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Abstract

In recent years large transformer model archi-
tectures have become available which provide a
novel means of generating high-quality vector
representations of speech audio. These trans-
formers make use of an attention mechanism
to generate representations enhanced with con-
textual and positional information from the in-
put sequence. Previous works have explored
the capabilities of these models with regard to
performance in tasks such as speech recogni-
tion and speaker verification, but there has not
been a significant inquiry as to the manner in
which the contextual information provided by
the transformer architecture impacts the repre-
sentation of phonetic information within these
models. In this paper, we report the results of a
number of probing experiments on the represen-
tations generated by the wav2vec 2.0 model’s
transformer component, with regard to the en-
coding of phonetic categorization information
within the generated embeddings. We find that
the contextual information generated by the
transformer’s operation results in enhanced cap-
ture of phonetic detail by the model, and allows
for distinctions to emerge in acoustic data that
are otherwise difficult to separate.

1 Introduction

In recent years large transformer models have be-
come available which provide a novel means of
generating high-quality vector representations of
input speech audio sequences. These transformers
aim to exploit feature learning on large unlabelled
datasets to perform sequence-to-sequence transfor-
mations on audio that capture and preserve salient
features from the input sequence in a quantised
and contextual output representation. While most
work on transformer models in automatic speech
recognition focus on performance improvements
and applications in down-stream tasks, this paper

focuses on whether the internal layers of a trans-
former model provide any information as to the
emergence of phonetic and phonological properties
of speech. Specifically we interrogate the wav2vec
2.0 model (Baevski et al., 2020) by probing the
internal layers of the transformer using domain-
informed features. The structure of this paper is as
follows. Firstly, in section 2 we present some exist-
ing research related to our approach followed by a
discussion of transformer-based models in section
3. Section 4 presents the resources used, and the
experimental methodology is described in section
5. In section 6 we present our results, followed by
conclusions and future work in section 7.

2 Related Work

There has been considerable work in recent years
as to the extent and nature of phonetic information
captured in the embeddings used by deep learn-
ing models. The word2vec model (Mikolov et al.,
2013) has been applied below the level of the word
to investigate phonological analogies and similar-
ities. Silfverberg et al. (2018) have explored the
sound analogies generated by phoneme embed-
dings. Kolachina and Magyar (2019) detailed the
ability of embeddings to capture phonemic and
allophonic relationships within an artificial lan-
guage, noting that contrastive elements within the
embedding space correlated with articulatory fea-
tures. O’Neill and Carson-Berndsen (2019) demon-
strate that embeddings derived purely from text us-
ing a grapheme-to-phoneme mapping and applying
a word2vec approach exhibit similarity between
phoneme classes. These phoneme embeddings
were subsequently integrated with the data-driven
acoustic similarities of Kane and Carson-Berndsen
(2016) to generate a similarity matrix for use in
phonemically driven spell checking (O’Neill et al.,
2021).
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Specifically with respect to the capture of pho-
netic information in the embeddings of automatic
speech recognition, Belinkov and Glass (2017)
have investigated the internal layers of end-to-end
recognition systems using a connectionist temporal
classification (CTC) approach with DeepSpeech2
(Amodei et al., 2016). They found significant dif-
ferences across layers in their architecture with
respect to predictive performance of phoneme cate-
gories. Their work also demonstrated that certain
categories became represented in the embedding
space of their chosen model such that intra-category
separation was significantly more difficult than for
other categories. They noted that these categories
saw better performance in later layers, at the ex-
pense of degraded performance in more easily sepa-
rable categories. Scharenborg et al. (2019) have in-
vestigated the representation of speech in deep neu-
ral networks using a 3-layer model trained to dis-
tinguish consonants and vowels. They performed
a wide-ranging comparison of PCA-transformed
embedding spaces, and their work saw strong clus-
tering on the basis of the vowel/consonant categori-
sation and manner of articulation. Most recently,
Ma et al. (2021) investigated the extent to which
phonetic properties emerge from the acoustic rep-
resentations of transformer-based speech recogni-
tion architectures. Using four pre-trained acous-
tic representations from transformer-based speech
recognition architectures, they designed probing
tasks using linear regression, a support vector ma-
chine and a feedforward neural network consist-
ing of two fully-connected layers. Their embed-
dings are associated with high-level categorisations
derived from the TIMIT dataset (Garofolo et al.,
1992), perform at a high level and see significant
improvements across layers when considering less-
separable classes such as fricatives.

Conneau et al. (2018) proposed a methodology
known as probing as a way to examine what infor-
mation is present in an embedding. In Conneau
et al.’s framing a probing task involves training
a classification model to predict properties (e.g.,
length, tense, parse tree depth, and so on) of a
sentence based on the embedding of the sentence.
Probing assumes that the accuracy of the classifi-
cation model (i.e., a probe) on the task indicates
whether the embeddings encode information rele-
vant to task target. There is a growing body of work
using probing to examine what types of information
are encoded in the embeddings created by Trans-

former models (Hewitt and Manning, 2019; Liu
et al., 2019; Tenney et al., 2019; Nedumpozhimana
and Kelleher, 2021), and also exploring what layer
in the Transformer architecture different types of
information are encoded in (Jawahar et al., 2019).
In this work, we adapt the probing methodology to
speech embeddings, and use it to understand and
compare the phonetic information encoded in dif-
ferent layers of a Transformer model. Through this
comparision of probing performance across lay-
ers on phonetic tasks we hope to better understand
whether the information encoded in these speech
embeddings, and the sequencing of this encoding
across layers, accords with domain-knowledge ex-
pectations regarding phonetics.

The work presented in this paper focuses specifi-
cally on the transformer module of the wav2vec2.0
model (Baevski et al., 2020) and the representations
generated at each layer of the transformer. It will
not probe the attention mechanism itself, which is
outside the scope of this paper. The primary goal
of this investigation is not to deliver an explanation
of the operations undertaken by the transformer ar-
chitecture in generating these representations, but
instead to probe the representations generated at
different layers across the architecture in order to
examine the development of the architecture’s abil-
ity to delineate between phonetic categories.

3 Transformer-Based Models

In recent years transformer-based models have re-
ported state-of-the-art results on a range of speech
processing tasks, and today pre-trained models are
available for a variety of high-demand tasks such as
automatic speech recognition (ASR). These mod-
els leverage the availability of large unlabelled
acoustic datasets, in parallel with enhanced archi-
tectural features such as attention mechanisms, to
produce information-dense distributed vector repre-
sentations (embeddings) of input audio signals. In
the architecture examined herein, embeddings are
of a N*T dimensionality, with width N dependent
upon input length, and each instance of T represent-
ing the dimensionality of the encoded information
within a specific time-frame, and specific variance
within that dimensionality relating to differences
in the acoustic feature space for that frame.

The excellent performance of transformer based
models on speech processing tasks suggests that
these models have the ability to encode within the
embeddings they generate aspects of the input sig-
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nal relating to speech phenomena, while discarding
low-information aspects of the input signal such
as background noise and variation deemed to be
unimportant during the training cycle. Furthermore,
some architectures such as wav2vec 2.0 have been
designed to exploit the high-quality of embeddings
generated from unlabelled data by allowing for very
small quantities of labelled data to be provided as
fine-tuning information during a separate training
stage while still achieving high levels of transcrip-
tion performance.

However, while there has been significant in-
quiry as to the final-level performance of these
models, relatively little is known as to the specific
information captured within the embedding space,
and whether that encoded information accords with
domain-knowledge expectations. Previous works
have explored the use of these embeddings as the
basis for higher-order operations, such as accent-
resilient ASR (Li et al., 2021), identification of
speaker emotional state (Pepino et al., 2021), and
modelling of prosody in speaker input (Gan et al.,
2022).

For the probing task detailed in section 5, the
phoneme embeddings (calculated by averaging the
embeddings for the frames within the phoneme in-
terval) for each layer in the multi-layer wav2vec2.0
transformer stack are used as inputs for the train-
ing of a multi-layer perceptron (MLP) on the task
of identifying an associated TIMIT phonetic label.
The performance of this model is taken as indica-
tive of the relative richness of specific phonetic data
within the output embeddings from wav2vec 2.0.

4 Resources

4.1 TIMIT

The TIMIT read-speech corpus (Garofolo et al.,
1992) was used due to the high-quality metadata
present in the dataset. The dataset is comprised
of 5.4 hours of spoken English audio sampled at
16kHz in wav format. The audio is American-
accented, with 8 major US English dialects rep-
resented, with each speaker recorded uttering ten
high acoustic-information sentences. Each utter-
ance is a single sentence of spoken audio, with man-
ual character, phonetic, and orthographic transcrip-
tions, in time-aligned format, provided for each
recording.

4.2 wav2vec 2.0

This work uses wav2vec 2.0 (Baevski et al.,
2020). This section outlines the pre-training task,
training task, and architecture of the pre-trained
wav2vec 2.0 model “base_960” 1 used at the pre-
experimental stage. It then proceeds to the appli-
cation of the model to the production of the ASR
data used in the primary task.

4.2.1 Architecture
wav2vec 2.0 makes use of a transformer architec-
ture for the purposes of transforming raw audio
input W into a vector context representation C. A
1D ConvNet feature encoder first parses the wave-
form into a latent speech representation which is
passed to the transformer. The transformer com-
ponent is composed of a stack of 12 transformer
layers each with an internal dimension of 768, a
feed-forward dimension of 3072, and 8 attention
heads. The component takes the output of the fea-
ture encoder, applies relative positional encoding
and a GELU activation to the inputs, before a layer
normalisation. This outputs context representation
C.

The "base_960" model used can be loaded in a
headless or LM-head configuration, the latter of
which includes a language modelling head applied
on top of the transformer architecture which divides
output into a vocabulary of 32 characters including
alphabetical characters and separators. This out-
puts character representations of C, which is the
ASR transcription of W.

4.2.2 Training Task and Dataset
The wav2vec 2.0 model was pre-trained on the unla-
belled Librispeech corpus containing 960 hours of
audio. The wav2vec 2.0 model features both a pre-
training and fine-tuning objective. The fine-tuning
task is not relevant for this work, as it pertains to
the language-modelling head which was not used
in our experiments. The pre-training task requires
the transformer module to correctly identify the
“true” latent quantised speech representation, pro-
vided by the pre-transformer quantisation CNN
module, for a masked time-step. A certain propor-
tion of the inputs (representing quantisations of a
particular time-step) to the transformer module are
masked, and the transformer must identify them
from a set of distractors sampled from the overall
set of masked time-steps.

1https://huggingface.co/facebook/wav2vec2-base-960h
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Figure 1: Overview of Experimental Methodology

5 Methodology

This section sets out the experimental methodology
employed in this paper, outlining specifically how
the relevant data was generated and the description
of the probing task. Figure 1 provides an overview
of the steps involved.

5.1 Data Generation

Firstly, utterance embeddings are generated us-
ing wav2vec 2.0. For each utterance in the full
TIMIT training dataset (4620 separate 16kHz wav-
formatted files), 12 sets of embeddings were gen-
erated, one per transformer layer. This was per-
formed by operating the model without its lan-
guage modelling head, and specifying the return
of hidden-layer representations, where each trans-
former block is a single hidden-layer. Each audio
file input generates an output of format [N*768]
(N being the number of 25ms frames, proportional
to the duration of the input audio); this results in
the Individual Layer Data in figure 1. In contrast
to the representations explored by Belinkov and
Glass (2017), the representations here retain a con-
stant dimensionality throughout each layer of the
transformer, in distinction to the variety of layer
architectures employed in DeepSpeech2.

The next step is to generate a frame-based
dataset for the probing tasks. Since the TIMIT
dataset provides frame-aligned annotations, mark-
ing the beginning and end of a given phoneme

in the associated audio file, this data can be used
to calculate phoneme-averaged durations. Taking
the proportion between the maximum number of
TIMIT frames in a given audio sequence and the
number of wav2vec 2.0 frames N generated for
that sequence, a relative positional mapping is gen-
erated for each [N*768] embedding, whereby a
given frame of shape [1*768] is labelled with the
phoneme2 occurring at that position in the audio
sequence, as according to the TIMIT labels. In this
way a vector of shape [1*767] is generated, contain-
ing the vector representation of a given wav2vec
2.0 frame and the TIMIT-derived phoneme anno-
tation. This process is depicted in figure 1 under
Derived Datasets. 12 of these frame datasets were
generated from the TIMIT dataset, to be used in the
next section as the basis for deriving the phoneme-
averaged representations used in the probing task.

Employing a variant of the method used in (Shah
et al., 2021), the vector values of individual frames
occurring during a specific phoneme interval are av-
eraged, to create a representation in the embedding
space of a given instantiation of a phoneme. This
generated a dataset of 175,232 individual phoneme
representations in the format [1*767], where the
first field contains the phoneme label and the re-
maining 768 fields contain the column-wise aver-
age of all frames generated during a given phoneme

2We use the term phoneme here for labels that align with
the English phoneme set. TIMIT also separates out the stop
closures e.g. with the label "bcl". We retain these labels.
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occurrence in the input audio. Figure 1 depicts this
process for a simplified two-frame phoneme exam-
ple. Twelve such datasets were derived, one per
chosen layer. These datasets are then used as inputs
to the probing task.

5.2 Probing Task

For the probing task, 12 multi-layer perceptron
models were trained to predict TIMIT phoneme
labels from the phoneme-averaged wav2vec 2.0
embeddings. A scikit-learn (Pedregosa et al.,
2011) implementation of the multi-layer percep-
tron (MLP) was used, comprised of a single hidden
layer of 200 neurons with ReLu activation, and
an output layer of a single neuron with a logistic
activation function. The models used the default
hyper-parameters implemented in scikit-learn, with
the exception of the hidden layer size which was
expanded to 200 neurons.

To train the model, each multi-layer perceptron
was provided with the phoneme-averaged dataset
for a given layer as training material, with 43,808
samples reserved for testing. During training, the
averaged vector representations of shape [1*768]
were the input data with the [1*1] TIMIT phoneme
label as the target category. The division of each
layer’s embeddings was static, with each model
provided with its respective layer’s wav2vec 2.0
outputs for the same audio files.

To generate the outputs described in section 6,
the model was provided with the reserved rows,
containing only the [1*768] vector information.
The [1*1] phoneme label was removed and stored
separately as the ground truth for each vector rep-
resentation. The model then generated a predicted
phoneme label per vector representation, which
was stored with the ground truth in a collection of
[1*2] ground-truth/predicted-label pairs.

Following best practice (Belinkov, 2021), we
created a separate sub-experiment to assess the
potential effects of chance correlation on our re-
sults. The primary probing task was re-conducted
with an artificial dataset of the same dimensions as
the phoneme-averaged dataset. This new dataset
was comprised of values randomly sampled from
the range of each feature column in the phoneme-
averaged dataset, with the labels left unchanged.
The performance of the probe on this task was
very low (<2% accuracy per phone across layers).
This result is substantially lower than the perfor-

mance observed with the real embedding data, and
we took this difference to indicate that the perfor-
mance of our primary probing results reflect actual
information relevant to the task, rather than chance
correlation. Future work will seek to investigate the
dataset in more detail, and incorporate any findings
into a more robust probing task.

From the primary probing task, the follow-
ing outputs were generated for each layer of the
wav2vec 2.0 base model:

• Ground-truth/predicted-label pairs
• Average accuracy scores for each phoneme

label, manner and place of articulation for
each layer

• Phone label confusion matrices for each layer
• Dendrograms depicting sections of the confu-

sion matrices for domain-informed categories

6 Results

This section presents a discussion of the results
of the probing task. Firstly, categorisation accu-
racies for each predicted category per layer were
considered. Then, heatmap representations of all
phoneme confusions for layers of interest were
considered in order to focus on the emergence of
specific domain-informed categories, in this case
a grouping of the consonants categorised with re-
spect to manner of articulation based on hierarchi-
cal clustering.

6.1 Categorisation Accuracies

The accuracy scores for phoneme labels, manner
of articulation (MOA) and place of articulation
(POA) are presented in figures 2, 3 and 4 respec-
tively. The accuracy scores here were derived by
first obtaining a list of phoneme label predictions
from the model, and then evaluating the number
of correct labels with regard to the total number
of predictions. Average accuracies for MOA and
POA were derived by applying a category mapping
to the original phoneme label predictions.

Of interest in figures 3 and 4 is that robust results
are achieved around layer 7 which provides an in-
dicator as to where to focus further investigation.
This tallies with results from other work which have
demonstrated a similar drop-off in performance in
later layers (Belinkov and Glass, 2017).
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Figure 2: Average phoneme label accuracies per layer

Figure 3: Accuracy per layer for MOA categorisation

Figure 4: Accuracy per layer for POA categorisation

6.2 Confusion Heatmaps

To better understand the specific intra-categorical
relationships captured in the MLP predictions, a
confusion matrix was generated for each layer
that detailed the confusions between ground-truth
phoneme labels and the predicted label. This was
done for each layer, with the labels arranged such
that phonemes in the same manner-of-articulation
category were adjacent. From this, a heatmap visu-
alisation was generated for each matrix such that
intra-MOA confusions occupy a contiguous subsec-
tion of the overall figure. Figure 5 depicts the over-
all confusions across all phoneme labels at layers 0,

7, and 12, whereby the bottom right represents vow-
els and the top left stops, closures, fricatives and
affricates. Although the resolution in this figure is
low, changes in patterns can be seen in the top left
of the heatmap for each layer. For this reason, we
have focused on those classes occupying that area
in the next section.

6.3 Hierarchical Clustering

To allow assessment of changes in the MLP
model’s predictive certainty, dendrogram visual-
isations were created using hierarchical clustering
with Ward linkage (Ward, 1963) for sounds with
the manner of articulation stop, closure, fricative
and affricate. This was done by first applying
a transformation to the confusion matrix for all
phonemes detailed above such that each cell now
represented the probability of confusion at a given
ground-truth/prediction intersection in the matrix.
As this was a probability distribution, each row, rep-
resenting the confusions for a given ground-truth
label, sums to 1. The relevant rows and columns
were then extracted as input to the clustering in
no particular order. Figures 6, 7 and 8 show the
dendrograms for these classes at layers 0, 7 and 12
respectively.

The hierarchical view in this context represents
the clusters found by Ward’s method in the prob-
abilistic confusion matrices, and proximity in the
hierarchy can be understood as representing “simi-
larity”, as the clustering method used seeks to min-
imise the loss of information incurred by merging
nodes. Nodes adjacent to each other are minimally
variant, with each sub-tree representing a grouping
of less-variant nodes. As the data being clustered
is the probability outputs from the model’s con-
fusion matrix, we can interpret proximity in the
dendrogram images as indicating items that the
model frequently confuses and hence with prox-
imity within the model’s representation of a given
phoneme.

There are several patterns of interest captured in
the hierarchical view, particularly with respect to
the model’s apparent enhanced understanding of
phonetic structures and positional context. Viewing
figures 7 and 8, it can be seen that the model has
developed a representation of the various phoneme
relationships within the category that better aligns
with domain-informed expectations, with e.g. the
closure/stop pairs for various stops having con-
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Figure 5: Heatmaps of confusions across all phoneme labels at layers 0, 7, and 12 with vowels in the bottom left
quadrant and consonants in the top right quadrant. The leftmost grid describes layout of features within the matrix.

Figure 6: Obstruents at layer 0

verged. The labels /k/ and "kcl"3, which were sig-
nificantly detached in layer 0 have repositioned to
be adjacent. Similarly, within the fricative region
on the right hand side of the figure, the labio-dental
fricatives (/f/, /v/) have become separated from the
dental fricatives (/th/, /dh/).

Similarly certain acoustically-similar adjacent
phonemes in layer 0, such as /d/ and /t/, see sig-
nificant transformation within the clustering tree.
The /d/ and /t/ labels occupy a separated sub-tree
within the dendrogram produced for layer 0, but
by layer 12 they have transitioned to become prox-
imate to both their closures ("dcl" and "tcl") and
their variants, such as /d-/dx/ and /t/-/q/. We can
observe further development in this transition in
the layer 7 representation (see figure 7) where cer-
tain proximate relationships have been established
(as between the variants of /t/, /q/, and the closure
"tcl") while other positionings remain (as with the
inclusion of /t/ in the /d/-/dx/-"dcl" sub-tree).

The positioning of closures ("gcl", "kcl" etc.) is
also of interest with regard to the apparent transi-
tion from acoustic to positional relations. Initially,

3We do not describe these labels as phonemes.

given their strong acoustic similarity (represent-
ing a lack of sound production) it is intuitive that
they should form a distinctive sub-group within
the dendrogram, as they do in figure 6. At layer
7 this cluster has already separated significantly
into several sub-trees of closure/stop pairs, such as
/k/-"kcl". By layer 12, all closures have become
proximate to their respective stop label.

7 Conclusions and Future Work

While the specific nature of the phonetic informa-
tion captured by modern large transformer models
will require significant further work to adduce, this
paper has demonstrated that there is significant evi-
dence to suggest that transformer architectures are
capable of capturing significant levels of phonetic
detail that accords with domain-informed under-
standings of phoneme relationships, and that permit
distinction between less separable phonemes. Fu-
ture work will look to establish more concretely the
nature and effective mechanism of the layer-wise
changes to these characteristics and the emergence
of phonological generalisations, as well as looking
to explore other aspects of the mechanisms asso-
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Figure 7: Obstruents at layer 7

Figure 8: Obstruents at layer 12

ciated with these networks, such as the operation
of their feature extractor modules and the atten-
tion matrices associated with each layer. While a
chance-correlation experiment was conducted for
this work, label imbalance in the TIMIT dataset
was not specifically accounted for in the probing
task; this will be assessed as a next step. Another
focus of future work will be the investigation of the
relationship of the emerging phonetic categories to
infant language acquisition.

Acknowledgements

This work was conducted with the financial support
of the Science Foundation Ireland Centre for Re-
search Training in Digitally-Enhanced Reality (d-
real) under Grant No. 18/CRT/6224. The ADAPT
Centre for Digital Content Technology is funded
under the SFI Research Centres Programme (Grant
13/RC/2106_P2) and is co-funded under the Euro-
pean Regional Development Fund. For the purpose
of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted
Manuscript version arising from this submission.

References
Dario Amodei, Sundaram Ananthanarayanan, Rishita

Anubhai, Jin Bai, Eric Battenberg, Carl Case, Jared
Casper, Bryan Catanzaro, Jingdong Chen, Mike
Chrzanowski, Adam Coates, Gregory Frederick
Diamos, Erich Elsen, Jesse Engel, Linxi (Jim)
Fan, Christopher Fougner, Awni Y. Hannun, Billy
Jun, Tony Han, Patrick LeGresley, Xiangang Li,
Libby Lin, Sharan Narang, A. Ng, Sherjil Ozair,
Ryan J. Prenger, Sheng Qian, Jonathan Raiman,
Sanjeev Satheesh, David Seetapun, Shubho Sen-
gupta, Anuroop Sriram, Chong-Jun Wang, Yi Wang,
Zhiqian Wang, Bo Xiao, Yan Xie, Dani Yogatama,
Junni Zhan, and Zhenyao Zhu. 2016. Deep speech
2 : End-to-end speech recognition in english and
mandarin. ArXiv, abs/1512.02595.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Aul. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Neural Information Processing Systems (NeurIPS).

Yonatan Belinkov. 2021. Probing classifiers: Promises,
shortcomings, and advances. Association for Compu-
tational Linguistics, 48:207–219.

Yonatan Belinkov and James R. Glass. 2017. Analyz-
ing hidden representations in end-to-end automatic
speech recognition systems. In NIPS.

90



Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), Melbourne, Australia. Association for
Computational Linguistics.

Wendong Gan, Bolong Wen, Yin Yan, Haitao Chen,
Zhichao Wang, Hongqiang Du, Lei Xie, Kaixuan
Guo, and Hai Li. 2022. Iqdubbing: Prosody model-
ing based on discrete self-supervised speech repre-
sentation for expressive voice conversion.

J. Garofolo, Lori Lamel, W. Fisher, Jonathan Fiscus,
D. Pallett, N. Dahlgren, and V. Zue. 1992. Timit
acoustic-phonetic continuous speech corpus. Lin-
guistic Data Consortium.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 3651–3657. Association
for Computational Linguistics.

Mark Kane and Julie Carson-Berndsen. 2016. Enhanc-
ing data-driven phone confusions using restricted
recognition. In INTERSPEECH, pages 3693–3697.

Sudheer Kolachina and Lilla Magyar. 2019. What do
phone embeddings learn about phonology? Pro-
ceedings of the 16th Workshop on Computational
Research in Phonetics, Phonology, and Morphology.

Jialu Li, Vimal Manohar, Pooja Chitkara, Andros Tjan-
dra, Michael Picheny, Frank Zhang, Xiaohui Zhang,
and Yatharth Saraf. 2021. Accent-robust automatic
speech recognition using supervised and unsuper-
vised wav2vec embeddings.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. CoRR, abs/1903.08855.

Danni Ma, Neville Ryant, and Mark Liberman. 2021.
Probing acoustic representations for phonetic prop-
erties. In ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 311–315.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. corr abs/1301.3781 (2013).
arXiv preprint arXiv:1301.3781.

Vasudevan Nedumpozhimana and John Kelleher. 2021.
Finding bert’s idiomatic key. In Proceedings of the
17th Workshop on Multiword Expressions (MWE
2021), pages 57–62.

Emma O’Neill and Julie Carson-Berndsen. 2019. The
effect of phoneme distribution on perceptual sim-
ilarity in English. Proc. Interspeech 2019, pages
1941–1945.

Emma O’Neill, Joe Kenny, Anthony Ventresque,
and Julie Carson-Berndsen. 2021. The influence
of regional pronunciation variation on children’s
spelling and the potential benefits of accent adapted
spellcheckers. In Proceedings of the 25th Confer-
ence on Computational Natural Language Learning,
Online. Association for Computational Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830.

Leonardo Pepino, Pablo Ernesto Riera, and Luciana
Ferrer. 2021. Emotion recognition from speech using
wav2vec 2.0 embeddings. In Interspeech.

O. E. Scharenborg, Nikki van der Gouw, M. A. Larson,
Elena Marchiori, Ioannis Kompatsiaris, Benoit Huet,
Vasileios Mezaris, Cathal Gurrin, Wen-Huang Cheng,
and Stefanos Vrochidis. 2019. The representation
of speech in deep neural networks. Lecture notes in
computer science, (Part II).

Jui Shah, Yaman Kumar Singla, Changyou Chen, and
Rajiv Ratn Shah. 2021. What all do audio trans-
former models hear? probing acoustic representa-
tions for language delivery and its structure. ArXiv,
abs/2101.00387.

Miikka P Silfverberg, Lingshuang Mao, and Mans
Hulden. 2018. Sound analogies with phoneme em-
beddings. Proceedings of the Society for Computa-
tion in Linguistics (SCiL) 2018, pages 136–144.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipanjan
Das, and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextual-
ized word representations. CoRR, abs/1905.06316.

Joe H Ward. 1963. Hierarchical grouping to optimize
an objective function. Journal of the American sta-
tistical association, 58(301):236–244.

91


