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Abstract

A Natural Language Understanding (NLU)
component can be used in a dialogue system
to perform intent classification, returning an
N -best list of hypotheses with corresponding
confidence estimates. We perform an in-depth
evaluation of 5 NLUs, focusing on confidence
estimation. We measure and visualize cali-
bration for the 10 best hypotheses on model
level and rank level, and also measure classi-
fication performance. The results indicate a
trade-off between calibration and performance.
In particular, Rasa (with Sklearn classifier) had
the best calibration but the lowest performance
scores, while Watson Assistant had the best
performance but a poor calibration.

1 Introduction

Natural Language Understanding (NLU) is an im-
portant component in dialogue systems. One of
the typical tasks of NLU is intent classification:
given a user utterance, the NLU returns a list of
N hypotheses (an N -best list) ranked according
to confidence estimates (a real number between 0
and 1). The highest ranking hypothesis is returned
by the NLU as the predicted intent. Confidence
estimates are also available for lower ranked hy-
potheses.

In this study, we evaluate confidence estima-
tion in 5 NLU services, namely Watson Assis-
tant, Language Understanding Intelligent Service
(LUIS), Snips.ai and Rasa (with two pipelines
Rasa-Sklearn and Rasa-DIET). We measure the
calibration and the performance of NLUs on rank
level (results for a specfic rank) and on model level
(aggregated results of all ranks). Calibration here
refers to the correlation between confidence esti-
mates and accuracies, i.e. how useful the confi-
dence estimate associated with a certain hypothe-
sis is for predicting its accuracy.

To achieve our objectives, we conduct an ex-
ploratory case study on the 5 NLUs. We train

the NLUs using a subset of a multi-domain dataset
proposed by Liu et al. (2021). We measure the cal-
ibration of the NLUs on model and rank levels us-
ing reliability diagrams and correlation coefficient
with respect to instance-level accuracy. We also
measure the performance on a model level through
accuracy and F1-score.

Our evaluation aims to facilitate NLU service
selection and help dialogue system developers
adapt their dialogue system to specific NLU ser-
vices. For example, depending on the degree of
calibration in an NLU, contextual or interactive
disambiguation (clarification requests) can be an
option. If confidence estimates reflect true accu-
racy, then if two (or more) hypotheses have similar
confidence estimates, this may indicate the pres-
ence of an ambiguity in the user input (from the
perspective of the NLU, i.e., disregarding dialogue
context) that needs to be resolved. Conversely,
if confidence estimates (especially those for non-
top ranks) do not reflect accuracies, then even if
the top two (or more) hypotheses have similar es-
timates, this may not be a reliable indication of
ambiguity but rather be due to noise.

Our evaluation scripts are publicly available on
GitHub1 along with the dataset, enabling replica-
tion of the study and to ease building on it.

2 Related work

Current NLUs typically use machine-learning on
natural-language data (i.e., the user utterances)
to extract features (e.g., keywords, word counts
and word embeddings) and predict the intent of
the user accordingly (Jung, 2019; Shridhar et al.,
2019).

NLU services are widely used by dialogue de-
velopers and allow them to create and train NLU
models for dialogue systems. However, the task of

1https://github.com/ranimkhojah/
confidence-estimation-benchmark

https://github.com/ranimkhojah/confidence-estimation-benchmark
https://github.com/ranimkhojah/confidence-estimation-benchmark
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choosing the best NLU service depends on the do-
main and context of the dialogue system. In prior
work, benchmarks and evaluations have been per-
formed to identify the best NLU service in differ-
ent domains like software engineering (Abdellatif
et al., 2021), meteorology (Canonico and De Rus-
sis, 2018), question answering (Braun et al., 2017)
and others (McTear et al., 2016; Stoyanchev et al.,
2016; Kar and Haldar, 2016; Koetter et al., 2019).
Generally, these evaluation studies have been con-
ducted to draw the trade-off line between differ-
ent NLU services in terms of the usability of their
user interfaces (Gregori, 2017), technical features
(e.g., language and device support) (Koetter et al.,
2019) and performance (Braun et al., 2017; Liu
et al., 2021).

NLU performance is usually assessed via per-
formance measures (e.g., accuracy, F1-score, etc.)
which depend only on the top hypothesis returned
by the NLU, and disregarding the associated con-
fidence estimates. For example, an NLU that pre-
dicts 3 out of 10 intents incorrectly with high con-
fidence estimates has the same performance as an
NLU that predicts 3 out of 10 intents incorrectly
with a low confidence estimation.

In earlier work, various methods for visualizing
and measuring confidence calibration (the extent
to which confidence estimates reflect true likeli-
hoods) have been discussed. For example, Guo
et al. (2017) and Vasudevan et al. (2019) visualize
calibration of neural network models through reli-
ability diagrams. As for quantitative metrics, one
proposed measurement is statistical correlation
between confidence estimate and some instance-
level performance metric; Dong et al. (2018) use
Spearman’s correlation with respect to F1 score,
while Vasudevan et al. (2019) use Pearson’s corre-
lation with respect to instance-level accuracy. A
second option is to aggregate across instance-level
calibration scores (so called proper scoring rules);
examples include Brier score (Brier et al., 1950)
and negative log-likelihood (Quinonero-Candela
et al., 2005). A third approach involves partition-
ing confidence estimates into bins, assessing cor-
relation for individual bins, and then aggregating
across bin-level calibration results; one popular ex-
ample of such an approach is Expected Calibration
Error (ECE) (Naeini et al., 2015), which has been
extended by Nixon et al. (2019) to assess calibra-
tion of all predictions rather than only the top one.

In this study, we apply some of the previ-

ously proposed calibration assessment methods –
namely reliability diagrams and correlation with
instance-level performance – to NLUs. In addi-
tion, we also measure calibration on rank level, en-
abling a more fine-grained analysis.

3 Background

When using an NLU, an utterance U is fed to the
trained NLU, and the output normally includes the
information in the following example:
{ ’utterance’ : ’U’ ,

’top_intent’: ’intent_1’,
’intent_ranking’: {
’intent_1’: conf_1, # rank 1
’intent_2’: conf_2, # rank 2
... ,
’intent_N’: conf_N # rank N

}
}

The output of the NLU given an utterance U
is a prediction consisting of the user utterance,
the top intent and an intent ranking. The intent
ranking consists of the N -best intent hypotheses
along with their corresponding confidence esti-
mates. The confidence estimates reflect how confi-
dent the NLU model is regarding each hypothesis.

Figure 1 illustrates how NLUs are used in dia-
logue systems, involving a scenario where a user
asks a dialogue system a question within the home
domain. The user utterance (which can be typed
by the user in a chat or captured by a speech rec-
ognizer) is sent to an NLU service which performs
intent classification on the user utterance and re-
turns a prediction with the top intent and the intent
ranking. The results are sent to a dialogue man-
ager that decides how to steer the dialogue based
on the output from the NLU and some dialogue
policy. In case of a high estimated confidence for
the most likely hypothesis, the dialogue manager
integrates the user’s intent, and information is sent
to the natural-language generator that generates a
response which is uttered back to the user.

A dialogue system can use confidence estimates
as a basis for choosing a grounding strategy (e.g.
asking a control question when confidence is low),
ambiguity detection and handling (e.g. asking
a clarification question if the top-ranked intents
have similar confidence estimates) or re-scoring
of hypotheses based on contextual information not
available to the NLU but to the dialogue manager
(such as dialogue state).

Different NLUs may have different ways of
computing confidence estimates, possibly reflect-
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Figure 1: A dialogue system.

ing different notions of confidence. However, for
the purpose of using the estimates in a dialogue
system, we are interested in how well they reflect
true probabilities. In section 4 we note variations
in how confidence estimates are computed, but do
not take these differences into account in our eval-
uation.

4 NLU services

NLU services can be used to construct the NLU
component in a dialogue system. In this study, we
chose NLU services (henceforth NLUs) based on
the following criteria: i) can perform intent classi-
fication and ii) returns at least 10 top hypotheses
in the output. We examine 5 NLUs: Watson As-
sistant (IBM, 2010), Language Understanding In-
telligent Service (LUIS) (Microsoft, 2017), Snips
(Snips, 2013), and Rasa (Rasa, 2016) (in two con-
figurations).

Below, we briefly introduce the NLUs. Informa-
tion about the NLUs, including the tested version,
is summarized in table 1.

Watson Assistant Watson Assistant (henceforth
Watson) is a cloud-based NLU developed by IBM.
When parsing an utterance, Watson returns the
top 10 hypotheses along with their confidence es-
timates. Confidence estimates are calculated inde-
pendently for each intent that it has been trained
on. In addition, Watson has an optional built-in
“irrelevant” intent for out-of-scope (OOS) input.

LUIS LUIS (Language Understanding Intelli-
gent Service) is provided by Microsoft and runs
on the Azure cloud platform. LUIS trains an intent
using provided positive examples and other intents
as negative examples.

There is no limit in the number of hypotheses
that LUIS returns; in other words, if the NLU is
trained on N intents, then the intent ranking is of
length N . A “None” intent for out-of-scope input
is also supported, but requires the user to train it
on example utterances.

Rasa Opensource Rasa is an open-source NLU
provided by Rasa Technologies. It can run on
different pipelines that are configurable which in-
creases the flexibility of the NLU (Bocklisch et al.,
2017). Rasa returns the top 10 hypotheses and
their corresponding confidence estimates are nor-
malized (they sum up to 1). Rasa does not offer a
built-in out-of-scope intent.

In this study, we use with two different
pipelines. The first pipeline uses the Sklearn in-
tent classifier2 while the second uses Dual In-
tent and Entity Transformer (DIET) (Bunk et al.,
2020). We refer to the two pipelines above as Rasa-
Sklearn and Rasa-DIET respectively.

Snips Snips is an AI voice platform for con-
nected devices which provides an NLU for Python
called Snips NLU (henceforth Snips). By default,
Snips returns all hypotheses of all intents with con-
fidence estimates, in addition to a “None” intent3

for OOS input.

5 Dataset and data preparation

To conduct intent classification as a part of our
evaluation, we build on the dataset proposed by
Liu et al. (2021). The authors collect and annotate

2https://rasa.com/docs/rasa/
components/#sklearnintentclassifier

3https://snips-nlu.readthedocs.io/en/
latest/tutorial.html#the-none-intent

https://rasa.com/docs/rasa/components/#sklearnintentclassifier
https://rasa.com/docs/rasa/components/#sklearnintentclassifier
https://snips-nlu.readthedocs.io/en/latest/tutorial.html#the-none-intent
https://snips-nlu.readthedocs.io/en/latest/tutorial.html#the-none-intent
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NLU Packaging Classifier Type Version OOS intent

Watson Cloud-based service Multiple-binary Invoked in April 2022 Yes
LUIS Cloud-based service Multi-class Invoked in April 2022 Yes
Snips Open-source framework Multi-class v0.20.2 Yes
Rasa Open-source framework Multi-class v2.4.3 No

Table 1: Summary of studied NLUs. (OOS = out of scope.)

Figure 2: The evaluation process followed for each NLU to obtain the results; this process was repeated 5 times, 1
time per NLU model.

25716 user utterances for human-robot interaction
and cover 64 intents, 18 scenarios and 21 domains.
From this dataset, we select the 10 intents with
the most examples (highest number of instances),
yielding a total of 14962 utterances (see table 2).4

We perform repeated random sub-sampling (Dub-
itzky et al., 2007) with 10 iterations to generate
10 random datasets; each dataset is divided with
a 2:1 ratio into a training and testing sets respec-
tively. (A breakdown by domain and/or scenario
could also have been interesting, but was ruled out
due to data sparsity.)

When analyzing the outputs from the
NLUs, we exclude hypotheses with the OOS
(“None”/“irrelevant”) class in the intent ranking
in order to ensure that all NLUs have the same
intent ranking length and make their results
comparable. (See section 8 for a discussion about
OOS handling.)

6 Evaluation of confidence estimation

An overview of our study’s execution is illustrated
in figure 2. The evaluation is performed at two lev-

4Liu et al. (2021) provide user utterances in different
forms: original (raw), with entity annotations, and normal-
ized. In our study, we use the original user utterances.

els: rank and model. On rank level, the results are
obtained for each rank across the NLUs, whereas
on model level, the results of all ranks are aggre-
gated.

The evaluation focuses on the calibration and
performance of the NLUs. Calibration is mea-
sured using reliability diagrams and Spearman’s
correlation coefficient with respect to instance-
level accuracy. The latter is measured through ac-
curacy and F1-score. Evaluation is conducted for
each split and results are averaged across splits.

6.1 Confidence calibration

Confidence calibration is the extent to which a
model is able to produce confidence estimates that
reflect the accuracy (true likelihood) of the respec-
tive intent hypotheses (Guo et al., 2017). For
example, in a well-calibrated model, hypotheses
with a confidence estimate of 0.7 are correct in
70% of the cases.

Reliability diagrams are visualizations of a
model’s calibration (Guo et al., 2017). They plot
true likelihood (accuracy) of predictions as a func-
tion of confidence estimate. Hence, a perfectly-
calibrated model is visualized as the identity func-
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Intent Size Example

query 5981 what’s the time in australia
set 1748 wake me up at 9am on Friday
music 1205 start playing music from favourites
quirky 1088 I am not tired I am actually happy
factoid 1052 tell me comics of charlie chaplin
remove 986 cancel my 7am alarm
negate 939 you don’t understand it right
sendemail 694 send a group mail to lookafter
explain 684 could you clarify me on it further
repeat 585 please let’s start over

Total 14962 examples

Table 2: Selected intents for the case study with their respective size (i.e. number of utterances) and one example
utterance.

tion, and any deviation indicates miscalibration.
Reliability diagrams are plotted by partitioning

predictions into bins, each of which represents a
confidence range. In our study, we use 10 uni-
formly distributed bins, i.e. [0.0-0.1], [0.1-0.2],
. . . [0.9-1.0]. For each bin, mean confidence esti-
mate and accuracy is calculated and plotted as a
point.

Spearman’s correlation coefficient In order to
numerically measure the degree of calibration, we
assess the correlation between confidence esti-
mates (scores in the range 0-1) and instance-level
accuracies (1 for correct classifications, 0 for in-
correct classifications). More specifically, we mea-
sure the extent to which an increase in confidence
estimate is associated with an increase in instance-
level accuracy – in other words, the monotonic-
ity of the relationship between confidence esti-
mate and accuracy. The degree of monotonicity is
measured using Spearman’s correlation coefficient
(Xiao et al., 2016).5

Given two variables (X and Y ) of size N
(x1, x2, ..xn and y1, y2...yn respectively), Spear-
man’s correlation coefficient (ρ) is calculated
through the formula:

ρ = 1− 6
∑

d2i
n(n2 − 1)

where n is the number of samples, and d is the pair-
wise differences of the elements of the variables xi
and yi.

5We choose Spearman’s correlation rather than Pearson’s
correlation since our data is not normally distributed.

A perfectly-calibrated model has a Spearman’s
correlation coefficient of 1, while a correlation co-
efficient of 0 conveys a lack of correlation between
confidence and accuracy.

Note that other approaches to numerically esti-
mating calibration have been discussed in the lit-
erature, e.g. negative log-likelihood (Quinonero-
Candela et al., 2005), Brier score (Brier et al.,
1950) and expected calibration error (Nixon et al.,
2019). Different measurement approaches have
different advantages and weaknesses (Ashukha
et al., 2020), and no gold standard seems to ex-
ist. In this study, we have opted for Spearman’s
correlation due to the fact that monotonicity in the
relation between confidence estimate and accuracy
is an important characteristic of good calibration.
Spearman’s correlation has been previously used
to evaluate confidence scores for neural semantic
parsers (Dong et al., 2018).

6.2 Performance

Since performance only considers the first rank, it
can only be computed on a model level. To mea-
sure the performance, we use F1-score and accu-
racy. We use F1-score since it considers false pos-
itives and false negatives through precision and re-
call. Another reason is the unbalanced distribu-
tion of the example utterances across intents. We
also include the accuracy since in this particular
multi-domain dataset, false negatives have no ma-
jor risks.
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7 Results and analysis

In this section we present our results (averaged
across the 10 splits). Our collected data are visual
(reliability diagrams and calibration profiles) and
numeric (Spearman’s correlation, accuracy and
F1-score). For our numeric results, we provide
the average along with the standard deviation (SD),
whereas for the visual results we provide the stan-
dard deviation in Appendix B to avoid cluttered
diagrams.

7.1 Reliability diagrams
Calibration of the NLUs is visualized through reli-
ability diagrams on model level (figure 3) and rank
level (figures 4, 5, 6, 7). In the rank-level reliabil-
ity diagrams, ranks 4-10 have been merged due to
data sparsity.

Model-level results: On a model level (figure 3),
all NLUs show a generally monotonic relationship
between confidence and accuracy, except for Wat-
son’s lower ranges. In particular, Rasa-Sklearn is
the closest to the gold standard, and is thus the best
calibrated NLU according to this analysis. More-
over, Snips underestimates the true likelihood of
predictions, while LUIS is over-confident. We ob-
serve a discrepancy in Watson’s first 2 bins in the
reliability diagram (figure 3) – a sudden underes-
timation followed by a drop that indicates an ex-
treme overestimation.6

Rank-level results: On the first rank (figure 4),
the NLUs are fairly well-calibrated in general. On
ranks 2 (figure 5) and 3 (figure 6), the degree of
calibration decreases (in comparison with the pre-
vious rank), for three of the NLUs (Watson, LUIS
and Snips – all over-confident), while for the Rasa
NLUs the trend seems inverted.

7.2 Calibration score and profile
The calculated Spearman’s correlations between
the confidence estimates and instance-level accu-
racy (table 3) show that Rasa-Sklearn has the high-
est Spearman’s correlation with a score of ∼0.51,
and is followed by LUIS, Rasa-DIET, Watson, and
Snips with the lowest Spearman’s correlation of
∼0.507. The difference between LUIS and Rasa-
DIET is not significant, while the differences be-
tween each other pairs of NLUs are significantly
different with a large effect size. (The entire list

6As shown by figure 10 in Appendix A, Watson’s first two
bins are small in comparison with the other NLUs.

Figure 3: Model-level reliability diagram. The x-axis
shows the mean confidence estimates in each bin, while
the y-axis shows the mean accuracy of the confidence
estimates in each bin (averaged across splits). The
black diagonal line plots the identity function represent-
ing a gold standard of a perfectly-calibrated model.

Figure 4: Rank-level reliability diagram on rank 1.

Figure 5: Rank-level reliability diagram on rank 2.

Figure 6: Rank-level reliability diagram on rank 3.

of t-test results is presented in table 6 in Appendix
C.)

The model-level reliability diagram appears to
resonate with the model-level calibration where



588

Figure 7: Rank-level reliability diagram on ranks 4-10.

Rasa-Sklearn shows the best calibration in the reli-
ability diagram as well as the strongest monotonic-
ity.

Figure 8 shows the calibration profile for each
NLU – the Spearman’s correlation coefficient as
a function of rank. A perfect calibration profile
(where calibration is perfect on each rank) would
correspond to a straight line along the top of the di-
agram. In contrast, we can observe that all NLUs
have noticeably lower Spearman’s correlation for
lower ranks. The decrease in Spearman’s correla-
tion for lower ranks may indicate that lower ranks
are worse calibrated than higher ranks. However,
there are reasons to treat these results with some
caution.

We can note that the Spearman’s correlation is
generally lower on a rank level than on a model
level. This can be explained by the fact that
ranks extend across smaller ranges of confidence
estimates (see model-level histogram in Appendix
A), which increases variation in one of the cor-
related variables. Thus, it appears that a higher
Spearman’s correlation coefficient may be due to
a larger variation in the confidence estimates. This
may also explain that while figure 8 suggests a de-
crease in the calibration for lower ranks, the rank-
level reliability diagrams show that Rasa-Sklearn
and Rasa-DIET have better calibration in lower
ranks. Still, on a model level, we take monotonic-
ity to be a characteristic of well-calibrated NLUs.
The stronger the monotonicity, the more one can
trust an NLU’s ranking of hypotheses in a predic-
tion.

7.3 Performance

We measure the performance of the NLUs in in-
tent classification by evaluating accuracy and F1-
score. Performance is only evaluated on a model
level since it considers the top hypothesis of the
NLU’s prediction. Our results of the accuracy and

F1-scores are averaged across 10 splits for each
NLU.

Accuracy: The results in table 4 show that Wat-
son has the highest (∼0.92) and Rasa-Sklearn the
lowest (∼0.87) accuracy. The accuracy scores
of LUIS and Snips are not significantly differ-
ent from each other, while all other differences
between NLUs are statistically significant with a
large effect size.

F1-score: The results in table 5 show that Wat-
son has the highest (∼0.92) and Rasa-Sklearn the
lowest (∼0.79) F1-score. All pairwise differences
between the NLUs are significant with a large ef-
fect size. (The entire pairwise t-test results for ac-
curacy and F1-score are included in table 7 in Ap-
pendix C.)

Our performance results are consistent with ear-
lier work comparing Watson, LUIS and Rasa-
Sklearn (Liu et al., 2021) that use the complete
version of our dataset, and with Abdellatif et al.
(2021) who use two datasets from the software
engineering domain. However, the results dif-
fer from those in Braun et al. (2017) who use
Telegram chatbot and StackExchange corpora in
a question-answering domain and that has Watson
as the worst performing NLU, and Rasa and LUIS
on top.

A natural question at this point is whether cal-
ibration and performance are correlated. Figure
9 plots calibration (model-level Spearman’s corre-
lation) against model-level accuracy and F1 score.
Judging from this, calibration and performance are
not correlated, indicating a trade-off between cal-
ibration and performance (as previously reported
for neural networks by Guo et al., 2017).

8 Discussion

In this study, we did not find support for any
correlation between calibration and performance
(judged by looking only at the top hypothesis).
A consequence of this is that when it comes to
choosing an NLU for a dialogue system, there is
likely to be a trade-off between performance (good
for getting the right interpretation) and calibration
(good for detecting input that is ambiguous from
the NLU perspective).

Differences in degree of calibration across ranks
has been observed for all NLUs. Specifically, sev-
eral of the NLUs are better calibrated for higher-
ranking hypotheses than for lower-ranking ones.
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NLU Watson LUIS Snips Rasa-Sklearn Rasa-DIET

Mean 0.50838 0.50935 0.50669 0.51024 0.50906
Median 0.50851 0.50934 0.506491 0.51026 0.50888
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SD 0.00075 0.00055 0.00064 0.00046 0.00074

Table 3: Model-level calibration scores (Spearman’s correlation coefficient ρ)

NLU Watson LUIS Snips Rasa-Sklearn Rasa-DIET

Mean 0.92287 0.88726 0.88991 0.87263 0.90376
Median 0.91997 0.890405 0.89060 0.87866 0.89973
SD 0.00225 0.00417 0.00414 0.00386 0.003860

Table 4: (Averaged) accuracy scores of NLUs

NLU Watson LUIS Snips Rasa-Sklearn Rasa-DIET

Mean 0.92144 0.88890 0.89029 0.79020 0.81890
Median 0.91972 0.89300 0.89166 0.79561 0.81716
SD 0.00234 0.00373 0.00407 0.00358 0.00331

Table 5: (Averaged) F1-scores of NLUs

For dialogue system developers, we may interpret
this as indicating that it may be useful to look at
the top two or three hypotheses when trying to
detect ambiguity in input utterances. Looking at
hypotheses ranked lower than 4 is likely to not
be very informative. Fortunately, ambiguities are
much more frequently 2-way (i.e. there are two
possible interpretations of an input) or 3-way than
4-way or more.

It is worth stressing that one of the studied
NLUs (Watson) is a multiple-binary classifier (it
treats intents independently), while the others are
multi-class (they treat intents as mutually exclu-
sive). In this study, we do not investigate whether
one type of classifier is more appropriate than an-
other – presumably, both types have benefits and
disadvantages. Nevertheless, since our dataset as-
sumes a single correct class for a given utterance7,
our analysis may indirectly favour multi-class clas-
sifiers.

When interpreting our results, one should also
consider that different NLUs handle out-of-scope
(OOS) input differently. Specifically, among the

7Utterances in Liu et al.’s (2021) dataset, on which we
build, are labelled with a single correct intent. There are cases
of identical utterances for two different intents, but they are
very rare (9 out of 25576 unique utterances).

studied NLUs only Rasa does not include an OOS
intent. Our exclusion of out-of-scope intents from
the intent rankings returned by the NLUs does not
rule out the possibility that different OOS handling
may have affected the result. A more level-playing
field would have required all NLUs to either not
consider OOS at all, or for all of them to be trained
on the same OOS examples. Unfortunately, since
Snips’ OOS handling cannot be configured, nei-
ther of these options were available. (Larson et al.
(2019) evaluated OOS detection for NLUs, but
without considering confidence calibration.)

9 Conclusions and future work

We took established calibration measurement ap-
proaches and applied them to intent classification
of publicly available NLUs. We also extended
the chosen measurements with a rank-level anal-
ysis. Our findings show that the best calibrated
NLU is Rasa-Sklearn and the least calibrated NLU
is Snips, while Watson takes the lead as the best
performing NLU and Rasa-Sklearn as the worst
performing NLU. The results indicate a trade-off
between confidence calibration and performance.
We also showed differences in degree of calibra-
tion across ranks and discussed their implication
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Figure 8: Calibration profiles for all NLUs (Spearman’s correlation for ranks 1-10)

(a) Accuracy vs. Calibration (b) F1-score vs. Calibration

Figure 9: (Model-level) accuracy (a) and F1-score (b) vs. calibration

for dialogue system development.
In future work, it would be interesting to extend

the investigation with qualitative analyses of how
differences in confidence estimation play out in
concrete examples. It could also be valuable to
find a better way of assessing how well the NLUs
capture genuine ambiguity – something which is
difficult with a dataset that assumes a single cor-
rect intent for a given utterance.
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A Histograms of bin sizes

Figure 10: Model-level histogram

Figure 11: Rank-level (rank 1)

Figure 12: Rank-level (rank 2

Figure 13: Rank-level (rank 3)

Figure 14: Rank-level (ranks 4-10)

B Reliability diagrams with standard
deviation

Figure 15: Model level

Figure 16: Rank level (rank 1)

Figure 17: Rank level (rank 2)

Figure 18: Rank level (rank 3)

Figure 19: Rank level (ranks 4-10)
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C T-test calculations

Pairwise Comp. t-Statistic p-value df Effect Size SSD (p<.05)

(Watson, LUIS) -3.1645 0.01147 9 L Yes
(Watson, Snips) 4.9025 0.00084 9 L Yes
(Watson, Rasa-Sklearn) -5.4977 0.0003813 9 L Yes
(Watson, Rasa-DIET) -2.9555 0.01608 9 L Yes
(LUIS, Snips) 25.569 <0.00001 9 L Yes
(LUIS, Rasa-Sklearn) -3.8306 0.00402 9 L Yes
(LUIS, Rasa-DIET) -78.645 0.2895 9 S No
(Snips, Rasa-Sklearn) -16.545 <0.00001 9 L Yes
(Snips, Rasa-DIET) -7.8118 <0.00001 9 L Yes
(Rasa-DIET, Rasa-Sklearn) -4.1319 0.002552 9 L Yes

Table 6: T-test for pairwise NLUs’ Spearman’s correlation scores on a model level

Table 7: T-test for pairwise NLUs’ performance

Pairwise Comp. t Statistics p-value df Effect Size SSD (p<.05)

Accuracy

(Watson, LUIS) 18.462 <0.00001 9 L Yes
(Watson, Snips) 29.325 <0.00001 9 L Yes
(Watson, Rasa-Sklearn) 25.059 <0.00001 9 L Yes
(Watson, Rasa-DIET) 12.82 <0.00001 9 L Yes
(LUIS, Snips) -0.62904 0.545 9 N No
(LUIS, Rasa-Sklearn) 11.672 <0.00001 9 L Yes
(LUIS, Rasa-DIET) -7.2468 <0.00001 9 L Yes
(Snips, Rasa-Sklearn) 13.889 <0.00001 9 L Yes
(Snips, Rasa-DIET) -7.7684 <0.00001 9 L Yes
(Rasa-DIET, Rasa-Sklearn) 18.968 <0.00001 9 L Yes

F1-score

(Watson, LUIS) 15.437 <0.00001 9 L Yes
(Watson, Snips) 25.432 <0.00001 9 L Yes
(Watson, Rasa-Sklearn) 79.213 <0.00001 9 L Yes
(Watson, Rasa-DIET) 73.47 <0.00001 9 L Yes
(LUIS, Snips) 1.1095 0.296 9 S No
(LUIS, Rasa-Sklearn) 95.383 <0.00001 9 L Yes
(LUIS, Rasa-DIET) 49.549 <0.00001 9 L Yes
(Snips, Rasa-Sklearn) 135.47 <0.00001 9 L Yes
(Snips, Rasa-DIET) 88.435 <0.00001 9 L Yes
(Rasa-DIET, Rasa-Sklearn) 18.098 <0.00001 9 L Yes
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Pairwise Comp. t Statistics p-value df Effect Size SSD (p<.05)

Rank 1

(Watson, LUIS) -7.6715 <0.00001 9 L Yes
(Watson, Snips) -9.7613 <0.00001 9 L Yes
(Watson, Rasa-Sklearn) -11.441 <0.00001 9 L Yes
(Watson, Rasa-DIET) -10.782 <0.00001 9 L Yes
(LUIS, Snips) 1.2402 0.2463 9 S No
(LUIS, Rasa-Sklearn) -4.45 0.0016 9 L Yes
(LUIS, Rasa-DIET) -1.8668 0.09477 9 M No
(Snips, Rasa-Sklearn) -5.7598 0.0002729 9 L Yes
(Snips, Rasa-DIET) -3.0576 0.01362 9 L Yes
(Rasa-DIET, Rasa-Sklearn) -6.754 <0.00001 9 L Yes

Rank 2

(Watson, LUIS) -3.2206 0.01048 9 L Yes
(Watson, Snips) 6.4881 0.000113 9 L Yes
(Watson, Rasa-Sklearn) -17.398 <0.00001 9 L Yes
(Watson, Rasa-DIET) -8.6273 <0.00001 9 L Yes
(LUIS, Snips) 9.9936 <0.00001 9 L Yes
(LUIS, Rasa-Sklearn) -9.7455 <0.00001 9 L Yes
(LUIS, Rasa-DIET) -3.7508 <0.00001 9 L Yes
(Snips, Rasa-Sklearn) -17.882 <0.00001 9 L Yes
(Snips, Rasa-DIET) -12.898 <0.00001 9 L Yes
(Rasa-DIET, Rasa-Sklearn) -11.323 <0.00001 9 L Yes

Rank 3

(Watson, LUIS) -6.7607 <0.00001 9 L Yes
(Watson, Snips) -0.6851 0.5105 9 S No
(Watson, Rasa-Sklearn) -13.616 <0.00001 9 L Yes
(Watson, Rasa-DIET) -6.2648 0.000147 9 L Yes
(LUIS, Snips) 7.0407 <0.00001 9 L Yes
(LUIS, Rasa-Sklearn) -6.3356 0.0001352 9 L Yes
(LUIS, Rasa-DIET) 0.46202 0.655 9 N No
(Snips, Rasa-Sklearn) -11.323 -7.0872 9 L Yes
(Snips, Rasa-DIET) -7.0872 <0.00001 9 L Yes
(Rasa-DIET, Rasa-Sklearn) -4.6652 0.001177 9 L Yes

Rank 4-10

(Watson, LUIS) -5.9362 <0.00001 49 L Yes
(Watson, Snips) -0.72951 0.4692 49 N No
(Watson, Rasa-Sklearn) 0.078179 0.938 49 N No
(Watson, Rasa-DIET) -3.3111 0.00175 49 S Yes
(LUIS, Snips) 9.1052 <0.00001 49 L Yes
(LUIS, Rasa-Sklearn) 8.087 <0.00001 49 L Yes
(LUIS, Rasa-DIET) 3.9641 0.0002393 49 M Yes
(Snips, Rasa-Sklearn) 1.2524 0.2164 49 N No
(Snips, Rasa-DIET) -4.1725 0.0001228 49 M Yes
(Rasa-DIET, Rasa-Sklearn) 5.2551 <0.00001 49 M Yes

Table 8: T-test for pairwise NLUs’ Spearman’s correlation scores on a rank level


