821 32.413
both 75.485 58.01 72.330 55.825 70.146 57.039 64.078

lemma 42.757 1.402 1.402 25.935 54.907 33.879 1.402
features 71.527 58.834 69.983 57.461 68.782 59.177 60.377
neither 41.053 3.333 4.211 35.614 55.439 43.509 4.211

Table 18: Partitioned results on large training (khk-vep).
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Lang # CLUZH Flexica OSU TüM-M UBC

ang 483 43.478 36.025 – 32.091 58.799
ara 341 32.551 11.730 – 27.859 52.199
asm 809 38.072 14.339 – 31.397 51.545
bra 208 21.635 17.308 – 17.788 18.269
ckt 20 10.000 10.000 5.000 0 5.000
evn 504 5.952 0.794 – 12.103 30.556
gml 229 63.755 23.581 – – 93.886
goh 976 48.053 29.611 – 36.578 83.402
got 1003 41.874 19.541 – 36.491 80.160
guj 1214 57.908 36.903 – 28.007 93.987
heb 1729 43.493 18.681 – 33.372 79.294
hsb 21 4.762 0 71.429 0 0
hsi 19 10.526 5.263 100.00 0 15.789
hun 370 33.243 23.784 – 27.027 60.000
hye 764 74.215 37.696 – 26.702 96.859
itl 401 6.484 3.741 – 6.484 9.975
kat 453 5.519 5.298 – 6.402 47.461
kaz 576 72.222 23.438 – 56.771 92.188
ket 38 5.263 2.632 – 0 2.632
khk 78 1.282 6.410 – 1.282 30.769
kor 918 64.488 34.423 – 23.203 63.834
krl 1595 41.944 22.696 – 6.959 72.727
lud 903 85.050 86.157 – 1.661 91.251
mag 175 28.571 14.286 – 13.714 33.143
nds 880 43.523 37.273 – 28.636 75.114
non 585 41.709 34.188 – 39.316 60.000
pol 501 66.267 46.307 – 30.539 81.238

poma 747 54.217 27.711 – 49.665 63.989
sjo 297 29.630 10.438 – 35.690 56.902
slk 660 75.455 54.848 – 17.121 87.121
slp 63 26.984 6.349 – 12.698 57.143
tur 1446 65.698 19.018 – 11.549 91.978
vep 740 31.081 20.000 – 12.027 62.703

Table 19: Performance on verbs (V) in the small training
condition

Lang # CLUZH Flexica OSU TüM-M UBC

ang 342 68.421 49.708 – 52.632 57.895
ara 833 67.827 31.933 – 65.306 49.340
asm 1103 73.255 44.152 – 44.968 70.898
bra 368 79.076 79.620 – 71.739 73.913
ckt 14 0 0 21.429 14.286 21.429
evn 867 45.559 0.231 – 35.409 47.174
gml 16 50.000 31.250 – – 62.500
goh 839 77.116 54.470 – 71.514 75.924
got 206 34.466 12.136 – 28.155 43.204
guj 700 81.286 66.714 – 61.143 74.857
heb 226 28.761 27.434 – 20.354 28.761
hsb 37 16.216 10.811 91.892 8.108 2.703
hsi 5 40.000 40.000 100.00 0 20.000
hun 1287 64.180 28.127 – 55.245 63.403
hye 884 86.991 40.611 – 81.787 85.747
itl 217 49.309 50.230 – 54.839 54.378
kat 1505 74.684 42.724 – 59.801 64.518
kaz 1418 57.475 38.575 – 54.513 59.520
ket 44 18.182 15.909 – 18.182 20.455
khk 1847 44.721 23.714 – 42.285 32.052
krl 285 40.000 29.474 – 23.860 37.895
lud 878 91.230 90.774 – 90.319 91.344
mag 77 84.416 83.117 – 72.727 76.623
non 541 53.420 45.841 – 42.884 52.680
pol 259 63.707 69.884 – 55.212 65.251

poma 133 61.654 60.902 – 61.654 60.902
sjo 447 94.183 95.973 – 92.841 95.526
slk 111 65.766 63.964 – 54.955 63.063
slp 1 100.00 0 – 100.00 100.00
tur 538 50.929 16.543 – 40.335 73.978
vep 971 44.490 19.876 – 35.015 43.151

Table 20: Performance on verbs (N) in the small training
condition

Lang # CLUZH Flexica OSU TüM-M UBC

ang 1085 57.512 35.484 – 52.535 57.419
ara 821 79.415 41.900 – 74.909 59.440
bra 69 57.971 55.072 – 55.072 59.420
ckt 1 0 0 100.00 0 0
evn 49 24.490 8.163 – 38.776 59.184
gml 78 57.692 39.744 – – 50.000
got 309 59.547 12.945 – 58.900 67.961
hsb 18 22.222 27.778 77.778 16.667 5.556
hsi 4 0 0 75.000 0 0
hun 343 73.178 19.825 – 65.889 79.300
hye 315 94.603 38.730 – 89.206 93.651
itl 30 66.667 66.667 – 63.333 63.333
kat 42 83.333 47.619 – 64.286 73.810
ket 1 0 0 – 0 0
kor 221 69.683 42.534 – 21.267 57.466
krl 50 38.000 14.000 – 22.000 36.000
lud 105 92.381 92.381 – 92.381 90.476
mag 3 100.00 100.00 – 66.667 100.00
nds 887 49.605 21.082 – 13.191 55.919
non 652 50.920 35.583 – 56.748 58.896
pol 428 70.327 54.907 – 82.710 91.822

poma 242 66.529 54.959 – 58.678 60.744
sjo 2 0 0 – 0 50.000
slk 1142 75.569 48.862 – 77.758 87.916
tur 16 6.250 18.750 – 6.250 18.750
vep 233 54.506 26.180 – 45.064 57.082

Table 21: Performance on verbs (ADJ) in the small
training condition

Lang # CLUZH Flexica OSU TüM-M UBC

ang 59 0 1.695 – 0 0
asm 78 30.769 3.846 – 33.333 23.077
ckt 2 50.000 50.000 50.000 0 50.000
evn 30 0 0 – 0 0
gml 31 12.903 6.452 – – 12.903
goh 62 35.484 14.516 – 35.484 22.581
got 476 72.689 21.218 – 72.479 82.563
hun 12 25.000 33.333 – 33.333 8.333
hye 19 73.684 73.684 – 89.474 73.684
kor 127 63.780 45.669 – 15.748 48.031
krl 55 41.818 29.091 – 32.727 40.000
nds 133 63.910 60.150 – 36.090 55.639
non 213 50.235 46.479 – 51.643 53.521
pol 615 81.138 25.203 – 58.374 79.512

poma 875 42.400 18.857 – 36.800 37.371
sjo 246 33.333 15.041 – 25.203 40.244
slk 62 74.194 51.613 – 83.871 88.710
slp 8 50.000 25.000 – 12.500 50.000
vep 25 36.000 28.000 – 32.000 36.000

Table 22: Performance on verbs (V.PTCP) in the small
training condition

Lang # CLUZH Flexica OSU TüM-M UBC

ang 483 62.733 45.963 52.174 51.967 51.346
ara 341 65.396 21.408 37.243 65.982 58.651
asm 809 65.760 20.643 38.072 54.141 67.367
evn 504 33.532 0.595 0 36.706 37.698
got 1003 52.044 20.538 47.856 54.337 64.806
heb 1729 52.747 27.357 50.781 48.120 44.997
hun 370 56.757 31.622 48.919 53.514 58.378
hye 764 80.628 42.670 50.131 32.068 92.016
kat 453 71.082 16.777 39.735 84.768 91.391
kaz 576 62.674 23.438 40.625 54.688 81.076
khk 78 11.538 8.974 14.103 12.821 11.538
kor 918 64.815 38.562 37.255 61.547 70.044
krl 1595 58.621 37.743 44.389 14.420 63.699
lud 903 53.045 87.375 88.372 3.765 51.717
non 585 69.231 38.632 38.120 72.308 80.513
pol 501 79.641 51.497 41.717 36.926 81.637

poma 747 60.241 34.806 42.704 65.060 63.989
slk 660 87.273 60.606 46.515 23.788 93.030
tur 1446 92.600 38.036 48.548 22.407 97.994
vep 740 54.730 29.459 31.486 17.432 59.865

Table 23: Performance on verbs (V) in the large training
condition
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Lang # CLUZH Flexica OSU TüM-M UBC

ang 342 80.117 54.094 58.772 73.977 71.053
ara 833 72.389 37.935 34.454 71.909 61.825
asm 1103 76.156 45.603 47.235 71.079 83.409
evn 867 65.052 0.231 43.599 68.166 73.818
got 206 61.165 20.874 56.796 52.427 58.738
heb 226 54.425 38.496 53.982 55.752 44.690
hun 1287 73.660 34.266 49.728 69.852 75.913
hye 884 90.498 43.439 50.113 88.575 94.796
kat 1505 75.083 53.223 55.880 77.010 80.731
kaz 1418 56.629 38.575 52.680 53.173 59.520
khk 1847 50.731 24.689 52.084 50.514 49.053
krl 285 58.246 38.947 48.772 64.912 71.228
lud 878 91.230 92.027 92.141 93.508 92.141
non 541 78.373 51.386 59.704 73.752 83.549
pol 259 79.923 74.903 62.934 81.467 84.942

poma 133 74.436 70.677 60.902 73.684 80.451
slk 111 76.577 74.775 72.973 80.180 78.378
tur 538 72.862 29.182 48.513 63.941 83.829
vep 971 59.423 29.763 40.886 58.805 62.925

Table 24: Performance on verbs (N) in the large training
condition

Lang # CLUZH Flexica OSU TüM-M UBC

ang 1085 64.332 37.143 39.078 64.147 63.594
ara 821 83.800 43.849 48.965 82.704 76.248
evn 49 69.388 8.163 8.163 71.429 71.429
got 309 84.790 19.094 59.223 82.524 89.644
hun 343 84.257 29.446 35.277 77.551 88.921
hye 315 91.429 40.635 41.270 90.476 96.190
kat 42 83.333 59.524 64.286 80.952 83.333
kor 221 77.828 41.629 35.747 65.611 72.851
krl 50 64.000 36.000 54.000 68.000 70.000
lud 105 92.381 92.381 92.381 92.381 90.476
non 652 82.822 46.319 48.006 91.411 96.626
pol 428 83.645 58.645 55.140 96.028 99.065

poma 242 77.686 59.091 48.760 69.835 72.314
slk 1142 85.639 54.991 45.184 87.653 96.848
tur 16 81.250 31.250 43.750 25.000 93.750
vep 233 61.803 35.193 37.339 68.240 69.528

Table 25: Performance on verbs (ADJ) in the large train-
ing condition

Lang # CLUZH Flexica OSU TüM-M UBC

ang 59 3.390 0 0 0 0
asm 78 43.590 15.385 46.154 42.308 51.282
evn 30 3.333 0 0 10.000 16.667
got 476 84.244 24.370 50.840 82.983 87.185
hun 12 41.667 25.000 33.333 41.667 33.333
hye 19 78.947 78.947 78.947 94.737 78.947
kor 127 70.079 52.756 41.732 60.630 62.205
krl 55 50.909 41.818 50.909 52.727 49.091
non 213 76.056 62.441 45.540 79.812 86.385
pol 615 94.959 42.764 42.764 72.846 94.797

poma 875 53.829 20.571 24.343 48.343 53.600
slk 62 95.161 70.968 54.839 95.161 96.774
vep 25 52.000 44.000 48.000 52.000 64.000

Table 26: Performance on verbs (V.PTCP) in the large
training condition

Lang V N ADJ V.PTCP

ckt 5.000 21.429 100.00 50.000
hsb 71.429 91.892 77.778 –
hsi 100.00 100.00 75.000 –

Table 27: TüMorph-FST results by POS. TüMorph-FST
was only run on three languages, all in the small training
condition.
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Abstract

This paper describes our participation in the
2022 SIGMORPHON-UniMorph Shared Task
on Typologically Diverse and Acquisition-
Inspired Morphological Inflection Generation.
We present two approaches: one being a modi-
fication of the neural baseline encoder-decoder
model, the other being hand-coded morpho-
logical analyzers using finite-state tools (FST)
and outside linguistic knowledge. While our
proposed modification of the baseline encoder-
decoder model underperforms the baseline for
almost all languages, the FST methods outper-
form other systems in the respective languages
by a large margin. This confirms that purely
data-driven approaches have not yet reached
the maturity to replace trained linguists for doc-
umentation and analysis especially considering
low-resource and endangered languages.

1 Introduction

There are two tracks of the task of language Inflec-
tion Generation: Typologically Diverse Morpholog-
ical (Re-)Inflection and (Automatic) Morphologi-
cal Acquisition Trajectories. We only participate in
the first track, Typologically Diverse Morphologi-
cal (Re-)Inflection.

Here, the main goal is to predict inflected forms
of a word by given lemmas and sets of morpholog-
ical tags. In total, the task features 32 languages,
for several of which both a low-resource scenario
and a high resource scenario are proposed.

Our participation was split into two systems:
One is a modification of the encoder-decoder base-
line described in Wu et al. (2021), which is applied
to all languages and resource settings.1 The other
system is based on hand-coded finite-state trans-
ducers for Chukchi (ckt), Upper Sorbian (hsb), and
Kholosi (hsi).

The modification of the encoder-decoder base-
lines aims for better interpretability of predictions,

1Unfortunately, we failed to submit results for Middle Low
German (glm).

but underperforms the baseline on almost all lan-
guages. The finite-state approaches yield very
strong performance on the respective languages,
however, their creation may have accidentally vi-
olated the train set / test set separation by usage
of publicly available data UniMorph provided by
Kirov et al. (2018) while constructing the transduc-
ers.

2 Methodology

2.1 Data-Driven Approach

In order to enable more explicit control of pre-
dicted forms and better interpretability, we propose
a modification of the encoder-decoder baseline as
in Wu et al. (2021). The main idea is as follows:
We provide a directed graph whose states repre-
sent generated characters. Edges represent allowed
transitions. This graph could be a full FST, or
a simpler structure. Then, at each time-step, the
encoder-decoder model predicts a distribution over
states instead of characters as in the baseline model.
While the difference may seem negligible, we ar-
gue there are several reasons why formulating the
morphological prediction task in this way is useful:
The provided graph can be used to control which
sequences can be generated by disallowing illegal
transitions during decoding. Also, the graph can
be created and edited automatically or manually,
which allows to inject expert knowledge. Here,
different states may generate the same character,
but in this way disambiguate possible trajectories
through the graph. Finally, since each prediction
can be directly mapped to a certain location in the
graph topology, the model predictions can be in-
terpreted relative to the given graph. If the graph
is designed in a sufficiently informative way, this
may allow better interpretation of predictions and
also errors.

For training, each target form is converted to a
path through the given graph and the characters are
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Fig. 1: Finite-state transducer for Kholosi numerals 1-5.

replaced by state identifiers. However, in order to
simplify the provided graph, we may also define
special states that allow the prediction of arbitrary
characters, for example to predict base morphemes
or copy them from the input lemma. In this case,
we do not replace the respective characters with
state identifiers. In any case, we train the baseline
encoder-decoder model in the standard way but
with modified targets.

The proposed idea is similar to learning weights
of a FST as described in Rastogi et al. (2016). How-
ever, in our case, the encoder-decoder model does
not have explicit access to the graph, but has to
implicitly learn the possible transitions and their
weights.

For this shared task, we were only able to test a
simple but automatic way of constructing the pro-
posed graph as auxiliary data structure for decod-
ing: First, we align each paradigm in the train set,
i.e. each set of forms with the same lemma, by iter-
atively aligning forms to the already aligned forms
using the Needleman-Wunsch algorithm (Needle-
man and Wunsch, 1970) with column-sum as scor-
ing metric. We replace all aligned substrings that
are present in the lemma and all its forms by a
placeholder symbol. This approach is similar to the
method suggested in Forsberg and Hulden (2016).
Finally, we use the same procedure to align the
resulting forms of all paradigms.

Having obtained such alignments, each position
in the multiple sequence alignment becomes a state
in the graph. So far, we do not consider constraints
on the edges, i.e. we effectively treat the graph as
fully connected. However, in the future we would
like to generate and evaluate more expressive aux-
iliary graphs.

2.2 Rule Based Approach

The morphological analyzers for three manually
annotated languages were built using a finite-state
compiler Foma (Hulden, 2009), which is based
on lexicon and rules. The lexicon stores a list of
words to which morphological analysis is applied.
The rule transducers are established from regular
expressions and applied to the list of identified
word forms. For the system to perform better it
is necessary to have a large lexical dataset to ob-
tain higher accuracy of the morphological analysis
performance. Therefore, we used the wordsets pro-
vided by the Universal Morphology project (Uni-
Morph) (Kirov et al., 2018), which offers lists with
lemmas, word forms and universal feature schemas
with morphological categories.

Language ISO Speakers Status
Chukchi ckt 5.100 Threatened
Kholosi2 hsi 1.800 Unknown
Upper Sorbian hsb 13.300 Threatened

Table 1: Manually annotated languages with their re-
spective number of speakers and status (According to
Eberhard et al. (2021)).

Chukchi Chukchi is a polysynthetic language
spoken on the Chukotka Peninsula, in the north-
ern part of the Russian Federation. It is composed
of a rich inflectional and derivational morphology
with progressive and regressive vowel harmony,
productive incorporation, and extensive circumfix-
ing across all its parts of speech described in An-
driyanets and Tyers (2018). Chukchi is an ergative
absolutive language with a highly complex sys-
tem of verbal agreement constituting prefixal and
suffixal components as stated in Bobaljik (1998).

2Data from Anonby and Bahmani (2016).
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These components are commonly described as
having some form of “split” ergativity such that
prefixes show a nominative-accusative alignment,
while suffixes show an absolutive-ergative bias
(Wexler, 1982; Spencer, 2000).3

Chukchi also displays various types of perfective
aspect as described in Volkov and Pupinina (2016).
Examples of such are provided below.4

(1) etº@m
etº@m
apparently

Weìw@ne
Weìw@-ne
Weìw@-ERG

Getuìºetìinet
Ge-tuìºet-ìinet
PF-steal-3PL.PFV

’Apparently, Welwe stole them (deer)’

(2) G@m
G@m
I.ABS

tº@ìGºi
tº@ì-Gºi
hurt-AOR.3SG

G@tkaGt@
G@tka-Gt@
leg-ALL

’I hurt my leg’

(3) G@nin
G@nin
your

@neqej
@neqej
old.brother.ABS.SG

Gekeìitkuìin
Ge-keìitku-ìin
PFV-study-3SG.PFV

kaìetkorak
kaìetkora-k
school-LOC

?
?

’Did your older brother go to school ?’

A very critical set of rules incorporated into the
FST were circumfixation and vowel harmony. Vow-
els in Chukchi are divided into two groups based on
vowel height in addition to a schwa sound. The first
group are the dominant vowels, which consist of
letters . The second group are the recessive
vowels which are (Andriyanets and Tyers,
2018). Both groups contain “ ”, which in both
cases, are distinguished based on vowel harmony.
Vowel harmony occurs progressively and regres-
sively, influencing the entire word, thus morpho-
logical and phonological features can cause vowel
changes in the stem and vice versa. For example,
the verb “ ”, in the “V;PFV;IND;SG;3;PST”
context becomes “ ”.5 While on the

3Absolutive, as it is used traditionally, refers to the group-
ing of an intransitive subject and direct object of a transitive
verb. Nominative here is reserved to indicate the grouping of
the intransitive subject and transitive subject.

4This paper follows the Leipzig Glossing Rules (Can be
accessed from: https://www.eva.mpg.de/lingua/
resources/glossing-rules.php), with additionally
AOR = aorist.

5The “ ” sound is used as a substitute for the Cyrillic letter
“El with hook”.

other hand, the verb “ ” in the same
context, becomes “ ”, thus chang-
ing the prefix-suffix combination “ ” into
“ ”, as a result of the dominant vowel “ ” in
the stem.

Chukchi also has morphological processes that
on many occasions, result in the mutation or elision
of letters. For example, the word “ ” changes
to “ ” in the “V;PFV;IND;SG;1;PST” con-
text, thus resulting in the elision of the last two
letters “ ” and “ ”.

The morphological and phonological analyzer
accounts for some of the morphological and phono-
logical processes in Chukchi. The finite state trans-
ducer for Chukchi adjectives can be seen in Figure
2.

Kholosi The Kholosi FST is additionally based
on preliminary descriptions of the language’s mor-
phology. Since a systematic account of Kholosi
morphology is yet to be published, we work ex-
clusively with the work of Arora (2020), which is
based on elicitation from a single native Kholosi
speaker.

One interesting phenomenon is gender alterna-
tion with vowel harmony. Kholosi has two gram-
matical genders, which can be reflected by mor-
phemes, -o for masculine and -i for feminine
(Arora, 2020). In numerals, for instance, the femi-
nine form always ends with -i. Hence we have a
rule that transform the last character to an i when
the FEM tag is expected. From the given five pairs
of MASC/FEM numerals in the training data, we
observe a change of non-a/ā vowels to i.

We also note the (notational) discrepancies
among different data sources:6 In the training data
provided by the shared task, the numeral lemmas
ends with an ā instead of an o which is different
from what was proposed by Arora (2020).7 We also
found glossed sentences in Kholosi where instead
of baro (or barā, depending on the data source),
bahro is used for the masculine (lemma) form of
the numeral two.8

The resulting numeral FST is shown in Figure 1.
Adjectives can also inflect with respect to gender ac-

6With possible errors inherited from UniMorph data:
V;IPFV;IND;SG;3;PRS form of the verb karen is attested
as keraw in glossed sentences but provided as kerav in train
data, while the same forms for other verbs all observe an -aw
suffix.

7Except the case of hoko, meaning one.
8Can be accessed from https://aryamanarora.

github.io/kholosi/sentences.html
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cording to Arora (2020), so similar rules are added
to the adjective FST, although there are no feminine
adjective forms provided in the training data at all.

Upper Sorbian Sorbian is a West Slavic lan-
guage spoken in eastern Germany, in Saxony and
Brandenburg (also called Lusatia). Sorbian demon-
strate closeness with Czech and Polish, and at the
same time shares certain features with South Slavic
languages, such as the use of the double gram-
matical number with nouns, adjectives and verbs,
as well as the use of specific forms of past tense.
Unfortunately, due to the constant contact with
German, Sorbian includes a large number of Ger-
man loanwords in its standardized lexicon (Glaser,
2007).

According to Eberhard et al. (2021), the number
of Upper Sorbian speakers estimated as no more
than 13.000. Their community is fully bilingual,
which means that if the rule of thumb proposed
by Payne and Payne (1997) is applied, the Upper
Sorbian might become extinct by the year 2070.
However, the actual number of Sorbian speakers is
based on estimations. According to the principles
of minority law applicable in the Federal Republic
of Germany, the commitment to a minority is free
and not registered officially, as reported by Marti
(2007).

3 Results

The data-driven approach earned third place for
both small and large languages in part one of the
shared task, although under-performing the neu-
ral baseline. The official preliminary results are
available in Table 3.9

The rule based approach for three languages with
relatively small datasets outperformed all other sys-
tems. However, the analyzers were not only built
by the provided train data, but also with help of lin-
guistic knowledge and UniMorph schemas, which
in large encompassed the test set. The performance
results are shown in Table 2.

4 Discussion

The findings of our study follow up on the work
of Beemer et al. (2020), where it was concluded
that “it is very difficult in many cases to outper-
form a state-of-the-art neural network model with-
out significant development effort and attention

9Taken from https://github.com/sigmorphon/
2022InflectionST/blob/main/results/
preliminary.md

Language Result
Chukchi 19.565
Upper Sorbian 83.750
Kholosi 96.667

Table 2: Results (overall test scores) of the finite-state
approach.

to nuanced morphophonological patterns”. The
finite-state grammars in Beemer et al. (2020) out-
performed the seq2seq results only in languages
with high morphophonological complexity such as
Tagalog, and came at the cost of 5.5 manual work-
ing hours on average per week, over the course of
5 weeks.

Our work similarly required a high number of
working hours, but was able to outperform other
systems in low-resource scenarios precisely due
to the reliance on the linguistic expertise of the
FST creators. The trade-off we observe in our
submission is therefore how much interpretability
and intuition-guided modifications of a model is
desired, where for sufficiently well-documented
languages the benefit of FSTs may not be as obvi-
ous, but for scenarios where sufficient data may not
be able to be collected, our submission would in-
dicate that FSTs still maintain an edge over neural
approaches.

Beemer et al. (2020) note that for certain lan-
guages the amount of inconsistencies makes it un-
likely for a hand-written grammar to surpass neural
systems, where certain rules were deemed irregu-
lar enough to not warrant treatment by their FSTs.
We believe our study provides a partial defense for
FSTs with precisely the same point: in cases where
the amount of data is insufficient for neural models
to infer the rules of low-resource languages, it is
unlikely that the neural models can perform well
without further data; for rule-based approaches,
even with limited amount of data (e.g. due to a lack
of orthography or access to native speakers), the
models can always rely on linguistic knowledge to
provide working solutions.

Our usage of data outside of the training set is
also based on this concern: it is unlikely that there
will be enough human resources for most of the
world’s languages to have enough data collected,
but for the practical situation where a morpholog-
ical analyzer is nevertheless needed, our results
indicate that this approach still remains to be the
most practical solution.
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For our other submission where we experi-
mented with a data-driven approach, we believe
that it constitutes a step towards more interpretable
encoder-decoder predictions, which in light of the
above, may also stand as a future research direction,
which could be beneficial for practical scenarios.

5 Conclusion

We presented two different approaches to mor-
phological inflection, a data preprocessing method
to be used in conjunction with standard encoder-
decoder models and hand-coded finite-state meth-
ods. Despite the problems with both approaches,
i.e. insufficient performance of the data-driven ap-
proach and large amounts of effort needed to engi-
neer FSTs, we think that both have their benefits,
as discussed in Section 4.

In particular we would like to note that the effort
invested into creating FSTs expands computational
resources for under-researched and low-resource
languages and can be considered as a collaborative
part in language revitalization as proposed in Pine
and Turin (2017). Also, both approaches allow
for future extensions, e.g. a big improvement of
finite-state analyzers would be expansion of current
lexicons with guessers for assigning possible stems
and part-of-speech tags.
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A Appendix

Language Small Large

ang 45.962 60.945
ara 62.857 75.338
asm 38.995 63.065
bra 53.134 -
ckt 8.696 -
evn 23.867 52.037
gml * -
goh 52.158 -
got 47.693 65.346
guj 40.855 -
heb 31.15 47.9
hsb 7.5 -
hsi 0.0 -
hun 51.85 68.15
hye 61.45 66.7
itl 33.056 -
kat 47.8 78.85
kaz 55.165 53.611
ket 13.139 -
khk 39.495 47.727
kor 17.821 47.556
krl 10.421 24.098
lud 46.559 50.506
mag 51.163 -
nds 21.947 -
non 47.313 79.759
pol 53.85 67.7
poma 45.873 58.829
sjo 54.496 -
slk 56.05 65.75
slp 12.658 -
tur 19.25 33.6
vep 27.446 44.104

Table 3: Results (overall accuracy of test set predictions)
of data-driven approach for all languages. “-” means
not part of this shared task. “*”: We accidentally did
not submit results for gml
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Abstract

This paper describes the submissions of the
team of the Department of Computational Lin-
guistics, University of Zurich, to the SIGMOR-
PHON 2022 Shared Tasks on Morpheme Seg-
mentation and Inflection Generation. Our sub-
missions use a character-level neural trans-
ducer that operates over traditional edit actions.
While this model has been found particularly
well-suited for low-resource settings, using it
with large data quantities has been difficult. Ex-
isting implementations could not fully profit
from GPU acceleration and did not efficiently
implement mini-batch training, which could be
tricky for a transition-based system. For this
year’s submission, we have ported the neural
transducer to PyTorch and implemented true
mini-batch training. This has allowed us to suc-
cessfully scale the approach to large data quan-
tities and conduct extensive experimentation.
We report competitive results for morpheme
segmentation (including sharing first place in
part 2 of the challenge). We also demonstrate
that reducing sentence-level morpheme seg-
mentation to a word-level problem is a simple
yet effective strategy. Additionally, we report
strong results in inflection generation (the over-
all best result for large training sets in part 1,
the best results in low-resource learning trajec-
tories in part 2). Our code is publicly available.

1 Introduction

This paper describes our submissions to the follow-
ing SIGMORPHON 2022 shared tasks:

SEGM Morpheme Segmentation (Batsuren et al.,
2022):1

1. Word-level morpheme segmentation

2. Sentence-level morpheme segmentation

INFL Typologically Diverse and Acquisition-
Inspired Morphological Inflection Generation:2

1https://github.com/sigmorphon/2022SegmentationST
2https://github.com/sigmorphon/2022InflectionST

Task Input Output
SEGM hierarchisms hierarch @@y @@ism @@s
INFL sue V;PST sued

Table 1: Examples of morpheme segmentation (SEGM)
and inflection generation (INFL). SEGM involves pre-
dicting canonical forms of morphemes. The inputs for
INFL consist of lemmas and UniMorph feature specifi-
cations.

1. Typologically diverse morphological inflection
(Kodner et al., 2022)

2. Morphological acquisition trajectories (Kodner
and Khalifa, 2022)

All our submissions rely on the same neural hard-
attention transducer architecture that has shown
strong language-independent performance in a va-
riety of character-level transduction tasks in mor-
phology, grapheme-to-phoneme conversion, and
text normalization (Makarov and Clematide, 2018,
2020a,b).

1.1 Morpheme Segmentation

The goal of this task is to design a system that splits
words into morphemes (Table 1). Part 1 focuses
on word-level morpheme segmentation (inputs are
word types), part 2 on sentence-level morpheme
segmentation (inputs are tokenized sentences). In
part 1, there is a unique segmentation for every in-
put word. This track provides very large datasets
(in hundreds of thousands of training examples per
language), allowing us to test the scalability of our
system. In part 2, a word form may be segmented
differently depending on the context. It offers an
interesting setup to study, on the example of three
languages (English, Czech, Mongolian), how im-
portant it is for a system to recognize and correctly
handle this ambiguity. Our submission for part 2
tests this by using a word-level model (developed
for part 1), optionally with part-of-speech (POS)
tags as side input.
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1.2 Inflection Generation

The SIGMORPHON–UniMorph 2022 shared task
on typologically diverse and acquisition-inspired
morphological inflection generation asks to predict
an inflected word form given its lemma and a set
of morphosyntactic features specified according to
the UniMorph standard (Table 1). Part 1 consists of
32 languages with small training sets (mostly 700
items, but for 4 languages only 70 to 240 items) and
21 large training sets (exactly 7,000 items). Part 2
has an ablation-style setup for Arabic, English, and
German: For each language, there is a dataset for
each increment of 100, ranging from 100 to 600
(German) or 1,000 training samples (Arabic, En-
glish). The development set feature specifications
are representative of the test set. Both tasks tar-
get the generalization capabilities of morphology
learning systems by examining separately their test
set performance on seen and unseen lemmas and
feature specifications.

2 Model Description

As a basis for all our submissions, we use a neu-
ral character-level transducer that edits the input
string into the output string by a sequence of tra-
ditional edit actions: substitutions, insertions, dele-
tion, and copy. The specific version of this approach
was developed for grapheme-to-phoneme conver-
sion (Makarov and Clematide, 2020a). Such neu-
ral transducers have typically performed well in
morphological and related character-level transduc-
tion tasks in low to medium training data settings.
Although they can be competitive in large-data
regimes (Makarov and Clematide, 2018), their suc-
cessful application to large data settings with appro-
priately large parameter sizes (cf. the Transformer-
based models of Wu et al. (2021) have over 7M
parameters) may also be limited by a specific im-
plementation. In this year’s submission, we scale
the approach to large datasets by porting it to a
different framework and making algorithmic im-
provements to training.

True mini-batch training. The training proce-
dure for transition-based systems could be difficult
to batch (Noji and Oseki, 2021; Ding and Koehn,
2019), which is why many systems are trained by
gradient accumulation over individual samples (and
possibly relying on library optimizations such as
DyNet Autobatch (Neubig et al., 2017b)). This re-
sults in slow training for large data sets. In our im-

training greedy decoding
BL CLUZH CLUZH

Batch size GA CPU GPU CPU GPU
1 27.49 18.96 5.02 6.49 10.00
32 23.58 7.48 0.25 2.92 0.73
64 23.89 7.46 0.16 2.84 0.47
128 24.69 7.88 0.13 2.88 0.33
256 27.14 8.21 0.12 3.01 0.26
512 31.11 8.51 0.12 3.26 0.23

Table 2: Mini-batch training and greedy decoding speed
for this year’s implementation (CLUZH) vs the base-
line (BL) of Makarov and Clematide (2020a) on the
Armenian dataset of the SIGMOPRHON 2021 shared
task on grapheme-to-phoneme conversion (Ashby et al.,
2021). The BL models are trained on CPU using gradi-
ent accumulation (GA). All numbers are given in sec-
onds and per 1,000 samples. The training times are
averages of 20 epochs on the training set. The greedy
decoding times are averages of 20 runs on the develop-
ment set using a well-trained model. The CLUZH model
hyper-parameters are identical to those of Makarov and
Clematide (2020a).

plementation of true mini-batch training, we start
by precomputing gold action sequences using an or-
acle character aligner. By doing so, alignments and
gold actions for all decoding steps of all training
samples are known a priori (as opposed to being
computed on the fly, which would be useful when
parameter updates are interleaved with sampling
from the model distribution). This permits calling
the unrolled version of the decoder. The resulting
procedure dramatically speeds up training com-
pared to gradient accumulation. Furthermore, our
implementation supports batched greedy decoding.
Table 2 gives an impression of these performance
improvements: For a batch size of 32, training is
around 3 times faster on a CPU and close to 100
times faster on a GPU. For a batch size of 512,
training is faster by a factor of over 250 on a GPU.
Additionally, the time needed for greedy decoding
can be efficiently decreased on a GPU.3

Further model details. The latest implementa-
tion only uses teacher forcing. Specifically, it does
not yet incorporate roll-ins, i.e. the model does
not see its own predictions during training, which
would improve generalizability by countering expo-
sure bias (Pomerleau, 1989). We also add support

3Note that the precomputation of gold action sequences for
the training data takes around 12 seconds per 1000 samples.
However, this procedure is only required once per dataset
as the precomputed output can be reused for any training
run. In any case, the gains shown in Table 2 easily offset the
additionally required time.
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for features. Features are treated as atomic. For
INFL, the features associated with an inflection
input-output pair are passed through an embedding
layer and then summed. For further details on the
system and the oracle character aligner, we refer
the reader to Makarov and Clematide (2020a).

3 Submission Details

For both tasks, we train separate models for each
language and use the development set exclusively
for model selection.

3.1 Morpheme Segmentation
Data preprocessing. Besides NFD normaliza-
tion as a preprocessing step, we substitute the multi-
character morpheme delimiter (“ @@”) by a single
character unseen in the data to decrease the length
of the output.

Sentence-level segmentation. We simplify
part 2 of the SEGM task by reducing it to a
word-level problem. Concretely, we split the
input sentences into single word tokens and
train the model on these word tokens, similarly
to part 1. The single word predictions are then
simply concatenated to form the original sentence.
Since this completely neglects the context of
the words, we have also experimented with POS
tags as additional input features (Table 3). We
use TreeTagger (Schmid, 1999) to obtain the
features.4 We also experimented with transducing
entire sentences in one go, however this led to a
substantial drop in accuracy.

Hyper-parameter search. For both parts, we
have evaluated extensively various choices of op-
timizers, learning rate schedulers, batch size, en-

4The parameter files are available at https://www.cis.uni-
muenchen.de/˜schmid/tools/TreeTagger/.

Гэрт эмээ хоол хийв .
Гэр @@т эмээ хоол хийх @@в .
NN NN VB VB .
Grandmother cooked at home.

Би өдөр эмээ уусан .
Би өдөр эм @@ээ уух @@сан .
PR NN VB VB .
Today I took my medicine.

Table 3: SEGM part 2 with POS features for Mongolian.
The features inferred from the context using TreeTagger
could help disambiguate the word form in bold.

coder dropout. We found the Adam optimizer
(Kingma and Ba, 2015) to work well, as well as the
scheduler that reduces the learning rate whenever
a development set metric plateaus. We settled on a
batch size of 32 for all models, which offers a good
trade-off between model performance and training
speed.

Encoders. We use a 2-layer stacked LSTM as the
encoder and experimented with encoder dropout.
We also experimented extensively with a Trans-
former encoder (Vaswani et al., 2017). Despite
considerable effort, we failed to make it work at
the performance level of stacked LSTMs. Other
hyperparameters (e.g. various embedding dimen-
sions) are similar to the previous work (Makarov
and Clematide, 2020a).

Decoding. For efficiency, we compute all the
model outputs using mini-batch greedy decoding.

Ensembling. All our submissions are majority-
vote ensembles. For part 1, we submit a 5-strong
ensemble, CLUZH, composed of 3 models with-
out encoder dropout and 2 models with encoder
dropout of 0.1.5

For part 2, we submit three ensembles. All indi-
vidual models have an encoder dropout probabil-
ity of 0.25 and vary only in their use of features:
CLUZH-1 with 3 models without POS features,
CLUZH-2 with 3 models with POS tag features,
and CLUZH-3 with combines all the models from
CLUZH-1 and CLUZH-2.

3.2 Inflection Generation
Data preprocessing. For both parts, we apply
NFD normalization to the input and split the Uni-
Morph features at “;” by default. For languages
that showed lower performance compared to the
neural or non-neural baseline on the development
set in part 1, we also computed models without
NFD normalization and chose the best based on
their development set performance. For Korean,
we observed some Latin transliteration noise in
the train/development set targets, which we re-
moved before training. For Lamaholot (slp), we
observed a very low accuracy (5%) on the devel-
opment set compared to the neural baseline’s 20%
performance. By splitting UniMorph features at “+”

5Due to a mistake, the predictions by the models with
dropout 0.1 were included twice, and a prepared model with
dropout 0.25 was not used at all. However, the F1 macro-
average over all the languages for the intended ensemble on
the development set is only 0.08 points higher.
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as well as “;”,6 we achieved better generalization
for this low-resource language (only 240 training
examples available).

Hyper-parameters. For small datasets in both
parts: batch size 1, a patience of 30 epochs, one-
layer encoder and decoder with hidden size 200,
character and action embeddings of size 100, fea-
ture embeddings of size 50, the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 0.0005 (half of the default value), the reduce-
learning-rate-on-plateau scheduler with factor 0.75,
and beam decoding with beam width 4. For a few
languages whose development set performance was
lower than that of the baselines, we computed mod-
els without NFD normalization and used those in
case of improved accuracy.7

For large datasets in part 1, we made the follow-
ing changes from the above: batch size 32, a pa-
tience of 20 epochs, action embeddings of size 200,
a two-layer encoder with a hidden size of 1,000,
a one-layer decoder with a hidden size of 2,000.
In case of the development set performance was
below that of any of the official baselines, we used
some alternative hyper-parameters:8 no NFD nor-
malization, batch size 16, a one-layer encoder with
a hidden size of 2,000, a one-layer decoder with a
hidden size of 4,000, and the Adadelta optimizer
(Zeiler, 2012) with the default learning rate. Hyper-
parameters were not chosen using a systematic grid
search or experimentation.

Convergence. For the small datasets in part 1
with default hyper-parameters and NFD normaliza-
tion, we observe large differences in the number of
epochs to convergence (mean 27.3, SD 22.8). For
some languages, e.g. Chukchi (ckt), Ket (ket), and
Ludian (lud), we see the best results on the first
epoch, which typically means the model has just
learned to copy the input to the output. For other
languages, much larger or highly varying numbers
of epochs to convergence are observed: Slovak (15-
93), Karelian (13-88), Mongolian, Khalkha (19-61),
and Korean (12-143).

For the large datasets in part 1 (7,000 training
examples) with default hyper-parameters and NFD
normalization, we observe a mean of 17.3 epochs
to convergence (SD 16.0). For Ludian, even in the

6For instance, V;ARGAC2P+ARGNO2P;SBJV would be
split into 4 separate features.

7Arabic, Gothic, Hungarian, and Old Norse.
8Arabic, Assamese, Evenki, Hungarian, Kazakh, Mongo-

lian, Khalkha, and Old Norse.

large setting, the first epoch with copying gave the
best results. In contrast, Georgian could generally
profit from more epochs (mean 36.8, SD 17.9).

Ensembling. Our submission for part 1 is a 5-
strong majority-voting ensemble, and it is a 10-
strong ensemble for part 2.

4 Results and Discussion

4.1 Morpheme Segmentation

Table 4 and Table 5 show our results for parts 1
and 2, respectively. Based on the macro-average F1
score over all languages, our submission for part 1
ranks third out of 7 full submissions. For part 2,
our submission CLUZH-3 was declared the winner
out of 10 full submissions.9

Dropout. The results for part 1 suggest that en-
coder dropout can help improve model perfor-
mance. For some languages, the performance can
improve by as much as 1% F1 score absolute.

Ensembling. Ensembling brings a clear improve-
ment over single-best results. On average, the im-
provement is +0.55% on the development set and
+0.53% on the test set (compared to the best sin-
gle model result). The improvement on the English
dataset is substantial: +1.64% and +1.84% on the
development and test sets, respectively.

Gains from POS tags. The results for part 2
suggest that treating a sentence-level problem as
word-level may be a simple yet powerful strategy
for morpheme segmentation. The success of this
strategy depends on the language and the data. The
more segmentation ambiguity a language has, the
more important the context is. Mongolian has the
highest segmentation ambiguity (Table 6). Around
1/5 of the tokens in the training data have at least
two possible segmentations, whereas Czech and
English exhibit little to no ambiguity. This may par-
tially explain why the performance on the Mongo-
lian data is the lowest. This also explains why using
POS tags as additional features bring the biggest
improvement for Mongolian: +0.29% and +0.27%
on the development and test sets, based on the aver-
age of individual models. Using POS tags improves
the prediction of ambiguous segmentation by an
absolute 1.1% and 0.6% on the development and

9Our submission performed the best on two out of three
languages (Czech and Mongolian). As it was beaten by another
submission based on the macro F1 average, two submissions
were declared winners.
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dropout = 0.0
(avg. of 3 models)

dropout = 0.1
(1 model)

dropout = 0.25
(1 model)

ensemble
(5 models)

best
other

Language dev test dev test dev test dev test test
Czech 92.96 93.31 93.35 93.60 93.32 93.49 94.07 93.81 93.88
English 90.33 90.33 91.01 90.86 90.91 90.68 92.65 92.70 93.63
French 93.22 93.02 93.95 93.85 93.72 93.48 94.94 94.80 95.73
Hungarian 99.40 98.28 99.15 98.09 99.63 98.57 99.61 98.54 98.72
Spanish 97.79 97.78 98.57 98.61 98.53 98.56 98.71 98.74 99.04
Italian 95.54 95.54 96.15 96.19 96.02 96.11 96.93 96.93 97.47
Latin 99.20 99.20 99.30 99.26 99.30 99.23 99.40 99.37 99.38
Russian 97.52 97.54 96.38 96.43 96.65 96.54 98.58 98.62 99.35
Mongolian 98.21 97.73 98.47 97.80 98.47 97.90 98.53 98.12 98.51
AVG 96.02 95.86 96.26 96.08 96.28 96.06 97.05 96.85 97.30

Table 4: F1 scores for SEGM part 1.

without features with POS tags combined
average

(3 models)
ensemble

(3 models)
average

(3 models)
ensemble

(3 models)
ensemble

(6 models)
best

other
Language dev test dev test dev test dev test dev test test
Czech 94.06 90.90 94.54 91.35 94.15 91.15 94.45 91.76 94.72 91.99 91.76
English 98.12 89.27 98.31 89.47 98.18 89.29 98.38 89.47 98.41 89.54 96.31
Mongolian 85.95 81.57 87.06 82.22 86.24 81.84 87.26 82.55 87.62 82.88 82.59
AVG 92.71 87.25 93.30 87.68 92.86 87.43 93.36 87.93 93.58 88.14 90.22

Table 5: F1 scores for SEGM part 2. All models are trained with a dropout probability of 0.25.

train dev
Language 1 ≥2 1 ≥2
Czech 100% 0% 100% 0%
English 99.58% 0.42% 99.75% 0.25%
Mongolian 77.91% 22.09% 90.00% 10.00%

Table 6: Segmentation ambiguity in SEGM part 2: Rela-
tive frequency of unambiguous (1) vs ambiguous (≥ 2)
word tokens.

test sets for Mongolian (Table 7). When looking
at the whole dataset, using POS features increases
the relative number of correct predictions by 0.11%
(development set) and 0.06% (test set) compared
to not using the features. Using POS tags brings
slight improvements and helps mitigate the loss of
context.

PyTorch reimplementation. This year’s system
is a close reimplementation in PyTorch (Paszke
et al., 2019) of our earlier CPU codebase using
DyNet (Neubig et al., 2017a). It fully supports
GPU utilization, allowing for efficient processing
of large amounts of training data. Our code is pub-
licly available.10

10https://github.com/slvnwhrl/il-reimplementation

dev test
ambiguous all ambiguous all

NF POS ∆ NF POS ∆

63.0% 64.1% +0.11% 59.5% 60.1% +0.06%

Table 7: Impact of POS features on Mongolian, SEGM
part 2. ambiguous shows the average percentage of cor-
rectly predicted ambiguous segmentations for Mongo-
lian. NF denotes models without features, POS denotes
models using POS tags. all shows the absolute improve-
ment for POS compared to NF, in relation to the whole
dataset.

Token–type ratio. Another reason for the lower
performance of Mongolian might lie in the high
variance in the data: The Mongolian training
dataset contains around 40% unique tokens (Ta-
ble 8). This is around 4 times more than in the

train dev
Language total unique total unique
Czech 15,157 5,126 7,545 3,217
English 169,117 17,249 21,444 4,849
Mongolian 13,237 5,293 6,632 3,216

Table 8: Word counts in SEGM part 2: The total number
of word forms and the number of unique words.
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Figure 1: Test accuracy results for INFL part 2. avg=average, ens=10-strong ensemble.

seen status (± Lemma/Features)
System Overall +L +F +L –F -L +F -L –F

Small dataset setting
CLUZH 56.87 77.31 31.27 77.97 43.26
Best 74.76 81.64 72.91 77.97 70.87
∆ -17.89 -4.33 -41.64 0.00 -27.62

Large dataset setting
CLUZH 67.85 90.99 41.43 87.17 60.30
Best 62.39 89.57 42.17 85.31 55.56
∆ 5.46 1.43 -0.74 1.86 4.74

Table 9: Test results (accuracy macro-averaged over
languages) for INFL part 1 split by training dataset
size: large (7,000 training examples) vs small (up to
700 examples). ∆ shows the difference between our
submission and the best competitor covering the full set
of languages.

English dataset. This makes the learning problem
much harder, which is further exacerbated by the
relatively small size of the data (compared to En-
glish).

4.2 Inflection Generation

The part 1 test set results are shown in Table 9.
Given the large number of languages, we discuss
the average accuracy on small and large training
sets. An important goal for this shared task was to
assess a system’s performance on test data subsets
defined by whether both the lemma and the feature
specification were seen in the training data (+L +F
in the Table), whether only the lemma (+L, -F), or

only the feature specification (-L, +F) were seen,
or whether neither of them (-L -F) appeared in the
training data.

Small datasets. On the small datasets, our sys-
tem only excels on the -L +F subset, meaning it
is strong in modeling the behaviour of features. In
the small dataset setting, the best competitor sys-
tem, UBC, has an extremely strong performance in
case the lemma is known (+L). It would be interest-
ing to know what kind of information or data aug-
mentation UBC uses: The neural baseline, which
utilizes data augmentation, has a much lower per-
formance (24.9%) than our submission. Overall,
our submission with a 5-strong ensemble achieves
the second-best result of the submissions covering
all languages.

Large datasets. In the large dataset setting, our
submission shows the best performance overall.
On the subset with seen lemmas and unseen fea-
tures (+L -F), the neural baseline is the only system
with slightly better results. This indicates that our
system’s modeling of lemmas is not yet optimal.
The information flow in our architecture maybe
dominated by the features (they are fed into the
decoder at every action prediction step) and the
aligned input character, and it may not have the
best representation of the input lemma as a whole.

Trajectories. The test set results for part 2 are
shown in Figure 1. Our 10-strong ensemble was
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the clear overall winner in this low-resource track.
It beats the best competing approaches by a sub-
stantial margin on the per-language average: Arabic
59.6% accuracy (best competitor OSU 57.5%), Ger-
man 76.7% (non-neural baseline 74.8%), English
85.7% (OSU 81.5%).

Individual model performance varies, and the
majority-vote ensembling improved the scores by
1.4% absolute on average on the test set. Interest-
ingly, the difference between the average model
performance and the ensemble performance does
not get smaller with larger training sets.

The correlation between the increasing number
of training examples and the improving test set
performance is almost perfect for the average per-
formance. Ensembles are slightly less stable.

5 Conclusion

This paper presents the submissions of the Depart-
ment of Computational Linguistics, University of
Zurich, to the SIGMOPRHON 2022 morpheme
segmentation and inflection generation shared tasks.
We build on the previous architecture, the neural
transducer over edit actions, porting it to a new
deep learning framework and implementing GPU-
optimized mini-batch training. This permits scaling
the system to large training datasets, as demon-
strated by strong performance in both shared tasks.

We show that reducing sentence-level morpheme
segmentation to a word-level problem is a viable
strategy. Conditioning on POS tags brings further
improvements. We leave it to future work to explore
more powerful representations of context. We ex-
perimented with a Transformer-based encoder for
morpheme segmentation, and while the initial re-
sults were not satisfactory, we intent to pursue this
further. In inflection generation, we note problems
with capturing unseen lemmas, despite otherwise
strong performance across data regimes.
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Jan Hajič, Jan Hric, Ritvan Karahodja, Witold
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Abstract

OSU’s inflection system is a transformer whose
input is augmented with an analogical exemplar
showing how to inflect a different word into the
target cell. In addition, alignment-based heuris-
tic features indicate how well the exemplar is
likely to match the output. OSU’s scores sub-
stantially improve over the baseline transformer
for instances where an exemplar is available,
though not quite matching the challenge win-
ner. In Part 2, the system shows a tendency to
over-apply the majority pattern in English, but
not Arabic.

1 Introduction

Many theories of inflection production propose a
central role for memorized word forms in shaping
the outcomes for unknown or weakly represented
words (Bybee, 1995). In such memory-based mod-
els, speakers retrieve exemplar forms A from mem-
ory for which the outcomes B are known and use
them to predict the outcome for a word C via a
process of analogical reasoning: exemplar source
A : exemplar target B :: source C : target D. This
type of analogical reasoning is detectable in histor-
ical changes (Sims-Williams, 2021) and in experi-
ments with nonce-words (Dąbrowska, 2008), and
underlies some influential computational models of
inflection (Albright and Hayes, 2003; Daelemans,
2002). Recently, Elsner (2021) and Liu and Hulden
(2020) show that transformer models for inflection
prediction can also benefit from access to exem-
plars.

OSU’s inflection prediction system1 builds on
this recent work, also using a transformer for pre-
diction, but adds a heuristic set of “rule features”
intended to make the system more flexible in its
use of analogical reasoning. Rule features are nec-
essary because the source-target pair C : D may
not correspond directly to the exemplar pair due

1https://github.com/melsner/transformerbyexample

to morphophonological alternations or inflection
class mismatch. Consider an analogy from Anglo-
Saxon, ēþel : ēþle :: ġelı̄ca : ġelı̄can (“homeland”,
“equal”.DAT.SG), for which the target suffixes do
not match. Below is a prediction instance and its
desired output, based on previous work:

(1) ġelı̄ca DAT.SG ēþel : ēþle→ ġelı̄can

When instances like this are common in training,
the relative unreliability of the exemplar informa-
tion leads the system to concentrate on the output
cell label DAT.SG and ignore the exemplar, which
results in performance very similar to a transformer
baseline without exemplars. To prevent this, we
augment training examples to indicate whether the
desired output matches or mismatches the exem-
plar; these augmented features are predicted by
the transformer at test time (see Section 3). For
example, we can add features indicating that the
exemplar has a suffix which does not match, so that
the system can learn whether to attend to it:

(2) ġelı̄ca DAT.SG ēþel : ēþle SUFF RE-
PLACE.SUFF

→ ġelı̄can

In pilot experiments, systems trained with these
features behaved qualitatively differently from the
baseline, reacting more to exemplar information
and producing a wider variety of outputs when the
exemplar was varied.

2 Results

OSU entered systems for both Part 1 (multilin-
gual inflection; Kodner et al. (2022)) and Part 2
(learning trajectories: Kodner and Khalifa (2022)).
However, we did not attempt all parts of the Part 1
task. First, we ran each language from Part 1 with
the largest available dataset; we submitted results
for the small partition only for languages which
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Overall Both Cell
Small part. 47.688 79.31 82.308
Large part. 46.734 89.565 85.308
Large winner 67.853 90.991 87.171
Large neural base 62.391 80.462 77.627

Table 1: Official results for Task 0, Part 1: score overall,
score for items with known lemma and cell, score for
items with unknown lemma and known cell.

lacked a large training set. Second, our system
relies on being able to recall an exemplar with a
known output for the target cell. Thus, we did not
attempt instances for which the target cell was un-
seen (lemma-only and neither); for such instances,
we output the original lemma as a placeholder pre-
diction.

Our results overall (Table 1) reflect our inability
to make predictions on unknown cells. However,
for known cells, performance is fairly close to the
challenge winner CLUZH, though the differences
are statistically significant. Moreover, the system
comfortably outperforms the neural baseline. This
is particularly interesting since the baseline uses the
same transformer model, Wu et al. (2021), for pre-
dictions; only the instance generation and training
procedure differ. Nonetheless, the system improves
by almost 10% absolute when the cell is known.

OSU surpassed the neural baseline in the known
cell, unknown lemma condition by 1% absolute or
more on Armenian, Karelian, Polish, Slovak, Turk-
ish and Veps (for all these except Armenian, the im-
provement was at least 10%). It performed worse
than baseline on Arabic, Assamese, Hungarian, Ko-
rean, Ludic, Old Norse and Pomak (with a 12%
drop on Korean)2. There is no obvious typologi-
cal pattern in these results. Two Slavic languages
(Polish and Slovak) performed excellently while
a third (Pomak) underperformed; similarly, one
Finnic language (Karelian) performed well while
another (Ludic) did not. While several underper-
forming languages used non-Latin scripts, which
can cause trouble for inflector models (Murikinati
et al., 2020), OSU was the best-performing system
on Gothic, with some words written in Gothic script
and others in Latin characters, and also performed
well on Khalkha Mongolian, written in Cyrillic,
and on Hebrew.

Task 2 (learning trajectories) did not involve
2Our development score for this condition in Korean is

80.679%; our test score is 50.602%, suggesting there may be
a dataset mismatch.

Figure 1: Comparative learning trajectories for Arabic
(Task 2).

held-out cells, but did vary the amount of train-
ing data. A representative set of learning curves for
Arabic is shown in Figure 1; curves for English and
German are qualitatively similar. Our system ex-
periences a rapid rise in performance between 100
and 300 training items, with diminishing returns
around 600 items. We attribute poor early perfor-
mance to under-regularization; unlike in Part 1, we
did not use cross-lingual training, which helps to
regularize small-data inflectors (Kann et al., 2017).

3 System design

Training using the OSU system involves the fol-
lowing steps: (1) generation of training instances,
(2) training a language-agnostic string edit model,
(3) multilingual training, (4) language-specific fine-
tuning. Each training instance includes the input
lemma, the morphosyntactic features of the output
cell, the language and the language family (each
encoded as a character), the exemplar lemma and
form (separated by a diacritic), and the rule fea-
tures. Rule features for training instances are gen-
erated by aligning the lemma and output form as
in Ahlberg et al. (2015), aligning the exemplar and
its output, and then comparing the two. Looking
only at the lemma and output, we generate features
to indicate whether there is a prefix, a suffix, a
stem-internal edit, or no edit. Based on the compar-
ison, we indicate whether prefix/suffix/stem edits
are identical between source-target pairs, contain
some but not all matching characters, or are dis-
joint. For instance, the pair fill ∼ filled (suffix
-ed) with exemplar die ∼ died (suffix -d) would be
marked SUFFIX to indicate the rule type and SIMI-
LAR.SUFFIX to indicate that the edits match partly
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but not completely. The transformer is not forced
to obey these features when generating outputs, but
uses them to learn how to attend to the exemplar.

For each training item, we generate one instance
for inflection prediction (with rule features gen-
erated using the gold output) and one for feature
prediction, containing the exemplar and cell label,
but with the rule features as output. The trans-
former thus learns to predict a likely alignment
configuration for each query/exemplar pair. For ex-
ample, a feature prediction instance corresponding
to Example (2) would be:

(3) ġelı̄ca DAT.SG ēþel : ēþle PREDICT.FEATS

→ SUFF REPLACE.SUFF

Language-agnostic string edit instances for step
(2) (random strings with prefixes, suffixes or inter-
nal edits) were generated as in Elsner (2021). In
step (3), we trained all languages together for 18
hours (during which we ran 57 epochs). We then
trained sub-models by language family, but since
many families this year had only one or two rep-
resentatives, we decreased this training process to
only 5 epochs, anticipating that it would make little
difference. Finally, we trained for 50 more epochs
on the individual language training sets. The learn-
ing model itself is a transformer with settings from
Wu et al. (2021).

Inference is a multistep process involving the
following steps: (1) generation of multiple test in-
stances with different exemplars, (2) prediction of
rule features for each instance, (3) prediction of in-
flected forms for each instance, (4) majority voting
to produce a single inflected output. In step (1), we
sampled 5 random exemplars from the training set
for each test item; the exemplar output was always
drawn from exactly the same morphosyntactic cell
as the target output.3 We generated an instance for
each test item× exemplar. We used the transformer
in feature prediction mode to produce rule features
for each instance (step 2), then concatenated these
rule features with the inputs to produce inflection
instances. By re-running the transformer on these
augmented instances, we output an inflected form
for each instance (step 4). Finally, we chose the
most likely output across the 5 exemplars as the
model’s final prediction, with ties broken at ran-
dom.

3As stated, if a suitable exemplar cannot be found, we
produce the input form as a placeholder prediction.

As an example of this process, suppose the in-
stance ġelı̄ca DAT.SG occurred in the test set, and
we had selected the pair ēþel : ēþle as one of our
five exemplars. We would first generate a feature
prediction instance (example 3) and present it to the
trained transformer. Suppose the transformer incor-
rectly assumed the suffix would be shared, and out-
put SUFF SAME.SUFF (rather than REPLACE.SUFF).
In step (3), we create an inflection instance using
these predicted features:

(4) ġelı̄ca DAT.SG ēþel : ēþle SUFF RE-
PLACE.SUFF→ ġelı̄can

As with any pipelined prediction system, an er-
ror cascade may occur; the transformer may not
decode this instance correctly due to the incorrect
features proposed in the previous step. In any case,
we would collect this output, and those of the four
other exemplars, and select the most frequently
proposed form as the final prediction.

System development was carried out before the
shared task commenced, using datasets from SIG-
MORPHON 2020 (Vylomova et al., 2020); we
made no effort to tune on the 2022 datasets.

4 Analysis

We analyze some outputs from Part 2 with an
alignment-based analysis tool as in King et al.
(2020); Gorman et al. (2019), leveraging some
of the same code as our rule feature extractor.
In English, the model shows a strong preference
for over-applying the regular (-ed) suffix through-
out the learning process; using the 100-example
(severely under-regularized) dataset, the model pro-
duces suffixes 84% of the time, but by 200 ex-
amples, this rises to 90% and continues to rise
slowly thereafter. Nearly all of the rise in accu-
racy is due to the model’s gradual acquisition of
orthographic allomorphs of -ed, such as drum ∼
drummed, first produced with 400 examples. No ir-
regular allomorphs improve consistently, although
some (swear ∼ swore, grind ∼ ground) are occa-
sionally produced correctly. The zero past tense
(bet ∼ bet) is produced less often as the dataset
increases. In other experiments, we have observed
that our model often produces zero outputs when
trained with insufficient data; we believe our ini-
tial success with this class is the product of this
tendency rather than learning.

The lack of generalization of irregular allo-
morphs is generally consistent with the claim of Xu
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and Pinker (1995) that infants rarely produce such
errors. It is not clear from results on held-out data
whether a “U-shaped curve” (Marcus et al., 1992)
would appear, since this phenomenon results from
over-application of the regular suffix to previously
memorized irregulars and would require inspection
of training outputs. It is also likely that the token,
as well as type, frequency distribution of the train-
ing data matters for the acquisition of irregulars
(Frank et al., 2020).

In Arabic, the model is able to learn suffixing
‘sound’ plurals starting from the first 100 words,
and performs best on these examples overall, reach-
ing over 80% accuracy on concatenative patterns
when trained on all available data. The model ini-
tially struggles with nonconcatenative ‘broken’ plu-
ral forms, but shows consistent improvement as the
amount of training data increases. The alignment
method used to generate training instances groups
alternations into microclasses, taking changes in
short vowel diacritics into account. One of these
classes, the CaCCaC ∼ CaCaaCiC class, contain-
ing nouns such as maslak ∼ masaalik ‘path’ (35
examples), reaches 100% accuracy with 600 words.
Gradual improvement is also seen in nouns of the
CaCaC ∼ ’aCCaaC class, for example khtar ∼
akhtaar ‘danger’ (50 examples), which goes from
2% accuracy using 100 words to 86% accuracy on
the full dataset. Another interesting class is the
CiCaa’ ∼ ’aCCiya class, for example binaa’ ∼ ’ib-
niya ‘building’, with only 5 examples in the dataset.
Unlike other microclasses of similar size which
the model fails to ever learn, the model is able to
accurately produce 4 of the 5 examples (80% ac-
curacy) using the 600-word and 900-word datasets
(although with 1,000 words the model only pro-
duces 1 of the 5). Other similar nouns, such as the
CaCiiC ∼ ’aCCiCaa’ pattern including qariib ∼
aqribaa’ ‘relative’ (5 examples) are never learned
by the model.

The model’s performance reflects broad general-
izations found in the literature on child acquisition
of dialectal Arabic plural inflection. In general,
while nonconcatenative ‘broken’ plural nouns are
present in the speech of very young children, non-
concatenative inflection isn’t productive until late
preschool (Ravid and Farah, 1999), and a study on
the acquisition of plural inflection in Egyptian Ara-
bic found that children as old as 15 may commonly
produce errors when inflecting broken plural nouns
in the language (Omar, 2017). In their study on

plural acquisition of native Arabic speakers across
multiple age groups, Saiegh-Haddad et al. (2012)
found that the feminine sound plural marker is ac-
quired earlier and faster than broken plural inflec-
tion patterns, and that differences in the production
of broken plural forms are affected both by speak-
ers’ familiarity with the singular form and the type
frequency of its associated plural template. Both
the human and machine acquisition trajectories are
likely related to the sheer number of possible ways
(i.e., ‘templates’) of nonconcatenatively relating
singular and plural nouns in Semitic languages.
There are comparatively far fewer productive suf-
fixes in MSA (one feminine and one masculine)
than there are templates (perhaps more than 70:
Plunkett and Nakisa (1997)).

5 Conclusion and Future work

The competition alerts us to one obvious weak
point: our inability to predict fillers for cells
in which no training example is given. This is
particularly problematic for languages with very
large paradigms. Such paradigms generally in-
volve some degree of agglutination (separatist ex-
ponence) which renders low-frequency cells pre-
dictable (Plank, 2017). The relationships between
cells can be modeled by using multiple input forms
to predict a target (Rathi et al., 2021). The ability to
do this would be a valuable addition to our model.

While our system was not the best in the com-
petition, we are encouraged to find that analogical
examples allow a transformer inflector to achieve
near-state-of-the-art results. An analogical model
is both cognitively plausible and easy to implement,
and the resulting system is substantially more ro-
bust and generalizable than the simple transformer
baseline.
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Abstract

This paper presents experiments on mor-
phological inflection using data from the
SIGMORPHON-UniMorph 2022 Shared Task
0: Generalization and Typologically Diverse
Morphological Inflection. We present a trans-
former inflection system, which enriches the
standard transformer architecture with reverse
positional encoding and type embeddings. We
further apply data hallucination and lemma
copying to augment training data. We train
models using a two-stage procedure: (1) We
first train on the augmented training data using
standard backpropagation and teacher forcing.
(2) We then continue training with a variant
of the scheduled sampling algorithm dubbed
student forcing. Our system delivers competi-
tive performance under the small and large data
conditions on the shared task datasets.

1 Introduction

This paper presents experiments on morphologi-
cal inflection using data from the SIGMORPHON-
UniMorph Shared Task 0: Generalization and Ty-
pologically Diverse Morphological Inflection (Kod-
ner et al., 2022).1 Our system focuses on typologi-
cally diverse inflection generation, that is, the task
of inflecting a lemma in a given form, which is
specified by a morphosyntactic description (MSD).
As an example, consider inflecting the English
verb lemma walk in the past tense according to
the MSD VERB+PAST, thereby generating the in-
flected form walked. The shared task investigates
two data conditions: Under the small data con-
dition, up to 700 training examples are provided.
Under the large data condition, up to 7000 train-
ing examples are provided. Our system beats the
official neural shared task baseline by more than

∗*The first two authors contributed equally.
1Note, our system is not an official shared task submission

because we submitted our final results after the shared task
deadline.

8%-points under both the small and large data con-
ditions.

We apply transformer models (Vaswani et al.,
2017b) to the inflection task. The model is trained
to translate an input sequence consisting of lemma
characters and an MSD, like:

w, a, l, k, +VERB, +PAST

into the inflected output sequence:

w, a, l, k, e, d

General purpose transformers were originally de-
veloped for machine translation, but they also de-
liver strong performance on morphology tasks (Wu
et al., 2021). Nevertheless, we observe that the
vanilla transformer architecture is not ideally suited
for inflection: In contrast to machine translation,
many inflectional phenomena are strongly position-
ally dependent, which is something that the vanilla
transformer architecture does not adequately model.
For example, phonological alternations often hap-
pen at affix boundaries and these typically occur
either at the start or end of word forms. Whereas
the positional encoding in the transformer architec-
ture allows for uniquely conditioning on relative
positions with regard to the start of the string, the
same is not true for positions at the end of the
input string. We, therefore, augment our transform-
ers with reverse positional encoding, presented in
Section 3.1, which allow the model to condition
directly on the end of the input string.

In previous iterations of the SIGMORPHON in-
flection shared task (Pimentel et al., 2021; Vylo-
mova et al., 2020; McCarthy et al., 2019; Cotterell
et al., 2018, 2017, 2016), so called lemma overlap,
where identical lemmas occur both in the training
and test set, has caused inflated performance, re-
sulting in near perfect inflection accuracy for many
languages. Liu and Hulden (2022) and Goldman
et al. (2022) show that more challenging data splits
with low lemma overlap can cause significant re-
duction in inflection performance. The data in this
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year’s inflection task demonstrate varying lemma
overlap, ranging from < 1% for Slovak under the
small data condition to 100% for Hebrew under the
large data condition but centering on lower over-
lap (see Appendix A for details). Accordingly, we
decided to investigate different mechanisms which
we hypothesized would improve generalization to
unseen lemmas in the test set.

Data augmentation is a commonly used tech-
nique, which improves generalization in many NLP
tasks. Here the gold standard training data is aug-
mented with synthetic examples. Back-translation
introduced for machine translation is perhaps the
best known method (Sennrich et al., 2016), but has
not been very successful in morphology tasks (Liu
and Hulden, 2021). We instead use the data hal-
lucination approach by Anastasopoulos and Neu-
big (2019), which synthesizes new training exam-
ples from existing gold standard training exam-
ples by identifying a (possibly discontinuous) word
stem and replacing this with a random character
sequence. In addition to data hallucination, we
experiment with another data augmentation tech-
nique: lemma copying (Liu and Hulden, 2022),
where the model is trained to copy input lemmas
from the test set in order to adapt the model more
closely to the test data. In our experiments, this
method ultimately delivers better performance than
data hallucination.

As a further attempt to improve generalization,
we experiment with modifications of the standard
teacher forced training procedure of inflection mod-
els. When applying teacher forcing during training,
the model is allowed to rely on gold standard his-
tory for time steps 1 up to t, when predicting output
at time step t + 1. This speeds up convergence
considerably but can also result in sub-optimal per-
formance due to so-called exposure bias (Wiseman
and Rush, 2016), which is caused by a mismatch
when conditioning on gold standard history during
training and predicted history during test time. We
take an alternative approach called student forc-
ing (Nicolai and Silfverberg, 2020), which is an
application of scheduled sampling (Bengio et al.,
2015) for morphology tasks. Here model-predicted
output history is substituted for the gold standard
history for a subset of training examples in order
to counteract exposure bias while simultaneously
maintaining efficient training (see Figure 1). Ac-
cording to Nicolai and Silfverberg (2020), student
forcing can improve inflection performance under

[Illustration from Nicolai and Silfverberg (2020)]

Figure 1: Teacher forcing (left) and student forcing
(right); some connections have been left out to reduce
clutter.

low-resource conditions. Our experiments show
that student forcing can deliver small improve-
ments for some languages but does not outperform
data hallucination. However, the techniques seem
to be complementary; their combination provides
improvements over plain data augmentation.

In summary, our main contributions are as fol-
low:

1. We enrich the transformer architecture with
reverse positional encoding in order to support
the inflection task.

2. We investigate data hallucination and lemma
copying as ways to prompt better generaliza-
tion to lemmas missing from the training set.

3. We apply student forcing to counter exposure
bias in inflection.

2 Related Work

Wu et al. (2021) present a systematic investigation
of applying the transformer model to morphology
tasks. They propose two changes to the general
transformer architecture introduced by Vaswani
et al. (2017b): (1) type embeddings, which are
used to distinguish between input characters and
morphosyntactic tags and (2) restricting positional
encoding to the input characters, while encoding
morphosyntactic tags in a position-agnostic manner.
Another modification to the transformer architec-
ture, which can improve performance on morphol-
ogy tasks, is to add a so-called monotonicity loss
(Rios et al., 2021). This can bias the transformer
toward near-monotonic alignment between the in-
put and output sequence, which is often the case in
inflection.
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We use data augmentation to improve generaliza-
tion to unseen lemmas. This has become a standard
technique in low-resource inflection in recent years.
A common approach is to generate synthetic exam-
ples by first identifying word stems in gold stan-
dard examples and then replacing the stems with
random character sequences (Anastasopoulos and
Neubig, 2019; Silfverberg et al., 2017). Liu and
Hulden (2022) introduce a more refined method to
hallucinate synthetic stems, which aims to honor
the phonology of the target language by generating
sequences of random syllables rather than random
characters. Kann and Schütze (2017) show that a
simpler data augmentation method, where random
strings or unlabeled word forms are copied from
the input to the output, can also be effective. Liu
and Hulden (2022) apply this approach to copying
lemmas in the development and test set and show
that this can lead to substantial gains in inflection
accuracy. We apply their technique in Section 3.4.
Other approaches to data augmentation in morpho-
logical inflection include: reframing the task as
reinflection and generating reinflection examples
from the existing inflection training data (Liu and
Hulden, 2020), as well as generating new training
examples using back-translation (Liu and Hulden,
2021), and self-training (Yu et al., 2020).

In addition to data augmentation, we also ex-
periment with student forcing to improve general-
ization. As mentioned above, this is an applica-
tion of scheduled sampling. Bengio et al. (2015)
explore scheduled sampling for various sequence
generation tasks (image captioning, constituency
parsing and speech recognition). This is a cur-
riculum learning approach (Bengio et al., 2009),
where the model is gradually exposed to more of its
own prediction errors during training, thereby coun-
teracting exposure bias. The student forcing ap-
proach presented by Nicolai and Silfverberg (2020)
is a slight simplification of this approach. Essen-
tially, student forcing uses a fixed amount of model-
predicted contexts throughout training instead of a
curriculum approach.

3 Methods

In this section, we describe our contributions to
the inflection task, before moving on to our experi-
ments in subsequent sections.

3.1 Reverse Positional Encoding

The vanilla Transformer architecture, which serves
as the basis for our system, accounts for the order of
input and output tokens by pairing each token with
a sinusoidal positional encoding (Vaswani et al.,
2017a). This positional encoding captures relative
distance from the start of the string, meaning that it
is a forward positional encoding. In inflection tasks,
it is, however, vital to encode not only distance
from the start of the input string, but also distance
to the end of the string.

For example, in English, the plural form of nouns
ending in a strident like s is formed by appending
an affix -es to the end of the noun (e.g. class →
class+es) instead of the regular plural suffix -s. The
alternation s→ es always occurs at the penultimate
position of the inflected form, which means that it
is important to allow the model to directly refer to
positions at the end of the strings. Because word
length differs, this information is difficult to infer
from a purely forward positional encoding.

We augment the vanilla transformer model in
the Fairseq toolkit (Ott et al., 2019) with re-
verse positional encoding: Let f1, ..., fn be the
k-dimensional forward sinusoidal positional encod-
ing vectors for a string of length n. We introduce
k-dimensional reverse positional encoding vectors
b1, ..., bn, where ri = fn−i+1. Our final positional
encoding vectors are given by the 2k-dimensional
concatenation [fi; bi]. Following Wu et al. (2021),
we only use positional encoding vectors for charac-
ters in the input lemma. For morphosyntactic tags,
we instead use a special NULL vector. See Fig-
ure 2 for a representation of the reverse positional
encoding.

3.2 Type Embeddings

Given an example like bus+NOUN+PL → buses,
the input sequences to our inflection model consist
of two token-types: lemma-characters like b, u and
s and morphosyntactic tags like +NOUN and +PL.
Following Wu et al. (2021), we use type embedding
vectors eLEM and eMSD to distinguish between
these token-types. The type vectors have the same
dimensionality as the input embeddings. We sum
them with token embedding vectors to compute
input token representations. The vectors eLEM

and eMSD are randomly initialized and are trained
jointly with the rest of the inflection model. See
Figure 2 for an illustration of type embeddings.
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Figure 2: Illustration of reverse positional encoding and type embeddings. The left figure shows the encoding of
source character positions from the backward pass, concatenated with the forward positional encoding. The right
figure displays a type embedding built from an integer-encoded type vector that distinguishes the three possible
types of an input token. The type embedding is then summed with the original token embedding and multiplied by a
scaling factor.

[Illustration from Anastasopoulos and Neubig (2019)]

Figure 3: Illustration of the data hallucination method.
Noise is introduced into the existing training examples
by replacing the longest common subsequence of input
and output forms with random character strings.

3.3 Data Hallucination

Under low-data conditions, encoder-decoder mod-
els are often strongly influenced by the target lan-
guage model. Common character sequences which
appear in the training data are more likely to be
produced, even at the expense of ignoring the in-
put example. In order to address this label bias,
we augment the training data with hallucinated
examples. We employ the approach proposed by
Anastasopoulos and Neubig (2019). This method
introduces noise into the existing training exam-
ples by replacing the longest common subsequence
of input and output forms with random character
strings, as shown in Figure 3.

Although the problem is more prevalent under
low-data conditions, we experiment with adding
synthetic examples to the original dataset under
both the small and large data condition. Prelimi-
nary development experiments motivate the num-
ber of hallucinated forms. Accordingly, we use
7,000 synthetic examples for the small data set and
1,400 examples for the large training set.

3.4 Lemma Copying

The data hallucination method introduced by Anas-
tasopoulos and Neubig (2019) can sometimes cre-
ate invalid examples due to phonological alterna-
tions as noted by Samir and Silfverberg (2022).
For example, given the English inflection exam-
ple like+VERB+PAST→ liked, their approach will
first identify the longest common subsequence of
the lemma and word form, that is, like and will then
replace this with a random character sequence, for
example xyz. This results in a synthetic example
xyz+VERB+PAST→ xyzd. Now, this example is
erroneous since -d occurs as the English past tense
marker for regular verbs only when the stem ends
in e, which the syntetic stem xyz does not.

In order to avoid introducing errors during aug-
mentation, we experiment with an alternative ap-
proach to data augmentation: so-called lemma
copying, first presented by Liu and Hulden (2022).
We augment the training set with artificial examples
where a lemma is copied verbatim, e.g. like+COPY
→ like. Here we use the special +COPY tag to in-
dicate copying. We collect lemmas for the copy
examples from the input forms in the test set. There-
fore, lemma copying can be seen as a domain adap-
tation technique, where we adapt the inflection
model to the specific test input forms.

At a first glance, lemma copying might seem like
an artificial technique, which will only be useful
in a shared task setting where we have a fixed test
set. However, even in real-world scenarios, we will
often run the model on a fixed dataset of inputs.2

It is, therefore, possible to either retrain the model
on a combination of the original training data and
test input forms, or fine-tune the model on lemma

2For example, we might want to inflect a set of baseforms
from a dictionary.
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copying.3 It is also important to note that lemma
copying does not use any additional labeled data
for training the system. Neither does is make use
of any additional unlabeled data, which would be
unavailable at inference-time.

3.5 Student Forcing

Sequence-to-sequence architectures are very depen-
dent on the context of generated items—it is their
greatest strength, but can also lead to disjunctions
between training and testing settings.

In very low data setups, exposure bias can overfit
to the training data, as it observes a very small set
of contexts. Although data hallucination has been
shown to counter overfitting in such scenarios, we
additionally adopt the student forcing approach
described by Nicolai and Silfverberg (2020).

For a small number of instances (a tunable hy-
perparameter, student-forced percentage [SF-%],
most effective between 10 and 30%), contextual
cues from the target are replaced with hypotheses
generated by the model. Hypotheses are typically
generated via the standard inference method (in
this case, a beam search with beam width 5). We
explore several alternative methods to further al-
low the model to take advantage of the prediction
space, including sampling from items that reach a
probability threshold, a count threshold, and using
multiple diverse beam groups. Development results
suggested that sampling from the top 2 candidates
yielded the best results, and is used for all experi-
ments describing student forcing for the remainder
of this paper.

Since hallucinated data makes up a significant
portion of the training data (90% under the small
data condition, and 17% under the large data con-
dition), we anticipate the possibility that the model
overfits to hallucinated data. In an attempt to
counter overfitting, we apply student-forcing in
a fine-tuning step after the initial data-augmented
models have been trained.

4 Experiments and Results

Here, we describe our experiments on small and
large training sets. Under both data conditions, we
train models using the following procedure: We
first augment the training data using data halluci-
nation or lemma copying. We then train the model
on the augmented data for a maximum of 20,000

3In the current submission, we only investigate the retrain-
ing approach.

steps without teacher forcing. We then identify the
best checkpoint model based on development set
accuracy and continue training this model with stu-
dent forcing for an additional 1000 steps. When
applying lemma copying, we have to train sepa-
rate models for the development and test set: one
model which augments the training set with lem-
mas from the development set and another one
which augments with test lemmas. We first tune
hyperparameters on the development set and then
use this hyperparameter configuration when train-
ing the final model for the test set. Crucially, this
allows us to avoid augmenting the training data
both with development and test lemmas in order to
not use extra data for tuning model parameters.

4.1 Original Data for Inflection Generation
Data across 33 languages are included in our ex-
periments. We follow the training, development,
and testing splits provided by the task organizers.
Twenty of the languages contain two training con-
ditions: small and large. Small training data range
from 70 to 700 instances, where an instance is com-
posed of a lemma, an MSD, and an inflected form.
Most languages have 700 training instances, but
Chukchi (ckt), Upper Sorbian (hsb), Kholosi (hsi),
and Ket (ket) represent an even lower-resource con-
dition. In the large training data condition, each
language has 7,000 training instances. Generally,
development splits contain approximately 1,000
instances, and test splits contain 2,000.

4.2 Model Architecture
We conduct our experiments with a modified ver-
sion of Fairseq’s (Ott et al., 2019) implementa-
tion of transformers (Vaswani et al., 2017b). The
transformer architecture is enriched with reverse
positional encoding and type embeddings, as we
illustrated in Sections 3.1 and 3.2. We train our
models with 4 layers in the encoder and decoder,
each containing 4 attention heads. The embedding
size is 256 and the hidden layer size is 1024. These
hyperparameter settings roughly correspond to the
values used by Wu et al. (2021) for character-level
tasks.

We use the Adam optimizer with an initial learn-
ing rate of 0.001, and batch size 400. Prediction
is performed with the best checkpoint model, ac-
cording to the development accuracy, using a beam
of width 5. All models are trained for a maximum
of 20,000 updates. Fine-tuning then proceeds for a
maximum of 1000 additional updates. Again, we
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choose the best model as determined by develop-
ment accuracy.

4.3 Main Results

Experiment Small Large
ST BASELINE 47.63 62.39
OUR BASELINE 47.93 69.57
HALL 53.83 69.19
COPY 56.64 70.66
COPY+SF 57.23 71.26
COPY+HALL 55.27 70.43

Table 1: Results on the test data under both small and
large data conditions. ST BASELINE refers to the offi-
cial neural shared task baseline and "Our Baseline" to
our baseline transformer with reverse positional encod-
ing and type embeddings. SF refers to student forcing,
HALL to data hallucination and COPY to lemma copy-
ing.

We use micro averaged full-form accuracy to
evaluate our predictions on development and test
splits, including results both under the small and
large data condition.4 Average results across all
languages are shown in Table 1.5 See Kodner
et al. (2022) for detailed results. The best results
(Copy+SF) represent our official shared task sub-
mission.

Across both data conditions, our models outper-
form the official shared task neural baseline. Our
modified Fairseq models with reverse positional
encoding and type embeddings but without data
augmentation (OUR BASELINE) perform slightly
better than the official shared task baseline under
the small training data condition, while on the large
training set our modifications to the transformer ar-
chitecture contribute a substantial improvement of
around 7%-points.

Results from data hallucination HALL are mixed.
Under the low data condition, it delivers a clear
improvement of 5.90%-points over OUR BASE-
LINE on the test set, but under the large data con-
dition, it results in a small drop of 0.38%-points
in inflection accuracy. In contrast, lemma copying
delivers consistent improvements over OUR BASE-
LINE under all data conditions. Under the small
data condition, the COPY system delivers a sub-
stantial 8.71%-point improvement and a smaller
improvement of 1.09%-points under the large data
condition, outperforming HALL under both con-
ditions. A combination of the data augmentation

4This corresponds to the official evaluation metric of the
SIGMORPHON 2022 inflection shared task.

5See Appendix B for results on the development set.

techniques COPY+HALL does not deliver improve-
ments over plain lemma copying but outperforms
HALL. In general, data augmentation is always
more helpful under the low data condition.

Student forcing (COPY+SF) further boosts the
performance of the COPY system for several lan-
guages, resulting in a 0.5%-points gain under both
data conditions. Some languages show only mod-
est improvement, such as Hebrew increasing from
34.6% to 35.2%, or even small decreases - Braj
decreases from 56.1% to 56.0%. However, other
improvements are much more noteworthy - Arabic
increases from 43% to 47.9%, and Pomak from
44.2% to 46.0%. The trends are similar under the
large data condition, although fewer languages are
affected.

We take a closer look at the types of errors that
are corrected by the COPY+SF model when com-
pared to COPY. Concentrating on Evenki, we no-
tice that the corrections made by student forcing are
generally small - typically, the addition or removal
of a single letter. For example, the 3rd person
singular possessive form of atirkanma should be
atirkanman. While the model prior to fine-tuning
simply copies the lemma, COPY+SF corrects the
error. Likewise, the 3rd person dative possessive
form of nadiśi is predicted as nadiśidun, which is
then corrected by student forcing to nadiśidu:n.

5 Discussion

The most prominent trend in our experiments is
that lemma copying delivers sizable improvements
in accuracy, particularly under the small data con-
dition. It is also noteworthy that models trained on
small training data using data augmentation(either
hallucinated data or copied data) outperform mod-
els trained on large training data without data aug-
mentation. Based on these results, it is clear that
data augmentation is a crucial technique in low-
resource inflection, delivering substantial improve-
ments which parallel improvements from a signifi-
cant additional annotation effort. This might allow
researchers to kick-start development of morphol-
ogy resources for low-resource languages using
very little annotated data. Performance also seems
to improve even under higher data conditions when
lemma overlap in the training data and test data is
small.

Student forcing delivers small improvements at
best and is often harmful when combined with data
augmentation. We do not have a good explanation
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for this phenomenon at the current time. Based on
our experimental results, we can conclude that data
augmentation is a far more influential method for
countering data sparsity.

It is interesting to see that our base inflector,
trained without student forcing or data augmenta-
tion, outperforms the shared task baseline. Given
that the baseline system is a character-level trans-
former (Wu et al., 2021), this might be attributable
to our architectural innovation, namely reverse po-
sitional encoding. However, another difference
between our system and the shared task baseline is
that the baseline is a multilingual system, whereas
our system is monolingual. Further investigation is
required to tease apart these effects.

6 Conclusion

In this work, we advance the generation perfor-
mance of inflectional forms with a joint effort in-
cluding reverse positional encoding, data halluci-
nation, copying lemmas, and student forcing. We
improve the prediction accuracy by 9.6% and 8.6%
above the official neural shared task baseline on the
small and large test set respectively.

According to our results, the joint effect of re-
verse positional encoding, lemma copying, and stu-
dent forcing results in the best performance. We
investigate two data augmentation strategies: The
effect of data augmentation is more evident when
less annotated data is available for training.

Due to time constraints, many observed phenom-
ena are still ripe for interpretation, including the
role that sampling has in a space populated by artifi-
cial examples. Our findings suggest that not only is
data hallucination beneficial for low-resource mor-
phological inflection, but that it is a necessary step
in the inflectional pipeline. That said, there is still
room to improve. Even in the more challenging
(and more realistic) setting present in this task, sev-
eral languages are close to solved for inflection, but
many still have significant room for improvement.
We anticipate more focused investigations into the
reasons why these languages remain so difficult
for transformer models, even as the state of the art
approaches new heights.
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Akkuş, Antonios Anastasopoulos, Taras Andrushko,
Aryaman Arora, Nona Atanelov, Gábor Bella,
Elena Budianskaya, Yustinus Ghanggo Ate, Omer
Goldman, Simon Guriel, Silvia Guriel-Agiashvili,
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A Lemma Overlap

Lemma overlap for small training data (in Table 3)
and large training data (in Table 2) with the develop-
ment and test sets. Lemma overlap is computed by
dividing the number of examples, where the lemma
occurs in the training set, with the total number of
examples.

B Supplementary results

Table 4 shows the micro averaged inflection accu-
racy of each model on the development data.
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ang ara asm evn got heb hun hye kat kaz khk kor krl lud non pol poma slk tur vep
dev 64.7 62.8 99.3 65.7 76.0 100.0 30.9 68.8 90.8 97.7 98.9 92.0 59.0 53.5 95.4 7.3 11.6 5.6 91.7 44.7
test 77.1 54.0 98.9 61.3 81.2 100.0 31.1 69.7 82.4 98.2 99.0 92.2 81.2 54.3 95.2 6.6 17.1 5.1 87.2 42.1

Table 2: Lemma overlap for the large training sets with the development and test data. Lemma overlap is computed
as f/N , where f is the number of development/test examples, where the lemma is found in the training set and N
is the total number of development/test examples.

ang ara asm bra ckt evn gml goh got guj heb hsb hsi hun hye itl kat kaz ket
dev 14.2 13.3 45.4 25.8 27.3 36.7 100.0 78.7 13.7 83.7 45.5 20.0 73.3 3.1 14.7 27.8 52.3 97.7 57.6
test 19.0 8.9 45.9 30.7 34.8 29.8 100.0 80.6 16.0 81.8 43.6 16.2 63.3 4.0 15.2 25.5 28.4 98.2 44.5

khk kor krl lud mag nds non pol poma sjo slk slp tur vep
dev 26.1 23.1 10.1 12.5 36.7 90.7 38.9 0.5 1.5 32.3 0.6 65.0 50.5 7.2
test 24.7 23.7 16.1 9.7 35.3 92.1 40.4 0.9 1.6 25.3 0.4 72.2 45.4 5.0

Table 3: Lemma overlap for the small training sets with the development and test data.

Experiment Small Large
ST BASELINE 42.59 60.04
OUR BASELINE 43.52 67.37
HALL 49.28 67.49
COPY 52.41 68.57
COPY+SF 53.36 68.99
COPY+HALL 52.32 68.09

Table 4: Results on the development data under small
and large data conditions. ST BASELINE refers to the of-
ficial neural shared task baseline and "Our Baseline" to
our baseline transformer with reverse positional encod-
ing and type embeddings. SF refers to student forcing,
HALL to data hallucination and COPY to lemma copy-
ing.
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Abstract

This paper presents the submission by the
HeiMorph team to the SIGMORPHON 2022
task 2 of Morphological Acquisition Trajecto-
ries. Across all experimental conditions, we
have found no evidence for the so-called U-
shaped development trajectory. Our submitted
systems achieve an average test accuracies of
55.5% on Arabic, 67% on German and 73.38%
on English. We found that, bigram hallucina-
tion provides better inferences only for English
and Arabic and only when the number of hallu-
cinations remains low.

1 Introduction

Morphological inflection concerns generating the
inflected word form given the lemma and a set
of morphosyntactic descriptions. A morphology
learner (human or machine) must be able to gener-
alise patterns from extremely sparse data. Obser-
vations from morphology acquisition by children
provides us with a glimpse of how learners gener-
alise regular and irregular patterns differently and
how the trajectories of pattern generalisations inter-
act with a small but growing lexicon.

This paper describes our approach and results for
Task 0 Part 2 of the SIGMORPHON 2022 shared
task on morphological acquisition trajectories. Two
main challenges of the task are that it covers two
different inflectional patterns (past tense and noun
plurals) over three languages and that there is only
a small amount of training data ranging from as
few as 100 samples to as many as 1,000 samples.
This extreme data sparsity calls for the use of data
hallucination techniques commonly used for low-
resourced NLP development (Chen et al., 2021).

The neural baseline provided by the shared task
is based on input-variant transformer (Wu et al.,
2020) or the vanilla transformer with optional data
augmentation (Anastasopoulos and Neubig, 2019).

We use a multi-headed self-attention Trans-
former with unigram-aware and bigram-aware data

hallucinations.
Our models yielded an improved average test

accuracy by 2.66% on Arabic, 8.69% on German,
4.5% on English, as compared with the neural base-
line results.

2 Background and Data

The details of the task description can be found
at https://github.com/sigmorphon/
2022InflectionST. We use the data pro-
vided by the SIGMORPHON 2022 shared task
(Part 2) (Kodner and Khalifa, 2022). The data
features lemmas, inflections, and corresponding
morphosyntactic description (MSD) using the
uni-morph schema (Kirov et al., 2018). The data
was released for English, German and Arabic. The
specific inflectional patterns were the English past
tense (Marcus et al., 1992), German noun plurals
(Clahsen et al., 1992) and Arabic noun plurals
(Dawdy-Hesterberg and Pierrehumbert, 2014).

3 System Description

In this section, we describe the neural network ar-
chitecture, the data hallucination process and the
submissions.

3.1 Neural Network architecture
All our models use the self-attention Transformer
architecture (Vaswani et al., 2017) and imple-
mented using the Fairseq (Ott et al., 2019) tool.
Both the encoder and decoder have 4 layers with
4 attention heads, an embedding size of 256 and
hidden layer size of 1,024. All models are trained
with Adam optimizer (Kingma and Ba, 2014) with
an initial learning rate of 0.001, batch size of 400,
label smoothing as 0.1, gradient clip threshold as
1.0, and 4,000 warmup updates. All models are
trained for a maximum of 3,000 optimizer updates,
with checkpoints saved every 10 epochs. Beam
search is used at decoding time with a beam width
of 5.
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The checkpoint with the smallest loss on the
development data is chosen as the best model.

The inputs to each model are the individual char-
acters of the lemma followed by their morpho-
syntactic tags separated by # symbol. For example,
for the English training triple (take, took, V;PST),
the input to the model is t a k e <V;PRS> #
<V;PST> and the output is t o o k .

3.2 Hallucinations

As has been shown in Anastasopoulos and Neubig
(2019), adding hallucinated data boosts the learning
process for small datasets. In the system described
there, the hallucinated data is produced by 1) iden-
tifying a sequence of three or more consecutive
characters that are aligned between the lemma and
the inflected form and 2) randomly replacing the
characters inside of this region by other characters
from the language’s alphabet. This replacement
strategy produces is motivated by the label bias
problem associated with the small dataset sizes. On
the other hand, as a result the algorithm of Anas-
tasopoulos and Neubig (2019) produces, among
others, string pairs that lack vowels and have no
resemblance to the original language data except
for the inflected part. Our hypothesis was that such
an approach may work well for languages with af-
fixal morphology that is independent but may be
less optimal for languages where the type of the
inflection depends on the phonological properties
of the stem (Haspelmath and Sims, 2013).

In order to check this hypothesis we have set
up an alternative hallucination procedure. For
each training set size, we compute a matrix of co-
occurring characters and during the replacement
step when a character from the alphabet is selected,
we verify if this character occurred after the preced-
ing character in the original train data. If yes, the
replacement takes place, otherwise a new candidate
character is selected.

As can be seen from the plots, the proposed
bigram hallucination algorithm provides better re-
sults for English and Arabic data, if we do not
produce too many hallucinations (1,000 hallucina-
tions are better than 10,000, which was the original
size in Anastasopoulos and Neubig (2019)).
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3.3 Development decision

We selected our submitted system based only on a
subset of the experiments, since we did not have the
full picture across all experimental conditions at
the time. Concretely, we based our decisions on the
models performance for German. We found that
the training size of less than 500 samples yielded
models that performed better on 10,000 hallucina-
tions, while training size of 500 and above yielded
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Arabic German English
Accuracy Distance Accuracy Distance Accuracy Distance

100 42.6 2.2 62.8 0.46 69.2 2.08
200 47.5 1.99 64.2 0.45 71.8 1.9
300 52.2 1.79 66.8 0.41 73.8 1.6
400 56 1.75 71.2 0.36 79.1 1.39
500 61.8 1.5 72.8 0.34 78.6 1.83
600 62.4 1.49 75.4 0.3 81.1 1.48
700 60.3 1.61 80.2 1.62
800 60.3 1.63 81.7 1.41
900 65.6 1.35 78 1.54
1000 63.8 1.64 81.1 1.2

Table 1: Accuracy and Levenshtein distance on the
development set

Arabic German English
Accuracy Distance Accuracy Distance Accuracy Distance

100 41.833 2.24 59 0.52 65.2 0.93
200 45.667 2.07 63.5 0.48 67.5 0.59
300 48.667 2.02 66.333 0.43 71.1 0.62
400 49.833 2.1 69 0.41 76.3 0.91
500 59.667 1.6 71 0.38 70.8 0.58
600 62.833 1.5 73.33 0.33 75.5 0.58
700 60.333 1.57 74.3 0.49
800 62.167 1.53 78.7 0.59
900 63.333 1.52 74.7 0.6
1000 59.333 1.74 80 0.48

Table 2: Accuracy and Levenshtein distance on the test
set

models that performed better on only 1,000 hallu-
cinations. Based on this finding with German, at
the time of the development, we assumed this trend
would hold also for English and Arabic.

3.4 Submissions

The models trained with training size less than 500
were hallucinated with 10,000 samples and the rest
of the models with 1,000 samples across the three
languages.

As the models trained on the proposed bigram
hallucination algorithm provides better results on
the development set for English and Arabic with
1000 hallucinations across all training sizes, this
would have been our alternate submission.

4 Results

Table 1 shows the performance of our models on
the development set. Results on the test data from
SIGMORPHON 2022 Task 0 with Levenshtein dis-
tance can be found in Table 2.

5 Conclusion

How do children learn morphology? It has of-
ten been noted that children start out using cor-
rect forms, followed by a period of regularlizing
irregular forms, followed by mastery of the mor-
phology (Tessier, 2019)–often called the U-shaped

development. This development can be found in
Arabic (Abdalla et al., 2012; Benmamoun et al.,
2014; Ravid and Farah, 1999; Saiegh-Haddad et al.,
2012), German (Marcus et al., 1995) and English
(Marcus et al., 1992). In our simulations we have
found no evidence for such a development. This
is, in fact, a good thing. Assuming a U-shaped
development in morphological acquisition is too
coarse, as the literature says little if anything about
the question whether the (very few) forms used by
very young children are used in the correct mor-
phosynatctic environment. Moreover, this literature
assumes that learning morphology involves learn-
ing how forms map onto other forms, reminiscent
of the paradigm cell filling problem (Ackerman
and Malouf, 2013; Guzmán, 2020; Malouf, 2017)–
for example, how does a singular form map onto a
plural form? The role of meaning is very limited,
often not more than a contrastive label. However,
the fact that children gradually reduce the number
of overgeneralizations of irregular forms can be ex-
plained by the way in which children learn which
word forms are used to express which particular
meanings (Ramscar et al., 2013).

Our experiment with restricting the hallucination
process to generate forms that are phonotactically
attested (bigram) in the training data revealed that
its benefit was found only in very restricted con-
ditions depending on the amount of hallucinated
samples and the specific language (and presum-
ably the inflectional pattern). Our findings are in
agreement with the detailed error analyses of data
hallucination techniques by Samir and Silfverberg
(2022) which concluded that hallucination is not a
one-size-fits-all technique and it must be used with
caution and requires closer inspection depending
on the type of morphological inflections.
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Abstract

The paper describes the Flexica team’s sub-
mission to the SIGMORPHON 2022 Shared
Task 1 Part 1: Typologically Diverse Morpho-
logical Inflection. Our team submitted a non-
neural system that extracted transformation pat-
terns from alignments between a lemma and
inflected forms. For each inflection category,
we chose a pattern based on its abstractness
score. The system outperformed the non-neural
baseline, the extracted patterns covered a sub-
stantial part of possible inflections. However,
we discovered that such score that does not ac-
count for all possible combinations of string
segments as well as morphosyntactic features
is not sufficient for a certain proportion of in-
flection cases.

1 Introduction

Previous years’ shared tasks on morphological rein-
flection demonstrated superior performance across
a variety of typologically diverse languages, es-
pecially in high-resource setting (Cotterell et al.,
2016, 2017, 2018; McCarthy et al., 2019; Vylo-
mova et al., 2020; Pimentel et al., 2021). Still, in
low-resource setting and languages with limited
resources in which paradigms were only partially
represented the accuracy numbers were much less
optimistic (Vylomova et al., 2020; Pimentel et al.,
2021). Recently, Goldman et al. (2022) experi-
mented with the 2020 shared task data splitting
it by lemmas and demonstrated the 30% accuracy
drop on average among top-3 top ranked systems in
that year’s shared task. This motivated organizers
of this year’s shared task to focus on various as-
pects of morphological generalisation and conduct
controlled experiments to evaluate systems’ ability
to predict inflected forms for unseen lemmas and
morphosyntactic feature combinations.

In this paper, we describe a modification of our
earlier model, Flexica (Scherbakov, 2020), that has
been participated in the 2020 shared task (Vylo-

mova et al., 2020).1 We provide a summary of
its modified version where we attempted to im-
prove its pattern-based generalization ability. We
added ability to reuse word forms observed at dif-
ferent combinations of grammatical tags. Also,
we improved scoring mechanism to enable better
fitting to rule-and-exception hierarchy which typi-
cally presents in a language, and to reduce noise in
pattern selection.

2 Task Description

This year’s shared task setting substantially dif-
fered from previous years in controlling the lemma
and feature sets. More specifically, the training, de-
velopment, and tests sets for the shared task were
designed to assess various kinds of generalization.
The shared task organizers considered four scenar-
ios of overlap between the training and test sets
: 1) both test lemma and feature set are observed
in the training (but separately); 2) a test lemma
is observed in the training set whereas the feature
combination is entirely novel; 3) a feature combi-
nation is observed in the training set but the lemma
is novel; 4) both a test pair’s lemma and feature
set are entirely novel and were not presented in the
training set.

In addition, the training data sizes vary from
700 training instances in the small (low-resource)
setting to 7,000 instance in the large (high-resource)
setting. For some under-resourced languages the
large setting contained fewer samples.

3 Data

3.1 Data Format

All shared task data are in UTF-8 and follow Uni-
Morph annotation schema (Sylak-Glassman, 2016).
Training and developments samples consist of a

1https://github.com/
andreas-softwareengineer-pro/flexica
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lemma, an inflected (target) form, and its mor-
phosyntactic features (tags). Test samples omit
the target form.

3.2 Languages

The shared task covered morphological paradigms
for 33 typologically diverse languages represent-
ing 11 language families: Arabic (Modern Stan-
dard), Assamese, Braj, Chukchi, Eastern Armenian,
Evenki, Georgian, Gothic, Gujarati, Hebrew, Hun-
garian, Itelmen, Karelian, Kazakh, Ket, Khalkha
Mongolian, Kholosi, Korean, Lamahalot, Low Ger-
man, Ludic, Magahi, Middle Low German, Old
English, Old High German, Old Norse, Polish, Po-
mak, Slovak, Turkish, Upper Sorbian, Veps, and
Xibe.

4 Baseline Systems

As in previous years’ shared tasks, two types of
baseline systems were provided: neural and non-
neural. The non-neural baseline aligns extracts
suffixes and prefixes based on lemma–form align-
ments, later associating them with corresponding
morpholosyntatic features (Cotterell et al., 2017,
2018). As the neural baseline, organizers provided
a character-level adaptation of transformer (Wu
et al., 2021).

5 Evaluation

The systems submitted to the shared task were eval-
uated in terms of test accuracy between predicted
and gold forms. Besides the overall accuracy, four
categories were distinguished in the analytic data
provided by organizers. Depending on whether a
test sample lemma has been seen in the training set,
and whether an exact tag combination ("feature")
has been seen in the training set, a test sample
might fall into one of the following four categories:
"Lemma Overlap", "Feature Overlap", "Neither
Overlap", or "Both Overlap".

6 System Description

6.1 Training

We implemented a non-neural system (Flexica)
where an inflected form is inferred from string-to-
string transformation patterns observed in training
samples. We produce multiple transformation pat-
terns per each training sample. Those patterns dif-
fer in their level of abstractness and also depend
on string-to-string alignments between a lemma

and an inflected form. Later on, we also distin-
guish two types of patterns, namely a string pat-
tern abd a transformation pattern. A string pattern
is a string which may consist of concrete charac-
ters and wildcards, e.g. “u 1 nd” pattern for the
word “understand”. A transformation pattern is a
triple (lemma_pattern, tag → form_pattern)
which is produced from (lemma, tag → form)
training samples by replacing certain character sub-
sequences with wildcards. lemma_pattern and
form_pattern share the same wildcards within a
transformation pattern.

In order to produce transformation patterns for
a given training sample we follow the stages:

1. Find the longest common substring for a
lemma and its form. Introduce a wild-
card (character subsequence) 1 and replace
the matching part by the wildcard symbol.
For example, an inflection (“observe”,
V;3;SG → “observes”) produces a
pattern (“ 1 ”, V;3;SG → “ 1 s”). If
there are multiple longest matches, we pro-
duce as many transformation pattern vari-
ants. For example, (“bring”, V;PST
→ ”brang”) will result in two pat-
terns at this stage, (“ 1 ing”, V;PST
→ “ 1 ang”) and (“bri 1 ”, V;PST
→ “bra 1 ”). We recursively apply the
above procedure to the remaining concrete
subsequences, finding longest matches and
adding new wildcards until no more match-
ing fragments are available.2 While doing so,
we never nest wildcards into each other. We
also reject lemma patterns where two or more
wildcards would be immediately adjacent, be-
cause it would lead to excessive ambiguity in
further matching.

Note: although the process described above
may seem to be proliferating, just a single
pattern is produced for a vast majority of in-
flection samples, as they usually have a single
longest match. A notable exception are lan-
guages with templatic morphology.

2. Produce patterns with various character
refinements. At this stage, we partially
“surrender” longest matches found at the
alignment stage. We replace some characters

2We apply an upper threshold for the number of wildcards
specifying its as a hyperparameter (usually 2 or 3), which does
not affect prediction accuracy.
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in wildcard groups back to their concrete
values that were observed in a training sample.
Once a character is reverted to its concrete
value, a wildcard that contained it may be split
into two wildcard groups or even disappear.
The latter happens whenever a wildcard
standing for an empty substring is produced.
We do such for 0, 1..CCL characters se-
lected in all possible combinations, where
CCL is a limit of the concrete characters.3

Transformation patterns such as (“ 1 e”,
V;3;SG → “ 1 es”), (“ 1 v 2 ”,
V;3;SG → “ 1 v 2 s”), (“o 1 v 2 e”,
V;3;SG → “o 1 v 2 es”) constitute a
non-exhaustive list of refinements for the
pattern (“ 1 ”, V;3;SG → “ 1 s”)
produced for an (“observe”, V;3;SG
→ “observe”) sample.

We collect all unique patterns produced over
a training corpus, finally constructing a trie
database model in which data records are as
follows: l → {s → {t, c, d}} where l is a
lemma pattern; s is an inflected form pattern;
t is a grammatical tag combination; c is a num-
ber of training samples matching the transfor-
mation (l, t} → s); d is a number of samples
where lemma and tags match l and t, respec-
tively, but the inflected form doesn’t match
s.

6.2 Inference
In order to predict an infected form for a
(lemma, tag) pair, our system finds all the trans-
formation patterns that match the lemma (given
any non-empty substring substitution for each wild-
card group). Then it picks the transformation that
yields the highest score. The score is hierarchical
which means that a less significant score factor is
considered if and only if all the factors of greater
significance are in a tie. Here are the list of score
factors, ordered by decreasing significance:

1. Penalty for the pattern abstractness, measured
as count of characters substituted into wild-
card groups. We include an extra “pad” char-
acter per group while calculating that sum;

2. Penalty for tag sets’ mismatch (which is fixed
per each mismatching tag) plus (optionally) a

3In our officially reported results CCL is taken to be 3,
because computations are too numerous for greater values.
However, our observations suggest that this value is not suffi-
cient, and increasing it enables better performance.

fixed “lump” amount for any two mismatching
tag sets;4

3. Representative premium (optional), which is
a fixed bonus assigned to transformations that
are the most abstract while being correct repre-
sentations of at least one training sample. This
score component serves as a counterweight
to the pattern abstractness score component
described above. It may be seen as an adapta-
tion of the idea of the most general paradigm
(Hulden et al., 2014);

4. A (squashed) frequency f of transforma-
tion pattern occurrence in a training set for
the given tag combination, minus double
(squashed) frequency observed for alternative
transformations for the same lemma pattern
and tag combination.

7 Results

Tables 1 and 2 present accuracy across all the
shared task’s languages measured for the small
and large settings, respectively. For Flexica, the
column “B” stands for the basic option (without
representative bonus), while the column “R” stands
for the option with representative bonus. The offi-
cial submission accuracy numbers are shown in the
“Sb.” column. Also, accuracy results for the non-
neural and neural baselines (“BL”) and best results
across neural systems submitted to the shared task
(“neural”/“max”), are presented for the reference.

We also explored some modifications to pattern
scoring, but they did not affect performance much.
In particular, we tried the following options:

• Increased penalty for impure patterns where
different transformations were learnt for a
given lemma pattern. The change resulted in
approx. 1% accuracy increase for Middle Low
German, although a nearly equal decrease hap-
pened in Old High German;

• We added an extra bonus for the exact match
of grammatical tag combinations. Surpris-
ingly, due to a notable sparseness of such
combinations in the dataset we used, that

4We also considered using a variable tag-to-tag mismatch
penalty which was proportional to a negative log-likelihood
of tag interchangeability, but our experiments demonstrated
lower accuracy for that option.
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non-neural neural
lang Flexica BL max BL

B R Av. Sb.
ang 41 41 85 37 49 54 33
ara 31 31 70 32 65 66 22
asm 33 33 47 30 54 57 26
bra 55 56 82 58 55 60 57
ckt 21 21 29 10 6 21 13
evn 3 3 43 3 29 34 25
gml 27 27 92 26 42 56 22
goh 49 50 73 40 56 60 42
got 38 38 68 18 60 61 38
guj 47 47 61 47 39 66 48
heb 19 19 31 19 39 40 14
hsb 13 13 52 13 5 83 10
hsi 16 16 27 13 0 96 20
hun 26 26 58 25 65 61 23
hye 40 40 61 39 64 86 38
itl 30 30 53 31 34 34 28
kat 36 36 63 34 60 59 43
kaz 40 40 52 34 55 65 42
ket 21 21 42 18 10 35 32
khk 24 24 46 22 41 41 28
kor 32 31 57 30 23 50 28
krl 23 23 31 23 16 45 5
lud 88 87 91 88 46 87 88
mag 58 58 79 58 51 64 55
nds 29 29 62 31 25 50 16
non 35 35 71 39 55 52 30
pol 40 40 67 43 59 78 30

poma 29 29 49 29 51 50 22
sjo 55 55 90 65 58 76 67
slk 44 44 81 51 61 84 38
slp 7 7 51 8 15 30 5
tur 18 18 25 18 34 85 16
vep 20 20 41 20 35 42 21

Table 1: Accuracy (in %) measured in the small training
condition. B - basic options; R - with a bonus score
for “representative” patters; Av. - theoretical limit at
a perfect pattern choice; Sb. - submitted version; BL -
baseline; max - best among submitted systems

change produced no significant difference, ex-
cept for a minor accuracy increase for Gothic
and Georgian.

• Tag combinations in some UniMorph inflec-
tion data files may denote multiple options.
For instance, multiple tags corresponding to
the same category may be included into a

non-neural neural
lang Flexica BL max BL

B R Av. Sb.
ang 46 47 91 41 61 64 43
ara 37 37 79 37 78 75 26
asm 35 35 63 34 76 75 31
evn 3 3 70 3 57 57 25
got 44 44 80 21 72 73 46
heb 29 29 45 28 48 51 20
hun 34 34 75 32 77 74 37
hye 43 42 66 42 69 93 44
kat 32 32 75 45 87 83 45
kaz 40 40 52 34 55 65 42
khk 31 31 50 23 49 49 38
kor 33 34 63 33 56 54 32
krl 36 37 53 37 27 64 5
lud 83 78 93 89 52 89 89
non 41 41 86 47 84 87 37
pol 50 50 84 52 69 90 43

poma 34 34 65 33 63 61 24
slk 49 49 87 58 70 93 47
tur 36 36 53 35 39 94 36
vep 30 30 60 30 48 62 32

Table 2: Accuracy (in %) measured in the large training
condition. B - basic options; R - with a bonus score
for “representative” patters; Av. - theoretical limit at
a perfect pattern choice; Sb. - submitted version; BL -
baseline; max - best among submitted systems

single combination, in which any of them is
meant to be equally suitable for producing a
given inflected form. In order to meet that an
alternative tagging format, we tried a modified
tag mismatch penalty. Namely, an absence of
a target tag in a learnt tag combination is in-
terpreted as “one unit” of tag mismatch. This
option yields approximately the same perfor-
mance as the previous one described.

As exact tag combinations were significantly
sparse in training and test sets, the majority of mis-
predictions can be attributed to failures to inference
tag interchangeability. Indeed, in most cases of mis-
prediction a correct transformation was available
in the learnt model, but it deemed to be irrelevant
due to low “similarity” between the learnt tag com-
bination and the target one. The “Av.” column in
Tables 1 and 2 shows the percentage of test sam-
ples where a correct transformation was available
for the model. It tells the upper bound of accuracy
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that our system would have if the pattern selection
mechanism worked perfectly.

8 Discussion

The system we explored in this paper relies on two
simple hypotheses. According to the first one, a
choice of inflection paradigm in most cases may
be associated with some distinctive subsequence
of characters in a lemma. The second hypothesis
claims existence of a hierarchy of rules and ex-
ceptions in most languages, where each exception
domain is fenced by a more concrete character pat-
tern than one associated with an embracing general
inflection rule. We note that our current approach
only admits a very restrictive meaning for such
a “concreteness”, namely, the number of concrete
characters in a template. Due to this substantial
limitation, we only consider an approximate split
of rule-specific domains.

While the analysis of predictions suggests this
approach is generally reasonable, the distinguish-
ing of relevant patterns from noise is challenging.
Certain information-based criteria such as entropy,
cross-entropy and the like did not work, mainly due
to specific patterns being sparsely distributed in the
dataset (especially small ones), so that majority
of highly concrete patterns peaked the distribution
of inflection transformations. On the other hand,
many relevant generic patterns demonstrate rather
disperse distributions due to numerous exceptions.
As a result, it is not possible to easily link the en-
tropy to the relevancy. We intentionally avoided
imposing extra biases toward “known” common
language rules in order to focus our exploration
on the system’s learning capability itself. Unfor-
tunately, we have not yet found universal enough
criteria to assess pattern relevance against inflec-
tion rules, so in this aspect the system should be
considered as a work in progress. We attempted
“promotion” of one maximally abstract pattern per
training sample, that match the given sample and
does not contradict any other observed samples.
The underlying hypothesis was that every inflection
paradigm is probably justified by a single “cause”,
where a “cause” in our restricted context stands
for a distinct character pattern for a lemma. There-
fore, it should be reasonable to restrict prediction
selection to those transformation patterns which
were proven to be correctly representing at least
one training sample in the most generic way. How-
ever, our experiments disproved such an approach,

because, as we already said above, relevance crite-
ria based on distribution purity are fundamentally
flawed.

Our system operates at character level without
considering more generic classes of sub-patterns.
However, it did not seem to be a significant issue
in most languages. In other words, patterns needed
for correct inflection have usually been successfully
learnt in most languages (still, non necessarily with
the same grammatical tag). However, there are nu-
merous languages where correct patterns cannot be
found for a large fraction of examples; this severely
jeopardised the respective prediction rates. Besides
the “genuinely” high morphological complexity of
languages such as Veps, there also occurred some
“technical” reasons for the pattern match missing,
such as non-standardized scripting of spoken lan-
guages (Pomak, Evenki). It is our system’s lack
of a mechanism for the affix concatenation which
was responsible for inferior results observed in ag-
glutinative languages like Turkish of Hungarian,
especially in their low-resource settings.

In the 2022 shared task, we faced a new chal-
lenge of extreme sparsity of grammatical tag com-
binations. A separate model per learnt tag com-
bination does not work in such an environment.
We allowed using transformation patterns observed
at grammatical tag combinations different from a
requested one, with a score penalty proportional
to the number of different “atomic” tags (mor-
phosyntatic features). From the inflection perspec-
tive, many grammatical tags are not as significant
for a correct prediction as others are. This inspired
us to use variable penalty per tag substitutions,
which was proportional to a log-likelihood of ob-
serving the same transformation regardless whether
a given tag is present, as measured over all learn
transformation patterns, without considering other
tags. For instance, in Polish, the animacy does not
affect inflection paradigms much, and ignoring it
would significantly increase the average accuracy
of inference. However, to our surprise, according to
the likelihood, some case tag substitutions occurred
to be better candidates for being ignored. For in-
stance, the dative and the instrumental cases pro-
duce same forms for a majority of Polish feminine
nouns, therefore our predictor frequently chooses
INS→ DAT substitution, which is usually incor-
rect beyond the feminitive (instead of correct ANIM
→ INAN). Thus, such Bayesian approach, that con-
siders tags independently, even failed to outperform
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a simplistic technique based on the “edit distance”
between tag combinations. We did not yet consider
more complex sub-combinations of tags, still the
results definitely suggest one to do that way.

An excessive number of generated patterns is
another challenge which yet needs to be addressed.
Currently, our system unrolls all the combinations
of concrete characters in lemma patterns until ulti-
mately discriminative ones are found over a train-
ing set. This leads to huge proliferation of noisy
patterns of no extra value. In practice, this fact
prevents the system from considering longer sub-
sequences of concrete characters where those sub-
sequences could really help to delimit paradigm
domains.

Summarizing our impressions from the exper-
iments, we suggest that the system is primarily
interesting as it prototypes a simple but efficient ap-
proach to the conversion of a sequence-to-sequence
task into a “plain” classification task. In this view,
further enhancements of the system may be broken
into two separate directions. The first one concerns
the pattern matching mechanism which would be-
come less consuming, more generalized, based on
incrementally collected “cues” (and, in such a way,
borrowing features of the “soft attention”). An-
other direction, which is less specific, would be
an exploration of better classification models to be
used. Also, the principally optimistic results ob-
tained in our experiments inspire us to attempt ex-
panding the proposed multi-pattern approach into
other sequence-to-sequence tasks beyond the re-
inflection one.

9 Conclusion

We developed a non-neural system for morpholog-
ical inflection. We submitted it to the SIGMOR-
PHON 2022 shared task 1, part 1. The system
outperformed the non-neural baseline, still we dis-
covered a fundamental insufficiency of simplistic
approaches that rely on observed probabilities of
particular transformation patterns.

Acknowledgements

We are deeply thankful to all the organizers of SIG-
MORPHON workshop and its re-inflection shared
task, and to all the contributors to the UniMorph
database, for the opportunity to participate in this
inspirational contest and to carry out insightful ex-
periments on amazingly diverse morphological cor-
pora.

References
Ryan Cotterell, Christo Kirov, John Sylak-Glassman,

Géraldine Walther, Ekaterina Vylomova, Arya D. Mc-
Carthy, Katharina Kann, Sebastian Mielke, Garrett
Nicolai, Miikka Silfverberg, David Yarowsky, Ja-
son Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, pages 1–27, Brussels.
Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sandra Kübler, David Yarowsky,
Jason Eisner, and Mans Hulden. 2017. CoNLL-
SIGMORPHON 2017 shared task: Universal mor-
phological reinflection in 52 languages. In Proceed-
ings of the CoNLL SIGMORPHON 2017 Shared Task:
Universal Morphological Reinflection, pages 1–30,
Vancouver. Association for Computational Linguis-
tics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared Task—
Morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 10–22, Berlin, Germany. Association for Com-
putational Linguistics.

Omer Goldman, David Guriel, and Reut Tsarfaty. 2022.
(un)solving morphological inflection: Lemma over-
lap artificially inflates models’ performance. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 864–870, Dublin, Ireland. Association
for Computational Linguistics.

Mans Hulden, Markus Forsberg, and Malin Ahlberg.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 569–578,
Gothenburg, Sweden. Association for Computational
Linguistics.

Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu,
Chaitanya Malaviya, Lawrence Wolf-Sonkin, Garrett
Nicolai, Christo Kirov, Miikka Silfverberg, Sebas-
tian J. Mielke, Jeffrey Heinz, Ryan Cotterell, and
Mans Hulden. 2019. The SIGMORPHON 2019
shared task: Morphological analysis in context and
cross-lingual transfer for inflection. In Proceedings
of the 16th Workshop on Computational Research in
Phonetics, Phonology, and Morphology, pages 229–
244, Florence, Italy. Association for Computational
Linguistics.

Tiago Pimentel, Maria Ryskina, Sabrina J. Mielke,
Shijie Wu, Eleanor Chodroff, Brian Leonard, Gar-
rett Nicolai, Yustinus Ghanggo Ate, Salam Khalifa,
Nizar Habash, Charbel El-Khaissi, Omer Goldman,

245

https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/W16-2002
https://doi.org/10.18653/v1/W16-2002
https://aclanthology.org/2022.acl-short.96
https://aclanthology.org/2022.acl-short.96
https://doi.org/10.3115/v1/E14-1060
https://doi.org/10.3115/v1/E14-1060
https://doi.org/10.18653/v1/W19-4226
https://doi.org/10.18653/v1/W19-4226
https://doi.org/10.18653/v1/W19-4226


Michael Gasser, William Lane, Matt Coler, Arturo
Oncevay, Jaime Rafael Montoya Samame, Gema Ce-
leste Silva Villegas, Adam Ek, Jean-Philippe
Bernardy, Andrey Shcherbakov, Aziyana Bayyr-ool,
Karina Sheifer, Sofya Ganieva, Matvey Plugaryov,
Elena Klyachko, Ali Salehi, Andrew Krizhanovsky,
Natalia Krizhanovsky, Clara Vania, Sardana Ivanova,
Aelita Salchak, Christopher Straughn, Zoey Liu,
Jonathan North Washington, Duygu Ataman, Witold
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