
19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 212 - 219
July 14, 2022 ©2022 Association for Computational Linguistics

CLUZH at SIGMORPHON 2022 Shared Tasks on Morpheme
Segmentation and Inflection Generation

Silvan Wehrli Simon Clematide Peter Makarov
Department of Computational Linguistics

University of Zurich, Switzerland
silvan.wehrli@uzh.ch {simon.clematide,makarov}@cl.uzh.ch

Abstract

This paper describes the submissions of the
team of the Department of Computational Lin-
guistics, University of Zurich, to the SIGMOR-
PHON 2022 Shared Tasks on Morpheme Seg-
mentation and Inflection Generation. Our sub-
missions use a character-level neural trans-
ducer that operates over traditional edit actions.
While this model has been found particularly
well-suited for low-resource settings, using it
with large data quantities has been difficult. Ex-
isting implementations could not fully profit
from GPU acceleration and did not efficiently
implement mini-batch training, which could be
tricky for a transition-based system. For this
year’s submission, we have ported the neural
transducer to PyTorch and implemented true
mini-batch training. This has allowed us to suc-
cessfully scale the approach to large data quan-
tities and conduct extensive experimentation.
We report competitive results for morpheme
segmentation (including sharing first place in
part 2 of the challenge). We also demonstrate
that reducing sentence-level morpheme seg-
mentation to a word-level problem is a simple
yet effective strategy. Additionally, we report
strong results in inflection generation (the over-
all best result for large training sets in part 1,
the best results in low-resource learning trajec-
tories in part 2). Our code is publicly available.

1 Introduction

This paper describes our submissions to the follow-
ing SIGMORPHON 2022 shared tasks:

SEGM Morpheme Segmentation (Batsuren et al.,
2022):1

1. Word-level morpheme segmentation

2. Sentence-level morpheme segmentation

INFL Typologically Diverse and Acquisition-
Inspired Morphological Inflection Generation:2

1https://github.com/sigmorphon/2022SegmentationST
2https://github.com/sigmorphon/2022InflectionST

Task Input Output
SEGM hierarchisms hierarch @@y @@ism @@s
INFL sue V;PST sued

Table 1: Examples of morpheme segmentation (SEGM)
and inflection generation (INFL). SEGM involves pre-
dicting canonical forms of morphemes. The inputs for
INFL consist of lemmas and UniMorph feature specifi-
cations.

1. Typologically diverse morphological inflection
(Kodner et al., 2022)

2. Morphological acquisition trajectories (Kodner
and Khalifa, 2022)

All our submissions rely on the same neural hard-
attention transducer architecture that has shown
strong language-independent performance in a va-
riety of character-level transduction tasks in mor-
phology, grapheme-to-phoneme conversion, and
text normalization (Makarov and Clematide, 2018,
2020a,b).

1.1 Morpheme Segmentation

The goal of this task is to design a system that splits
words into morphemes (Table 1). Part 1 focuses
on word-level morpheme segmentation (inputs are
word types), part 2 on sentence-level morpheme
segmentation (inputs are tokenized sentences). In
part 1, there is a unique segmentation for every in-
put word. This track provides very large datasets
(in hundreds of thousands of training examples per
language), allowing us to test the scalability of our
system. In part 2, a word form may be segmented
differently depending on the context. It offers an
interesting setup to study, on the example of three
languages (English, Czech, Mongolian), how im-
portant it is for a system to recognize and correctly
handle this ambiguity. Our submission for part 2
tests this by using a word-level model (developed
for part 1), optionally with part-of-speech (POS)
tags as side input.

212

https://github.com/sigmorphon/2022SegmentationST
https://github.com/sigmorphon/2022InflectionST


1.2 Inflection Generation

The SIGMORPHON–UniMorph 2022 shared task
on typologically diverse and acquisition-inspired
morphological inflection generation asks to predict
an inflected word form given its lemma and a set
of morphosyntactic features specified according to
the UniMorph standard (Table 1). Part 1 consists of
32 languages with small training sets (mostly 700
items, but for 4 languages only 70 to 240 items) and
21 large training sets (exactly 7,000 items). Part 2
has an ablation-style setup for Arabic, English, and
German: For each language, there is a dataset for
each increment of 100, ranging from 100 to 600
(German) or 1,000 training samples (Arabic, En-
glish). The development set feature specifications
are representative of the test set. Both tasks tar-
get the generalization capabilities of morphology
learning systems by examining separately their test
set performance on seen and unseen lemmas and
feature specifications.

2 Model Description

As a basis for all our submissions, we use a neu-
ral character-level transducer that edits the input
string into the output string by a sequence of tra-
ditional edit actions: substitutions, insertions, dele-
tion, and copy. The specific version of this approach
was developed for grapheme-to-phoneme conver-
sion (Makarov and Clematide, 2020a). Such neu-
ral transducers have typically performed well in
morphological and related character-level transduc-
tion tasks in low to medium training data settings.
Although they can be competitive in large-data
regimes (Makarov and Clematide, 2018), their suc-
cessful application to large data settings with appro-
priately large parameter sizes (cf. the Transformer-
based models of Wu et al. (2021) have over 7M
parameters) may also be limited by a specific im-
plementation. In this year’s submission, we scale
the approach to large datasets by porting it to a
different framework and making algorithmic im-
provements to training.

True mini-batch training. The training proce-
dure for transition-based systems could be difficult
to batch (Noji and Oseki, 2021; Ding and Koehn,
2019), which is why many systems are trained by
gradient accumulation over individual samples (and
possibly relying on library optimizations such as
DyNet Autobatch (Neubig et al., 2017b)). This re-
sults in slow training for large data sets. In our im-

training greedy decoding
BL CLUZH CLUZH

Batch size GA CPU GPU CPU GPU
1 27.49 18.96 5.02 6.49 10.00
32 23.58 7.48 0.25 2.92 0.73
64 23.89 7.46 0.16 2.84 0.47
128 24.69 7.88 0.13 2.88 0.33
256 27.14 8.21 0.12 3.01 0.26
512 31.11 8.51 0.12 3.26 0.23

Table 2: Mini-batch training and greedy decoding speed
for this year’s implementation (CLUZH) vs the base-
line (BL) of Makarov and Clematide (2020a) on the
Armenian dataset of the SIGMOPRHON 2021 shared
task on grapheme-to-phoneme conversion (Ashby et al.,
2021). The BL models are trained on CPU using gradi-
ent accumulation (GA). All numbers are given in sec-
onds and per 1,000 samples. The training times are
averages of 20 epochs on the training set. The greedy
decoding times are averages of 20 runs on the develop-
ment set using a well-trained model. The CLUZH model
hyper-parameters are identical to those of Makarov and
Clematide (2020a).

plementation of true mini-batch training, we start
by precomputing gold action sequences using an or-
acle character aligner. By doing so, alignments and
gold actions for all decoding steps of all training
samples are known a priori (as opposed to being
computed on the fly, which would be useful when
parameter updates are interleaved with sampling
from the model distribution). This permits calling
the unrolled version of the decoder. The resulting
procedure dramatically speeds up training com-
pared to gradient accumulation. Furthermore, our
implementation supports batched greedy decoding.
Table 2 gives an impression of these performance
improvements: For a batch size of 32, training is
around 3 times faster on a CPU and close to 100
times faster on a GPU. For a batch size of 512,
training is faster by a factor of over 250 on a GPU.
Additionally, the time needed for greedy decoding
can be efficiently decreased on a GPU.3

Further model details. The latest implementa-
tion only uses teacher forcing. Specifically, it does
not yet incorporate roll-ins, i.e. the model does
not see its own predictions during training, which
would improve generalizability by countering expo-
sure bias (Pomerleau, 1989). We also add support

3Note that the precomputation of gold action sequences for
the training data takes around 12 seconds per 1000 samples.
However, this procedure is only required once per dataset
as the precomputed output can be reused for any training
run. In any case, the gains shown in Table 2 easily offset the
additionally required time.

213



for features. Features are treated as atomic. For
INFL, the features associated with an inflection
input-output pair are passed through an embedding
layer and then summed. For further details on the
system and the oracle character aligner, we refer
the reader to Makarov and Clematide (2020a).

3 Submission Details

For both tasks, we train separate models for each
language and use the development set exclusively
for model selection.

3.1 Morpheme Segmentation
Data preprocessing. Besides NFD normaliza-
tion as a preprocessing step, we substitute the multi-
character morpheme delimiter (“ @@”) by a single
character unseen in the data to decrease the length
of the output.

Sentence-level segmentation. We simplify
part 2 of the SEGM task by reducing it to a
word-level problem. Concretely, we split the
input sentences into single word tokens and
train the model on these word tokens, similarly
to part 1. The single word predictions are then
simply concatenated to form the original sentence.
Since this completely neglects the context of
the words, we have also experimented with POS
tags as additional input features (Table 3). We
use TreeTagger (Schmid, 1999) to obtain the
features.4 We also experimented with transducing
entire sentences in one go, however this led to a
substantial drop in accuracy.

Hyper-parameter search. For both parts, we
have evaluated extensively various choices of op-
timizers, learning rate schedulers, batch size, en-

4The parameter files are available at https://www.cis.uni-
muenchen.de/˜schmid/tools/TreeTagger/.

Гэрт эмээ хоол хийв .
Гэр @@т эмээ хоол хийх @@в .
NN NN VB VB .
Grandmother cooked at home.

Би өдөр эмээ уусан .
Би өдөр эм @@ээ уух @@сан .
PR NN VB VB .
Today I took my medicine.

Table 3: SEGM part 2 with POS features for Mongolian.
The features inferred from the context using TreeTagger
could help disambiguate the word form in bold.

coder dropout. We found the Adam optimizer
(Kingma and Ba, 2015) to work well, as well as the
scheduler that reduces the learning rate whenever
a development set metric plateaus. We settled on a
batch size of 32 for all models, which offers a good
trade-off between model performance and training
speed.

Encoders. We use a 2-layer stacked LSTM as the
encoder and experimented with encoder dropout.
We also experimented extensively with a Trans-
former encoder (Vaswani et al., 2017). Despite
considerable effort, we failed to make it work at
the performance level of stacked LSTMs. Other
hyperparameters (e.g. various embedding dimen-
sions) are similar to the previous work (Makarov
and Clematide, 2020a).

Decoding. For efficiency, we compute all the
model outputs using mini-batch greedy decoding.

Ensembling. All our submissions are majority-
vote ensembles. For part 1, we submit a 5-strong
ensemble, CLUZH, composed of 3 models with-
out encoder dropout and 2 models with encoder
dropout of 0.1.5

For part 2, we submit three ensembles. All indi-
vidual models have an encoder dropout probabil-
ity of 0.25 and vary only in their use of features:
CLUZH-1 with 3 models without POS features,
CLUZH-2 with 3 models with POS tag features,
and CLUZH-3 with combines all the models from
CLUZH-1 and CLUZH-2.

3.2 Inflection Generation
Data preprocessing. For both parts, we apply
NFD normalization to the input and split the Uni-
Morph features at “;” by default. For languages
that showed lower performance compared to the
neural or non-neural baseline on the development
set in part 1, we also computed models without
NFD normalization and chose the best based on
their development set performance. For Korean,
we observed some Latin transliteration noise in
the train/development set targets, which we re-
moved before training. For Lamaholot (slp), we
observed a very low accuracy (5%) on the devel-
opment set compared to the neural baseline’s 20%
performance. By splitting UniMorph features at “+”

5Due to a mistake, the predictions by the models with
dropout 0.1 were included twice, and a prepared model with
dropout 0.25 was not used at all. However, the F1 macro-
average over all the languages for the intended ensemble on
the development set is only 0.08 points higher.

214

https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/


as well as “;”,6 we achieved better generalization
for this low-resource language (only 240 training
examples available).

Hyper-parameters. For small datasets in both
parts: batch size 1, a patience of 30 epochs, one-
layer encoder and decoder with hidden size 200,
character and action embeddings of size 100, fea-
ture embeddings of size 50, the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 0.0005 (half of the default value), the reduce-
learning-rate-on-plateau scheduler with factor 0.75,
and beam decoding with beam width 4. For a few
languages whose development set performance was
lower than that of the baselines, we computed mod-
els without NFD normalization and used those in
case of improved accuracy.7

For large datasets in part 1, we made the follow-
ing changes from the above: batch size 32, a pa-
tience of 20 epochs, action embeddings of size 200,
a two-layer encoder with a hidden size of 1,000,
a one-layer decoder with a hidden size of 2,000.
In case of the development set performance was
below that of any of the official baselines, we used
some alternative hyper-parameters:8 no NFD nor-
malization, batch size 16, a one-layer encoder with
a hidden size of 2,000, a one-layer decoder with a
hidden size of 4,000, and the Adadelta optimizer
(Zeiler, 2012) with the default learning rate. Hyper-
parameters were not chosen using a systematic grid
search or experimentation.

Convergence. For the small datasets in part 1
with default hyper-parameters and NFD normaliza-
tion, we observe large differences in the number of
epochs to convergence (mean 27.3, SD 22.8). For
some languages, e.g. Chukchi (ckt), Ket (ket), and
Ludian (lud), we see the best results on the first
epoch, which typically means the model has just
learned to copy the input to the output. For other
languages, much larger or highly varying numbers
of epochs to convergence are observed: Slovak (15-
93), Karelian (13-88), Mongolian, Khalkha (19-61),
and Korean (12-143).

For the large datasets in part 1 (7,000 training
examples) with default hyper-parameters and NFD
normalization, we observe a mean of 17.3 epochs
to convergence (SD 16.0). For Ludian, even in the

6For instance, V;ARGAC2P+ARGNO2P;SBJV would be
split into 4 separate features.

7Arabic, Gothic, Hungarian, and Old Norse.
8Arabic, Assamese, Evenki, Hungarian, Kazakh, Mongo-

lian, Khalkha, and Old Norse.

large setting, the first epoch with copying gave the
best results. In contrast, Georgian could generally
profit from more epochs (mean 36.8, SD 17.9).

Ensembling. Our submission for part 1 is a 5-
strong majority-voting ensemble, and it is a 10-
strong ensemble for part 2.

4 Results and Discussion

4.1 Morpheme Segmentation

Table 4 and Table 5 show our results for parts 1
and 2, respectively. Based on the macro-average F1
score over all languages, our submission for part 1
ranks third out of 7 full submissions. For part 2,
our submission CLUZH-3 was declared the winner
out of 10 full submissions.9

Dropout. The results for part 1 suggest that en-
coder dropout can help improve model perfor-
mance. For some languages, the performance can
improve by as much as 1% F1 score absolute.

Ensembling. Ensembling brings a clear improve-
ment over single-best results. On average, the im-
provement is +0.55% on the development set and
+0.53% on the test set (compared to the best sin-
gle model result). The improvement on the English
dataset is substantial: +1.64% and +1.84% on the
development and test sets, respectively.

Gains from POS tags. The results for part 2
suggest that treating a sentence-level problem as
word-level may be a simple yet powerful strategy
for morpheme segmentation. The success of this
strategy depends on the language and the data. The
more segmentation ambiguity a language has, the
more important the context is. Mongolian has the
highest segmentation ambiguity (Table 6). Around
1/5 of the tokens in the training data have at least
two possible segmentations, whereas Czech and
English exhibit little to no ambiguity. This may par-
tially explain why the performance on the Mongo-
lian data is the lowest. This also explains why using
POS tags as additional features bring the biggest
improvement for Mongolian: +0.29% and +0.27%
on the development and test sets, based on the aver-
age of individual models. Using POS tags improves
the prediction of ambiguous segmentation by an
absolute 1.1% and 0.6% on the development and

9Our submission performed the best on two out of three
languages (Czech and Mongolian). As it was beaten by another
submission based on the macro F1 average, two submissions
were declared winners.

215



dropout = 0.0
(avg. of 3 models)

dropout = 0.1
(1 model)

dropout = 0.25
(1 model)

ensemble
(5 models)

best
other

Language dev test dev test dev test dev test test
Czech 92.96 93.31 93.35 93.60 93.32 93.49 94.07 93.81 93.88
English 90.33 90.33 91.01 90.86 90.91 90.68 92.65 92.70 93.63
French 93.22 93.02 93.95 93.85 93.72 93.48 94.94 94.80 95.73
Hungarian 99.40 98.28 99.15 98.09 99.63 98.57 99.61 98.54 98.72
Spanish 97.79 97.78 98.57 98.61 98.53 98.56 98.71 98.74 99.04
Italian 95.54 95.54 96.15 96.19 96.02 96.11 96.93 96.93 97.47
Latin 99.20 99.20 99.30 99.26 99.30 99.23 99.40 99.37 99.38
Russian 97.52 97.54 96.38 96.43 96.65 96.54 98.58 98.62 99.35
Mongolian 98.21 97.73 98.47 97.80 98.47 97.90 98.53 98.12 98.51
AVG 96.02 95.86 96.26 96.08 96.28 96.06 97.05 96.85 97.30

Table 4: F1 scores for SEGM part 1.

without features with POS tags combined
average

(3 models)
ensemble

(3 models)
average

(3 models)
ensemble

(3 models)
ensemble

(6 models)
best

other
Language dev test dev test dev test dev test dev test test
Czech 94.06 90.90 94.54 91.35 94.15 91.15 94.45 91.76 94.72 91.99 91.76
English 98.12 89.27 98.31 89.47 98.18 89.29 98.38 89.47 98.41 89.54 96.31
Mongolian 85.95 81.57 87.06 82.22 86.24 81.84 87.26 82.55 87.62 82.88 82.59
AVG 92.71 87.25 93.30 87.68 92.86 87.43 93.36 87.93 93.58 88.14 90.22

Table 5: F1 scores for SEGM part 2. All models are trained with a dropout probability of 0.25.

train dev
Language 1 ≥2 1 ≥2
Czech 100% 0% 100% 0%
English 99.58% 0.42% 99.75% 0.25%
Mongolian 77.91% 22.09% 90.00% 10.00%

Table 6: Segmentation ambiguity in SEGM part 2: Rela-
tive frequency of unambiguous (1) vs ambiguous (≥ 2)
word tokens.

test sets for Mongolian (Table 7). When looking
at the whole dataset, using POS features increases
the relative number of correct predictions by 0.11%
(development set) and 0.06% (test set) compared
to not using the features. Using POS tags brings
slight improvements and helps mitigate the loss of
context.

PyTorch reimplementation. This year’s system
is a close reimplementation in PyTorch (Paszke
et al., 2019) of our earlier CPU codebase using
DyNet (Neubig et al., 2017a). It fully supports
GPU utilization, allowing for efficient processing
of large amounts of training data. Our code is pub-
licly available.10

10https://github.com/slvnwhrl/il-reimplementation

dev test
ambiguous all ambiguous all

NF POS ∆ NF POS ∆

63.0% 64.1% +0.11% 59.5% 60.1% +0.06%

Table 7: Impact of POS features on Mongolian, SEGM
part 2. ambiguous shows the average percentage of cor-
rectly predicted ambiguous segmentations for Mongo-
lian. NF denotes models without features, POS denotes
models using POS tags. all shows the absolute improve-
ment for POS compared to NF, in relation to the whole
dataset.

Token–type ratio. Another reason for the lower
performance of Mongolian might lie in the high
variance in the data: The Mongolian training
dataset contains around 40% unique tokens (Ta-
ble 8). This is around 4 times more than in the

train dev
Language total unique total unique
Czech 15,157 5,126 7,545 3,217
English 169,117 17,249 21,444 4,849
Mongolian 13,237 5,293 6,632 3,216

Table 8: Word counts in SEGM part 2: The total number
of word forms and the number of unique words.

216

https://github.com/slvnwhrl/il-reimplementation


Figure 1: Test accuracy results for INFL part 2. avg=average, ens=10-strong ensemble.

seen status (± Lemma/Features)
System Overall +L +F +L –F -L +F -L –F

Small dataset setting
CLUZH 56.87 77.31 31.27 77.97 43.26
Best 74.76 81.64 72.91 77.97 70.87
∆ -17.89 -4.33 -41.64 0.00 -27.62

Large dataset setting
CLUZH 67.85 90.99 41.43 87.17 60.30
Best 62.39 89.57 42.17 85.31 55.56
∆ 5.46 1.43 -0.74 1.86 4.74

Table 9: Test results (accuracy macro-averaged over
languages) for INFL part 1 split by training dataset
size: large (7,000 training examples) vs small (up to
700 examples). ∆ shows the difference between our
submission and the best competitor covering the full set
of languages.

English dataset. This makes the learning problem
much harder, which is further exacerbated by the
relatively small size of the data (compared to En-
glish).

4.2 Inflection Generation

The part 1 test set results are shown in Table 9.
Given the large number of languages, we discuss
the average accuracy on small and large training
sets. An important goal for this shared task was to
assess a system’s performance on test data subsets
defined by whether both the lemma and the feature
specification were seen in the training data (+L +F
in the Table), whether only the lemma (+L, -F), or

only the feature specification (-L, +F) were seen,
or whether neither of them (-L -F) appeared in the
training data.

Small datasets. On the small datasets, our sys-
tem only excels on the -L +F subset, meaning it
is strong in modeling the behaviour of features. In
the small dataset setting, the best competitor sys-
tem, UBC, has an extremely strong performance in
case the lemma is known (+L). It would be interest-
ing to know what kind of information or data aug-
mentation UBC uses: The neural baseline, which
utilizes data augmentation, has a much lower per-
formance (24.9%) than our submission. Overall,
our submission with a 5-strong ensemble achieves
the second-best result of the submissions covering
all languages.

Large datasets. In the large dataset setting, our
submission shows the best performance overall.
On the subset with seen lemmas and unseen fea-
tures (+L -F), the neural baseline is the only system
with slightly better results. This indicates that our
system’s modeling of lemmas is not yet optimal.
The information flow in our architecture maybe
dominated by the features (they are fed into the
decoder at every action prediction step) and the
aligned input character, and it may not have the
best representation of the input lemma as a whole.

Trajectories. The test set results for part 2 are
shown in Figure 1. Our 10-strong ensemble was

217



the clear overall winner in this low-resource track.
It beats the best competing approaches by a sub-
stantial margin on the per-language average: Arabic
59.6% accuracy (best competitor OSU 57.5%), Ger-
man 76.7% (non-neural baseline 74.8%), English
85.7% (OSU 81.5%).

Individual model performance varies, and the
majority-vote ensembling improved the scores by
1.4% absolute on average on the test set. Interest-
ingly, the difference between the average model
performance and the ensemble performance does
not get smaller with larger training sets.

The correlation between the increasing number
of training examples and the improving test set
performance is almost perfect for the average per-
formance. Ensembles are slightly less stable.

5 Conclusion

This paper presents the submissions of the Depart-
ment of Computational Linguistics, University of
Zurich, to the SIGMOPRHON 2022 morpheme
segmentation and inflection generation shared tasks.
We build on the previous architecture, the neural
transducer over edit actions, porting it to a new
deep learning framework and implementing GPU-
optimized mini-batch training. This permits scaling
the system to large training datasets, as demon-
strated by strong performance in both shared tasks.

We show that reducing sentence-level morpheme
segmentation to a word-level problem is a viable
strategy. Conditioning on POS tags brings further
improvements. We leave it to future work to explore
more powerful representations of context. We ex-
perimented with a Transformer-based encoder for
morpheme segmentation, and while the initial re-
sults were not satisfactory, we intent to pursue this
further. In inflection generation, we note problems
with capturing unseen lemmas, despite otherwise
strong performance across data regimes.

References

Lucas F.E. Ashby, Travis M. Bartley, Simon Clematide,
Luca Del Signore, Cameron Gibson, Kyle Gorman,
Yeonju Lee-Sikka, Peter Makarov, Aidan Malanoski,
Sean Miller, Omar Ortiz, Reuben Raff, Arundhati
Sengupta, Bora Seo, Yulia Spektor, and Winnie Yan.
2021. Results of the Second SIGMORPHON Shared
Task on Multilingual Grapheme-to-Phoneme Con-
version. In Proceedings of the 18th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology.

Khuyagbaatar Batsuren, Gábor Bella, Aryaman Arora,
Viktor Martinović, Kyle Gorman, Zdeněk Žabokrt-
ský, Amarsanaa Ganbold, Šárka Dohnalová, Magda
Ševčíková, Kateřina Pelegrinová, Fausto Giunchiglia,
Ryan Cotterell, and Ekaterina Vylomova. 2022. The
sigmorphon 2022 shared task on morpheme segmen-
tation. In 19th SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology.

Shuoyang Ding and Philipp Koehn. 2019. Parallelizable
stack long short-term memory. In Proceedings of the
Third Workshop on Structured Prediction for NLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Jordan Kodner and Salam Khalifa. 2022.
SIGMORPHON-UniMorph 2022 Shared Task
0: Modeling Inflection in Language Acquisition. In
Proceedings of the SIGMORPHON 2022 Shared
Task: Morphological Inflection.

Jordan Kodner, Salam Khalifa, Khuyagbaatar Bat-
suren, Hossep Dolatian, Ryan Cotterell, Faruk
Akkuş, Antonios Anastasopoulos, Taras Andrushko,
Aryaman Arora, Nona Atanelov, Gábor Bella,
Elena Budianskaya, Yustinus Ghanggo Ate, Omer
Goldman, Simon Guriel, Silvia Guriel-Agiashvili,
Jan Hajič, Jan Hric, Ritvan Karahodja, Witold
Kieraś, Andrew Krizhanovsky, Natalia Krizhanovsky,
Igor Marchenko, Magdalena Markowska, Polina
Mashkovtseva, Maria Nepomniashchaya, Daria Ro-
dionova, Elizabeth Salesky, Karina Sheifer, Alexan-
dra Serova, Anastasia Yemelina, Jeremiah Young,
and Ekaterina Vylomova. 2022. SIGMORPHON-
UniMorph 2022 Shared Task 0: Generalization and
Typologically Diverse Morphological Inflection. In
Proceedings of the SIGMORPHON 2022 Shared
Task: Morphological Inflection.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019.

Peter Makarov and Simon Clematide. 2018. Imitation
learning for neural morphological string transduction.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Peter Makarov and Simon Clematide. 2020a. CLUZH
at SIGMORPHON 2020 Shared Task on Multilingual
Grapheme-to-Phoneme Conversion. In Proceedings
of the 17th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology.

Peter Makarov and Simon Clematide. 2020b. Semi-
supervised contextual historical text normalization.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.

218

https://doi.org/10.18653/v1/2021.sigmorphon-1.13
https://doi.org/10.18653/v1/2021.sigmorphon-1.13
https://doi.org/10.18653/v1/2021.sigmorphon-1.13
https://doi.org/10.18653/v1/W19-1501
https://doi.org/10.18653/v1/W19-1501
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/D18-1314
https://doi.org/10.18653/v1/D18-1314
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://doi.org/10.18653/v1/2020.acl-main.650
https://doi.org/10.18653/v1/2020.acl-main.650


Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel Cloth-
iaux, Trevor Cohn, Kevin Duh, Manaal Faruqui,
Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng
Kong, Adhiguna Kuncoro, Gaurav Kumar, Chai-
tanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017a. Dynet: The dy-
namic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Graham Neubig, Yoav Goldberg, and Chris Dyer. 2017b.
On-the-fly Operation Batching in Dynamic Compu-
tation Graphs. In Advances in Neural Information
Processing Systems, volume 30.

Hiroshi Noji and Yohei Oseki. 2021. Effective batch-
ing for recurrent neural network grammars. In Find-
ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32.

Dean A Pomerleau. 1989. Alvinn: An autonomous
land vehicle in a neural network. In Proceedings of
the Conference on Neural Information Processing
Systems.

H. Schmid. 1999. Improvements in Part-of-Speech Tag-
ging with an Application to German. In Natural Lan-
guage Processing Using Very Large Corpora, Text,
Speech and Language Technology.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Ap-
plying the transformer to character-level transduction.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume.

Matthew D Zeiler. 2012. ADADELTA: an adaptive
learning rate method. arXiv:1212.5701.

219

https://arxiv.org/abs/1701.03980
https://arxiv.org/abs/1701.03980
https://proceedings.neurips.cc/paper/2017/hash/c902b497eb972281fb5b4e206db38ee6-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/c902b497eb972281fb5b4e206db38ee6-Abstract.html
https://aclanthology.org/2021.findings-acl.380
https://aclanthology.org/2021.findings-acl.380
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-94-017-2390-9_2
https://doi.org/10.1007/978-94-017-2390-9_2
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2021.eacl-main.163
https://doi.org/10.18653/v1/2021.eacl-main.163
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701

