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Abstract

This paper describes our participation in the
2022 SIGMORPHON-UniMorph Shared Task
on Typologically Diverse and Acquisition-
Inspired Morphological Inflection Generation.
We present two approaches: one being a modi-
fication of the neural baseline encoder-decoder
model, the other being hand-coded morpho-
logical analyzers using finite-state tools (FST)
and outside linguistic knowledge. While our
proposed modification of the baseline encoder-
decoder model underperforms the baseline for
almost all languages, the FST methods outper-
form other systems in the respective languages
by a large margin. This confirms that purely
data-driven approaches have not yet reached
the maturity to replace trained linguists for doc-
umentation and analysis especially considering
low-resource and endangered languages.

1 Introduction

There are two tracks of the task of language Inflec-
tion Generation: Typologically Diverse Morpholog-
ical (Re-)Inflection and (Automatic) Morphologi-
cal Acquisition Trajectories. We only participate in
the first track, Typologically Diverse Morphologi-
cal (Re-)Inflection.

Here, the main goal is to predict inflected forms
of a word by given lemmas and sets of morpholog-
ical tags. In total, the task features 32 languages,
for several of which both a low-resource scenario
and a high resource scenario are proposed.

Our participation was split into two systems:
One is a modification of the encoder-decoder base-
line described in Wu et al. (2021), which is applied
to all languages and resource settings.1 The other
system is based on hand-coded finite-state trans-
ducers for Chukchi (ckt), Upper Sorbian (hsb), and
Kholosi (hsi).

The modification of the encoder-decoder base-
lines aims for better interpretability of predictions,

1Unfortunately, we failed to submit results for Middle Low
German (glm).

but underperforms the baseline on almost all lan-
guages. The finite-state approaches yield very
strong performance on the respective languages,
however, their creation may have accidentally vi-
olated the train set / test set separation by usage
of publicly available data UniMorph provided by
Kirov et al. (2018) while constructing the transduc-
ers.

2 Methodology

2.1 Data-Driven Approach

In order to enable more explicit control of pre-
dicted forms and better interpretability, we propose
a modification of the encoder-decoder baseline as
in Wu et al. (2021). The main idea is as follows:
We provide a directed graph whose states repre-
sent generated characters. Edges represent allowed
transitions. This graph could be a full FST, or
a simpler structure. Then, at each time-step, the
encoder-decoder model predicts a distribution over
states instead of characters as in the baseline model.
While the difference may seem negligible, we ar-
gue there are several reasons why formulating the
morphological prediction task in this way is useful:
The provided graph can be used to control which
sequences can be generated by disallowing illegal
transitions during decoding. Also, the graph can
be created and edited automatically or manually,
which allows to inject expert knowledge. Here,
different states may generate the same character,
but in this way disambiguate possible trajectories
through the graph. Finally, since each prediction
can be directly mapped to a certain location in the
graph topology, the model predictions can be in-
terpreted relative to the given graph. If the graph
is designed in a sufficiently informative way, this
may allow better interpretation of predictions and
also errors.

For training, each target form is converted to a
path through the given graph and the characters are
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Fig. 1: Finite-state transducer for Kholosi numerals 1-5.

replaced by state identifiers. However, in order to
simplify the provided graph, we may also define
special states that allow the prediction of arbitrary
characters, for example to predict base morphemes
or copy them from the input lemma. In this case,
we do not replace the respective characters with
state identifiers. In any case, we train the baseline
encoder-decoder model in the standard way but
with modified targets.

The proposed idea is similar to learning weights
of a FST as described in Rastogi et al. (2016). How-
ever, in our case, the encoder-decoder model does
not have explicit access to the graph, but has to
implicitly learn the possible transitions and their
weights.

For this shared task, we were only able to test a
simple but automatic way of constructing the pro-
posed graph as auxiliary data structure for decod-
ing: First, we align each paradigm in the train set,
i.e. each set of forms with the same lemma, by iter-
atively aligning forms to the already aligned forms
using the Needleman-Wunsch algorithm (Needle-
man and Wunsch, 1970) with column-sum as scor-
ing metric. We replace all aligned substrings that
are present in the lemma and all its forms by a
placeholder symbol. This approach is similar to the
method suggested in Forsberg and Hulden (2016).
Finally, we use the same procedure to align the
resulting forms of all paradigms.

Having obtained such alignments, each position
in the multiple sequence alignment becomes a state
in the graph. So far, we do not consider constraints
on the edges, i.e. we effectively treat the graph as
fully connected. However, in the future we would
like to generate and evaluate more expressive aux-
iliary graphs.

2.2 Rule Based Approach

The morphological analyzers for three manually
annotated languages were built using a finite-state
compiler Foma (Hulden, 2009), which is based
on lexicon and rules. The lexicon stores a list of
words to which morphological analysis is applied.
The rule transducers are established from regular
expressions and applied to the list of identified
word forms. For the system to perform better it
is necessary to have a large lexical dataset to ob-
tain higher accuracy of the morphological analysis
performance. Therefore, we used the wordsets pro-
vided by the Universal Morphology project (Uni-
Morph) (Kirov et al., 2018), which offers lists with
lemmas, word forms and universal feature schemas
with morphological categories.

Language ISO Speakers Status
Chukchi ckt 5.100 Threatened
Kholosi2 hsi 1.800 Unknown
Upper Sorbian hsb 13.300 Threatened

Table 1: Manually annotated languages with their re-
spective number of speakers and status (According to
Eberhard et al. (2021)).

Chukchi Chukchi is a polysynthetic language
spoken on the Chukotka Peninsula, in the north-
ern part of the Russian Federation. It is composed
of a rich inflectional and derivational morphology
with progressive and regressive vowel harmony,
productive incorporation, and extensive circumfix-
ing across all its parts of speech described in An-
driyanets and Tyers (2018). Chukchi is an ergative
absolutive language with a highly complex sys-
tem of verbal agreement constituting prefixal and
suffixal components as stated in Bobaljik (1998).

2Data from Anonby and Bahmani (2016).
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These components are commonly described as
having some form of “split” ergativity such that
prefixes show a nominative-accusative alignment,
while suffixes show an absolutive-ergative bias
(Wexler, 1982; Spencer, 2000).3

Chukchi also displays various types of perfective
aspect as described in Volkov and Pupinina (2016).
Examples of such are provided below.4

(1) etº@m
etº@m
apparently

Weìw@ne
Weìw@-ne
Weìw@-ERG

Getuìºetìinet
Ge-tuìºet-ìinet
PF-steal-3PL.PFV

’Apparently, Welwe stole them (deer)’

(2) G@m
G@m
I.ABS

tº@ìGºi
tº@ì-Gºi
hurt-AOR.3SG

G@tkaGt@
G@tka-Gt@
leg-ALL

’I hurt my leg’

(3) G@nin
G@nin
your

@neqej
@neqej
old.brother.ABS.SG

Gekeìitkuìin
Ge-keìitku-ìin
PFV-study-3SG.PFV

kaìetkorak
kaìetkora-k
school-LOC

?
?

’Did your older brother go to school ?’

A very critical set of rules incorporated into the
FST were circumfixation and vowel harmony. Vow-
els in Chukchi are divided into two groups based on
vowel height in addition to a schwa sound. The first
group are the dominant vowels, which consist of
letters . The second group are the recessive
vowels which are (Andriyanets and Tyers,
2018). Both groups contain “ ”, which in both
cases, are distinguished based on vowel harmony.
Vowel harmony occurs progressively and regres-
sively, influencing the entire word, thus morpho-
logical and phonological features can cause vowel
changes in the stem and vice versa. For example,
the verb “ ”, in the “V;PFV;IND;SG;3;PST”
context becomes “ ”.5 While on the

3Absolutive, as it is used traditionally, refers to the group-
ing of an intransitive subject and direct object of a transitive
verb. Nominative here is reserved to indicate the grouping of
the intransitive subject and transitive subject.

4This paper follows the Leipzig Glossing Rules (Can be
accessed from: https://www.eva.mpg.de/lingua/
resources/glossing-rules.php), with additionally
AOR = aorist.

5The “ ” sound is used as a substitute for the Cyrillic letter
“El with hook”.

other hand, the verb “ ” in the same
context, becomes “ ”, thus chang-
ing the prefix-suffix combination “ ” into
“ ”, as a result of the dominant vowel “ ” in
the stem.

Chukchi also has morphological processes that
on many occasions, result in the mutation or elision
of letters. For example, the word “ ” changes
to “ ” in the “V;PFV;IND;SG;1;PST” con-
text, thus resulting in the elision of the last two
letters “ ” and “ ”.

The morphological and phonological analyzer
accounts for some of the morphological and phono-
logical processes in Chukchi. The finite state trans-
ducer for Chukchi adjectives can be seen in Figure
2.

Kholosi The Kholosi FST is additionally based
on preliminary descriptions of the language’s mor-
phology. Since a systematic account of Kholosi
morphology is yet to be published, we work ex-
clusively with the work of Arora (2020), which is
based on elicitation from a single native Kholosi
speaker.

One interesting phenomenon is gender alterna-
tion with vowel harmony. Kholosi has two gram-
matical genders, which can be reflected by mor-
phemes, -o for masculine and -i for feminine
(Arora, 2020). In numerals, for instance, the femi-
nine form always ends with -i. Hence we have a
rule that transform the last character to an i when
the FEM tag is expected. From the given five pairs
of MASC/FEM numerals in the training data, we
observe a change of non-a/ā vowels to i.

We also note the (notational) discrepancies
among different data sources:6 In the training data
provided by the shared task, the numeral lemmas
ends with an ā instead of an o which is different
from what was proposed by Arora (2020).7 We also
found glossed sentences in Kholosi where instead
of baro (or barā, depending on the data source),
bahro is used for the masculine (lemma) form of
the numeral two.8

The resulting numeral FST is shown in Figure 1.
Adjectives can also inflect with respect to gender ac-

6With possible errors inherited from UniMorph data:
V;IPFV;IND;SG;3;PRS form of the verb karen is attested
as keraw in glossed sentences but provided as kerav in train
data, while the same forms for other verbs all observe an -aw
suffix.

7Except the case of hoko, meaning one.
8Can be accessed from https://aryamanarora.

github.io/kholosi/sentences.html
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cording to Arora (2020), so similar rules are added
to the adjective FST, although there are no feminine
adjective forms provided in the training data at all.

Upper Sorbian Sorbian is a West Slavic lan-
guage spoken in eastern Germany, in Saxony and
Brandenburg (also called Lusatia). Sorbian demon-
strate closeness with Czech and Polish, and at the
same time shares certain features with South Slavic
languages, such as the use of the double gram-
matical number with nouns, adjectives and verbs,
as well as the use of specific forms of past tense.
Unfortunately, due to the constant contact with
German, Sorbian includes a large number of Ger-
man loanwords in its standardized lexicon (Glaser,
2007).

According to Eberhard et al. (2021), the number
of Upper Sorbian speakers estimated as no more
than 13.000. Their community is fully bilingual,
which means that if the rule of thumb proposed
by Payne and Payne (1997) is applied, the Upper
Sorbian might become extinct by the year 2070.
However, the actual number of Sorbian speakers is
based on estimations. According to the principles
of minority law applicable in the Federal Republic
of Germany, the commitment to a minority is free
and not registered officially, as reported by Marti
(2007).

3 Results

The data-driven approach earned third place for
both small and large languages in part one of the
shared task, although under-performing the neu-
ral baseline. The official preliminary results are
available in Table 3.9

The rule based approach for three languages with
relatively small datasets outperformed all other sys-
tems. However, the analyzers were not only built
by the provided train data, but also with help of lin-
guistic knowledge and UniMorph schemas, which
in large encompassed the test set. The performance
results are shown in Table 2.

4 Discussion

The findings of our study follow up on the work
of Beemer et al. (2020), where it was concluded
that “it is very difficult in many cases to outper-
form a state-of-the-art neural network model with-
out significant development effort and attention

9Taken from https://github.com/sigmorphon/
2022InflectionST/blob/main/results/
preliminary.md

Language Result
Chukchi 19.565
Upper Sorbian 83.750
Kholosi 96.667

Table 2: Results (overall test scores) of the finite-state
approach.

to nuanced morphophonological patterns”. The
finite-state grammars in Beemer et al. (2020) out-
performed the seq2seq results only in languages
with high morphophonological complexity such as
Tagalog, and came at the cost of 5.5 manual work-
ing hours on average per week, over the course of
5 weeks.

Our work similarly required a high number of
working hours, but was able to outperform other
systems in low-resource scenarios precisely due
to the reliance on the linguistic expertise of the
FST creators. The trade-off we observe in our
submission is therefore how much interpretability
and intuition-guided modifications of a model is
desired, where for sufficiently well-documented
languages the benefit of FSTs may not be as obvi-
ous, but for scenarios where sufficient data may not
be able to be collected, our submission would in-
dicate that FSTs still maintain an edge over neural
approaches.

Beemer et al. (2020) note that for certain lan-
guages the amount of inconsistencies makes it un-
likely for a hand-written grammar to surpass neural
systems, where certain rules were deemed irregu-
lar enough to not warrant treatment by their FSTs.
We believe our study provides a partial defense for
FSTs with precisely the same point: in cases where
the amount of data is insufficient for neural models
to infer the rules of low-resource languages, it is
unlikely that the neural models can perform well
without further data; for rule-based approaches,
even with limited amount of data (e.g. due to a lack
of orthography or access to native speakers), the
models can always rely on linguistic knowledge to
provide working solutions.

Our usage of data outside of the training set is
also based on this concern: it is unlikely that there
will be enough human resources for most of the
world’s languages to have enough data collected,
but for the practical situation where a morpholog-
ical analyzer is nevertheless needed, our results
indicate that this approach still remains to be the
most practical solution.
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For our other submission where we experi-
mented with a data-driven approach, we believe
that it constitutes a step towards more interpretable
encoder-decoder predictions, which in light of the
above, may also stand as a future research direction,
which could be beneficial for practical scenarios.

5 Conclusion

We presented two different approaches to mor-
phological inflection, a data preprocessing method
to be used in conjunction with standard encoder-
decoder models and hand-coded finite-state meth-
ods. Despite the problems with both approaches,
i.e. insufficient performance of the data-driven ap-
proach and large amounts of effort needed to engi-
neer FSTs, we think that both have their benefits,
as discussed in Section 4.

In particular we would like to note that the effort
invested into creating FSTs expands computational
resources for under-researched and low-resource
languages and can be considered as a collaborative
part in language revitalization as proposed in Pine
and Turin (2017). Also, both approaches allow
for future extensions, e.g. a big improvement of
finite-state analyzers would be expansion of current
lexicons with guessers for assigning possible stems
and part-of-speech tags.
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A Appendix

Language Small Large

ang 45.962 60.945
ara 62.857 75.338
asm 38.995 63.065
bra 53.134 -
ckt 8.696 -
evn 23.867 52.037
gml * -
goh 52.158 -
got 47.693 65.346
guj 40.855 -
heb 31.15 47.9
hsb 7.5 -
hsi 0.0 -
hun 51.85 68.15
hye 61.45 66.7
itl 33.056 -
kat 47.8 78.85
kaz 55.165 53.611
ket 13.139 -
khk 39.495 47.727
kor 17.821 47.556
krl 10.421 24.098
lud 46.559 50.506
mag 51.163 -
nds 21.947 -
non 47.313 79.759
pol 53.85 67.7
poma 45.873 58.829
sjo 54.496 -
slk 56.05 65.75
slp 12.658 -
tur 19.25 33.6
vep 27.446 44.104

Table 3: Results (overall accuracy of test set predictions)
of data-driven approach for all languages. “-” means
not part of this shared task. “*”: We accidentally did
not submit results for gml
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