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Abstract

This paper presents the submission by the
HeiMorph team to the SIGMORPHON 2022
task 2 of Morphological Acquisition Trajecto-
ries. Across all experimental conditions, we
have found no evidence for the so-called U-
shaped development trajectory. Our submitted
systems achieve an average test accuracies of
55.5% on Arabic, 67% on German and 73.38%
on English. We found that, bigram hallucina-
tion provides better inferences only for English
and Arabic and only when the number of hallu-
cinations remains low.

1 Introduction

Morphological inflection concerns generating the
inflected word form given the lemma and a set
of morphosyntactic descriptions. A morphology
learner (human or machine) must be able to gener-
alise patterns from extremely sparse data. Obser-
vations from morphology acquisition by children
provides us with a glimpse of how learners gener-
alise regular and irregular patterns differently and
how the trajectories of pattern generalisations inter-
act with a small but growing lexicon.

This paper describes our approach and results for
Task 0 Part 2 of the SIGMORPHON 2022 shared
task on morphological acquisition trajectories. Two
main challenges of the task are that it covers two
different inflectional patterns (past tense and noun
plurals) over three languages and that there is only
a small amount of training data ranging from as
few as 100 samples to as many as 1,000 samples.
This extreme data sparsity calls for the use of data
hallucination techniques commonly used for low-
resourced NLP development (Chen et al., 2021).

The neural baseline provided by the shared task
is based on input-variant transformer (Wu et al.,
2020) or the vanilla transformer with optional data
augmentation (Anastasopoulos and Neubig, 2019).

We use a multi-headed self-attention Trans-
former with unigram-aware and bigram-aware data

hallucinations.
Our models yielded an improved average test

accuracy by 2.66% on Arabic, 8.69% on German,
4.5% on English, as compared with the neural base-
line results.

2 Background and Data

The details of the task description can be found
at https://github.com/sigmorphon/
2022InflectionST. We use the data pro-
vided by the SIGMORPHON 2022 shared task
(Part 2) (Kodner and Khalifa, 2022). The data
features lemmas, inflections, and corresponding
morphosyntactic description (MSD) using the
uni-morph schema (Kirov et al., 2018). The data
was released for English, German and Arabic. The
specific inflectional patterns were the English past
tense (Marcus et al., 1992), German noun plurals
(Clahsen et al., 1992) and Arabic noun plurals
(Dawdy-Hesterberg and Pierrehumbert, 2014).

3 System Description

In this section, we describe the neural network ar-
chitecture, the data hallucination process and the
submissions.

3.1 Neural Network architecture
All our models use the self-attention Transformer
architecture (Vaswani et al., 2017) and imple-
mented using the Fairseq (Ott et al., 2019) tool.
Both the encoder and decoder have 4 layers with
4 attention heads, an embedding size of 256 and
hidden layer size of 1,024. All models are trained
with Adam optimizer (Kingma and Ba, 2014) with
an initial learning rate of 0.001, batch size of 400,
label smoothing as 0.1, gradient clip threshold as
1.0, and 4,000 warmup updates. All models are
trained for a maximum of 3,000 optimizer updates,
with checkpoints saved every 10 epochs. Beam
search is used at decoding time with a beam width
of 5.
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The checkpoint with the smallest loss on the
development data is chosen as the best model.

The inputs to each model are the individual char-
acters of the lemma followed by their morpho-
syntactic tags separated by # symbol. For example,
for the English training triple (take, took, V;PST),
the input to the model is t a k e <V;PRS> #
<V;PST> and the output is t o o k .

3.2 Hallucinations

As has been shown in Anastasopoulos and Neubig
(2019), adding hallucinated data boosts the learning
process for small datasets. In the system described
there, the hallucinated data is produced by 1) iden-
tifying a sequence of three or more consecutive
characters that are aligned between the lemma and
the inflected form and 2) randomly replacing the
characters inside of this region by other characters
from the language’s alphabet. This replacement
strategy produces is motivated by the label bias
problem associated with the small dataset sizes. On
the other hand, as a result the algorithm of Anas-
tasopoulos and Neubig (2019) produces, among
others, string pairs that lack vowels and have no
resemblance to the original language data except
for the inflected part. Our hypothesis was that such
an approach may work well for languages with af-
fixal morphology that is independent but may be
less optimal for languages where the type of the
inflection depends on the phonological properties
of the stem (Haspelmath and Sims, 2013).

In order to check this hypothesis we have set
up an alternative hallucination procedure. For
each training set size, we compute a matrix of co-
occurring characters and during the replacement
step when a character from the alphabet is selected,
we verify if this character occurred after the preced-
ing character in the original train data. If yes, the
replacement takes place, otherwise a new candidate
character is selected.

As can be seen from the plots, the proposed
bigram hallucination algorithm provides better re-
sults for English and Arabic data, if we do not
produce too many hallucinations (1,000 hallucina-
tions are better than 10,000, which was the original
size in Anastasopoulos and Neubig (2019)).
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3.3 Development decision

We selected our submitted system based only on a
subset of the experiments, since we did not have the
full picture across all experimental conditions at
the time. Concretely, we based our decisions on the
models performance for German. We found that
the training size of less than 500 samples yielded
models that performed better on 10,000 hallucina-
tions, while training size of 500 and above yielded
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Arabic German English
Accuracy Distance Accuracy Distance Accuracy Distance

100 42.6 2.2 62.8 0.46 69.2 2.08
200 47.5 1.99 64.2 0.45 71.8 1.9
300 52.2 1.79 66.8 0.41 73.8 1.6
400 56 1.75 71.2 0.36 79.1 1.39
500 61.8 1.5 72.8 0.34 78.6 1.83
600 62.4 1.49 75.4 0.3 81.1 1.48
700 60.3 1.61 80.2 1.62
800 60.3 1.63 81.7 1.41
900 65.6 1.35 78 1.54
1000 63.8 1.64 81.1 1.2

Table 1: Accuracy and Levenshtein distance on the
development set

Arabic German English
Accuracy Distance Accuracy Distance Accuracy Distance

100 41.833 2.24 59 0.52 65.2 0.93
200 45.667 2.07 63.5 0.48 67.5 0.59
300 48.667 2.02 66.333 0.43 71.1 0.62
400 49.833 2.1 69 0.41 76.3 0.91
500 59.667 1.6 71 0.38 70.8 0.58
600 62.833 1.5 73.33 0.33 75.5 0.58
700 60.333 1.57 74.3 0.49
800 62.167 1.53 78.7 0.59
900 63.333 1.52 74.7 0.6
1000 59.333 1.74 80 0.48

Table 2: Accuracy and Levenshtein distance on the test
set

models that performed better on only 1,000 hallu-
cinations. Based on this finding with German, at
the time of the development, we assumed this trend
would hold also for English and Arabic.

3.4 Submissions

The models trained with training size less than 500
were hallucinated with 10,000 samples and the rest
of the models with 1,000 samples across the three
languages.

As the models trained on the proposed bigram
hallucination algorithm provides better results on
the development set for English and Arabic with
1000 hallucinations across all training sizes, this
would have been our alternate submission.

4 Results

Table 1 shows the performance of our models on
the development set. Results on the test data from
SIGMORPHON 2022 Task 0 with Levenshtein dis-
tance can be found in Table 2.

5 Conclusion

How do children learn morphology? It has of-
ten been noted that children start out using cor-
rect forms, followed by a period of regularlizing
irregular forms, followed by mastery of the mor-
phology (Tessier, 2019)–often called the U-shaped

development. This development can be found in
Arabic (Abdalla et al., 2012; Benmamoun et al.,
2014; Ravid and Farah, 1999; Saiegh-Haddad et al.,
2012), German (Marcus et al., 1995) and English
(Marcus et al., 1992). In our simulations we have
found no evidence for such a development. This
is, in fact, a good thing. Assuming a U-shaped
development in morphological acquisition is too
coarse, as the literature says little if anything about
the question whether the (very few) forms used by
very young children are used in the correct mor-
phosynatctic environment. Moreover, this literature
assumes that learning morphology involves learn-
ing how forms map onto other forms, reminiscent
of the paradigm cell filling problem (Ackerman
and Malouf, 2013; Guzmán, 2020; Malouf, 2017)–
for example, how does a singular form map onto a
plural form? The role of meaning is very limited,
often not more than a contrastive label. However,
the fact that children gradually reduce the number
of overgeneralizations of irregular forms can be ex-
plained by the way in which children learn which
word forms are used to express which particular
meanings (Ramscar et al., 2013).

Our experiment with restricting the hallucination
process to generate forms that are phonotactically
attested (bigram) in the training data revealed that
its benefit was found only in very restricted con-
ditions depending on the amount of hallucinated
samples and the specific language (and presum-
ably the inflectional pattern). Our findings are in
agreement with the detailed error analyses of data
hallucination techniques by Samir and Silfverberg
(2022) which concluded that hallucination is not a
one-size-fits-all technique and it must be used with
caution and requires closer inspection depending
on the type of morphological inflections.
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